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Numerical accuracy of approximation methods

When an approximation L(h) such that lim
h→0

L(h) = L is computed, it is

affected by:

a truncation error em(h)

a round-off error ec(h).

em(h) −→
If h decreases, L(h): s exponent mantissa

←− ec(h)

As long as ec(h) < em(h), decreasing h brings reliable information to
the mantissa.

The optimal step is reached when ec(h) ≈ em(h).

1 How to determine dynamically the optimal step ?
2 Which digits in the approximation obtained are in common with L ?
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Stochastic approach of round-off errors

the CESTAC method

the concept of computational zero

⇒ Continuous stochastic arithmetic: X =
(

m, σ2
)

⇒ Discrete stochastic arithmetic: X = (X1,X2, ...,XN)
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Significant digits common to two real numbers

Definition
Let a and b be two real numbers, the number of significant digits that
are common to a and b can be defined in IR by

1 for a 6= b, Ca,b = log10

∣

∣

∣

∣

a + b
2(a− b)

∣

∣

∣

∣

,

2 ∀a ∈ IR, Ca,a = +∞.

Example:
if a = 2.4599976 and b = 2.4600012, then Ca,b ≈ 5.8.
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On sequences with a linear convergence

Theorem

Let (In) be a sequence converging linearly to I, i.e. which satisfies
In − I = Kαn + o(αn) where K ∈ IR and 0 < |α| < 1, then

CIn,In+1
= CIn,I + log10

(

1
1− α

)

+ o (1) .

If the convergence zone is reached,
the significant decimal digits common to In and In+1, are those of I, up

to log10

(

1
1−α

)

.

If −1 < α ≤ 1
2 , then −1 < log2

(

1
1−α

)

≤ 1.

In this case, the significant bits common to In and In+1 are those of I,
up to one.
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Applications in DSA

Let us assume that the convergence zone is reached.

If In − In+1 = @.0,
the difference between In and In+1 is due to round-off errors.

Further iterations are useless.

Consequently

the optimal iterate In+1 can be dynamically determined

if α ≤ 1
2 , the exact significant bits of In+1 are those of I, up to one.

F. Jézéquel, Dynamical control of converging sequences computation, Applied

Numerical Mathematics, 50(2): 147-164, 2004.
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Dynamical control of approximation methods

Theorem
Let L(h) be an approximation of order p of L, i.e.

L(h)− L = Khp +O (hq) with 1 ≤ p < q, K ∈ IR.

If Ln is the approximation computed with the step h0
2n , then

CLn,Ln+1
= CLn,L + log10

(

2p

2p − 1

)

+O
(

2n(p−q)
)

.

If the convergence zone is reached and Ln − Ln+1 = @.0, the exact
significant bits of Ln+1 are those of L, up to one.
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Control of stochastic operations

Theorem
Let Xi be the approximation in stochastic arithmetic of a mathematical
value xi such that its exact significant bits are those of xi up to pi

(i = 1,2).

Let© be an arithmetical operator: © ∈ {+,−,×, /}
and s© the corresponding stochastic operator:
s© ∈ {s+ , s− , s× , s/}.

Then the exact significant bits of X1 s© X2 are those of the
mathematical value x1© x2, up to max(p1,p2).

proved for stochastic operations
used in practice for results obtained in DSA

F. Jézéquel, Dynamical control of converging sequences computation, Applied

Numerical Mathematics, 50(2): 147-164, 2004.
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Dynamical control of integrals on an infinite domain

Let g =

∫

∞

0
φ(x)dx and gm =

m
∑

j=0

fj with fj =

∫ (j+1)L

jL
φ(x)dx .

We assume that (gm) converges linearly to g.

An approximation of each integral can be computed in DSA,
such that its exact significant bits are those of fj , up to 1.

Let Gm be the approximation of gm computed in DSA.

⇒ the exact significant bits of Gm are those of gm, up to 1.

⇒ if the convergence zone is reached,
the significant bits common to gm and gm+1 are those of g, up to p.

⇒ if Gm −Gm+1 = @.0,
the exact significant bits of Gm+1 are those of g, up to p+1.
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Dynamical control of multiple integrals computation

PhD M. Charikhi, Jan. 2005

I =

∫

Ω
f (x)dx with Ω ⊂ IRN

can be approximated by:

Q[f ] =

ν
∑

j=1

aj f (xj) with aj ∈ IR and xj ∈ Ω.

The approximation Q is called cubature formula if N ≥ 2.

polynomial-based methods

Monte Carlo methods

Cubpack, R. Cools et al. 1992
VANI, C.-Y. Chen 1998
CLAVIS, S. Wedner 2000
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Approximation using the principle of “iterated integrals”
Computation of 2-dimensional integrals

s =

∫ b

a

∫ y2(x)

y1(x)
f (x , y)dxdy =

∫ b

a
g(x)dx with g(x) =

∫ y2(x)

y1(x)
f (x , y)dy .

∀x ∈ [a,b], an approximation G(x) can be computed in DSA such that
its exact significant bits are those of g(x), up to δ.

Let Sn = φ({G(xi )}) be the approximation of s computed in DSA
and sn = φ({g(xi)}).

⇒ the exact significant bits of Sn are those of sn, up to δ

⇒ if the convergence zone is reached, the significant bits common to
sn−1 and sn are common with s, up to δ

⇒ if Sn−1 − Sn = @.0,
the exact significant bits of Sn are those of s, up to 2δ.
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Approximation using the principle of “iterated integrals”
Computation of N-dimensional integrals

The exact significant bits of the approximation obtained are those of
the mathematical value of the integral, up to Nδ.

With Romberg’s method, δ = 0.

With the trapezoidal rule, Nδ represents:
one bit if N ≤ 2
one decimal digit if N ≤ 8.

With Simpson’s rule, Nδ represents one bit if N ≤ 35.

With the Gauss-Legendre method with 6 points, Nδ represents
one bit if N ≤ 2838.

F. Jézéquel Dynamical control of approximation methods 7-8 Mar. 2005 12 / 23



Computation of an integral involved in crystallography

g(a) =

∫ +∞

0
f (x)dx ,

with f (x) = [exp(x) + exp(−x)]a − exp(ax)− exp(−ax) and 0 < a < 2.

g(5/3) ≈ 4.45 (W. Harrison 1981)
g(5/3) ≈ 4.6262911 (SIAM review 1996)

g(a) can be expressed as a series expansion:

g(a) =
+∞
∑

n=1

Πn−1
i=0 (a− i)

(n!)(2n − a)
−

1
a
.

F. Jézéquel, J.-M. Chesneaux, Computation of an infinite integral using Romberg’s

method, Numerical Algorithms, 36(3): 265-283, 2004.
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Computation of an integral involved in crystallography
The numerical problems

Several numerical problems may occur in the computation of g(a):

for high values of x , the computation of f (x) may generate
cancellations,

the upper bound of the integral is infinite,

the quadrature method used, e.g. Romberg’s method, generates
both a truncation error and a round-off error.
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Computation of an integral involved in crystallography
Dynamical control of the computation

In order to avoid cancellations, the same expression of the integrand is
not used at both bounds of the interval.

g(a) ≈

∫ l

0
f1(x)dx +

k
∑

j=1

∫ (j+1)l

jl
f2(x)dx ,

where f1(x) = exp(ax)
[

(1 + exp(−2x))a − 1− exp(−2ax)
]

f2(x) = exp(ax)u(x)− exp(−ax),

u(x) = lim
n→∞

un(x) with un(x) =

n−1
∑

i=1

exp(−2ix)

i!
Πi−1

j=0(a− j).

Dynamical choice of several parameters:

n such that un(x) ≈ u(x)

k such that
∫ kl

l f2(x)dx ≈
∫

∞

l f2(x)dx
the number of iterations with Romberg’s method
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Computation of an integral involved in crystallography
Theoretical and numerical results

Proposition

One can compute an approximation G(a) such that its exact significant

digits are those of g(a), up to δ = log10

(

2
1−exp−l min(a,2−a)

)

.

a δ ≈ g(a)

0.5 0.34 exact: -1.694426169587958E+000
DSA: -1.69442616958795E+000

5/3 0.39 exact: 4.626291111983995E+000
DSA: 4.626291111983E+000

1.9999 3.6 exact: 1.999899986776092E+004
DSA: 1.99989997358E+004

The exact significant digits of G(a) are in common with g(a), up to dδe.
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Study of an integral involved in the neutron star theory

τ (ε, v) =
1

ω (ε)

∫ π

2

0
dθ sin (θ)

∫

∞

0
dn n2

∫

∞

0
dp h (n,p, θ, ε, v)

(ε, v) ∈ [10−4,104]× [10−4,103]

ω is a normalization function

h (n,p, θ, ε, v) = ψ(z)Γ(n − ε− z) + ψ(−z)Γ(n − ε+ z)
−ψ(z)Γ(n + ε− z)− ψ(z)Γ(n + ε+ z)

with z =

√

p2 + (v sin(θ))2, ψ(x) = 1
exp(x)+1 , Γ(x) = x

exp(x)−1 .

F. Jézéquel, F. Rico, J.-M. Chesneaux, M. Charikhi, Reliable computation of a multiple

integral involved in the neutron star theory, submitted to “Mathematics and Computers

in Simulation”.
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Study of an integral involved in the neutron star theory
Dynamical control of the computation

The numerical problems:

two infinite bounds
∫

∞

0 ... is replaced by
∑k

j=0

∫ (j+1)L
jL ...

⇒ Dynamical choice of k

Γ(x) = x
exp(x)−1 generates cancellations if x ≈ 0.

a series expansion of Γ(x) is used: Γ(x) ≈ 1

1+ x
2 +...+ xn−1

n!

⇒ Dynamical choice of n

With the principle of “iterated integrals”, the Gauss-Legendre
method is used and generates both a truncation error and a
round-off error
⇒ Dynamical control of the Gauss-Legendre method
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Study of an integral involved in the neutron star theory
Computation in single precision

τ (ε, v) has been computed using DSA in single precision for 5752
points (ε, v) defined by:

{

ε = 10a with a = −4.0,−3.9,−3.8, . . . ,4.0
v = 10b with b = −4.0,−3.9,−3.8, . . . ,3.0.

The run time of the code varies from 45 s to 3347 s depending on the
values of ε and v , the average run time being 389 s.
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Study of an integral involved in the neutron star theory
Numerical quality of the approximations obtained

Proposition
One can compute an approximation of τ (ε, v) such that its exact
significant digits are those of τ (ε, v), up to 2.

nb. of exact significant digits occurrence
3 1
4 217
5 665
6 3347
7 1522

⇒ we can guarantee 1 to 5 significant digits in the results obtained.
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Study of an integral involved in the neutron star theory
Numerical results
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Conclusion and perspectives - 1/2

Dynamical control of converging sequences computation

Let u = lim
n→∞

un. From two iterates in the convergence zone, one can

determine the first digits of u.

If un − un+1 = @.0, one can determine which significant digits of un+1

are in common with u.

Combination of theoretical results if several sequences are involved

For the approximation of an integral, one has to take into account:

the dimension of the integral

the number of improper bounds

the possible approximation of the integrand by its series expansion

the convergence speed of the sequences involved

F. Jézéquel Dynamical control of approximation methods 7-8 Mar. 2005 22 / 23



Conclusion and perspectives - 2/2

Adaptive strategies

Other approximation methods

Approximation of multiple integrals
other cubature methods
singular integrals
Monte Carlo methods

Dynamical control of vector sequences computation
PhD R. Adout

acceleration of the restarted GMRES method
dynamical control of the dimension of the Krylov subspace

Automatic methods for round-off error analysis
DSA for MATLAB
compiler with DSA features
linear algebra library
grid computing: new methodologies
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