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ABSTRACT
When scheduling public works or events in a shared facility one

needs to accommodate preferences of a population. We formal-

ize this problem by introducing the notion of a collective sched-
ule. We show how to extend fundamental tools from social choice

theory—positional scoring rules, the Kemeny rule and the Con-

dorcet principle—to collective scheduling. We study the computa-

tional complexity of finding collective schedules. We also exper-

imentally demonstrate that optimal collective schedules can be

found for instances with realistic sizes.

KEYWORDS
scheduling; computational social choice; participatory scheduling

ACM Reference Format:
Fanny Pascual, Krzysztof Rzadca, and Piotr Skowron. 2018. Collective Sched-

ules: Scheduling Meets Computational Social Choice. In Proc. of the 17th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Major public infrastructure projects, such as extending the city sub-

way system, are often phased. As workforce, machines and yearly

budgets are limited, phases have to be developed one by one. Some

phases are inherently longer-lasting than others. Moreover, indi-

vidual citizens have different preferred orders of phases. Should

the construction start with a long phase with a strong support, or

rather a less popular phase, that, however, will be finished faster? If

the long phase starts first, the citizens supporting the short phase

would have to wait significantly longer. Consider another exam-

ple: planning events in a single lecture theater for a large, varied

audience. The theater needs to be shared among different groups.

Some events last just a few hours, while others multiple days. What

is the optimal schedule? We formalize these and similar questions

by introducing the notion of a collective schedule, a plan that takes

into account both jobs’ durations and their societal support. The

central idea stems from the observation that the problem of find-

ing a socially optimal collective schedule is closely related to the

problem of aggregating agents’ preferences, one of the central prob-

lems studied in social choice theory [2]. However, differences in

jobs’ lengths have to be explicitly considered. Let us illustrate these

similarities through the following example.
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Consider a collection of jobs all having the same duration. The

jobs have to be processed sequentially (one by one). Different agents

might have different preferred schedules of processing these jobs.

Since each agent would like all the jobs to be executed as soon

as possible, the preferred schedule of each agent does not contain

“gaps” (idle times), and so, such a preferred schedule can be viewed

as an order over the set of jobs, and can be interpreted as a pref-

erence relation. Similarly, the resulting collective schedule can be

viewed as an aggregated preference relation. From this perspective,

it is natural to apply tools from social choice theory to find a socially

desired collective schedule.

Yet, the tools of social choice cannot be always applied directly.

The scheduling model is typically much richer, and contains addi-

tional elements. In particular, when jobs’ durations vastly differ,

these differences must be taken into account when constructing a

collective schedule. For instance, imagine that we are dealing with

two jobs—one very short, Js , and one very long, Jl . Further, imagine

that 55% of the population prefers the long job to be executed first

and that the remaining 45% has exactly opposite preferences. If we

disregard the jobs’ durations, then perhaps every decision maker

would schedule Jl before Js . However, starting with Js affects 55%
of population just slightly (as Jl is just slightly delayed compared

to their preferred schedules). In contrast, starting with Jl affects
45% of population significantly (as Js is severely delayed).

1.1 Overview of Our Contributions
We explore the following question: How can we meaningfully ap-

ply the classic tools from social choice theory to find a collective

schedule? The key idea behind this work is to use fundamental

concepts from both fields to highlight the new perspectives.

Scheduling offers an impressive collection of models, tools and

algorithms which can be applied to a broad class of problems. It is

impossible to cover all of them in a single work. We use perhaps

the most fundamental (although still non-trivial) scheduling model:

a single processor executing a set of independent jobs. This model

is already rich enough to describe significant real-world problems

(such as the public works or the lecture theater introduced earlier).

At the same time, such a model, fundamental, well-studied and

stripped from orthogonal issues, enables us to highlight the new

elements brought by social choice.

Similarly, we focus on three well-known and extensively studied

tools from social choice theory: positional scoring rules, the Kemeny

rule and the Condorcet principle. Under a positional scoring rule
the score that an object receives from an agent is derived only on

the basis of the position of this object in the agent’s preference

ranking; the objects are then ranked in the descending order of



their total scores received from all the agents. The Kemeny rule
uses the concept of distances between rankings. It selects a ranking

which minimizes the sum of the swap distances to the preference

rankings of all the agents. The Condorcet principle states that if
there exists an object that is preferred to any other object by the

majority of agents, then this object should be put on the top of the

aggregated ranking. The Condorcet principle can be generalized

to the remaining ranking positions. Assume that the graph of the

preferences of the majority of agents is acyclic, i.e., there exists

no such a sequence of objects o1, . . . ,oℓ that o1 is preferred by

the majority of agents to o2, o2 to o3, . . ., oℓ−1 to oℓ and oℓ to

o1. Whenever an object o is preferred by the majority of agents to

another object q, o should be put before q in the aggregated ranking.

Naturally, these three notions can be directly applied to find a

collective schedule. Yet, as we argued in our example with a long

and a short job, this can lead to intuitively suboptimal schedules,

because they do not consider significantly different processing

times. We propose extensions of these tools to take into account

lengths of the jobs. We also analyze their computational complexity.

Some of the proofs have been omitted due to space constraints.

They can be found in the full version of this paper [23].

1.2 Related Work
Scheduling: The two most related scheduling models apply con-

cepts from game theory and multiagent optimization. The selfish

job model [17, 27] assumes that each job has a single owner try-

ing to minimize its completion time and that the jobs compete for

processors. The multi-organizational model [10] assumes that a

single organization owns and cares about multiple jobs. Our work

complements these with a third perspective: not only each job has

multiple “owners”, but also they care about all jobs (albeit to a

different degree).

In multiagent scheduling [1], agents have different optimization

goals (e.g., different functions or weights). The system’s objective

is to find all Pareto-optimal schedules, or a single Pareto-optimal

schedule (optimizing one agent’s goal with constraints on admissi-

ble values for other goals). In contrast, our aim is to propose rules

allowing to construct a single, compromise schedule. This compro-

mise stems from social choice methods and tools. Moreover, our

setting is motivated by problems in which the number of agents

is large. To the best of our knowledge, the existing literature on

multiagent scheduling focuses on cases with a few (e.g. two) agents.

Computational social choice: For an overview of tools and meth-

ods for aggregating agents’ preferences see the book of Arrow et al.

[2]. Fischer et al. [14] overview the computational complexity of

finding Kemeny rankings. Caragiannis et al. [6] discuss compu-

tational complexity of finding winners according to a number of

Condorcet-consistent methods.

Typically in social choice, an aggregated ranking is created to

establish the collective preference relation, and to eventually select

a single best alternative (sometimes with a few runner-ups). Thus,

the agents usually do not care what is the order of the candidates in

the further part of the collective ranking. In our model the agents

are interested in the whole output rankings. We can thus imple-

ment fairness—the agents who are dissatisfied with an order in the

beginning of a collective schedule might be compensated in the

further part of the schedule. Thus, our approach is closer to the

recent works of Skowron et al. [26] and Celis et al. [7] analyzing

fairness of collective rankings.

In participatory budgeting [3, 5, 12, 15, 24] agents express pref-

erences over projects which have different costs. The goal is to

choose a socially-optimal set of items with a total cost not exceed-

ing the budget. Thus, in a way, participatory budgeting extends the

knapsack problem similarly to how we extend scheduling.

2 THE COLLECTIVE SCHEDULING MODEL
We use standard scheduling notations and definitions from the

book of Brucker [4], unless otherwise stated. For each integer t , by
[t] we denote the set {1, . . . ,t }. Let N = [n] be the set of n agents

(voters) and let J = {J1, . . . , Jm } be the set ofm jobs (note that in

schedulingm is typically used to denote the number of machines;

we deliberately abuse this notation as our results are for a single

machine). For a job Ji by pi ∈ N we denote its processing time (also

called duration or size), i.e., the number of time units Ji requires
to be completed. We consider an off-line problem, i.e., jobs J are

known in advance. Jobs are ready to be processed (there are no

release dates). For each job Ji its processing time pi is known in

advance (clairvoyance, a standard assumption in the scheduling

theory). Once started, a job cannot be interrupted until it completes

(we do not allow for preemption of the jobs).

There is a single machine that executes all the jobs. A schedule

σ : J → N is a function that assigns to each job Ji its start time

σ (Ji ), such that no two jobs Jk , Jℓ execute simultaneously. Thus,

either σ (Jk ) ≥ σ (Jℓ )+pℓ or σ (Jℓ ) ≥ σ (Jk )+pk . ByCi (σ ) we denote
the completion time of job Ji :Ci (σ ) = σ (Ji ) +pi . We assume that a

schedule has no gaps: for each job i , except the job that completes

as the last one, there exists job j such that Ci (σ ) = σ (Jj ). Let S
denote the set of all possible schedules for the set of jobs J .

Each agent wants all jobs to be completed as soon as possible, yet

agents differ in their views on the relative importance of the jobs.We

assume that each agent a has a certain preferred schedule σa ∈ J ,

and when building σa , an agent is aware of the processing times

of the jobs. In particular, σa does not have to directly correspond

to the relative importance of jobs. For instance, if in σa a short job

Js precedes a long job Jℓ , then this does not necessarily mean that

a considers Js more important than Jℓ . a might consider Jℓ more

important, but she might prefer a marginally less important job Js
to be completed sooner as it would delay Jℓ only a bit.

A schedule can be encoded as a (transitive, asymmetric) binary

relation: Ji σa Jk ⇔ σa (Ji ) < σa (Jk ). E.g., J1 σa J2 σa . . . σa Jm
means that agent a wants J1 to be processed first, J2 second, and so
on. We will denote such a schedule as (J1, J2, . . . , Jm ).

We call a vector of preferred schedules, one for each agent, a pref-
erence profile. By P we denote the set of all preference profiles of

the agents. A scheduling rule R : P → S is a function which takes

a preference profile as an input and returns a collective schedule.

In the remaining part of this section we propose different meth-

ods in which the preference profile is used to evaluate a proposed

collective schedule σ (and thus, to construct a scheduling rule R).

All the proposed methods extrapolate information from σa (a pre-

ferred schedule) to evaluate σ . Such an extrapolation is common

in social choice: in participatory budgeting it is typical to ask each
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agent to provide a single set of items [3, 5, 15, 24] (instead of pref-

erences over sets of items); similarly in multiwinner elections, each

agent provides separable preferences of candidates [13, 25]. Alter-

natively, we could ask an agent to express her preferences over all

possible schedules. This approach is also common in other areas of

social choice (e.g., in voting in combinatorial domains model [18]),

yet it requires eliciting exponential information from the agents.

There exist also middle ground approaches, using specifically de-

signed languages, such as CP-nets, for expressing preferences.

2.1 Scheduling by Positional Scoring Rules
In the classic social choice, positional scoring rules are perhaps the

most straightforward, and the most commonly used in practice,

tools to aggregate agents’ preferences. Informally, under a posi-

tional scoring rule each agent a assigns a score to each candidate c
(a job, in our case), which depends only on the position of c in a’s
preference ranking. For each candidate the scores that she receives

from all the agents are summed up, and the candidates are ranked

in the descending order of their total scores.

There is a natural way to adapt this concept. For an increasing

function h : N → R and a job J we define the h-score of J as the
total duration of jobs scheduled after J in all preferred schedules:

h-score(J ) =
∑
a∈N

f *.
,

∑
Ji : J σa Ji

pi
+/
-
.

The h-psf-rule (psf for positional scoring function) schedules

the jobs by their descending h-scores. If jobs are unit-size (pi =
1), then h-score(J ) is simply the score that J would get from the

classic positional scoring rule induced by h. For an identity function
h
id
(x ) = x , theh

id
-psf-rule corresponds to the Borda voting method

adapted to collective scheduling.

The so-defined scheduling methods differ from traditional posi-

tional scoring rules, by taking into account the processing times of

the jobs:

(1) A score that a job J receives from an agent a depends on the

total processing time rather than on the number of jobs that J
precedes in schedule σa .

(2) When scoring a job J we sum the duration of jobs scheduled

after J , rather than before it. This implicitly favors jobs with

lower processing times. Indeed, consider two preferred sched-

ules, σ and τ identical until time t , at which a long job Jℓ is

scheduled in σ , and a short job Js is scheduled in τ . Since Js
is shorter, the total size of the jobs succeeding Js in τ is larger

than the total size of the jobs succeeding Jℓ in σ . Consequently,
Js gets a higher score from τ than Jℓ gets from σ .

However, this implicit preference for short jobs seems insuffi-

cient, as illustrated by the following example.

Example 2.1. Consider three jobs, Jℓ,1, Jℓ,2, Js , with the process-

ing times ℓ, ℓ, and 1, respectively. Assume that ℓ ≫ 1, and consider

the following preferred schedules of agents:

3n/8 + ϵ of agents : Jℓ,1 σ Jℓ,2 σ Js
3n/8 + ϵ of agents : Jℓ,2 σ Jℓ,1 σ Js
n/8 − ϵ of agents : Js σ Jℓ,1 σ Jℓ,2
n/8 − ϵ of agents : Js σ Jℓ,2 σ Jℓ,1

By h
id
-psf-rule, Jℓ,1 and Jℓ,2 are scheduled before Js . However,

starting with Js would delay Jℓ,1 and Jℓ,2 by only one time unit,

while starting with Jℓ,1 and Jℓ,2 delays Js by 2ℓ, an arbitrarily large

value. Moreover, Js is put first by roughly 1/4 of agents, a significant

fraction.

Example 2.1 demonstrates that the pure social choice theory

does not offer tools appropriate for collective scheduling (we will

provide more arguments to support this statement throughout the

text). To address such issues we propose an approach that builds

upon social choice and the scheduling theory.

2.2 Scheduling Based on Cost Functions
A cost function quantifies how a given schedule τ differs from an

agent’s preferred schedule σ . In this section, we adapt to our model

classic costs used in scheduling and in social choice. We then show

how to aggregate these costs among agents in order to produce a

single measure of a quality of a schedule. This approach allows us

to construct a family of scheduling methods that, in some sense,

extend the classic Kemeny rule.

Formally, a cost function f maps a pair of schedules, τ and σ , to
a non-negative real value. We analyze the following cost functions.

Below, τ denotes a collective schedule the quality of which we want

to assess; while σ denotes the preferred schedule of a single agent.

2.2.1 Swap Costs. These functions take into account only the

orders of jobs in the two schedules (ignoring the processing times),

thus directly correspond to costs from social choice.

(1) The Kendall [16] tau (or swap) distance (K), measures the num-

ber of swaps of adjacent jobs to turn one schedule into another

one. We use an equivalent definition that counts all pairs of

jobs executed in a non-preferred order:

K (τ ,σ ) =
����
{
(k, ℓ) : Jk τ Jℓ and Jℓ σ Jk

}����.

(2) Spearman distance (S). Let pos(J ,π ) denote the position of job

J in a schedule π , i.e., the number of jobs scheduled before J in
π . The Spearman distance is defined as:

S (τ ,σ ) =
∑
J ∈J

���pos(J ,σ ) − pos(J ,τ )
���.

2.2.2 Delay Costs. These functions use the completion times
{Ci (σ ) : Ji ∈ J } of jobs in the preferred schedule σ (and thus,

indirectly, jobs’ lengths). The completion times form jobs’ due dates,

di = Ci (σ ). A delay cost then quantifies how far are the proposed

completion times {ci = Ci (τ ) : Ji ∈ J } from their due dates {di }
by one of the six classic criteria defined in Brucker [4]:

Tardiness (T) T (ci ,di ) = max(0,ci − di ).
Unit penalties (U) how many jobs are late:

U (ci ,di ) =



1 if ci > di

0 otherwise.

Lateness (L) is similar to tardiness, but includes a bonus for being

early: L(ci ,di ) = ci − di .
Earliness (E) E (ci ,di ) = max(0,di − ci ).
Absolute deviation (D) D (ci ,di ) = |ci − di |.
Squared deviation (SD) SD(ci ,di ) = (ci − di )

2
.
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Each such a criterion f ∈ {T ,U ,L,E,D,SD} naturally induces

the corresponding delay cost of an agent, f (τ ,σ ):

f (τ ,σ ) =
∑
Ji ∈J

f
(
Ci (τ ),Ci (σ )

)
.

In this work, we mostly focus on the tardiness T , which is both

easy to interpret for our motivating examples and the most exten-

sively studied in scheduling. However, there is interest to study the

remaining functions as well.U and L are similar to T—the sooner a
task is completed, the better. The remaining three measures (E,S ,
and SD) penalize the jobs which are executed before their “preferred
times”. However, each job when executed earlier makes other jobs

executed later (e.g., after their due times). Thus, these penalties

quantify the unnecessary (wasted) promotion of jobs executed too

early (causing other jobs being executed too late).
1

By restricting the instances to unit-size jobs, we can relate delay

and swap costs. The Spearman distance S has the same value as the

absolute deviation D (by definition), and twice that of T :

Proposition 2.2. For unit-size jobs it holds that S (σ ,τ ) =
2T (σ ,τ ), for all schedules σ ,τ .

Since different agents can have different preferred schedules, in

order to score a proposed schedule τ we need to aggregate the costs

across all agents. We will consider three classic aggregations:

The sum (Σ):
∑
a∈N f (τ ,σa ), a utilitarian aggregation.

The max: maxa∈N f (τ ,σa ), an egalitarian aggregation.

The Lp norm (Lp ):
p
√∑

a∈N
(
f (τ ,σa )

)p
, with a parameterp ≥ 1.

The Lp norms form a spectrum of aggregations between the

sum (L1) and the max (L∞).

For a cost function f ∈ {K ,S ,T ,U ,L,E,D,SD} and an aggregation
α ∈ {Σ,max,Lp }, by α-f we denote a scheduling rule returning a

schedule that minimizes the α-aggregation of the f -costs of the
agents. In particular, for unit-size jobs the Σ-T rule is equivalent to

Σ-S and to Σ-D, and Σ-K is simply the Kemeny rule.

Scheduling based on cost functions avoids the problems exposed

by Example 2.1 (indeed for that instance, e.g., the Σ-T rule starts

with the short job Js ). Additionally, these methods satisfy some

naturally-appealing axiomatic properties, such as reinforcement,

which is a particularly natural requirement in our case.

Definition 2.3 (Reinforcement). A scheduling rule R satisfies re-

inforcement iff for any two groups of agents N1 and N2, a schedule

σ is selected by R both for N1 and for N2, then it should be also

selected for the joint instance N1 ∪ N2.

Proposition 2.4. All Σ-f scheduling rules satisfy reinforcement.

2.3 Beyond Positional Scoring Rules and Cost
Functions: the Condorcet Principle

In the previous section we introduced several scheduling rules, all

based on the notion of a distance between schedules. Thus, these

scheduling rules are closely related to the Kemeny voting system.

1
The considered metrics have their natural interpretations also in other more specific

settings. E.g., the earliness E is useful if each task represents a (collective) work to

be done by the agents (workers) and when agents do not want to work before their

preferred start times. Similarly, D and SD can be used when an agent wants each task

to be executed exactly at the preferred time.

We now take a different approach. We start from desired properties

of a collective schedule and design scheduling rules satisfying them.

Pareto efficiency is one of the most accepted axioms in social

choice theory. Below we use a formulation analogous to the one

used in voting theory (based on swaps in preferred schedules).

Definition 2.5 (Pareto efficiency). A scheduling rule R satisfies

Pareto efficiency iff for each pair of jobs, Jk and Jℓ , and for each

preference profile σ = (σ1, . . . ,σn ) ∈P such that for each a ∈ N
we have Jk σa Jℓ , it holds that Jk R (σ ) Jℓ .

In other words, if all agents prefer Jk to be scheduled before Jℓ ,
then in the collective schedule Jk should be before Jℓ . Curiously,
the total tardiness Σ-T rule does not satisfy Pareto efficiency:

Example 2.6. Consider an instance with 3 jobs J1, J2, J3 with

lengths 20, 5, and 1, respectively, and with two agents having pre-

ferred schedules σa = (J1, J3, J2) and σb = (J2, J1, J3). Both agents

prefer J1 to be scheduled before J3. If our scheduling rule satisfied

Pareto efficiency, then it would pick one of the following three

schedules: (J1, J3, J2), (J1, J2, J3), or (J2, J1, J3). The total tardinesses
of these schedules are equal to: 21, 25, and 10, respectively. Yet, the

total tardiness of the schedule (J2, J3, J1) is equal to 7.

This example can be generalized to inapproximability:

Proposition 2.7. For any α > 1, there is no scheduling rule that
satisfies Pareto efficiency and is α-approximate for max-T or Σ-T .

Proof. Let us assume, towards a contradiction, that there ex-

ists a scheduling rule R that satisfies Pareto efficiency and is α-
approximate for minimizing Σ-T (the proof for max-T is analo-

gous). Let x = ⌈3α⌉. Consider an instance with x + 2 jobs: one

job J1 of length x2, one job J2 of length x , and x jobs J3, . . . , Jx+2
of length 1. Let us consider two agents with preferred schedules

σ1 = (J1, J3, . . . , Jx+2, J2) and σ2 = (J2, J1, J3, . . . , Jx+2). For each
i ∈ {3, . . . ,x + 2}, both agents prefer job J1 to be scheduled before

job Ji . Let τ be the schedule returned by R . Since R satisfies Pareto

efficiency, for each i ∈ {3, . . . ,x + 2}, J1 is scheduled before job

Ji in τ . Thus τ is either σ2 , or a schedule where J1 is scheduled
first, followed by i jobs of length 1 (i ∈ {0, . . . ,x }), followed by J2,
followed by the x − i remaining jobs of length 1. Let Si be such a

schedule. In Si , the tardiness of job J2 is x
2 + i (this job is in first

position in σ2), and the tardiness of the jobs of length 1 is (x − i )x
(the x −i last jobs in Si are scheduled before J2 in σ1). Thus the total
tardiness of Si is (x

2 + i ) + (x − i )x ≥ x2 + x . The total tardiness
of schedule σ2 is x2 + x (each of the x jobs J1, J3, . . . , Jx+2 in σ2
finishes x time units later than in σ1). Thus, the total tardiness of τ
is at least x2 + x . Let us now consider schedule τ ′, which does not

satisfy Pareto efficiency, and which is as follows: job J2 is scheduled
first, followed by the jobs of length 1, followed by job J1. The total
tardiness of this schedule is 3x (the only job which is delayed com-

pared to σ1 and σ2 is job J1). This schedule is optimal for Σ-T . Thus

the approximation ratio of R is at least
x 2+x
3x = x+1

3
> α . Therefore,

R is not α-approximate for Σ-T , a contradiction. □

Proposition 2.8. If all jobs are unit-size, the scheduling rule
∑
-T

is Pareto efficient.

Pareto efficiency is one of the most fundamental properties in

social choice. However, sometimes (especially in our setting) there

4



exist reasons for violating it. For instance, even if all the agents

agree that Jx should be scheduled before Jy , the preferences of

the agents with respect to other jobs might differ. Breaking Pareto

efficiency can help to achieve a compromise with respect to these

other jobs.

Nevertheless, Proposition 2.7 motivated us to formulate alterna-

tive scheduling rules based on axiomatic properties. We choose the

Condorcet principle, a classic social choice property that is stronger

than Pareto efficiency. We adapt it to consider the durations of jobs.

Definition 2.9 (Processing Time Aware (PTA) Condorcet principle).
A schedule τ ∈ S is PTA Condorcet consistent with a preference

profile σ = (σ1, . . . ,σn ) ∈P if for each two jobs, Jk and Jℓ , it holds

that Jk τ Jℓ whenever at least
pk

pk+pℓ
· n agents put Jk before Jℓ

in their preferred schedule. A scheduling rule R satisfies the PTA

Condorcet principle if for each preference profile it returns a PTA

Condorcet consistent schedule, whenever such exists.

Let us explain our motivation for ratio
pk

pk+pℓ
. Consider a sched-

ule τ and two jobs, Jk and Jℓ , scheduled consecutively in τ . By Nk
we denote the set of agents who rank Jk before Jℓ in their pre-

ferred schedules, and let us assume that |Nk | >
pk

pk+pℓ
n; we set

Nℓ = N −Nk . Observe that if we swapped Jk and Jℓ in τ , then each

agent from Nk would be disappointed. Since such a swap makes Jk
scheduled pℓ time units later than in τ , the level of dissatisfaction
of each agent from Nk could be quantified by pℓ . Thus, their total
(utilitarian) dissatisfaction dis(Nk ) could be quantified by |Nk | · pℓ .
By an analogous argument, if we started with a schedule where

Jℓ is put right before Jk , and swapped these jobs, then the total

dissatisfaction of agents from Nℓ could be quantified by:

dis(Nℓ ) = |Nℓ |pk <

(
n −

pk
pk + pℓ

n

)
pk

= n ·
pkpℓ

pk + pℓ
< |Nk | · pℓ = dis(Nk ).

Thus, the total dissatisfaction of all agents from scheduling Jk before

Jℓ is smaller than that from scheduling Jℓ before Jk . Definition 2.9

requires that in such case Jk should be indeed scheduled before Jℓ .
Proposition 2.10 below highlights the difference between sched-

uling based on the tardiness and on the PTA Condorcet principle.

Proposition 2.10. Even if all jobs are unit-size, the
∑
-T rule does

not satisfy the PTA Condorcet principle.

Proof. Consider an instance with three jobs and three agents

with the following preferred schedules:

σ1 = (J1, J2, J3); σ2 = (J1, J3, J2); σ3 = (J1, J3, J2);

σ4 = (J2, J3, J1); σ5 = (J2, J3, J1).

The only PTA Condorcet consistent schedule is (J1, J2, J3) with the

total tardiness of 6. At the same time, the schedule (J1, J3, J2) has
the total tardiness equal to 5. □

To construct a PTA Condorcet consistent schedule, we propose

to extend Condorcet consistent [8, 19] election rules to jobs with

varying lengths. For example, we obtain:

PTA Copeland’s method. For each job Jk we define the score of

Jk as the number of jobs Jℓ such that at least
pk

pk+pℓ
·n agents put

Jk before Jℓ in their preferred schedule. The jobs are scheduled

in the descending order of their scores.

Iterative PTA Minimax. For each pair of jobs, Jk and Jℓ , we de-

fine the defeat score of Jk against Jℓ as max(0,
pk

pk+pℓ
n − nk ),

where nk is the number of agents who put Jk before Jℓ in their

preferred schedule. We define the defeat score of Jk as the high-

est defeat score of Jk against any other job. The job with the

lowest defeat score is scheduled first. Next, we remove this job

from the preferences of the agents, and repeat (until there are

no jobs left).

Other Condorcet consistent election rules, such as the Dogdson’s

rule or the Tideman’s ranked pairs method, can be adapted similarly.

It is apparent that they satisfy the PTA Condorcet principle.

PTA Condorcet consistency comes at a cost: e.g., the two schedul-

ing rules violate reinforcement, even if the jobs are unit-size. Indeed,

by the classic result of Young and Levenglick [28] one can infer

that any rule that satisfies PTA-Condorcet principle, neutrality, and

reinforcement must be a generalization of the Kemeny rule (i.e.,

must be equivalent to the Kemeny rule if the processing times of the

jobs are equal). We conjecture that rules satisfying neutrality and

reinforcement fail the PTA-Condorcet principle; it is an interesting

open question whether such an impossibility theorem holds.

3 COMPUTATIONAL RESULTS
In this section we study the computational complexity of finding

collective schedules according to the previously defined rules. We

start from the simple observation about the two PTA Condorcet

consistent rules that we defined in the previous section.

Proposition 3.1. The PTA Copeland’s method and the iterative
PTA minimax rule are computable in polynomial time.

We further observe that computational complexity of the rules

which ignore the lengths of the jobs (rules based on swap costs) can

be directly inferred from the known results from computational

social choice. For instance, the Σ-K rule is simply the well-known

and extensively studied Kemeny rule. Thus, in the further part of

this section we focus on the rules based on delay costs.

3.1 Sum of Delay Costs
First, observe that the problem of finding a collective schedule is

computationally easy for the total lateness (Σ-L). In fact, Σ-L ignores
the preferred schedules of the agents and arranges the jobs from

the shortest to the longest one.

Proposition 3.2. The rule Σ-L schedules the jobs in the ascending
order of their lengths.

Proof. Consider the total cost of the agents:∑
a∈N

L(τ ,σa ) =
∑
a∈N

∑
Ji ∈J

(Ci (τ ) −Ci (σa ))

= |N |
∑
Ji ∈J

Ci (τ ) −
∑
a∈N

∑
Ji ∈J

Ci (σa ).

Thus, the total cost of the agents is minimized when

∑
Ji ∈J Ci (τ )

is minimal. This value is minimal when the jobs are scheduled from

the shortest to the longest one. □
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Figure 1: The preferred schedule σ(s,i ) of agent as,i (top) and
the optimal schedule (bottom).

On the other hand, minimizing the total tardiness Σ-T is NP-hard

even with the unary representation of the durations of jobs. Du

and Leung [9] show that minimizing total tardiness with arbitrary
due dates on a single processor (1| |

∑
Ti ) is weakly NP-hard. We

cannot use this result directly as the due dates in our problem Σ-T
are structured and depend, among others, on jobs’ durations.

Theorem 3.3. The problem of finding a collective schedule mini-
mizing the total tardiness (Σ-T ) is strongly NP-hard.

Proof. We reduce from the strongly NP-hard 3-Partition prob-

lem. Let I be an instance of 3-Partition. In I we are given amultiset

of integers S = {s1, . . . ,s3µ }. We denote sΣ =
∑
s ∈S s . We ask if S can

be partitioned into µ triples that all have the same sum, sT = sΣ/µ.
Without loss of generality, we can assume that µ ≥ 2 and that for

each s ∈ S , µ < s < sT
2
(otherwise, we can add a large constant sΣ

to each integer from S , which does not change the optimal solution

of the instance, but which ensures that µ < s < sT
2

in the new

instance). We also assume that the integers from S are represented

in unary encoding.

From I we construct an instance I ′ of the problem of finding a

collective schedule that minimizes the total tardiness in the follow-

ing way. For each number s ∈ S we introduce 1 + sµ jobs: Js and{
Ps,i,j : i ∈ [s], j ∈ [µ]

}
. We set the processing time of Js to s . Fur-

ther, for each i ∈ [s] we set the processing time of Ps,i,1 to (sT − s ),
and of the remaining j ≥ 2 jobs Ps,i,j to sT . We denote the set of all

such jobs as JS = {Js : s ∈ S } and P =
{
Ps,i,j : s,i ∈ [s], j ∈ [µ]

}
.

Additionally, we introduce µ jobs, X = {X1, . . . ,Xµ }, each having a

unit processing time.

There are sΣ agents. For each integer s ∈ S we introduce s agents.
The i-th agent corresponding to number s , denoted by as,i , has the
following preferred schedule (in the notation below a set, e.g., {Js ′ }
denotes that its elements are scheduled in a fixed arbitrary order):(

Js ,Ps,i,1,X1,Ps,i,2,X2, . . . ,Ps,i,µ ,Xµ , {Js ′ : s
′ , s},

{
Ps ′,j,ℓ : (s

′ , s or j , i ) and ℓ ∈ [µ]
})
.

We claim that the answer to the initial instance I is “yes” if
and only if the schedule σ ∗ optimizing the total tardiness is the

following one:

(
J1,X1,J2,X2,Jµ ,Xµ ,P

)
, where for each i ∈ [µ],

Ji is a set consisting of jobs from JS with lengths summing up to

sT (see Figure 1). If such a schedule exists, then the answer to I is
“yes”. Below we will prove the other implication.

Observe that any job from JS should be scheduled before each

job from P. Indeed, for each pair Ps,i,j and Js ′ only a single agent

a = as,i ranks Ps,i,j before Js ′ ; at the same time there exists another

agent a′ = as ′,k who ranks Js ′ first. As Js ′ is shorter than Ps,i,j , a
′

gains more from Js ′ scheduled before Ps,i,j , than a gains from Ps,i,j

scheduled before Js ′ . Thus, if Ps,i,j were scheduled before Js ′ , we
could swap these two jobs and improve the schedule (such a swap

could only improve the completion times of other jobs since Js ′ is
shorter than Ps,i,j ).

By a similar argument, any job from X should be scheduled

before each job from P. Indeed, if it was not the case, then there

would exist jobs P = Ps,i,j and X = Xi′ such that P is scheduled

right beforeX (this follows from the reasoning given in the previous

paragraph—a job from JS cannot be scheduled after a job from

P). Also, since all the jobs from JS are scheduled before P , the
completion time of X would be at least sΣ +

sT
2
+ 1 ≥ sΣ + µ + 2. For

each agent, the completion time of X in their preferred schedule is

at most equal to µ (sT + 1) = sΣ + µ. Thus, if we swap X and P the

improvement of the tardiness due to scheduling X earlier would be

at least equal to 2sΣ. Such a swap increases the completion time of

P only by one, so the increase of the tardiness due to scheduling

P later would be at most equal to sΣ. Consequently, a swap would

decrease the total tardiness, and soX could have not been scheduled

after P in σ ∗.
We further investigate the structure of an optimal schedule σ ∗.

We know that JS σ ∗ P and that X σ ∗ P, but we do not yet know

the optimal order of jobs from JS ∪ X. Before proceeding further,

we introduce one useful class of schedules, T , that execute jobs in

the order (JS ,X,P). Observe that σ
∗
can be constructed starting

from some schedule τ ∈ T and performing a sequence of swaps,

each swap involving a job J ∈ JS and a jobX ∈ X. The tardiness of
σ ∗ is equal to the tardiness of the initial τ adjusted by the changes

due to the swaps. Below, we further analyze T . First, any ordering

of JS in τ results in the same tardiness. Indeed, consider two jobs

Js and Js ′ such that Js ′ is scheduled right after Js . If we swap Js
and Js ′ , then the total tardiness of s agents increases by s ′ and
the total tardiness of s ′ agents decreases by s . In effect, the total

tardiness of all agents remains unchanged. Second, there exists an

optimal schedule where the relative order of the jobs from X is

X1 σ
∗ X2 σ

∗ . . . σ ∗ Xµ . Thus, w.l.o.g., we constrain T to schedules

in which X are put in exactly this order.

Since we have shown that all T always have the same tardiness,

no matter how we arrange the jobs from JS , the tardiness of σ
∗

only depends on the change of the tardiness due to the swaps.

Consider the job X1, and consider what happens if we swap X1

with a number of jobs from JS so that eventually X1 is scheduled

at time sT (its start time in all preferred schedules). In such a case,

moving X1 forward decreases the tardiness of each of sΣ agents by

(sΣ−sT ). MovingX1 forward to sT requires however delaying some

jobs from JS . Assume that the jobs from JS with the processing

times si1 , . . . siℓ are delayed. Each such job needs to be scheduled

one time unit later. Thus, the total tardiness of si1 agents increases
by 1 (the agents who had this job as the first in their preferred

schedule), of other si2 agents increases by 1, and so on. Since si1 +
. . .+siℓ = sΣ−sT , the total tardiness of all agents increases by sΣ−sT .
Thus, in total, executing X1 at sT decreases the total tardiness by

sΣ (sΣ − sT ) − (sΣ − sT ), a positive number. Also, observe that this

value does not depend on how the jobs from JS were initially

arranged, provided that X1 can be put so that it starts at sT .
Starting X1 earlier than sT does not improve the tardiness of X1,

yet it increases tardiness of some other jobs, so it is suboptimal.

By repeating the same reasoning for X2, . . . ,Xµ we infer that we
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obtain the optimal decrease of the tardiness when X1 is scheduled

at time sT , X2 at time 2sT + 1, etc., and if there are no gaps between
the jobs. However, such schedule is possible to obtain if and only if

the answer to the initial instance of 3-Partition is “yes”. □

A similar strategy (yet, with a more complex construction) can

be used to prove the NP-hardness of Σ-U .

Theorem 3.4. The problem of finding a collective schedule mini-
mizing the total number of late jobs (Σ-U ) is strongly NP-hard.

Nonetheless, if the jobs have the same size, the problem can be

solved in polynomial time (highlighting the additional complexity

brought by the main element of the collective scheduling). Our

proof uses the idea of Dwork et al. [11] who proved an analogous

result for the Spearman distance.

Proposition 3.5. If all jobs have the same size, for each f ∈
{T ,U ,L,E,D,SD} rule

∑
-f can be computed in polynomial time.

Proof. Let us fix f ∈ {T ,U ,L,E,D,SD}. We reduce the problem

of finding a collective schedule to the assignment problem. Ob-

serve that when the jobs have all the same size, say p, then in the

optimal schedule each job should be started at time ℓp for some

ℓ ∈ {0, . . . ,m − 1}. Thus, we construct a bipartite graph where

the vertices on one side correspond tom jobs and the vertices on

the other side tom possible starting times of these jobs. The edge

between a job J and a starting time ℓp has a cost which is equal to

the total cost caused by job J being scheduled to start at time ℓp.
The cost can be computed independently of how the other jobs are

scheduled, and is equal to

∑
a∈N f (ℓp+1,Ci (σa )

)
. Thus, a schedule

that minimizes the total cost corresponds to an optimal assignment

of m jobs to their m slots. Such an assignment can be found in

polynomial time, e.g., by the Hungarian algorithm. □

We conclude this section by observing that hardness of com-

puting

∑
-K and

∑
-S rules can be deduced from the hardness of

computing Kemeny rankings [11].

Proposition 3.6. Computing
∑
-K and

∑
-S is NP-hard even for

n = 4 agents and when all jobs have the same unit size.

3.2 Lp-norm of Delay Costs, p > 1

We show NP-hardness first for two agents, and, second, for unit

jobs. The first proof works also for p = ∞, i.e., for max-{T ,E,D}.

Theorem 3.7. For each p > 1, finding a schedule returned by
Lp -{T ,E,D} is NP-hard, even for two agents.

Theorem 3.8. For each delay cost f ∈ {T ,E,D,SD}, finding a
schedule returned by max-f is NP-hard, even for unit-size jobs.

4 EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is, first, to demonstrate

that, while most of the problems are NP-hard, an Integer Linear

Programming (ILP) solver finds optimal solutions for instances with

reasonable sizes. Second, to quantitatively characterize the impact

of collective scheduling compared to the base social choice methods.

Third, to compare schedules built with different approaches (cost

functions and axioms). We use tardiness T as a representative cost

function: it is NP-hard in both Σ and max aggregations; and easy

to interpret.

Settings. A single experimental scenario is described by a profile

with preferred schedules of the agents and by a maximum length of

a job pmax. We instantiate the preferred schedules of agents using

PrefLib [21]. We treat PrefLib’s candidates as jobs. We use datasets

where the agents have strict preferences over all candidates. We

restrict to datasets with both large number of candidates and large

number of agents: we take two datasets on AGH course selection

(agh1 with 9 candidates and 146 agents; and agh2 with 7 candidates

and 153 agents) and sushi dataset with 10 candidates and 5000

agents. Additionally, we generate preferences using the Mallows

[20] model (mallows) and Impartial Culture (impartial), both

with 10 candidates and 500 agents. We use three different values for

pmax: 10, 20 and 50. For each experimental scenario we generate 100

instances—in each instance pick the lengths of the jobs uniformly

at random between 1 and pmax (in separate series of experiments

we used exponential and normal distributions; we found similar

trends to the ones discussed below). For each scenario, we present

averages and standard deviations over these 100 instances.

Computing Optimal Solutions.We use standard ILP encoding:

for each pair of jobs (i, j ), we introduce two binary variables preci,j
and prec j,i denoting precedence: preci,j = 1 iff i precedes j in the

schedule. (preci,j +prec j,i = 1 and, to guarantee transitivity of prec ,
for each triple i, j,k , we have preci,j +prec j,k −preci,k ≤ 1). We run

Gurobi solver on a 6-core (12-thread) PC. An agh instance takes, on

the average, less than a second to solve, while a sushi instance takes

roughly 20 seconds. In a separate series of experiments, we analyze

the runtime on impartial instances as a function of number of

jobs and number of voters. A 20 jobs, 500 voters instance with

∑
-T

goal takes 8 seconds; while a max-T goal takes two minutes. A 10

jobs, 5000 voters takes 8 seconds with

∑
-T goal and 28 seconds

with max-T goal. Finally, 20 jobs, 5000 voters take 23 seconds for

with

∑
-T and 20 minutes with max-T . For 30 jobs, the solver does

not finish in 60 minutes. Running times depend thus primarily

on the number of jobs and on the goal. We conclude that, while

the problem is strongly NP-hard, it can be solved in practice for

thousands of voters and up to 20 jobs. We consider these running

times to be satisfactory: first, for a population it might be difficult to

meaningfully express preferences for dozens of jobs [22] (therefore,

the decision maker would probably combine jobs before eliciting

preferences); second, gathering preferences takes non-negligible

time; and, finally, in our motivating examples (public works, lecture

hall) individual jobs last hours to weeks.

Analysis of the Results. First, we analyze job’s rank as a func-

tion of its length. We compute a reference collective schedule for

an instance with the same agents’ preferences, but unit-size jobs

(it thus corresponds to the classic preference aggregation prob-

lem with Σ-T or max-T goal). We then compute and analyze the

collective schedules. Over 100 instances, as jobs’ durations are as-

signed randomly, all the jobs’ durations should be in the preferred

schedules in, roughly, all positions. Thus, on the average, short jobs
should be executed earlier, and long jobs later than in the reference

schedule (in contrast, in any single experiment, if a large majority

puts a short job at the end of their preferred schedules, the job is
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Figure 2: The average change in jobs’ position. A point (x ,y)
in the plot denotes that a job of length x is on the average
scheduled by y positions later than when we ignore jobs’ du-
rations. pmax = 10 (pmax ∈ {20,50} show very similar trends.)

Dataset

PTA C. Paradox PTA Copeland ·/·
∆Gini

Σ-T max-T Σ-T max-T

agh1 6% 15% 1.03 1.23 0.07

agh2 5% 18% 1.03 1.28 0.12

sushi 7% 24% 1.02 1.22 0.06

impartial 3% 8% 1.00 1.01 0.00

mallows 10% 24% 1.03 1.21 0.08

Table 1: “PTA C. Paradox” gives the mean frequencies of vi-
olating the PTA Condorcet principle for optimal solutions
for Σ-T and max-T . “PTA Copeland ·/·” denotes the ratio of
sum/maxT for PTA Copeland’s schedule to their optimums.
“∆Gini” shows the average of differences in the Gini indices:
Gini(max-T ) - Gini(Σ-T ).

not automatically advanced). To confirm this hypothesis, for each

instance and each job we compare its position to the position in

the reference schedule. Figure 2 shows the average position change

as a function of the job lengths. In collective schedules, short jobs

(e.g., of size 1) are advanced, on the average, 2-4 positions in the

schedule, compared to schedules corresponding to the standard

preference aggregation problem. The experiments thus confirm

that the lengths of the jobs have profound impact on the schedule.

Second, we check how frequent are PTA-Condorcet paradoxes.

For each instance, we counted how many out of

(m
2

)
job pairs are

scheduled in a non-PTA-Condorcet consistent order. Table 1 shows

that both Σ-T and max-T often violate the PTA Condorcet principle.

Table 1 also shows the average ratio between the tardiness of the

schedule returned by the PTA Copeland’s rule, and the tardiness of

optimal Σ and max schedules. These ratios are small: roughly 3%

degradation for Σ and 24% for max. Thus, though PTA Copeland’s

rule does not explicitly optimize max-T and Σ-T , on average, it

returns schedules close to the optimal for these criteria.

Third, we analyze how fair are Σ-T and max-T . We analyzed

Gini indices of the vectors of agents’ tardiness. Table 1 shows that,

interestingly, Σ-T is more fair (smaller average Gini index), even

though max-T seemingly cares more about less satisfied agents.

Yet, the focus of max-T on the worst-off agent makes it effectively

ignore all the remaining agents, increasing the societal inequality.

5 DISCUSSION AND CONCLUSIONS
The principal contribution of this paper is conceptual—we intro-

duce the notion of the collective schedule. We believe that collective

scheduling addresses natural problems involving jobs or events

having diverse impacts on the society. Such problems do not fit

well into existing scheduling models. We demonstrated how to

formalize the notion of the collective schedule by extending well-

known methods from social choice. While collective scheduling is

closely related to preference aggregation, these methods have to be

extended to take into account lengths of jobs. Notably, we proposed

to judge the quality of a collective schedule by comparing the jobs’

completion times between the collective and the agents’ preferred

schedules. We also showed how to extend the Condorcet principle

to take into account lengths of jobs.

We conclude that there is no clear winner among the proposed

scheduling mechanisms. Similarly, in the classic voting, there is

no clear consensus regarding which voting mechanism is the best.

For example, we showed that the comparison of the cost-based

and PTA-Condorcet-based scheduling exposes a tradeoff between

reinforcement and the PTA Condorcet principle. Thus, the question

which mechanism to choose is, for example, influenced by the

subjective assessment of the mechanism designer with respect to

which one of the two properties she considers more important.

Our main conclusion from the theoretical analysis of computa-

tional complexity and from the experimental analysis is that using

cost-based scheduling methods is feasible only if the sizes of the

input instances are moderate (though, these instances may repre-

sent many realistic situations). In contrast, PTA Condorcet-based

methods are feasible even for large instances. We drew a boundary

between NP-hard and polynomial-time solvable problems. In sev-

eral cases, problems become NP-hard with non-unit jobs, therefore

showing additional complexity stemming from scheduling, as op-

posed to standard voting. Moreover, our experiments suggest that

there is a clearly visible difference between schedules returned by

different methods of collective scheduling.

Both scheduling and social choice are well-developed fields with

a plethora of models, methods and results. It is natural to consider

more complex scheduling models in the context of collective sched-

uling, such as processing several jobs simultaneously (multiple

processors with sequential or parallel jobs), jobs with different re-

lease dates or dependencies between jobs. Each of these extensions

raises new questions on computability/approximability of collec-

tive schedules. Another interesting direction is to derive desired

properties of collective schedules (distinct from PTA-Condorcet),

and then formulate scheduling algorithms satisfying them.
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