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ABSTRACT

When scheduling public works or events in a shared facility one
needs to accommodate preferences of a population. We formal-
ize this problem by introducing the notion of a collective sched-
ule. We show how to extend fundamental tools from social choice
theory—positional scoring rules, the Kemeny rule and the Con-
dorcet principle—to collective scheduling. We study the computa-
tional complexity of finding collective schedules. We also exper-
imentally demonstrate that optimal collective schedules can be
found for instances with realistic sizes.
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1 INTRODUCTION

Major public infrastructure projects, such as extending the city sub-
way system, are often phased. As workforce, machines and yearly
budgets are limited, phases have to be developed one by one. Some
phases are inherently longer-lasting than others. Moreover, indi-
vidual citizens have different preferred orders of phases. Should
the construction start with a long phase with a strong support, or
rather a less popular phase, that, however, will be finished faster? If
the long phase starts first, the citizens supporting the short phase
would have to wait significantly longer. Consider another exam-
ple: planning events in a single lecture theater for a large, varied
audience. The theater needs to be shared among different groups.
Some events last just a few hours, while others multiple days. What
is the optimal schedule? We formalize these and similar questions
by introducing the notion of a collective schedule, a plan that takes
into account both jobs’ durations and their societal support. The
central idea stems from the observation that the problem of find-
ing a socially optimal collective schedule is closely related to the
problem of aggregating agents’ preferences, one of the central prob-
lems studied in social choice theory [2]. However, differences in
jobs’ lengths have to be explicitly considered. Let us illustrate these
similarities through the following example.
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Consider a collection of jobs all having the same duration. The
jobs have to be processed sequentially (one by one). Different agents
might have different preferred schedules of processing these jobs.
Since each agent would like all the jobs to be executed as soon
as possible, the preferred schedule of each agent does not contain
“gaps” (idle times), and so, such a preferred schedule can be viewed
as an order over the set of jobs, and can be interpreted as a pref-
erence relation. Similarly, the resulting collective schedule can be
viewed as an aggregated preference relation. From this perspective,
it is natural to apply tools from social choice theory to find a socially
desired collective schedule.

Yet, the tools of social choice cannot be always applied directly.
The scheduling model is typically much richer, and contains addi-
tional elements. In particular, when jobs’ durations vastly differ,
these differences must be taken into account when constructing a
collective schedule. For instance, imagine that we are dealing with
two jobs—one very short, J, and one very long, J;. Further, imagine
that 55% of the population prefers the long job to be executed first
and that the remaining 45% has exactly opposite preferences. If we
disregard the jobs’ durations, then perhaps every decision maker
would schedule J; before J;. However, starting with J; affects 55%
of population just slightly (as Jj is just slightly delayed compared
to their preferred schedules). In contrast, starting with J; affects
45% of population significantly (as Js is severely delayed).

1.1 Overview of Our Contributions

We explore the following question: How can we meaningfully ap-
ply the classic tools from social choice theory to find a collective
schedule? The key idea behind this work is to use fundamental
concepts from both fields to highlight the new perspectives.

Scheduling offers an impressive collection of models, tools and
algorithms which can be applied to a broad class of problems. It is
impossible to cover all of them in a single work. We use perhaps
the most fundamental (although still non-trivial) scheduling model:
a single processor executing a set of independent jobs. This model
is already rich enough to describe significant real-world problems
(such as the public works or the lecture theater introduced earlier).
At the same time, such a model, fundamental, well-studied and
stripped from orthogonal issues, enables us to highlight the new
elements brought by social choice.

Similarly, we focus on three well-known and extensively studied
tools from social choice theory: positional scoring rules, the Kemeny
rule and the Condorcet principle. Under a positional scoring rule
the score that an object receives from an agent is derived only on
the basis of the position of this object in the agent’s preference
ranking; the objects are then ranked in the descending order of



their total scores received from all the agents. The Kemeny rule
uses the concept of distances between rankings. It selects a ranking
which minimizes the sum of the swap distances to the preference
rankings of all the agents. The Condorcet principle states that if
there exists an object that is preferred to any other object by the
majority of agents, then this object should be put on the top of the
aggregated ranking. The Condorcet principle can be generalized
to the remaining ranking positions. Assume that the graph of the
preferences of the majority of agents is acyclic, i.e., there exists
no such a sequence of objects o1,...,0p that o is preferred by
the majority of agents to 02, 02 to 03, ..., 0p_1 to 0p and o to
01. Whenever an object o is preferred by the majority of agents to
another object g, 0 should be put before g in the aggregated ranking.

Naturally, these three notions can be directly applied to find a
collective schedule. Yet, as we argued in our example with a long
and a short job, this can lead to intuitively suboptimal schedules,
because they do not consider significantly different processing
times. We propose extensions of these tools to take into account
lengths of the jobs. We also analyze their computational complexity.

Some of the proofs have been omitted due to space constraints.
They can be found in the full version of this paper [23].

1.2 Related Work

Scheduling: The two most related scheduling models apply con-
cepts from game theory and multiagent optimization. The selfish
job model [17, 27] assumes that each job has a single owner try-
ing to minimize its completion time and that the jobs compete for
processors. The multi-organizational model [10] assumes that a
single organization owns and cares about multiple jobs. Our work
complements these with a third perspective: not only each job has
multiple “owners”, but also they care about all jobs (albeit to a
different degree).

In multiagent scheduling [1], agents have different optimization
goals (e.g., different functions or weights). The system’s objective
is to find all Pareto-optimal schedules, or a single Pareto-optimal
schedule (optimizing one agent’s goal with constraints on admissi-
ble values for other goals). In contrast, our aim is to propose rules
allowing to construct a single, compromise schedule. This compro-
mise stems from social choice methods and tools. Moreover, our
setting is motivated by problems in which the number of agents
is large. To the best of our knowledge, the existing literature on
multiagent scheduling focuses on cases with a few (e.g. two) agents.

Computational social choice: For an overview of tools and meth-
ods for aggregating agents’ preferences see the book of Arrow et al.
[2]. Fischer et al. [14] overview the computational complexity of
finding Kemeny rankings. Caragiannis et al. [6] discuss compu-
tational complexity of finding winners according to a number of
Condorcet-consistent methods.

Typically in social choice, an aggregated ranking is created to
establish the collective preference relation, and to eventually select
a single best alternative (sometimes with a few runner-ups). Thus,
the agents usually do not care what is the order of the candidates in
the further part of the collective ranking. In our model the agents
are interested in the whole output rankings. We can thus imple-
ment fairness—the agents who are dissatisfied with an order in the
beginning of a collective schedule might be compensated in the

further part of the schedule. Thus, our approach is closer to the
recent works of Skowron et al. [26] and Celis et al. [7] analyzing
fairness of collective rankings.

In participatory budgeting [3, 5, 12, 15, 24] agents express pref-
erences over projects which have different costs. The goal is to
choose a socially-optimal set of items with a total cost not exceed-
ing the budget. Thus, in a way, participatory budgeting extends the
knapsack problem similarly to how we extend scheduling.

2 THE COLLECTIVE SCHEDULING MODEL

We use standard scheduling notations and definitions from the
book of Brucker [4], unless otherwise stated. For each integer t, by
[t] we denote the set {1,...,t}. Let N = [n] be the set of n agents
(voters) and let J = {]i,...,Jm} be the set of m jobs (note that in
scheduling m is typically used to denote the number of machines;
we deliberately abuse this notation as our results are for a single
machine). For a job J; by p; € N we denote its processing time (also
called duration or size), i.e., the number of time units J; requires
to be completed. We consider an off-line problem, i.e., jobs [J are
known in advance. Jobs are ready to be processed (there are no
release dates). For each job J; its processing time p; is known in
advance (clairvoyance, a standard assumption in the scheduling
theory). Once started, a job cannot be interrupted until it completes
(we do not allow for preemption of the jobs).

There is a single machine that executes all the jobs. A schedule
o: J — Nis a function that assigns to each job J; its start time
o(Ji), such that no two jobs Ji, Jy execute simultaneously. Thus,
either o (J) = a(Jp)+pe or a(Jr) = o (Ji)+pk- By Ci(o) we denote
the completion time of job J;: Ci(o) = o(J;) + pi. We assume that a
schedule has no gaps: for each job i, except the job that completes
as the last one, there exists job j such that C;(0) = o(Jj). Let &
denote the set of all possible schedules for the set of jobs 7.

Each agent wants all jobs to be completed as soon as possible, yet
agents differ in their views on the relative importance of the jobs. We
assume that each agent a has a certain preferred schedule o, € 7,
and when building o,, an agent is aware of the processing times
of the jobs. In particular, o, does not have to directly correspond
to the relative importance of jobs. For instance, if in o, a short job
Js precedes a long job Jp, then this does not necessarily mean that
a considers J; more important than Jp. a might consider J, more
important, but she might prefer a marginally less important job Js
to be completed sooner as it would delay J, only a bit.

A schedule can be encoded as a (transitive, asymmetric) binary
relation: J; oq Jy © 0q(Ji) < 0qUg)-E-g. J1 04 J2 0a ... 0a Jm
means that agent a wants J; to be processed first, J» second, and so
on. We will denote such a schedule as (J1, J2,. . -, Jm)-

We call a vector of preferred schedules, one for each agent, a pref-
erence profile. By & we denote the set of all preference profiles of
the agents. A scheduling rule R: &7 — . is a function which takes
a preference profile as an input and returns a collective schedule.

In the remaining part of this section we propose different meth-
ods in which the preference profile is used to evaluate a proposed
collective schedule ¢ (and thus, to construct a scheduling rule R).
All the proposed methods extrapolate information from o, (a pre-
ferred schedule) to evaluate ¢. Such an extrapolation is common
in social choice: in participatory budgeting it is typical to ask each



agent to provide a single set of items [3, 5, 15, 24] (instead of pref-
erences over sets of items); similarly in multiwinner elections, each
agent provides separable preferences of candidates [13, 25]. Alter-
natively, we could ask an agent to express her preferences over all
possible schedules. This approach is also common in other areas of
social choice (e.g., in voting in combinatorial domains model [18]),
yet it requires eliciting exponential information from the agents.
There exist also middle ground approaches, using specifically de-
signed languages, such as CP-nets, for expressing preferences.

2.1 Scheduling by Positional Scoring Rules

In the classic social choice, positional scoring rules are perhaps the
most straightforward, and the most commonly used in practice,
tools to aggregate agents’ preferences. Informally, under a posi-
tional scoring rule each agent a assigns a score to each candidate ¢
(a job, in our case), which depends only on the position of ¢ in a’s
preference ranking. For each candidate the scores that she receives
from all the agents are summed up, and the candidates are ranked
in the descending order of their total scores.

There is a natural way to adapt this concept. For an increasing
function h: N — R and a job J we define the h-score of | as the
total duration of jobs scheduled after J in all preferred schedules:

h-score(J) = Z f( Z pi).

aeN \Ji: JoaJi

The h-psf-rule (psf for positional scoring function) schedules
the jobs by their descending h-scores. If jobs are unit-size (p; =
1), then h-score(J) is simply the score that J would get from the
classic positional scoring rule induced by k. For an identity function
hig(x) = x, the h;q-psf-rule corresponds to the Borda voting method
adapted to collective scheduling.

The so-defined scheduling methods differ from traditional posi-
tional scoring rules, by taking into account the processing times of
the jobs:

(1) A score that a job J receives from an agent a depends on the
total processing time rather than on the number of jobs that J
precedes in schedule o,.

(2) When scoring a job J we sum the duration of jobs scheduled
after J, rather than before it. This implicitly favors jobs with
lower processing times. Indeed, consider two preferred sched-
ules, o and 7 identical until time ¢, at which a long job J, is
scheduled in o, and a short job Js is scheduled in 7. Since Js
is shorter, the total size of the jobs succeeding Js in 7 is larger
than the total size of the jobs succeeding J, in 0. Consequently,
Js gets a higher score from 7 than J, gets from o.

However, this implicit preference for short jobs seems insuffi-
cient, as illustrated by the following example.

Example 2.1. Consider three jobs, J¢ 1, J¢,2,Js, with the process-
ing times ¢, £, and 1, respectively. Assume that £ > 1, and consider
the following preferred schedules of agents:

3nfs+eofagents: Jp1 o Jpo o s

Snfs+eofagents: Jpp o Jpg1 o s
n/s — e of agents :  Jg o Jei o e
n/s — e of agents :  Js o Je2 o e

By hjg-psf-rule, Jp; and Jg o are scheduled before Js. However,
starting with J; would delay J; and Jz 2 by only one time unit,
while starting with J, ; and Jz 5 delays Jg by 2¢, an arbitrarily large
value. Moreover, J is put first by roughly 1/4 of agents, a significant
fraction.

Example 2.1 demonstrates that the pure social choice theory
does not offer tools appropriate for collective scheduling (we will
provide more arguments to support this statement throughout the
text). To address such issues we propose an approach that builds
upon social choice and the scheduling theory.

2.2 Scheduling Based on Cost Functions

A cost function quantifies how a given schedule 7 differs from an
agent’s preferred schedule o. In this section, we adapt to our model
classic costs used in scheduling and in social choice. We then show
how to aggregate these costs among agents in order to produce a
single measure of a quality of a schedule. This approach allows us
to construct a family of scheduling methods that, in some sense,
extend the classic Kemeny rule.

Formally, a cost function f maps a pair of schedules, 7 and o, to
a non-negative real value. We analyze the following cost functions.
Below, 7 denotes a collective schedule the quality of which we want
to assess; while o denotes the preferred schedule of a single agent.

2.2.1 Swap Costs. These functions take into account only the
orders of jobs in the two schedules (ignoring the processing times),
thus directly correspond to costs from social choice.

(1) The Kendall [16] tau (or swap) distance (K), measures the num-
ber of swaps of adjacent jobs to turn one schedule into another
one. We use an equivalent definition that counts all pairs of
jobs executed in a non-preferred order:

K(r.0) = |{(k.0): Jic  Jp and Je o Je)|

(2) Spearman distance (S). Let pos(J, ) denote the position of job
J in a schedule 7, i.e., the number of jobs scheduled before J in
7. The Spearman distance is defined as:

$(r,0) = L je g [post.o) - pos(J,7)|

2.2.2 Delay Costs. These functions use the completion times
{Ci(c): Ji € J} of jobs in the preferred schedule o (and thus,
indirectly, jobs’ lengths). The completion times form jobs’ due dates,
di = Ci(0). A delay cost then quantifies how far are the proposed
completion times {¢; = Ci(r): J; € J} from their due dates {d;}
by one of the six classic criteria defined in Brucker [4]:
Tardiness (T) T(c;,d;) = max(0,c; — d;).

Unit penalties (U) how many jobs are late:

1 ifc; > dj

0 otherwise.

Ulei,di) = {

Lateness (L) is similar to tardiness, but includes a bonus for being
early: L(c;,d;) = ¢;j — d;.

Earliness (E) E(cj,d;) = max(0,d; — ¢;).

Absolute deviation (D) D(c;j,d;) = |c; — d;].

Squared deviation (SD) SD(c;,d;) = (c; — d;)2.



Each such a criterion f € {T,U,L,E,D,SD} naturally induces
the corresponding delay cost of an agent, f(7,0):

froy =Y flci.ci)
JieJ

In this work, we mostly focus on the tardiness T, which is both
easy to interpret for our motivating examples and the most exten-
sively studied in scheduling. However, there is interest to study the
remaining functions as well. U and L are similar to T—the sooner a
task is completed, the better. The remaining three measures (E, S,
and SD) penalize the jobs which are executed before their “preferred
times”. However, each job when executed earlier makes other jobs
executed later (e.g., after their due times). Thus, these penalties
quantify the unnecessary (wasted) promotion of jobs executed too
early (causing other jobs being executed too late).!

By restricting the instances to unit-size jobs, we can relate delay
and swap costs. The Spearman distance S has the same value as the
absolute deviation D (by definition), and twice that of T:

ProrosiTIiON 2.2. For unit-size jobs it holds that S(o,7) =
2T(o,7), for all schedules o,7.

Since different agents can have different preferred schedules, in
order to score a proposed schedule 7 we need to aggregate the costs
across all agents. We will consider three classic aggregations:

The sum (Z): Y en f(7,04), a utilitarian aggregation.
The max: max,en f(7,04), an egahtarlan aggregation.

The L, norm (Ly): LS aenN f(r O'a Wlth aparameter p > 1.

The L, norms form a spectrum of aggregations between the
sum (L1) and the max (Ls).

For a cost function f € {K,S,T,U,L,E,D, SD} and an aggregation
a € {3, max,Lp}, by a-f we denote a scheduling rule returning a
schedule that minimizes the a-aggregation of the f-costs of the
agents. In particular, for unit-size jobs the 2-T rule is equivalent to
>-S and to 2-D, and 2-K is simply the Kemeny rule.

Scheduling based on cost functions avoids the problems exposed
by Example 2.1 (indeed for that instance, e.g., the =-T rule starts
with the short job J;). Additionally, these methods satisfy some
naturally-appealing axiomatic properties, such as reinforcement,
which is a particularly natural requirement in our case.

Definition 2.3 (Reinforcement). A scheduling rule R satisfies re-
inforcement iff for any two groups of agents Nj and Ny, a schedule
o is selected by R both for N; and for Ny, then it should be also
selected for the joint instance N; U Na.

PROPOSITION 2.4. All 3-f scheduling rules satisfy reinforcement.

2.3 Beyond Positional Scoring Rules and Cost
Functions: the Condorcet Principle

In the previous section we introduced several scheduling rules, all
based on the notion of a distance between schedules. Thus, these
scheduling rules are closely related to the Kemeny voting system.

I The considered metrics have their natural interpretations also in other more specific
settings. E.g., the earliness E is useful if each task represents a (collective) work to
be done by the agents (workers) and when agents do not want to work before their
preferred start times. Similarly, D and SD can be used when an agent wants each task
to be executed exactly at the preferred time.

We now take a different approach. We start from desired properties
of a collective schedule and design scheduling rules satisfying them.
Pareto efficiency is one of the most accepted axioms in social
choice theory. Below we use a formulation analogous to the one
used in voting theory (based on swaps in preferred schedules).

Definition 2.5 (Pareto efficiency). A scheduling rule R satisfies
Pareto efficiency iff for each pair of jobs, J; and Jr, and for each
preference profile o = (o1,...,0,) € & such that for eacha € N
we have Ji. o4 Jp, it holds that Ji. R(o) Jp.

In other words, if all agents prefer Ji to be scheduled before Jp,
then in the collective schedule J;. should be before J,. Curiously,
the total tardiness 2-T rule does not satisfy Pareto efficiency:

Example 2.6. Consider an instance with 3 jobs Ji, 2, /3 with
lengths 20, 5, and 1, respectively, and with two agents having pre-
ferred schedules o, = (J1,/3,J2) and o, = (J2,J1,.)3)- Both agents
prefer J; to be scheduled before Js. If our scheduling rule satisfied
Pareto efficiency, then it would pick one of the following three
schedules: (J1, /3, J2), (J1,J2,)3), or (J2,J1,.J3). The total tardinesses
of these schedules are equal to: 21, 25, and 10, respectively. Yet, the
total tardiness of the schedule (J2, J3,J1) is equal to 7.

This example can be generalized to inapproximability:

PROPOSITION 2.7. For any a > 1, there is no scheduling rule that
satisfies Pareto efficiency and is a-approximate for max-T or X-T.

Proor. Let us assume, towards a contradiction, that there ex-
ists a scheduling rule R that satisfies Pareto efficiency and is a-
approximate for minimizing 3-T (the proof for max-T is analo-
gous). Let x = [3a]. Consider an instance with x + 2 jobs: one
job Ji of length x%, one job Jo of length x, and x jobs J3,. .., Jx+2
of length 1. Let us consider two agents with preferred schedules
o1 = (1.J5,- -, Jx+2,J2) and o2 = (J2,J1, 53, . . . Jx+2). For each
i € {3,...,x + 2}, both agents prefer job J; to be scheduled before
job Ji. Let 7 be the schedule returned by R. Since R satisfies Pareto
efficiency, for each i € {3,...,x + 2}, J; is scheduled before job
Ji in 7. Thus 7 is either oy , or a schedule where J; is scheduled
first, followed by i jobs of length 1 (i € {0 x}), followed by Ja,
followed by the x — i remaining jobs of length 1. Let S; be such a
schedule. In S;, the tardiness of job J is x% + i (this job is in first
position in 07), and the tardiness of the jobs of length 1 is (x — i)x
(the x —i last jobs in S; are scheduled before J; in o1). Thus the total
tardiness of S; is (x? + i) + (x — i)x > x? + x. The total tardiness
of schedule o7 is x% + x (each of the x jobs J1,J3,. . ., Jx+2 In 02
finishes x time units later than in o1). Thus, the total tardiness of 7
is at least x% + x. Let us now consider schedule 7/, which does not
satisfy Pareto efficiency, and which is as follows: job J» is scheduled
first, followed by the jobs of length 1, followed by job J;. The total
tardiness of this schedule is 3x (the only job which is delayed com-
pared to o1 and o7 is job J1). This schedule is optimal for 3-T. Thus

2
the approximation ratio of R is at least % =X ;’1 > a. Therefore,

R is not a-approximate for 3-T, a contradiction. O

ProrosITION 2.8. If all jobs are unit-size, the scheduling rule ,-T
is Pareto efficient.

Pareto efficiency is one of the most fundamental properties in
social choice. However, sometimes (especially in our setting) there



exist reasons for violating it. For instance, even if all the agents
agree that Jx should be scheduled before J, the preferences of
the agents with respect to other jobs might differ. Breaking Pareto
efficiency can help to achieve a compromise with respect to these
other jobs.

Nevertheless, Proposition 2.7 motivated us to formulate alterna-
tive scheduling rules based on axiomatic properties. We choose the
Condorcet principle, a classic social choice property that is stronger
than Pareto efficiency. We adapt it to consider the durations of jobs.

Definition 2.9 (Processing Time Aware (PTA) Condorcet principle).
A schedule 7 € . is PTA Condorcet consistent with a preference
profile o = (01,...,0pn) € £ if for each two jobs, Ji. and J, it holds
that Ji 7 Jr whenever at least p;ffpg - n agents put Ji before Jp
in their preferred schedule. A scheduling rule R satisfies the PTA
Condorcet principle if for each preference profile it returns a PTA

Condorcet consistent schedule, whenever such exists.

Pk
Prtpe

ule 7 and two jobs, Ji. and Jp, scheduled consecutively in 7. By Ny
we denote the set of agents who rank Ji before J, in their pre-
ferred schedules, and let us assume that |[Ng| > pkakP(n; we set
N¢ = N — Ni. Observe that if we swapped Ji and Jp in 7, then each
agent from N would be disappointed. Since such a swap makes Ji.
scheduled p, time units later than in 7, the level of dissatisfaction
of each agent from Ny could be quantified by p,. Thus, their total
(utilitarian) dissatisfaction dis(Ny) could be quantified by [Ng| - pe.
By an analogous argument, if we started with a schedule where
Jr is put right before Ji, and swapped these jobs, then the total
dissatisfaction of agents from Ny could be quantified by:

. Consider a sched-

Let us explain our motivation for ratio

Pk
Pk tPe
<INkl - pe = dis(N).

dis(N¢) = INglpg < (" - ”)Pk
n. PKPt
Pk tPe
Thus, the total dissatisfaction of all agents from scheduling Jj. before
J¢ is smaller than that from scheduling J, before Ji. Definition 2.9
requires that in such case Ji should be indeed scheduled before Jp.
Proposition 2.10 below highlights the difference between sched-

uling based on the tardiness and on the PTA Condorcet principle.

PROPOSITION 2.10. Even if all jobs are unit-size, the 3,-T rule does
not satisfy the PTA Condorcet principle.

Proor. Consider an instance with three jobs and three agents
with the following preferred schedules:

o1 = (J1.)2.3); o2 = (J1.5.); 03 = (1,.2);
oy = (J2.J3.J1); o5 = (J2,J3.J1).
The only PTA Condorcet consistent schedule is (], J2, J3) with the

total tardiness of 6. At the same time, the schedule (J1, J5, J2) has
the total tardiness equal to 5. O

To construct a PTA Condorcet consistent schedule, we propose
to extend Condorcet consistent [8, 19] election rules to jobs with
varying lengths. For example, we obtain:

PTA Copeland’s method. For each job Ji we define the score of

Ji as the number of jobs J, such that at least 5 kp fpp -n agents put

Ji before J, in their preferred schedule. The jobs are scheduled
in the descending order of their scores.

Iterative PTA Minimax. For each pair of jobs, Ji. and J, we de-
fine the defeat score of Ji against J, as max(0, pkp—fmn —ng),
where ny is the number of agents who put Ji. before Jp in their
preferred schedule. We define the defeat score of Ji as the high-
est defeat score of J; against any other job. The job with the
lowest defeat score is scheduled first. Next, we remove this job
from the preferences of the agents, and repeat (until there are

no jobs left).

Other Condorcet consistent election rules, such as the Dogdson’s
rule or the Tideman’s ranked pairs method, can be adapted similarly.
It is apparent that they satisfy the PTA Condorcet principle.

PTA Condorcet consistency comes at a cost: e.g., the two schedul-
ing rules violate reinforcement, even if the jobs are unit-size. Indeed,
by the classic result of Young and Levenglick [28] one can infer
that any rule that satisfies PTA-Condorcet principle, neutrality, and
reinforcement must be a generalization of the Kemeny rule (i.e.,
must be equivalent to the Kemeny rule if the processing times of the
jobs are equal). We conjecture that rules satisfying neutrality and
reinforcement fail the PTA-Condorcet principle; it is an interesting
open question whether such an impossibility theorem holds.

3 COMPUTATIONAL RESULTS

In this section we study the computational complexity of finding
collective schedules according to the previously defined rules. We
start from the simple observation about the two PTA Condorcet
consistent rules that we defined in the previous section.

ProproOSITION 3.1. The PTA Copeland’s method and the iterative
PTA minimax rule are computable in polynomial time.

We further observe that computational complexity of the rules
which ignore the lengths of the jobs (rules based on swap costs) can
be directly inferred from the known results from computational
social choice. For instance, the 2-K rule is simply the well-known
and extensively studied Kemeny rule. Thus, in the further part of
this section we focus on the rules based on delay costs.

3.1 Sum of Delay Costs

First, observe that the problem of finding a collective schedule is
computationally easy for the total lateness (2-L). In fact, 3-L ignores
the preferred schedules of the agents and arranges the jobs from
the shortest to the longest one.

PROPOSITION 3.2. The rule X-L schedules the jobs in the ascending
order of their lengths.

Proor. Consider the total cost of the agents:

D Lro) = ) Y (Ci(r) = Ciloa))

aeN aeN J;eJ
=INI D) Cir)= > D) Cilow).
Jieg aeN JieJ

Thus, the total cost of the agents is minimized when 3, ¢ 7 Ci(7)
is minimal. This value is minimal when the jobs are scheduled from
the shortest to the longest one. O
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Figure 1: The preferred schedule o ;) of agent as ; (top) and
the optimal schedule (bottom).

On the other hand, minimizing the total tardiness X-T is NP-hard
even with the unary representation of the durations of jobs. Du
and Leung [9] show that minimizing total tardiness with arbitrary
due dates on a single processor (1|| 3, T;) is weakly NP-hard. We
cannot use this result directly as the due dates in our problem X-T
are structured and depend, among others, on jobs’ durations.

THEOREM 3.3. The problem of finding a collective schedule mini-
mizing the total tardiness (2-T) is strongly NP-hard.

Proor. We reduce from the strongly NP-hard 3-PARTITION prob-
lem. Let I be an instance of 3-PARTITION. In I we are given a multiset
of integers S = {s1,...,s3,}. We denote sz = };cgs. Weaskif S can
be partitioned into p triples that all have the same sum, s = sx/p.
Without loss of generality, we can assume that p > 2 and that for
eachse S, u<s< STT (otherwise, we can add a large constant sy,
to each integer from S, which does not change the optimal solution
of the instance, but which ensures that y < s < STT in the new
instance). We also assume that the integers from S are represented
in unary encoding.

From I we construct an instance I’ of the problem of finding a
collective schedule that minimizes the total tardiness in the follow-
ing way. For each number s € S we introduce 1 + sy jobs: Js and
{Ps,,-,j: i€[s],je [;1]}. We set the processing time of J; to s. Fur-
ther, for each i € [s] we set the processing time of Ps ; 1 to (sT —s),
and of the remaining j > 2 jobs Ps ; j to s7. We denote the set of all
such jobs as Jg = {Js: s € S}and P = {Ps,,-,j: s,i € [s],j € [,u]}.
Additionally, we introduce y jobs, X = {X1,...,X,}, each having a
unit processing time.

There are sy, agents. For each integer s € S we introduce s agents.
The i-th agent corresponding to number s, denoted by as ;, has the
following preferred schedule (in the notation below a set, e.g., {Js/}
denotes that its elements are scheduled in a fixed arbitrary order):

(]Sips,i,l,Xl,Ps,i,Z,XZ,' o Psign Xy s s 8" # s),
{Ps,’j’[: (s"#sorj#i)and (€ [p]}).

We claim that the answer to the initial instance I is “yes” if
and only if the schedule o* optimizing the total tardiness is the

following one: (jl,Xl,jz,Xz,jﬂ,Xﬂ,P), where for each i € [y],

Ji is a set consisting of jobs from Jg with lengths summing up to
st (see Figure 1). If such a schedule exists, then the answer to I is
“yes”. Below we will prove the other implication.

Observe that any job from Jg should be scheduled before each
job from . Indeed, for each pair Ps ; ; and J¢ only a single agent
a = ag ; ranks P; j j before Jy; at the same time there exists another
agent a’ = ay ;. who ranks J first. As Jy is shorter than Pg ; j, a’
gains more from Js» scheduled before Ps ; j, than a gains from Ps ; ;

scheduled before Jy. Thus, if Ps ; ; were scheduled before J;/, we
could swap these two jobs and improve the schedule (such a swap
could only improve the completion times of other jobs since Jy is
shorter than Pg ; ;).

By a similar argument, any job from X should be scheduled
before each job from P. Indeed, if it was not the case, then there
would exist jobs P = Ps ; j and X = X such that P is scheduled
right before X (this follows from the reasoning given in the previous
paragraph—a job from Jg cannot be scheduled after a job from
). Also, since all the jobs from Jg are scheduled before P, the
completion time of X would be at least sy, + STT +1> sy +p+2. For
each agent, the completion time of X in their preferred schedule is
at most equal to p(st + 1) = sy + p. Thus, if we swap X and P the
improvement of the tardiness due to scheduling X earlier would be
at least equal to 2sy. Such a swap increases the completion time of
P only by one, so the increase of the tardiness due to scheduling
P later would be at most equal to sy. Consequently, a swap would
decrease the total tardiness, and so X could have not been scheduled
after P in o™,

We further investigate the structure of an optimal schedule o*.
We know that Js o P and that X ¢* #, but we do not yet know
the optimal order of jobs from Jg U X. Before proceeding further,
we introduce one useful class of schedules, 77, that execute jobs in
the order (Js,X,P). Observe that c* can be constructed starting
from some schedule 7 € 7 and performing a sequence of swaps,
each swap involving a job J € Jg and ajob X € X. The tardiness of
o is equal to the tardiness of the initial 7 adjusted by the changes
due to the swaps. Below, we further analyze 7. First, any ordering
of Js in 7 results in the same tardiness. Indeed, consider two jobs
Js and Jy such that Jy is scheduled right after Js. If we swap Js
and Jy, then the total tardiness of s agents increases by s’ and
the total tardiness of s’ agents decreases by s. In effect, the total
tardiness of all agents remains unchanged. Second, there exists an
optimal schedule where the relative order of the jobs from X is
X10"Xp0"...0" X, Thus, wlo.g., we constrain 7~ to schedules
in which X are put in exactly this order.

Since we have shown that all 7~ always have the same tardiness,
no matter how we arrange the jobs from Jg, the tardiness of o*
only depends on the change of the tardiness due to the swaps.
Consider the job Xj, and consider what happens if we swap X
with a number of jobs from Jg so that eventually X; is scheduled
at time st (its start time in all preferred schedules). In such a case,
moving X1 forward decreases the tardiness of each of sy agents by
(sx,—s7). Moving X forward to st requires however delaying some
jobs from Jg. Assume that the jobs from Jg with the processing
times s;,,. ..s;, are delayed. Each such job needs to be scheduled
one time unit later. Thus, the total tardiness of s;, agents increases
by 1 (the agents who had this job as the first in their preferred
schedule), of other s;, agents increases by 1, and so on. Since s;, +
...+si, = sx—sT, the total tardiness of all agents increases by sx—st.
Thus, in total, executing X; at sT decreases the total tardiness by
s3.(sy — sT) — (sz — sT), a positive number. Also, observe that this
value does not depend on how the jobs from Jg were initially
arranged, provided that X; can be put so that it starts at st.

Starting X; earlier than st does not improve the tardiness of X1,
yet it increases tardiness of some other jobs, so it is suboptimal.
By repeating the same reasoning for Xz,...,X, we infer that we



obtain the optimal decrease of the tardiness when X7 is scheduled
at time s7, X3 at time 2sT + 1, etc., and if there are no gaps between
the jobs. However, such schedule is possible to obtain if and only if
the answer to the initial instance of 3-Partition is “yes”. ]

A similar strategy (yet, with a more complex construction) can
be used to prove the NP-hardness of 2-U.

THEOREM 3.4. The problem of finding a collective schedule mini-
mizing the total number of late jobs (2-U ) is strongly NP-hard.

Nonetheless, if the jobs have the same size, the problem can be
solved in polynomial time (highlighting the additional complexity
brought by the main element of the collective scheduling). Our
proof uses the idea of Dwork et al. [11] who proved an analogous
result for the Spearman distance.

PRoPOSITION 3.5. If all jobs have the same size, for each f €
{T,U,L,E,D,SD} rule },-f can be computed in polynomial time.

Proor. Letus fix f € {T,U,L,E, D, SD}. We reduce the problem
of finding a collective schedule to the assignment problem. Ob-
serve that when the jobs have all the same size, say p, then in the
optimal schedule each job should be started at time £p for some
¢ € {0,...,m — 1}. Thus, we construct a bipartite graph where
the vertices on one side correspond to m jobs and the vertices on
the other side to m possible starting times of these jobs. The edge
between a job J and a starting time £p has a cost which is equal to
the total cost caused by job J being scheduled to start at time £p.
The cost can be computed independently of how the other jobs are
scheduled, and is equal to Y, ,en f(€p+1,C; (O'a)). Thus, a schedule
that minimizes the total cost corresponds to an optimal assignment
of m jobs to their m slots. Such an assignment can be found in
polynomial time, e.g., by the Hungarian algorithm. O

We conclude this section by observing that hardness of com-
puting >-K and Y-S rules can be deduced from the hardness of
computing Kemeny rankings [11].

ProrosITION 3.6. Computing Y,-K and },-S is NP-hard even for
n = 4 agents and when all jobs have the same unit size.

3.2 L,-norm of Delay Costs, p > 1

We show NP-hardness first for two agents, and, second, for unit
jobs. The first proof works also for p = oo, i.e., for max-{T,E,D}.

THEOREM 3.7. For each p > 1, finding a schedule returned by
Lp~{T,E,D} is NP-hard, even for two agents.

THEOREM 3.8. For each delay cost f € {T,E,D,SD}, finding a
schedule returned by max-f is NP-hard, even for unit-size jobs.

4 EXPERIMENTAL EVALUATION

The goal of our experimental evaluation is, first, to demonstrate
that, while most of the problems are NP-hard, an Integer Linear
Programming (ILP) solver finds optimal solutions for instances with
reasonable sizes. Second, to quantitatively characterize the impact
of collective scheduling compared to the base social choice methods.
Third, to compare schedules built with different approaches (cost
functions and axioms). We use tardiness T as a representative cost

function: it is NP-hard in both ¥ and max aggregations; and easy
to interpret.

Settings. A single experimental scenario is described by a profile
with preferred schedules of the agents and by a maximum length of
a job pmax. We instantiate the preferred schedules of agents using
PrefLib [21]. We treat PrefLib’s candidates as jobs. We use datasets
where the agents have strict preferences over all candidates. We
restrict to datasets with both large number of candidates and large
number of agents: we take two datasets on AGH course selection
(acH1 with 9 candidates and 146 agents; and AGH2 with 7 candidates
and 153 agents) and susHI dataset with 10 candidates and 5000
agents. Additionally, we generate preferences using the Mallows
[20] model (MmALLOWS) and Impartial Culture (IMPARTIAL), both
with 10 candidates and 500 agents. We use three different values for
Pmax: 10, 20 and 50. For each experimental scenario we generate 100
instances—in each instance pick the lengths of the jobs uniformly
at random between 1 and pmax (in separate series of experiments
we used exponential and normal distributions; we found similar
trends to the ones discussed below). For each scenario, we present
averages and standard deviations over these 100 instances.

Computing Optimal Solutions. We use standard ILP encoding:
for each pair of jobs (i, j), we introduce two binary variables prec; ;
and precj ; denoting precedence: prec; j = 1iff i precedes j in the
schedule. (prec; j +precj ; = 1and, to guarantee transitivity of prec,
for each triple i, j, k, we have prec; j +prec; . —prec; < 1). We run
Gurobi solver on a 6-core (12-thread) PC. An AGH instance takes, on
the average, less than a second to solve, while a susHI instance takes
roughly 20 seconds. In a separate series of experiments, we analyze
the runtime on IMPARTIAL instances as a function of number of
jobs and number of voters. A 20 jobs, 500 voters instance with }}-T
goal takes 8 seconds; while a max-T goal takes two minutes. A 10
jobs, 5000 voters takes 8 seconds with ) -T goal and 28 seconds
with max-T goal. Finally, 20 jobs, 5000 voters take 23 seconds for
with }-T and 20 minutes with max-T. For 30 jobs, the solver does
not finish in 60 minutes. Running times depend thus primarily
on the number of jobs and on the goal. We conclude that, while
the problem is strongly NP-hard, it can be solved in practice for
thousands of voters and up to 20 jobs. We consider these running
times to be satisfactory: first, for a population it might be difficult to
meaningfully express preferences for dozens of jobs [22] (therefore,
the decision maker would probably combine jobs before eliciting
preferences); second, gathering preferences takes non-negligible
time; and, finally, in our motivating examples (public works, lecture
hall) individual jobs last hours to weeks.

Analysis of the Results. First, we analyze job’s rank as a func-
tion of its length. We compute a reference collective schedule for
an instance with the same agents’ preferences, but unit-size jobs
(it thus corresponds to the classic preference aggregation prob-
lem with 2-T or max-T goal). We then compute and analyze the
collective schedules. Over 100 instances, as jobs’ durations are as-
signed randomly, all the jobs’ durations should be in the preferred
schedules in, roughly, all positions. Thus, on the average, short jobs
should be executed earlier, and long jobs later than in the reference
schedule (in contrast, in any single experiment, if a large majority
puts a short job at the end of their preferred schedules, the job is
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Figure 2: The average change in jobs’ position. A point (x,y)
in the plot denotes that a job of length x is on the average
scheduled by y positions later than when we ignore jobs’ du-
rations. pmax = 10 (Pmax € {20,50} show very similar trends.)

PTA C. Paradox | PTA Copeland /- .
Dataset ST ‘ max-T ST ‘ max-T AGini
AGH1 6% 15% 1.03 1.23 0.07
AGH2 5% 18% 1.03 1.28 0.12
SUSHI 7% 24% 1.02 1.22 0.06
IMPARTIAL | 3% 8% 1.00 1.01 0.00
MALLOWS 10% 24% 1.03 1.21 0.08

Table 1: “PTA C. Paradox” gives the mean frequencies of vi-
olating the PTA Condorcet principle for optimal solutions
for 2-T and max-T. “PTA Copeland -/ denotes the ratio of
sum/max T for PTA Copeland’s schedule to their optimums.
“AGini” shows the average of differences in the Gini indices:
Gini(max-T) - Gini(Z-T).

not automatically advanced). To confirm this hypothesis, for each
instance and each job we compare its position to the position in
the reference schedule. Figure 2 shows the average position change
as a function of the job lengths. In collective schedules, short jobs
(e.g., of size 1) are advanced, on the average, 2-4 positions in the
schedule, compared to schedules corresponding to the standard
preference aggregation problem. The experiments thus confirm
that the lengths of the jobs have profound impact on the schedule.

Second, we check how frequent are PTA-Condorcet paradoxes.
For each instance, we counted how many out of ( ) job pairs are
scheduled in a non-PTA-Condorcet consistent order. Table 1 shows
that both 2-T and max-T often violate the PTA Condorcet principle.
Table 1 also shows the average ratio between the tardiness of the
schedule returned by the PTA Copeland’s rule, and the tardiness of
optimal ¥ and max schedules. These ratios are small: roughly 3%
degradation for ¥ and 24% for max. Thus, though PTA Copeland’s
rule does not explicitly optimize max-T and 2-T, on average, it
returns schedules close to the optimal for these criteria.

Third, we analyze how fair are ¥-T and max-T. We analyzed
Gini indices of the vectors of agents’ tardiness. Table 1 shows that,
interestingly, 2-T is more fair (smaller average Gini index), even
though max-T seemingly cares more about less satisfied agents.
Yet, the focus of max-T on the worst-off agent makes it effectively
ignore all the remaining agents, increasing the societal inequality.

5 DISCUSSION AND CONCLUSIONS

The principal contribution of this paper is conceptual—we intro-
duce the notion of the collective schedule. We believe that collective

scheduling addresses natural problems involving jobs or events
having diverse impacts on the society. Such problems do not fit
well into existing scheduling models. We demonstrated how to
formalize the notion of the collective schedule by extending well-
known methods from social choice. While collective scheduling is
closely related to preference aggregation, these methods have to be
extended to take into account lengths of jobs. Notably, we proposed
to judge the quality of a collective schedule by comparing the jobs’
completion times between the collective and the agents’ preferred
schedules. We also showed how to extend the Condorcet principle
to take into account lengths of jobs.

We conclude that there is no clear winner among the proposed
scheduling mechanisms. Similarly, in the classic voting, there is
no clear consensus regarding which voting mechanism is the best.
For example, we showed that the comparison of the cost-based
and PTA-Condorcet-based scheduling exposes a tradeoff between
reinforcement and the PTA Condorcet principle. Thus, the question
which mechanism to choose is, for example, influenced by the
subjective assessment of the mechanism designer with respect to
which one of the two properties she considers more important.

Our main conclusion from the theoretical analysis of computa-
tional complexity and from the experimental analysis is that using
cost-based scheduling methods is feasible only if the sizes of the
input instances are moderate (though, these instances may repre-
sent many realistic situations). In contrast, PTA Condorcet-based
methods are feasible even for large instances. We drew a boundary
between NP-hard and polynomial-time solvable problems. In sev-
eral cases, problems become NP-hard with non-unit jobs, therefore
showing additional complexity stemming from scheduling, as op-
posed to standard voting. Moreover, our experiments suggest that
there is a clearly visible difference between schedules returned by
different methods of collective scheduling.

Both scheduling and social choice are well-developed fields with
a plethora of models, methods and results. It is natural to consider
more complex scheduling models in the context of collective sched-
uling, such as processing several jobs simultaneously (multiple
processors with sequential or parallel jobs), jobs with different re-
lease dates or dependencies between jobs. Each of these extensions
raises new questions on computability/approximability of collec-
tive schedules. Another interesting direction is to derive desired
properties of collective schedules (distinct from PTA-Condorcet),
and then formulate scheduling algorithms satisfying them.
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