Scheduling selfish tasks: about the performance of
truthful algorithms

George Christodoulou
Max-Planck-Institut fr Informatik, Saarticken, Germany
gchristo@mpi-inf.mpg.de

Laurent Goures
LAMSADE, CNRS UMR 7024, Universit de Paris-Dauphine, Paris, France
laurent.gourves@lamsade.dauphine.fr

Fanny Pascual
Equipe MOAIS (CNRS-INRIA-INPG-UJF), Laboratoire d’Informatique de Grenoble, France
fanny.pascual@imag.fr

Abstract

This paper deals with problems which fall into the domain of selfish scheduling: a protocol is in
charge of building a schedule for a set of tasks without directly knowing their length. The protocol
gets these informations from agents who control the tasks. The aim of each agent is to minimize the
completion time of her task while the protocol tries to minimize the maximal completion time. When
an agent reports the length of her task, she is aware of what the others bid and also of the protocol’s
algorithm. Then, an agent can bid a false value in order to optimize her individual objective function.
With erroneous information, even the most efficient algorithm may produce unreasonable solutions. An
algorithm is truthful if it prevents the selfish agents from lying about the length of their task. The central
guestion in this paper iSHow efficient a truthful algorithm can beWe study the problem of scheduling
selfish tasks on parallel identical machines. This question has been raised by Christodoulou et al [8] in
a distributed system, but it is also relevant in centrally controlled systems. Without considering side
payments, our goal is to give a picture of the performance under the condition of truthfulness.

Keywords: scheduling, algorithmic game theory, truthful algorithms.

1 Introduction

The Internet is a complex distributed system involving many autonomous engigjest§. Protocols orga-
nize this network, using the data held by these agents and trying to maximize the social welfare. Agents
are often supposed to be trustworthy but this assumption is unrealistic in some settings as they might try
to manipulate the protocol by reporting false information in order to maximize their own profit. With false
information, even the most efficient protocol may lead to unreasonable solutions if it is not designed to cope
with the selfish behavior of the single entities. Then, it is natural to ask the following quddt@nefficient
a protocol can be if it guarantees that no agent has incentive to lie?

In this paper, we deal with the problem of schedulingelfish tasks om: identical parallel machines.
We consider two distinct settings in which the aim is to minimizerntakespani.e. the maximum com-
pletion time. The first setting is centralized, while the second one is distributed. Both problems share the
following characteristics. Each task is owned by an agefihe length; of a taski is known to its owner
only. The agents, considered as players of a non-cooperative game, want to minimize the completion time
of their tasks. The protocol builds the schedule with rules known to all players and fixed in advance. In
particular, mixing the execution of two jobs (like round-robin) is not allowed. Before the execution begins,
the agents report a value representing the length of their tasks. We assume that every agent behave rationally
and selfishly. Each one is aware of the situation the others face and tries to optimize her own objective
function. Thus an agent can report a value which is not equal to her real length. Practically, an agent can
add “fake” data to artificially increase the length of her task if it decreases her completion time. This selfish
behavior can prevent the protocol to produce a reasonable (i.e. close to the social welfare) schedule. Without
considering side payments, which are often used with the aim of inciting the agents to report their real value,
some algorithmic tools can simultaneously offer a guarantee on the quality of the schedule (its makespan is
not arbitrarily far from the optimum) and guarantee that the solutitnuibful (no agent can lie and improve
her own completion time). For both centralized and distributed settings, our goal is to give lower and upper
bounds on the performance under the condition of truthfulness. It is important to mention that we do not
strictly restrict the study to polynomial time algorithms.

Since the length of a task is private, each agent bids a value which represents the length of her task. We
assume that an agent cannot shrink the length of her task (otherwise she will not get her result), but if she
can decrease her completion time by bidding a value larger than the real one, then she will do so. We also
assume that an agent does not report a distribution on different lengths. A player may play according to a
distribution, but she just announces the outcome, so the protocol does not know if she lies.

In the centralized settingthe strategy of ageritis a valueb; representing the length of her task. The
protocol, called an algorithm, is in charge of indicating when and on which machine a task will be scheduled.
An algorithm istruthful when no agent has incentive to report a false value. We focus on the performance
of truthful algorithms with respect to the makespan of the schedule. In particular, we are interested in giving
lower and upper bounds on th@proximation raticthat a (deterministic or randomized) truthful algorithm
can achieve. For example, a truthful algorithm can be obtained by greedily scheduling the tasks following the
increasing order of their lengths. This algorithm, known as SPT, produ@s a/m)-approximate sched-
ule [11]. Are there truthful algorithms with better approximation guarantee for the considered scheduling
problem?

In thedistributed settingthe strategy of agents a couple M;, b;), where); is the machine which will
execute the task arig is the length bidden. As opposed to the centralized setting, the agents choose their
machine and//; can be a probability distribution on different machines. The protocol, calbedwination

We equally refer to a task and its owner since we assume that two tasks cannot be held by the same agent.

mechanisnin this context [8], consists in selectingsaheduling policyor each machine (e.g. scheduling

the tasks in order of decreasing lengths). An important and natural condition is due to the decentralized
nature of the problem: the scheduling on a machine should depend only on the tasks assigned to it, and
should be independent of the tasks assigned to the other machines. A coordination mechauotbifalis

when no agent has incentive to lie on the length of her task. Usingribe of anarchy[14], we study the
performance of truthful coordination mechanisms with respect to the makespan. The price of anarchy of a
coordination mechanism is, in the context, equal to the largest ratio between the makespan of a schedule
where agent’s strategies formNash equilibrium and the optimal makespan.

Interestingly, it is possible to slightly transform the SPT algorithm in a truthful coordination mechanism,
as suggested in [8]: each machiRgschedules its tasks in order of increasing lengths, and adds at the very
beginning of the schedule a small delay equdljte- 1)e times the length of the first task. By this way, and
if ¢ is small enough, the schedule obtained in a Nash equilibrium is similar to the one returned by the SPT
algorithm (excepted the small delays at the beginning of the schedule). sMbaregligible, the price of
anarchy of this coordination mechanisn2is 1/m. Are there truthful coordination mechanisms with better
price of anarchy for the considered scheduling problem?

For both centralized algorithms and coordination mechanisms, we consider the two following execution
models:

e Strong model of execution If the owner of task bidsb; > [;, then the execution time will still bg
(i.e. the task will be completeld time units after its start).

e Weak model of execution If the owner of task bidsb; > [;, then the execution time will big (i.e.
the task will be completed} time units after its start).

The strong execution model corresponds to the case where tasks have to be linearly executed — from
their beginning to their end—, whereas the weak execution model corresponds to the case where a task can
be executed in any ordetand the “fake” part of the task is not anymore necessarily executed at the end),
or when the machine returns the result of the task only at the end of its execution. Depending on the
applications of the scheduling problem, either the strong or the weak model of execution will be used.

Related work

The field ofMechanism Designan be useful to deal with the selfishness of the agents. Its main idea is to
pay the agents to convince them to perform strategies that help the system to optimize a global objective
function. The most famous technique for designing truthful mechanisms is perhaps the Vickrey-Clarke-
Groves (VCG) mechanism [20, 7, 12]. However, when applied to combinatorial optimization problems, this
mechanism guarantees the truthfulness under the hypothesis that the objective funtilitarian (i.e. the
value of the objective function is equal to the sum of the agents individual objective functions) and that the
mechanism is able to compute the optimum. Archer and Tardos introduce in [4] a method which allows to
design truthful mechanisms for several combinatorial optimization problems to which the VCG mechanism
does not apply. However, both approaches cannot be applied to our problem.

Scheduling selfish agents has been intensively studied these last years, started with the seminal work of
Nisan and Ronen [17], and followed by a series of papers [1, 2, 4, 6, 9, 15, 16]. However, all these works
differ from ours since in their case, the selfish agents are the machines while here we consider that the agents

2Situation in which no agent can unilaterally change her strategy and improve her own completion time. A Nash equilibrium
is pureif each agent has a pure strategy : each agent chooses only one machine. A Nash equilimikedifghe agents give a
probability distribution on the machines on which they will go.

3Nevertheless, the execution of two jobs is never interlaced.

are the tasks. Furthermore, they use side payments whereas we focus on truthful algorithms without side
payments.

A more closely related work is the one of Christodoulou et al [8] who considered the same model but
only in the distributed context of coordination mechanisms. They proposed different coordination mecha-
nisms with a price of anarchy better than the one of the SPT coordination mechanism. Nevertheless, these
mechanisms are not truthful. In [13], the authors gave coordination mechanisms for the same model for
related machines (i.e. machines can have different speeds), but their mechanisms are also not truthful.

In [3], the authors gave a truthful randomized algorithm for the strong model of execution defined before,
and they gave, for the weak model of execution, a coordination mechanism which is truthful if there are two
machines and if the lengths of the tasks are powers of a certain constant. An optimal (but exponential time)
truthful randomized algorithm and a truthful randomized PTAS for the weak model of execution appear in
[18, 19]. The technique consists in computing an optimal (regp.-a<)-approximate) schedule and each
machine executes its tasks in a random order (the truthfulness is due to the introduction of fictitious tasks
which guarantee that all the machines have the same load).

Another related work is the one of Auletta et al. who considered in [5] the problem of scheduling selfish
tasks in a centralized case. Their work differs from ours since they considered that each machine uses a
round and robin policy and thus that the completion of each task is the completion time of the machine on
which the task is (this model is known as the KP model). They considered that the tasks can lie in both
directions, and that there are some payments.

Contribution and organization of the article

Sections 3 and 4 are devoted to the centralized setting. In particular, we study the strong (resp. weak) model
of execution in Section 3 (resp. Section 4). Results on the distributed setting are presented in Section 5 for
both execution models.

Table 1 and Table 2 give a summary of the bounds that we are aware of (thosejvaite presented in
this article). LB stands for “Lower bound”, UB for “Upper bound” and NE for “Nash equilibria”.

Deterministic Randomized
LB uB LB uB
centralized setting -1y — B[-5 T]2- 250G +3.) 3]
distributed 2—1 (pure NE)i [2— L8351 2-1
setting 3 — = (mixed NE)}

Table 1: Bounds forn identical machines for the strong model of execution.

Deterministic Randomized
LB uB LB UB
centralized setting m =2 :1 + @ >11% | 3—3-1 1[18, 19] 1[18, 19]
m>3:1>1.16 t
distributed LVIT 5 128 (pure NE)f | 2— L [14¥B=35q45¢[21
setting (pure NE)

Table 2: Bounds for identical machines for the weak model of execution.

2 Notations

We are givenm machines (or processor§p,, ..., Py}, andn tasks{1,...,n}. Letl; denote the real
execution time (or length) of tagk We use the identification numbers to compare tasks of the same (bidden)
lengths: we will say that task which bidsb;, is larger than task, which bidsb;, if and only ifb; > b; or

(b; = bj andi > j). Itis important to mention that an agent cannot lie on her (unique) identification number.

A randomized algorithm can be seen as a probability distribution over deterministic algorithms. We say
that a (randomized) algorithm is truthful if for every task the expected completion time when she declares
her true length is smaller than or equal to her expected completion time in the case where she declares a
larger value. More formally, we say that an algorithntrighful if E;[l;] < E;[b;], for everyi andb; > [,
whereE;[b;] is the expected completion time of ta#kif she declares;. In order to evaluate the quality of
a randomized algorithm, we use the notion of expected approximation ratio.

We will refer in the sequel to the list scheduling algorithms LPT and SPT, where LPT (resp. SPT) [11]
is the algorithm which greedily schedules the tasks, sorted in order of decreasing (resp. increasing) lengths:
this algorithm schedules, as soon as a machine is available, the largest (resp. smallest) task which has not
yet been scheduled. An LPT (resp. SPT) schedule is a schedule returned by the LPT (resp. SPT) algorithm.

3 About truthful algorithms for the strong model of execution

3.1 Deterministic algorithms

We saw that the deterministic algorithm SPT, whicli2s- %)-approximate, is truthful. Let us now show
that there is no truthful deterministic algorithm with a better approximation ratio.

Theorem 3.1 Let us consider that we have identical machines. There is no truthful deterministic algo-
rithm with an approximation ratio smaller thah— %

Proof. Let us suppose that we hawe= m (m — 1) + 1 tasks of length 1. Let us suppose that we have
a truthful deterministic algorithmd which has an approximation ratio smaller th@n- 1/m) Lett be the
task which has the maximum completion tindg, in the schedule returned by. We know thatC; > m.

Let us now suppose that taskidsm instead of 1. We will show that the completion timeta$ then
smaller thanm. Let OPT be the makespan of an optimal solution where therenarel = m (m — 1)
tasks of length 1 and a task of lengith We have:O PT = m. Since te approximation ratio of algorithm
A is smaller than2 — 1/m), the makespan of the schedule it builds with this instance is smaller than
(2 —1/m)m = 2m — 1. Thus, the task of length: starts before timé¢m — 1). Thus, if taskt bidsm
instead ofl, it will start before timen — 1 and be completed one time unit after, that is before tim& hus
taskt will decrease its completion time by biddimg instead of 1, and algorithid is not truthful. O

Note that we can generalize this result in the case of related machines : we haaehined”, , . . ., P,
such that machin®; has a speed;, v{ = 1, andv; < ... < v,;,. By this way, we obtain that there does not
exist truthful deterministic algorithms with an approximation ratio smaller thanz% (the proof is in

=1 ¢

the Appendix).

Concerning the strong model of execution, no deterministic algorithm can outperform SPT in the cen-
tralized setting. Then, it is interesting to consider randomized algorithms to achieve a better approximation
ratio.

3.2 Randomized algorithms

In [3], the authors present a randomized algorithm which consists in returning a LPT schedule with a proba-
bility 1/(m+ 1) and a slightly modified SPT schedule with a probabitity(m + 1). They obtain a truthful
5

algorithm whose expected approximation ratigs; (5 — =) + 727 (2 — =) = 2 — 725 (3 + 3). This

ratio is an upper bound which improves— % but no instance showing the tightness of their analysis is
provided. A good candidate should be simultaneously a tight example for both LPT and SPT schedules.
We are not aware of the existence of such an instance and we believe in a future improvement of this upper

bound. The following Theorem provides a lower bound.

Theorem 3.2 Let us consider that we hawe identical machines. There is no truthful randomized algorithm
with an approximation ratio smaller tha% — ﬁ

Proof. Lete > 0, and let us suppose that we have a truthful algorithwhose expected approximation
ratiois(3/2 —1/(2m) — e).

Let us consider that we hawen (m — 1) + m tasks of length 1, where is a positive integer such that
x> 1/(2em)—1/(2e m?)—1/m. Sincem machines are available, the optimal makespan(ia —1)+1.
With any randomized algorithm (including), there is a task whose expected completion time is at least
(x (m —1))/2 4+ 1. Since algorithmA is truthful, ¢ should not improve its completion time by bidding
xm + 1 instead of 1. Suppose thaunilaterally lies and bids:m + 1 instead of 1. For algorithr,
there is there m (m — 1) + m — 1 tasks of length 1 and a task of lengthn + 1. The optimal makespan
is thenzm + 1 and the expected makespan of the schedule returned tsysmaller than or equal to
(3/2 —1/(2m) — e)(xm + 1). As a consequence, the expected completion time of the task of length
xm—+1is also bounded above {§8/2 — 1/(2m) —e)(z m + 1). Sincet increased its length with m time
units, its real expected completion time is smaller than or equal/—1/(2m) —¢)(z m+1) —x m. With
x> 1/(2em) —1/(2em?) — 1/m, the expected completion time ois strictly smaller than: (m —1)/2+1
when it bidsz m + 1 and larger than or equal t@(m — 1) + 2)/2 when it bids its true length 1. This
contradicts the fact thad is truthful. O

Note that we can generalize this result in the case of related machines : we haaehines”, , . . ., Py,
such that machiné; has a speed;, v; = 1, andv; < ... < v,,. By this way, we obtain that there does
not exist truthful algorithms with an approximation ratio smaller t@an Qi’ﬁ (the proof is in the

i=1 "

Appendix).

4 About truthful algorithms for the weak model of execution

4.1 A truthful deterministic algorithm

We saw in the Section 3 that SPT is a truthful 42d- 1/m)-approximate algorithm for the strong model of
execution, and that no truthful deterministic algorithm can have a better approximation ratio. If we consider
the weak model of execution, we can design a truthful deterministic algorithm with a better performance
guarantee (see Table 3).

Theorem 4.1 LPT,,;rror 1S @ deterministic, truthful and% — %)-approximate algorithm.

Proof. We are givem tasks with true lengths, ..., [,. Let us suppose than each task has bidden a value,
and that task bidsb; > [;. This can make the taskstart earlier ino;, pr but never later. In addition, the
optimal makespan whenbidsb; > [; is necessarily larger than or or equal to the optimal makespan when
taski reports its true length. Lef; be the date at which taglstarts to be executed ity pr. The completion

5

’ LPTmiTTOT
Input: m identical machines andtasks{1, ..., n} which bid lengthy, ..., b,

Make a schedule pr with the L PT list algorithm.
Let COPT pe the optimal makespan.

Letp(i) be the machine on which the tasls executed i pr.
Let C; be date at which the taslends ino, pr.

Output: The schedule in which tagkis executed on maching+)
and starts at timé4/3 — 1/(3m))COPT — ¢,

max

Table 3: A truthful deterministic algorithm for the weak model of execution

time of taski in LPT,irror 1S (4/3 — 1/(3m))OPT — C; + b; = (4/3 — 1/(3m))OPT — S; because
S; = C; — b;. By biddingb; > [;, taski can only increase its completion time in the schedule returned by
LPT,,iror becaus& PT does not decrease aisg does not increase. Thus tasloes not have incentive
to lie.

Since the approximation ratio of the schedule obtained with the LPT list algorithm is at(#y@st
1/(3m)) [11], the schedule returned ByPT,,;.o is Clearly feasible and its makespan is, by construction,
(4/3 — 1/(3m))-approximate. Thud PT .oy is a truthful and(3 — ;-)-approximate algorithm. O

3m

Note that L P10 IS NOt @ polynomial time algorithm, since we need to know the value of the
makespan in an optimal solution, which is an NP-hard problem [10]. However, it is possible to have a
polynomial time algorithm which i$4/3 — 1/(3m))-approximate, even if some tasks do not bid their true
values. Consider the following simple algorithm: we first compute a schedye with the LPT algorithm.

Let p(i) be the machine on which the tasls executed iz pr, let C; be the completion time of tagkin
orLpr, and letC,,.. be the makespan af;, p7. We then compute the final schedulein which task: is
scheduled omp(i) and starts at timé€,,,,, — C;.

We can show that this algorithm {@/3 — 1/(3m))-approximate (i.e. the schedule returned by this
algorithm is at mos(4/3 — 1/(3m)) times larger than the optimal schedule in which all the tasks bid
their true values). We can show this by the following way. We suppose that all the tasks £keapt
bidden some values. Let;pr(b;) be the schedule,pr obtained when bids b;, let S;(b;) be the date
at which taski starts to be executed tn, pr(b;), and letCy,q.(orpr(b;)) be the makespan af, pr(b;).

The completion time of task (which bidsb;) in ¢’ is equal t0C,,a.(orpr(b;)) — S;i(b;). Since with

the LPT algorithm, tasks are scheduled in decreasing order of lengths>if; then S;(b;) < Si(Li).
Thus, whatever the values bidden by the other tasksianas incentive to lie and bid; > [; only if
Ciaz(oLpr(bi)) < Cmaz(orpr(l;)). Since this is true for each task, no task will unilaterally lie unless this
decreases the makespan of the schedule. The makespan of the set\@dwich all the tasks bid their
true values ig4/3 — 1/(3m))-approximate, and then the solution returned by this algorithm will also be
(4/3 — 1/(3m))-approximate.

4.2 Deterministic algorithms : lower bounds

Theorem 4.2 Let us consider that we have two identical machines. There is no truthful deterministic algo-
rithm with an approximation ratio smaller than+ (1/105 —9)/12 ~ 1.1039.

Proof. For the sake of simplicity, we first prove this theorem with a ratio At the end of the proof, we
simply replace some numerical values to get the bausd /105 — 9)/12.

Let us suppose that we have a truthful algoriththrwith an approximation ratip < 1.1. Let I be
the following instance: one task of length 5, one task of length 4 and three tasks of length 3. The optimal
makespan is 9. Whehis the input,A returns a schedule whose makespan is (strictly) smaller tHaf.
SinceA is a deterministic algorithm, it must execute the three tasks of lehgththe same machine. Then,
two of them have a completion time larger than or equal to 6./Lbe the following instance: two tasks of
length 5, one task of length 4 and two tasks of length 3. The optimal makespanWéhen!’ is the input,

A returns a schedule’ whose makespan is (strictly) smaller thiin SinceA is a deterministic algorithm,
it must execute the two tasks of lengiton the same machine. Then, one task of length 5 ends strictly
before 6 time units (the first to be scheduled).

Since A is truthful, no task can bid a larger length and improve its completion time. Then, among the
two tasks of length 3 which are completed after 6 time units,inone can bid and be the task which ends
strictly before 6 time units inr’. We now show thatd cannot avoid this since its approximation ratio is
strictly smaller thari .1.

LetID = {a,b,c,d} be a set ofl distinct identification numbersd stands foidentification numbein
the sequel). For each € 1D, we definel, as an instance similar tband for which the ids are assigned
as follows: the task of length 5 gets theadand the3 tasks of lengtt8 get an id in/D — {z} (the task
of length 4 is always given id ¢ ID). Leto, be the schedule returned by when, is the input. Let
S ={I,|x€ID}. We havelS| = 4.

For each couplgz,y} C ID, we definel; , as an instance similar t§ and for which the ids are
assigned as follows: the two tasks of length 5 get thecidady, while the two tasks of length get their
|ds fromID — {z,y} (the task of length 4 is still given id). Let o—x’y be the schedule returned bywhen

,istheinput. LetS" = {1 | {z,y} C ID}. We havelS’| = 6.

Letf:S — Sbea function such that(1;) = I, if the task with idz is scheduled after the one
withid y in o7, , otherwisef (I},) = I,. Since[S’| > |S], there exists a couple of instances3hwhich
both have the same image jihby I Wlthout loss of generality, we suppose that these instancek, gre
and/, .. Moreover, we suppose thitl; ;) = f(;.) = I.. Sincel, contains three tasks of length 3 (W|th
ids b, ¢ andd) which are scheduled on the same machine,intwo of them have a completion time larger
than or equal t@. This set of two tasks must have a nonempty intersection f¥ith}. Without loss of
generality, we suppose that talskvith length 3 has a completion time Iarger than or equal to &,inDue
to the definition off, b can bid5 instead of3 and be executed beforein aa »- As previously observed,
will then end strictly before 6 time units. As a consequenteannot be a truthful ang-approximate with
p <1.1.

Using the same technique with slightly modified instances, we can get an improved lower bound. Indeed
A cannot be a truthful ang-approximate withp < 1 + (v/105 — 9)/12 ~ 1.1039. Instancel contains
three tasks of length 2, one task of length- 2¢ and one task of lengtB + ¢. Instancel’ contains two
tasks of length 2, one task of leng?h+ 2 and two tasks of lengtB + . The bound is obtained when

e = (v/105 — 9)/4. O

The following Theorem is an extension of Theorem 4.2 where more than two machines are available.
The proof is in the Appendix because the proving technique is similar.

Theorem 4.3 Let us consider that we have > 3 identical machines. There is no truthful deterministic
algorithm with an approximation ratio smaller tham6.

We supposed in Theorems 4.2 and 4.3 that the solution depends on the length and the identification
number of each task (even those which can be identified with their unique length). This assumption is,
in a sense, “stronger” than the usual one since we suppose that the solution returned by an algorithm for
two similar instances (same number of tasks, same lengths but different identification numbers) can be
completely different. If we relax this assumption, i.e. if identification numbers are only required for the
tasks which have the same length, the bound presented in Theorem 4.2 can be impfo\e¢(see the
proof in the Appendix).

5 About truthful coordination mechanisms

Letp > 1. If there is no truthful deterministic algorithm which has an approximation ratig thfen there is

no truthful deterministic coordination mechanism which always induce pure Nash equilibria and which has
a price of anarchy smaller than or equaltolndeed, if this was not the case, then the deterministic algo-
rithm which consists in building the schedule obtained in a pure Nash equilibrium with-#pproximate
coordination mechanism would beapproximate truthful deterministic algorithm.

Likewise, if there is no truthful (randomized) algorithm which has an approximation ratio thfen
there is no truthful coordination mechanism which has a price of anarchy smaller than or eguatieed,
if this was not the case, the algorithm which consists in building the schedule obtained in a Nash equilibrium
with this p-approximate coordination mechanism would heapproximate truthful algorithm.

This observation leads us to the following results for the strong model of execution. We deduce from
Theorem 3.1 that there is no truthful deterministic coordination mechanism which always induce pure Nash
equilibria and which has a price of anarchy smaller than 1/m. Thus there is no truthful coordination
mechanism which performs better than the truthful SPT coordination mechanism, whose price of anarchy
tends toward® — 1/m. We deduce from Theorem 3.2 that there is no truthful coordination mechanism
which has a price of anarchy smaller thiir- ;1. We now consider the weak model of execution.

Theorem 5.1 If we consider the weak model of execution, there is no truthful deterministic coordination
mechanism which induces pure Nash equilibria, and which has a price of anarchy smalleﬁf@nz
1.28.

Proof. Let us first prove this result in the case where there are two machitheand P,. Lete > 0. Let
us suppose that there exists a truthful coordination mechanitmith a price of anarchy O%‘/ﬁ — €.
Let us consider the following instande: three tasks of length 1. Singef is a deterministic coordination
mechanism which induces pure Nash equilibria, there is at least a tdskvnich has a completion time
larger than or equal t®. Lett be such a task.

Let us first consider this instandg: we have two tasks of Iength“;—‘/ﬁ ~ 1.56. SinceM is (”#m -

¢)-approximate, there is one task on each machine, and each task is completed befoTCéi‘Zﬁ@ex
HT‘/ﬁ = 2. Thus, when it has a task of Iengﬂé’;g—‘/ﬁ, each machine must end it before titlhe
Let us now consider the following instanég two tasks of length 1, and a task of Iengthg‘ﬂ. Since

Mis (”T‘/ﬁ — ¢)-approximate, the task of Iengtlf1“+2—‘/ﬁ is necessarily alone on its machine (without loss
of generality, onP). As we have seen if?, must schedule this task before tirheThus, task of instance

I, has incentive to bid’lgi\/ﬁ instead of 1: by this way it will end before time 2, instead of a time larger
than or equal to 2.

We can easily extend this proof in the case where there are more than 2 machines, byhavirtgsks of
length 1 inl;; m tasks of Iengthf”zi\m in I,; andm tasks of length and a task of Iengthflgi\/ﬁ in Is.

O

Theorem 5.2 If we consider the weak model of execution, there is no truthful coordination mechanism
which induces pure Nash equilibria, and which has a price of anarchy smallerlthah@ ~ 1.15.

Proof. Let us first prove this result in the case where there are two machiheand P,. Lete > 0.
Let us suppose that there exists a truthful coordination mechatiswith a price of anarchy op < HT"‘
(with o < 1). Let us consider the following instanég: three tasks of length 1. Singef is a coordination
mechanism which induces pure Nash equilibria, there is at least a tdskuvnich has a completion time
larger than or equal td.5 (because there is a machine where there is at least 2 tasks}. beetuch a
task. Let us suppose thabids1 + « (with o < 1). Sincep < “T“ then task is alone on its machine
(without loss of generality, oi;), otherwise the makespan of the schedule would be greatepttianes
the makespan of an optimal schedule which is 2. Sik¢eés truthful, the expected completion time of
when it bids1 + « should be larger than or equal 105 (otherwiset would have incentive to lie). Thus,
when machine?; has a task of length + «, the expected completion time of this task is at ldast Let
us consider the instande where we have two tasks of lengtht+ «. Sincep < ”Ta < 2, there is one task
on each machine. Since, when there is one task of lehgtle on machineP;, the expected completion
time of this task is larger than or equal to 1.5, and since the optimal makespan of a schedule of these tasks

is 1 + o, then, the price of anarchy @# should be larger than or equal 8%. By setting2t® = 12 we

I+a’
obtaina = Y13=3 and thug > 1 + Y13=3 > 1.15,
We can easily extend this proof in the case where there are more than 2 machines, byhavingsks
of length 1 inly; andm tasks of length + « in I5. a

6 Conclusion

We showed that, in the strong model of execution, the list algorithm SPT, which has an approximation ratio
of 2 — 1/m is the best truthful deterministic algorithm, and that there is no truthful randomized algorithm
which has an approximation ratio smaller tfsi2 — 1 /(2 m). On the contrary, if we relax the constraints on
the execution model, i.e. if the result of a task whichbig given to this task only time units after its start,
then we can obtain better results. In this model of execution, there is a trdt3fed 1/(3 m)-approximate
deterministic algorithm and a truthful optimal randomized algorithm. For both execution models, we also
gave lower bounds on the approximation ratios that a truthful coordination mechanism can have.

As a future work, it would be interesting to improve the results for which a gap between the lower and the
upper bound exists. For example, we believe that the lower béﬁ}@z (lower bound on the performance
of a truthful deterministic coordination mechanism for the weak model of execution) can be improved to
3/2 for two machines.

Another direction would be to restrict the study to truthful algorithms (or coordination mechanisms)
which run in polynomial time. Giving improved lower bounds which rely on a computational complexity
argument would be very interesting.

Acknowledgment

We thank Elias Koutsoupias for helpful suggestions and discussions on the problem.

References

[1] P. Ambrosio, V. AulettaDeterministic Monotone Algorithms for Scheduling on related Machilmes
Proc. of WAOA 2004, 267-280.

[2] N. Andelman, Y. Azar, M. Soranilruthful Approximation Mechanisms for Scheduling Selfish Related
Machines In Proc. of STACS 2005, 69-82.

[3] E. Angel, E. Bampis and F. Pascudruthful Algorithms for Scheduling Selfish Tasks on Parallel
Machines In Proc. of WINE 2005, LNCS 3828, pp. 698-707, 2005.

[4] A. Archer, E. TardosTruthful Mechanisms for One-Parameter AgemitsProc. of FOCS 2001, 482-
491.

[5] V. Auletta, P. Penna, R. De Prisco, P. Persiaftiow to Route and Tax Selfish Unsplittable Traffic
Proc. of SPAA 2004, 196-204.

[6] V. Auletta, R. De Prisco, P. Penna, P. Persiddeterministic Truthful Approximation Mechanisms for
Scheduling Related Machinda Proc. of STACS 2004, 608-619 .

[7] E. Clarke.Multipart pricing of public goodsPublic Choices, pages 17-33, 1971.

[8] G. Christodoulou, E. Koutsoupias and A. Nanav&oordination Mechanismdn Proc. of ICALP
2004, LNCS 3142, pp. 345-357, 2004.

[9] G. Christodoulou, E. Koutsoupias and A. Vidali.lower bound for scheduling mechanisrrsProc.
of SODA 2007, 2007.

[10] M. Garey and D. Johnsoomputers and Intractability: A Guide to the Theory of NP-Completeness
W. H. Freeman & Co, 1979.

[11] R. GrahamBounds on multiprocessor timing anomaliés SIAM Jr. on Appl. Math. 17(2), pp. 416-
429, 1969.

[12] T. Groveslincentive in teamsEconometrica, 41(4):617-631, 1973.

[13] N.Immorlica, L. Liand V.S. Mirrokni and A. SchulZoordination Mechanisms for Selfish Scheduling
In Proc. of WINE 2005, LNCS 3828, pp. 55-69, 2005.

[14] E. Koutsoupias and C. Papadimitriatorst Case Equilibrialn Proc. of STACS 1999, LNCS 1563,
pp. 404-413, 1999.

[15] A. Kovacs.Fast monotone 3-approximation algorithm for scheduling related machineBroc. of
ESA 2005, LNCS 3669, pp. 616-627, 2005.

[16] A. Mu'alem and M. SchapiréSetting lower bounds on truhfulnes$s Proc. of SODA 2007, 2007.
[17] N. Nisan, A. RonenAlgorithmic mechanism desigm Proc. STOC 1999, 129-140.

[18] F. PascualOptimisation dans lesaseaux : de I'approximation polynomiadda théorie des jeuxPh.
D Thesis, University of Evry, France, 2006 (in french).

[19] A-A. Tchetgnia.Truthful algorithms for some scheduling problemvaster Thesis MPREcole Poly-
technique, France, 2006.

[20] W. Vickrey. Counterspeculation, auctions and competitive sealed tendefénance, 16:8-37, 1961.

10

A Appendix
o Results of Section 3 for related machines

Theorem A.1 Let us consider that we have a fixed humbeof machinesP;, ..., P,,, such that machiné’;, has
a speedv;, v1 = 1, andv; < ... < v,,. There is no truthful deterministic algorithm with an approximation ratio
smaller tham2 — —sz=—

v,
i=1 "

Proof. Letus suppose that we haneasks of length 1, and that>> >""" | v;. Let us suppose that we have a truthful
algorithm.4 which has an approximation ratio equaldgwe will then show thap has to be larger than or equal to
2 —). Lett be the task which has the maximum completion tifig, in the schedule returned by. We

i=1 "'
v

know thatC; > ﬁ Indeed, if it is possible to as&gi’m— tasks to each maching;, with j € {1,...,m},

oY tasks

i

then every machines will end at tmf— If, for somej € {1,...,m}, itis not possible to assig

n 'UJ

to each machiné; (i.e.

’I’L’UJ

is not an integer number), then there is a mactithen which there are more than
i=1 ¢

tasks, and then on which the last task is completed o time units.

i=1

111

Let us now suppose that tasbkidsl;, = w instead of 1. LeO PT be the makespan of an optimal solution

v
L1"

where there are. — 1 tasks of length 1 and a task of length We have: 25"%11) < OPT < E(”%ll)
i=1 Ut i=1 Yt

Indeed, <%= s the date at which all the machines end at the same time, if this is possible: in this case the task
i—1 Vi

of length/; is on P, and there ar% tasks of length 1 on maching; (for every;j € {1,...,m —1}) . If it

+ 1.

=1 Vi
is not possible that all the machines end at the same time, then we schedule (dt#g 1 tasks of length 1 on
machineP; (j € {1,.. — 1}): all the tasks are scheduled and the completion tlme on each maghimemaller

than <= 1)‘+vl§7(" Vo

Algorlthm Ais not truthful if the completion time afwhich bidsl; is smaller thanzﬁ since the completion
time oft when it bids 1 is at Ieasﬁ Let.S4 be the schedule returned by algoritthwhen it hagn —1) tasks of

Iength 1 and a task of length Algorithm A is not truthful if at least one unit of the task of lendttis completed before
— time units inS4. Thus, if we wantA4 to be truthful, then less than one unit of the task of lerigtias to be

i=1 "
completed beforT time units inS 4. In this case, the makespan®jf is at least—>— + (=2=t— — 1),

v; N Um
1 i=1 ¢ 21 , Vi

where

Zm 1]
=1 v m—1
n—1 _ 1 Zq:l Vi n n—1 _ 1
makespan of 4 is at Iea&zzn - +(ZZ,;,11 ——a) 2 (n—1+2f1’1 , 1)(27;1 —+ s --) OPT, because
) Z;ﬁ vi

we have seen th&d PT" < MJA This last expression is equal to— 2=l +(e =
i1 —1+ v n71+zi:1 v; i Vi

m—1 m—1
MHZHW) and tend towards$ + % =2— “7mv whenn >> 37" ;.

i=1

Thus, ifp < 2 — 71) there is an instance aftasks of Iength 1 in which one of the tasks of length 1 will have

i=1

incentive to bidl; instead of its true value. Thus, there is no truthful deterministic algorithm with an approximation
ratio smaller tharz — . O

11"

Theorem 3.1 is thus a corollary of this theorem when all the machines have the same speed.
We can adapt in the same way the proof of Theorem 3.2, to show the following Theorem for related machines:

Theorem A.2 Let us consider that we have a fixed numbeof machinesP;, . . ., P,,, such that machin€; has a

speety;, v = 1, andv; < ... < v,,. There is no truthful randomized algorithm with an approximation ratio smaller
§ _ YUm

than N

11

Proof. Let us consider an instandewith n tasks of lengthl (n >> >, v;). LetO = —#—. LetOPT be

the makespan of an optimal solution of this instance. We ldavel < OPT < O. In any schedule of these tasks,
there is at least one task, denotedtbywhose expected completion time is larger than or equglzitb. Indeed, in any
schedule, the number of tasks which are completed at (e 1)/2 is smaller than or equal to the total number of
tasks, otherwis® PT > O — 1 would not be the makespan of an optimal solution.

Let us now consider the instandé with n — 1 tasks of lengthl and one task of lengt ";1,)1”’" . LetO' =

Vi

=1
Zn"%ll Let OPT’ be the optimal makespan @f. We haveO’ < OPT’ < O’ + 1. Indeed, if the large task

is on machineP,, of speedv,,, and at mosﬁwl tasks of lengthl are on machine’; of speedv; (for all

V;

je{l,...,m—1}),thenall the tasks are scheduled and the makespan is smaller than or e{tﬁaﬁ% 1<O0'+1.

Moreover the minimum completion time of the large task is equél'to
Let us now consider that, if, taskt bids M instead of 1. Let us consider that we have an algorithm

Vs
Zi:l v

which has an approximation ratjo We will see that, ifp < 2 — ﬁ thent decreases its expected completion
time by lying, and thus that is not truthful. -

The expected completion time ofvhich bids (i,,})”m instead ofl is smaller than or equal to
i=1 "
-1 m
pOPT’ ((n mf —1)/v;
Dim1 Vi

whereP; is the machine on whichis assigned byd. SinceOPT’ < O’ 4+ 1 andv; < v,,, this is smaller than:

(n—1 +1> n—1 n 1
Pl -y -
Z?lllvi Z?;l”i Um

If t does not lie, we have seen that its expected completion time is larger than or (afktep /2 Then,

A is truthful if

n—1 n—1 1 n

Pl t) 7+ — < = —1)/2
(Zizll Ui) Zi:1l (% Um (27;1 Vi)
which is equivalent to
Z:ﬂil Ui n 1 n—1 1
p < 1 (2 " ‘—5—1— — ——).
n—1+3"0 Po 23000 i Yol v Um

Whenn tends towards the infinity, the right hand part of this inequality tends towards:

m—1 m
i 7 1 i—1 Yt — Um 3 m
Zzz%ﬂz,(zz—lm#)+1:,_ Um__
2 i1 vi 2 D i Vi 2 Y
Thus, if p is smaller thar} — Z?{“ , thenA is not truthful. O

Theorem 3.2 is thus a corollary of this theorem when all the machines have the same speed.

e Results of Section 4.2

Proof of Theorem 4.3 :

Let us suppose that we have a truthful algoritidmvith an approximation ratip < 7/6. Let I be the following
instance: one task of length 3 aBoh — 2 tasks of length 2. Let be the schedule returned bywhen! is the input.
Since there are onhy: machines available, at most tasks of lengtt2 are completed before four time units, and thus
at leastm — 2 tasks with the same length have a completion time which is larger than or equal to

Let us now consider the following instanéé two tasks of lengtt3 and3m — 3 tasks of lengtt2. The optimal
makespan i$. WhenI’ is the input,A returns a schedule’ whose makespan is (strictly) smaller thHanOne can

12

remark that4 must execute the two tasks of lenditon the same machine. Then, the task of length 3 which is
scheduled first ends strictly befotdime units ino’.

SinceA is truthful, no task can bid a larger length and improve its completion time. In particular, among the tasks
of length 2 which are completed aftétime units ino, none can unilaterally bid and be the task which ends strictly
before4 time units ino’. We now show tha#d cannot avoid this since its approximation ratio is strictly smaller than
7/6.

Let ID be a set oBm — 1 distinct identification numbers (ids). For each sulseb} C ID, the instancd bis
equal to the instancE in which the ids are as follows: the two tasks of length 3 get the idisdb, while the3m 3
tasks of lengti2 getanid in/ D — {a,b}. Leto, , be the schedule returned b@/when w5 IS the input.

ID must containn + 2 distinct ids denoted b¥,...,im+2 and such that'z € {1,...,m+ 1}, the task with id
i, is scheduled before the one withiigl,» ino;_; .

Now, we build an instancé; ., similar to I as follows: the task of length 3 get thedg ,» and the3m — 2
tasks of lengtl2 getan id in/D — {i,,42}. Leto; ., be the schedule returned bywhenI; ., is the input. There
exists at least one task with ig such thaty € {1,...,m + 1} and its completion time im; ., is larger than or
equal to 4. Indeed, at most tasks of lengtte can end strictly before 4 time units sinegemachines are available. As
consequence, the task withziglcan bid3 instead o2 and improve its completion time.

As a consequenced cannot be truthful and this shows that there is no truthful algorithm which has an approxi-
mation ratiop < 7/6. O
The following Theorem concerns the weak model of execution in the centralized setting.

Theorem A.3 Let us consider that we have two identical machines. No truthful deterministic algorithm can be better
than7/6-approximate if it does not take into account the identification number of tasks whose length is unique.

Proof. Let us suppose that we have a truthful ands(— €)-approximate algorithm. We consider an instaficavith

four tasks of length 2 (with identification numbersb, ¢ andd) and one task of length — 5¢ (with id e). In the
solution built by the algorithm, at least two tasks of length 2 have a completion time larger than or equal to 4. We can
observe that if one of them bids— 4¢ or 3 — 3¢ then it will necessarily be executed on the same machine as tafsk
length3 — 5¢ (this is due to the fact that the algorithm &/ ¢ — ¢)-approximate). Since the algorithm is truthful, the

task which lied must be executed after taglotherwise, its completion decreased).

Consider the instancg with four tasks of length 2 (with identification numbersb, ¢ andd) and one task of
length3 — 4e (with id e). In the solution built by the algorithm, at least two tasks of length 2 have a completion time
larger than or equal to 4. If one of them bigls- 3¢ or 3 — 5¢ then it will necessarily be executed on the same machine
as taske of length3 — 4¢. Since the algorithm is truthful, the task which lied must be executed afteetask

Consider the instancg with four tasks of length 2 (with identification numbetsb, ¢ andd) and one task of
length3 — 3¢ (with id €). In the solution built by the algorithm, at least two tasks of length 2 have a completion time
larger than or equal to 4. If one of them bigls- 4¢ or 3 — 5¢ then it will necessarily be executed on the same machine
as taske of length3 — 3e. Since the algorithm is truthful, the task which lied must be executed afteetask

Let Ty (resp.T», T3) be the set of tasks of length 2 whose completion time is equal or larger than or equal to 4 in
the solution returned by the algorithm whan(resp.I5, I3) is the input. One can find a couple of set§il, 72, 7'3}
such that their intersection is non empty. W.l.o.g., we suppose that/task 7, N T5. Now consider the following
instances:

1. (2,a),(2,b),(2,¢), (3 —3¢,d), (3 — be, e)
2. (2,a), (2,0), (2,¢), (3 —5e,d), (3 — 3¢, €)

For the first instance, we observed that the algorithm executes the task of $endgth before the one of length
3 — 3e. For the second instance, we observed the opposite. Though some tasks have a unique length, the algorithm
must take into account their identification number to be truthful &id ¢ ¢)-approximate. O

13

