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∗Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

firstname.lastname@lip6.fr
†Novosibirsk State University, Sobolev Institute of Mathematics, Novosibirsk, Russia

alvenko@math.nsc.ru
‡University of Lorraine, LCOMS, Metz, France

giorgio.lucarelli@univ-lorraine.fr

Abstract—Bleuse et al. (EuroPar 2018) introduced a general
model for interference-aware scheduling in large scale parallel
platforms. They considered two different types of communica-
tions: the flows induced by data exchanges during computations
and the flows related to Input/Output operations. Rather
than taking into account these communications explicitly, they
restrict the possible allocations of a job by external topological
constraints. In their work, jobs are considered to be rigid:
a job requires a specific number of machines in order to be
executed. Here, we first adopt the same framework for the
platform and the aforementioned topological constraints. We
show that there is no polynomial time approximation algorithm
under the rigid setting with ratio smaller than 3/2, unless P
= NP. Then, we focus on the malleable setting. We show that
in the proportional-malleable setting, where the work of every
job remains constant independently of the number of machines
on which it is executed, the scheduling problem remains NP-
hard even in the uniform case, where the maximum number
of machines is the same for all the jobs. Then, we propose
a 2-approximation algorithm for this case. Furthermore, we
present an approximation algorithm solving the more general
case where the maximum number of machines is job-dependent
and the work of the jobs is increasing with respect to the
number of used machines, due to the communication overhead.

Keywords-Approximation algorithms, communications, In-
put/Output, malleable jobs

I. INTRODUCTION

High Performance Computers (HPCs) are widely used to
run applications of great societal importance, due to their
extreme computational power. Since their debut, the goal
of engineers as well as of the scientific community is to
increase their efficiency. For many years, this was achieved
via the hardware of the systems: either by increasing the
scale of the platform, or by introducing special purpose
processors and heterogeneity on the machines (nodes), or by
improving the interconnection network. However, when the
energy consumption limit was met, HPCs’ designers turned
their focus on the scheduling algorithms.

Nowadays, real life HPCs consist of more than one type
of nodes like computational accelerators (GPUs) as long
as machines dedicated to the communication with the file
system (Input/Output nodes). GPUs are used due to their
computational efficiency in specific kind of operations while

I/O nodes have a positive effect on reducing communication
cost and they can prevent the network from acting as
a bottleneck to the overall performance of the platform,
since a single all-purpose interconnection network is usually
implemented in a HPC platform.

As the complexity of platforms increases, the need for
new, more precise, platform-oriented algorithms, which take
into consideration the various features of HPCs, is crucial.
In this work, we propose generic scheduling algorithms for
HPC platforms taking into account communication issues
as well as the existence of I/O nodes.

The idea of generic topology-oriented algorithms is not
new. Bladek et al. introduced the notion of contiguous
allocations and they theoretically proved that imposing this
kind of allocations does not deteriorate too much the optimal
schedule [1]. Extending this work, Lucarelli et al. studied the
impact in backfilling scheduling of topological constraints
like contiguity and locality in hierarchical platforms [2].
Bleuse et al. [3], [4] introduced a more general model
for interference-aware scheduling in large scale parallel
platforms by distinguishing between direct and indirect
topologies. Moreover, they study the effect of a second
type of nodes, the input/output nodes, in conjunction with
standard computing nodes. This is motivated by the fact
that in many current systems, network congestion is a major
issue, due to the vast amount of data that are either needed
for, or produced from the execution of an application.

In all these works, the communication costs are taken
into account implicitly: appropriate allocations that reduce
intra-job communications and data transferring from/to the
file system are imposed to the scheduler, without measuring
explicitly the congestion. Ideally, we would like to design al-
gorithms with no interactions between any two applications,
resulting in less congestion in the underlying network, and
at the same time do not have a bad effect on the execution of
an application (delays due to the imposed constraints) and
on the overall performance of the system.

A. Model

We model the platform by distinguishing two kinds of
nodes: a set VC of mC nodes dedicated to computations,



and a set V I/O of mI/O nodes that are entry points to a
high performance file system. Let V = VC ∪ V I/O and
m = mI/O + mC. Usually, mI/O << mC. We assume that
each node has a specific functionality: it can either be a
computing or an I/O node. Furthermore, we suppose that
any computing or I/O node is dedicated to one application
throughout its execution, meaning that two jobs cannot use
the same node simultaneously.

The network topology considered in this work is the
line. This is an interesting topology for the two following
reasons. First of all, it is a basic case of higher dimensional
topologies and as such it provides lower bounds for the
more complex ones. In addition, it retains the attributes of
real-life systems which use direct topologies and can be
projected in a single dimension, like mesh or 3D-torus. In a
line topology, all nodes (computing and I/O) form a single
connected component, each one connected to two other
nodes, except the two nodes in the extremities. We assume
that the localisation of every node within the topology is
known. In lines this can be very easily done, by numbering
the nodes from left to right.

We see applications as jobs which are queued in a set J .
The total number of jobs is n. We distinguish two models
with respect to the computing need of a job.

1) In the rigid model a job j ∈ J requires a fixed number
of computing nodes qj 6 mC. The processing time is also
fixed, denoted by pj .

2) In the malleable model a job j ∈ J asks for a
number of computing nodes Qj , and the scheduler can
decide the number of computing nodes qj 6 Qj to be
used for its execution. Each job j has a required execution
load, denoted by aj . The exact processing time of the job
j depends on the number of assigned computing nodes. Let
f : N → R be a speed-up function. The processing time
of j is defined as pj = ajf(qj). A common assumption
in parallel computing is that the jobs are monotonic [5],
that is their processing time is non-increasing when more
computing nodes are used, while their total work (execution
load plus communication overhead due to the parallelization)
is non-decreasing. This is the case when the speed-up
function is non-increasing and convex. In this paper, we
consider two cases. In the generalized-malleable model, the
function f is an arbitrary convex non-increasing function. In
the proportional-malleable model, the total work does not
depend on the number of computing nodes assigned to it:
f(qj) = 1

qj
and hence pj =

aj
qj

.

In any of the above cases, let VC(j) be the set of computing
nodes assigned to the job j ∈ J by the scheduler.

In addition, jobs have a demand for a specific I/O node,
denoted as V I/O(j). As mentioned before, applications need
to read/write data to the disk. Usually, I/O nodes are the
entry points to a high performance file system. Lustre,
implemented in the BlueWaters platform, is an example of

such a distributed file system. The total address range of
the file system is divided in stripes and each I/O node is
responsible for a stripe. As a result, applications which know
where their data is stored, can ask for the specific I/O node.

Due to the parallelization of the HPC jobs, all the parts of
a job need to communicate with each other to complete the
execution. We refer to this kind of data flows in the network
as computational communications. Furthermore, in general,
jobs that need to run on HPC platforms are computationally
demanding and one reason is the great volume of data they
need to process. Specifically, each job needs to read the data
from the disk when it starts its execution and write data to
the disk once it finishes. We refer to this kind of data flows
as I/O communications. Given the direct topology of the
line, each machine is occupied when traffic needs to pass
“through” itself in order to arrive to the destination. If this
machine is allocated to a different job, then we have the
undesirable effect of delaying the completion time of one
job in order to handle the traffic from a different job. In
order to avoid both the aforementioned data flows, we use
the following definitions introduced in [3], [4] to restrict the
number of possible allocations of a job.

Definition 1. An allocation for a job j is said to be
contiguous if and only if the nodes of the allocation form a
contiguous range with respect to the nodes’ ordering.

Definition 2. An allocation for a job j is said to be local
if and only if the node V I/O(j) is adjacent to the computing
nodes in VC(j), with respect to the underlying topology.

Note that, Bleuse et al. [3] presented a 6-approximation
algorithm for the problem of scheduling rigid jobs under the
contiguity and the locality constraints. However, these con-
straints have not been studied in the context of scheduling
malleable jobs, which is the main subject of our paper.

Given the overhead of distant communications, we may
add a new kind of locality by introducing a limit on the
number of machines that may be used for the execution
of the jobs. This limitation is parameterized by a common
resource requirement Q = Qj for all jobs in J in the
malleable model. The value of Q is chosen based on the
size and the structure of the platform. We call instances
satisfying this kind of locality as uniform instances. Note
that if Q = mC, then the scheduling problem is trivial in
the proportional-malleable model, since the total work is
constant and thus all jobs will be assigned the maximum
number of computing resources. However, for smaller values
of Q, the problem becomes NP-hard (Section II).

Our objective is to minimize the maximum completion
time among all jobs (i.e., the makespan of the schedule)
while enforcing the contiguity and the locality constraints.

B. Related Work
Scheduling rigid jobs under the contiguity constraint is

closely related to the Strip Packing problem [6], the Dynamic



Storage Allocation [7], as well as to the problem of schedul-
ing multiprocessor jobs [8], [9]. Moreover, scheduling under
both contiguity and locality constraints in the rigid model
can be seen as a special case of the scheduling problem
P |setj |Cmax, where, for each job j ∈ J , the set setj de-
scribes the different alternatives (subsets of simultaneously
required processors) that can be used for the execution of j:
it suffices to define the setj so that it includes only alloca-
tions that satisfy our constraints. If the number of computing
nodes is fixed, then a Polynomial Time Approximation
Scheme (PTAS) for P |setj |Cmax has been presented in [10].
However, if m is part of the instance, there is no polynomial
time approximation algorithm with ratio smaller that nδ , for
any δ > 0, as shown in [11]. Although this negative result for
the more general P |setj |Cmax, a 6-approximation algorithm
has been presented in [3] for scheduling rigid jobs under
contiguity and locality constraints.

The problem of scheduling malleable jobs is shown to be
strongly-NP-hard by Du and Leung [12] in the case of non-
monotonic jobs. A 2-factor approximation algorithm for this
version has been given by Turek et al. in [13]. Jansen and
Porkolab [14] gave a PTAS for instances with a constant
number of machines, while in [15], Jansen and Thöle pro-
posed a PTAS when the number of machines is polynomial
in the number of jobs. In the case of monotonic jobs,
Mounié et al. proposed a 3

2 -approximation algorithm [5].
More recently, Fotakis et al. studied the case of malleable
job scheduling, where jobs can be executed simultaneously
on multiple non-identical machines with the processing time
depending on the number of allocated machines [16]. No
results are known for the problem of scheduling malleable
jobs under contiguity and locality constraints.

C. Our Contribution

In this paper, we study the problem of scheduling mal-
leable jobs with respect to contiguity and locality constraints
in a line topology, and we give the first complexity and
approximability results for it. Our work extends the model
proposed by Bleuse et al. [3] and introduces a new mech-
anism for addressing the energy/performance-tradeoff by
using a malleable model. This is a first step towards a more
realistic model and our results show that this approach needs
to be further investigated in the future.

In Section II, we present complexity results for both the
rigid and the proportional-malleable models, implying also
the complexity of the generalized-malleable model. We show
that the problems are NP-hard even in very restricted cases.
We also show that, for any ε > 0, there is no approximation
algorithm with ratio 3

2 − ε for the problem of scheduling
rigid jobs with respect to contiguity and locality constraints,
unless P=NP . This result reduces the approximability gap
for the rigid model for which a 6-approximation algorithm
is known [3].

In Section III, we first deal with the proportional-
malleable model in uniform instances and we propose a
novel polynomial-time 2-approximation algorithm. Then, we
present an approximation algorithm for the generalized-
malleable problem. This algorithm is analyzed in a com-
putational way and it achieves an approximation ratio that
depends on the function f .

II. COMPLEXITY

In this section, we are proposing reductions to classify
special restrictive versions of our problem in complexity
classes. In the following theorems, we are going to use
the Partition problem which is defined as follows: given a
finite set S = {w1, w2, . . . , wk} of k positive integers, the
objective is to decide if there is a subset S′ ⊂ S such that∑
i∈S′ wi =

∑
i∈S\S′ wi.

The problem of scheduling rigid jobs under contiguity
and locality constraints is shown to be strongly-NP-hard
by Bleuse et al. in [3]. In the following theorem we provide
an inapproximability result for this problem.

Theorem 1. Unless P = NP , there is no polynomial time
approximation algorithm having a guarantee of 3/2− ε for
the problem of scheduling rigid jobs with pj = 1 under
contiguity and locality constraints, for any ε > 0.

Proof: We will prove the inapproximability result by
a reduction from a special case of the Partition problem.
In the Partition-Pairs problem, we are given two sets
A = {a1, a2, . . . , ak} and A′ = {a′1, a′2, . . . , a′k}, each one
containing k elements. Let S = A∪A′. Each element ai ∈ A
(resp. a′i ∈ A′) has weight wi ∈ Z+ (resp. w′i ∈ Z+). Let
B =

∑
ai∈A wi +

∑
a′i∈A′

w′i. The goal is to decide if there
is a partition of S into two subsets S′ and S \ S′ such that
•
∑
ai∈S′ wi +

∑
a′i∈S′

w′i =
∑
ai∈(S\S′) wi +∑

a′i∈(S\S′)
w′i = B

2 , and
• for each i ∈ {1, . . . , k}, the elements ai ∈ A and a′i ∈

A′ are not assigned to the same set, i.e., if ai ∈ S′ then
a′i ∈ S \ S′ and vice-versa.
Note that, if all the weights in A′ are set to zero, we still
need to find a solution for the Partition problem in the set
A. Thus, the problem Partition-Pairs is NP-complete.

We propose now a transformation from Partition-Pairs to
our problem as follows:
• mC = k ·B + B

2 , mI/O = k
• the topology is a line starting with B computing nodes

followed by one I/O node. This pattern repeats for k times
and after the kth I/O node we have the last B

2 comput-
ing nodes. With respect to this ordering, we refer to the
computing nodes as 1, 2, . . . ,mC and to the I/O nodes as
1, 2, . . . ,mI/O.
• for each ai ∈ A (resp. a′i ∈ A′)), we create a job ji

(resp. j′i) with qji = B+wi (resp. qj′i = B+w′i). Both jobs



ji and j′i require the ith I/O node. All jobs of the created
instance have unit processing time. Note that n = 2k.

Note that this transformation can be done in polynomial
time: it is sufficient to give the number of machines m =
kB+ B

2 +k, to assume that the machines are numbered from
left to right from 1 to m, and to indicate the k numbers which
correspond to the I/O nodes. We will prove that a solution
to Partition-Pairs exists if and only if there is a schedule
that satisfies all constraints and has a makespan at most 2.

Assume that there is a solution (S′, S \ S′) for Partition-
Pairs. For each i ∈ {1, 2, . . . , k}, let us denote by yi
(resp. zi) the job corresponding to the element in {ai, a′i}
which belongs to S′ (resp. S \ S′). Then, we create a
schedule for our problem as follows: we schedule the jobs
corresponding to elements in S′ at time interval (0, 1] and
the jobs corresponding to elements in S \S′ at time interval
(1, 2]. Specifically, in the time interval (0, 1], the job y1 will
use the computing nodes 1, 2, . . . , B + qy1 , the job y2 will
use B+qy1 +1, B+qy1 +2, . . . , 2B+qy1 +qy2 , and so on. In
general, the job yi, 1 6 i 6 k, will use the computing nodes∑i−1
`=1(B + qy`) + 1, . . . ,

∑i
`=1(B + qy`). In a similar way,

in the time interval (1, 2], the job zi, 1 6 i 6 k, will use the
computing nodes

∑i−1
`=1(B + qz`) + 1, . . . ,

∑i
`=1(B + qz`).

The created schedule satisfies the contiguity constraint. By
the construction of the solution (S′, S \S′), the jobs sched-
uled in the time interval (0, 1] require in total

∑k
`=1(B +

qy`) = Bk + B
2 computing nodes. Similarly, for the jobs

scheduled in the time interval (1, 2]. Hence, there are enough
computing nodes in each time interval. Moreover, by the
construction of the scheduling instance, the ith I/O node
is between the computing nodes iB and iB + 1, for each
1 6 i 6 k. Since for each job yi, 1 6 i 6 k, it holds
that

∑i
`=1 qy` 6

B
2 , then for the leftmost and the rightmost

computing nodes assigned to yi we have
∑i−1
`=1(B + qy`) +

1 = (i − 1)B +
∑i−1
`=1 qy` + 1 6 (i − 1)B + B

2 + 1 < iB

and
∑i
`=1(B + qy`) = iB +

∑i
`=1 qy` > iB + 1. Thus,

the allocation for yi is local since it always contains the
computing nodes iB and iB + 1. The same holds for each
job zi, 1 6 i 6 k. Finally, the length of the created schedule
is equal to two.

Conversely, assume now that there is a schedule respecting
contiguity and locality constraints of makespan at most 2.
Due to the unit processing time of each job, each computing
node has to execute exactly two jobs. Hence, the partition is
directly derived by assigning jobs that are scheduled in the
time interval (0, 1] in the set S′ and those scheduled in the
time interval (1, 2] in the set S \ S′. Since the scheduling
solution respects the locality constraint, the two jobs ji and
j′i asking for the ith I/O node are scheduled in a different
time interval. Therefore, the elements ai and a′i are not in the
same subset of the solution of the Partition-Pairs problem,
and hence this solution is feasible for it.

Note that, the above proof directly implies that there is no

3/2−ε-approximation algorithm for our scheduling problem,
assuming that P6=NP .

We now focus on the malleable model and we show that
the problem is NP-hard even for the proportional-malleable
model and uniform instances.

Theorem 2. The problem of scheduling malleable jobs
with respect to contiguity and locality constraints is NP-
hard even in the proportional-malleable model and uniform
instances.

Proof: We reduce Partition to our scheduling problem.
We choose Q ∈ Z+ and B > 0 such that 2BQ =

∑
i∈S wi.

We create a line which consists of mC = 2Q computing
nodes and mI/O = 3 I/O nodes. The topology starts with an
I/O node, followed by Q computing nodes, the second I/O
node, the remaining Q computing nodes and the last I/O
node.

For each i ∈ S, we create a “small” job i with ai = wi,
all of them asking for the middle I/O node. Moreover, we
create two “big” jobs with aj = BQ2, each one asking for
a different extreme I/O node. All jobs require exactly Q
computing nodes, i.e., Qj = Q for each j ∈ J .

We will prove that a solution to Partition exists if and
only if there is a schedule that satisfies all the constraints
and has a makespan at most B(Q+ 1).

Assume that there is a solution (S′, S \ S′) for Partition,
i.e.,

∑
i∈S′ wi =

∑
i∈S\S′ wi = BQ. We create a schedule

as follows:
• on the leftmost Q computing nodes, we schedule: (i)

the “big” job targeting the left I/O node in the time interval
(0, BQ] using qj = Q and hence a processing time pj =
aj
qj

= BQ, and (ii) the “small” jobs corresponding to the
elements of the set S′ (and targeting the middle I/O node)
in the time interval (BQ,BQ+ B] using for each of them
qj = Q and hence a processing time pj =

aj
qj

=
wj

Q .
• on the rightmost Q computing nodes, we schedule: (i)

the “small” jobs corresponding to the elements of the set
S\S′ (and targeting the middle I/O node) in the time interval
(0, B] using for each of them qj = Q and hence a processing
time pj =

aj
qj

=
wj

Q , and (ii) the “big” job targeting the right
I/O node in the time interval (B,BQ + B] using qj = Q
and hence a processing time pj =

aj
qj

= BQ.

By construction, the contiguity and the locality constraints
are satisfied, while the makespan of the schedule is exactly
B(Q + 1). Due to the solution of Partition, we have that∑
i∈S′ wi = BQ, and hence the total processing time of all

jobs corresponding to the elements of S′ is BQ
Q = B, fitting

in the assigned time interval. The same argument holds for
the jobs corresponding to the elements of S \ S′. Thus, the
created schedule is feasible.

Conversely, given a feasible optimal schedule of
makespan B(Q+ 1), we first need to show that both “big”
jobs are necessarily executed using qj = Q computing



nodes. Suppose that a “big” job is executed using qj < Q
computing nodes. Therefore, the load on each of these nodes
is at least

BQ2

qj
>

BQ2

Q− 1
=
BQ2 −B +B

Q− 1
=
B(Q2 − 1) +B

Q− 1
=

B(Q− 1)(Q+ 1) +B

Q− 1
= B(Q+ 1) +

B

Q− 1

which is strictly greater than B(Q+ 1), and hence we have
a contradiction to the feasibility of the schedule. Moreover,
the total processing time of “small” jobs that are executed on
the computing node just on the left of the middle I/O node is
at most B(Q+ 1)−BQ = B; similarly, for the computing
node which is just on the right of the middle I/O node.
Furthermore, the “small” jobs have a total processing time
at least 2B; this happens if all of them use Q computing
nodes. We conclude that the set of “small” jobs has been
partitioned into two subsets of the same total processing
time, and therefore we can construct a solution for the
Partition problem.

In the proof of the previous theorem, if Q = 1 then the
constructed instance coincides with a very special case of
the rigid model where the number of machines is fixed, and
we get the following corollary.

Corollary 1. The problem of scheduling rigid jobs with
respect to contiguity and locality constraints is NP-hard
even if mC = 2, mI/O = 3 and qj = 1 for each job j ∈ J .

Finally, we can extend the proof given in [3] for the
rigid model, and get the following theorem, whose proof
is omitted due to space limitations.

Theorem 3. The problem of scheduling malleable jobs with
respect to contiguity and locality constraints is strongly-
NP-hard even in the proportional-malleable model with
mI/O = 3 and aj = Qj , for each j ∈ J .

III. APPROXIMATION ALGORITHMS

In this section, we propose approximation algorithms for
the problem of scheduling malleable jobs with respect to
contiguity and locality constraints.

A. Proportional-Malleable Model in Uniform Instances

In a uniform instance of the Proportional-Malleable
Model, each job can be executed by at most Q computing
nodes. We denote by Mj the set of computing nodes
(machines) that can participate in the execution of a job
j. Let M be an arbitrary set of machines. Then the average
time LB1 for which a machine fromM has to run is a lower
bound on the length of an optimal schedule. That is:

LB1 = max
M⊆VC

{∑
j|Mj⊆M aj

|M|

}
(1)

For each node i ∈ V I/O we denote by Ji the set of jobs
with V I/O(j) = i. Given that each job cannot be allocated
on more than Q machines, we obtain a second lower bound.

LB2 = max
i∈V I/O

∑
j∈Ji

aj
Q

 (2)

In total, the lower bound is given by the biggest of these
quantities, LB = max {LB1,LB2}.

In this section, we present an algorithm that finds a
schedule whose makespan does not exceed 2LB. Firstly, we
transform the instance in order to create a simplified jobset
J ′. For each node i ∈ V I/O we replace each set of jobs Ji
with a single job j′, the execution load of which is equal to
Aj′ =

∑
j∈Ji

aj . After determining the allocation for a job
j′ in J ′, we will assign all jobs j in J corresponding to
the same I/O node to the same set of computing nodes.

Proposition 1. J and J ′ have the same lower bound LB.

We introduce at this point an auxiliary problem which
will help us find a feasible schedule to our initial problem.

Auxiliary problem

The instance consists of a set of malleable rectangles
U = {U1, U2, . . . , Um} and a strip of width W . Designate
the bottom left corner of the strip as the origin of the xy-
plane, letting the x-axis be the direction of the width of the
strip, and the y-axis be the direction of the height. Each
rectangle Ui has a fixed area Ai and a given access point
(which corresponds to the input/output nodes of our original
problem) τi, such that 0 6 τ1 6 τ2 6 · · · 6 τm 6 W .
We represent the location of each rectangle Ui in the strip
by the coordinate (si, yi) of its bottom left corner and the
coordinate (fi, yi) of its bottom right corner. We denote the
width of a rectangle as λi = fi− si. In this case, the height
of the rectangle Ri is equal to hi = Ai

λi
.

We say that the location of the rectangles is valid if the
following conditions hold:

1) si, fi ∈ N, i = 1, . . . ,m
2) 1 6 λi 6 Q, i = 1, . . . ,m
3) si 6 τi 6 fi, i = 1, . . . ,m
4) si 6 sj , ∀ i < j
5) fi 6 fj , ∀ i < j

In correspondence with the initial scheduling problem, con-
dition 1 means that the computing need of a job is integral,
while in condition 2, a job must ask for at least one node
with the upper limit being Q. Condition 3 guarantees locality
for a job. Finally, conditions 4 and 5 ensures jobs are
scheduled following the ordering of the I/O nodes.

The objective of the auxiliary problem is to place m
rectangles into the strip without intersections, so as to
minimize the height H of the strip.

Consider an arbitrary rectangle Ui. In order to satisfy
conditions 2, 3, we define the interval [ri, di]. Let ri =



mC
1 mC

2 mC
3 mC

4 mC
5 mC

6 mC
7 mC

8 mC
9 mC

10 mC
11m

I/O
1 m

I/O
2 m

I/O
3 m

I/O
4 m

I/O
5

Figure 1. Intervals [ri, di] for jobs with for Q = 3

max {0, τi −Q} and di = min {W, τi +Q}. We can see
this interval as the set of computing nodes, where a job i
can be scheduled both locally and contiguously. An example
of these intervals is shown in Fig. 1. Conditions 2 and 3 also
imply that in any feasible solution of the auxiliary problem
we have rj 6 sj < fj 6 dj .

In terms of the auxiliary problem, we can re-write lower
bounds (1) and (2) as follows.

LB1 = max
i,j|i<j

{∑
k|ri6rk6dk6dj Ak

dj − ri

}
(3)

LB2 = max
i

{
Ai
Q

}
(4)

Finally, we have that, LB = max {LB1,LB2}
Proposition 2. If we do not impose integrality and locality
(conditions 1 and 3), the auxiliary problem under conditions
2, 4, 5 has a solution of H = LB.

To create such a solution, we set λi = Ai

LB for all Ui ∈ U .
From (4) we have λi 6 Q. We then place each rectangle on
the bottom line, so yi = 0 for all Ui ∈ U . We determine the
x-coordinates of each rectangle according to the following
rule. For the first rectangle we set s1 = 0 and f1 = λ1.
For the rest of the jobs we set si = max {ri, fi−1} and
fi = si + λi.

In the next proof we show that the solution described
above and summarized in Algorithm 1, provide a feasible
solution to the auxiliary problem with respect to condition
2, 4, 5.

Proof: We will prove by contradiction that fi 6 di for
all i. Suppose there exists a rectangle Ui such that fi > di.
Let j < i be the maximal index of a rectangle such that
sj = rj . Then we have sk = fk−1 for all k = j + 1, . . . , i.
Thus, we have that

i∑
k=j

λk > di − rj (5)

Algorithm 1: Auxiliary solution

1 λ1 = A1

LB ; y1 = 0; s1 = 0; f1 = λ1;
2 for i > 1 | Ui ∈ U do
3 λi = Ai

LB ; yi = 0;
4 si = max {ri, fi−1}; fi = si + λi;

Moreover, for each rectangle Uk, where k = j+1, . . . , i we
have rj 6 rk and dk 6 di. From LB and (3) we obtain

LB >

∑i
k=j Ak

di − rj
=
LB∑i

k=j Ak

LB(di − rj)
=
LB∑i

k=j λk

di − rj
> LB

where the last inequality follows from (5); contradiction.
Algorithm 1 places all the rectangles as close as possible

to the left edge of the strip. We shift to the right those
rectangles for which fi < τi, without changing the order
or the location of the other rectangles. Thus, a rectangle can
be moved either until it becomes local, or until it meets the
starting node of the next job. This procedure, which returns
a strip S′, is described in Algorithm 2.

The solution created by Algorithm 2 may consist of
several blocks of jobs. A block is a maximal set of rectangles
that form a continuous strip of size LB and consists of:
• a set of local rectangles for which τi ∈ [si, fi],
• a set of rectangles, L (left), for which τi > fi,
• a set of rectangles, R (right), for which τi < si.

Moreover, all left rectangles precede local rectangles, and all
right rectangles succeed local rectangles. Notice that sets L
and R may be empty, while the set of local rectangles must
have at least one rectangle. After applying Algorithm 2, it
is the local rectangles which prevent other jobs from being
local. Therefore, there is always a local rectangle in a block.
The structure of a block can be seen in Fig. 3a.

Our main idea is to split the set of rectangles in U into two
subsets, U1 and U2, and then pack each of them into a strip
of height LB. We start with local rectangles. We number the
rectangles in the order as they are carried out in the strip
S′, resulted by Algorithm 2. Then, we reallocate each local
rectangle i to the interval [bsic, dfie]. Subsequently, we set
all odd local rectangles in the first subset U1 and all even
rectangles on the second subset U2. Each rectangle i has a
positive width, and therefore we get that si+2 > fi+1 >
si+1 = fi. Since each τi is integral, and for each local
rectangle we have τi ∈ [si, fi], we get that bsi+2c > dfie,
and as a result local rectangles from the same subset do not
overlap.

For rectangles which are not local, we focus on each
block separately. We make rectangles of a block to be local,
starting by jobs in set R. Rectangles in set L are handled
similarly and therefore the procedure is not explicitly men-
tioned here.

Algorithm 2: Create Initial Blocks

1 Start with the solution S returned by Algorithm 1;
2 for (i = |J ′|; i == 1; i--) do
3 if τi > fi then
4 t = min {(si+1 − fi), (τi − fi)};
5 fi+ = t; si+ = t;
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Figure 2. Example of creating the first aggregated job of a block inR. The
renumbering of nodes and jobs of this step is also depicted. Jobs correspond
to the jobs 5− 10 shown in Fig. 3a.

We call the last local rectangle in the block as R0.
Consider the rectangles in R ∪ {R0}. We refer to the
access point of the rectangle R0 as τ0 and respecting the
ordering from left to right we re-number the access points
of the rectangles in R. Rectangles’ indices follow the same
numbering. Fig. 2 illustrates this notation.

Let r = |R|. We partition the set of rectangles R
into disjoint subsets using the following procedure (see
Algorithm 3). We consider each subset Rh as an aggregated
rectangle Rh. For each aggregated rectangle Rh, we define
two quantities. The first one is

distC =
∑

Uj∈Rh

λj (6)

which corresponds to the total width of all the rectan-
gles in Rh. Let τminh = minUj∈Rh

{τj} and τmaxh =
maxUj∈Rh

{τj}. The second one is

distI/O = τmaxh − τminh (7)

and is related to the distance between the leftmost and the
rightmost access points in Rh. We then define the width of
the aggregated rectangle Rh as

`h = max
{⌈
distC

⌉
, distI/O

}
(8)

More precisely, we replace each rectangle Uj ∈ Rh of width
λj and height LB with a rectangle of width `h and height
λjLB/`h, and put them on top of each other. As a result,
we get a rectangle of width `h and of height distCLB/`h,
which is no more than Q.

At this point, we are ready to make rectangles in R both
local and integral. We place each aggregated rectangle Rh
in the interval [τminh , τminh +`h]. For each rectangle, we also
need to choose one of the subsets U1 or U2.

Algorithm 3: Create Aggregated Rectangles

1 Put h = 0; k = 1;
2 while k 6 r do
3 set i = k, h = h+ 1, Rh := ∅;
4 while

∑k
j=i λj 6 Q and τk − τi 6 Q do

5 set Rh = Rh ∪ {Uk}; k = k + 1;

LB
1 2 3 4 5 6 7 8 9 10 11 12

blockblock block

RL

I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12

(a) Schedule returned by Algorithm 2. Structure of a block.

LB

2LB

1

2

3
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12

I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12

(b) The final schedule after imposing locality and integrality

Figure 3. Example of the transformation from a partial solution return
by Algorithm 2 to a contiguous, local, integral feasible schedule of our
algorithm. Input/Output nodes are depicted by a black square. Computing
nodes are not shown. Jobs and Input/Output nodes follow the same
numbering. Jobs in grey are local while jobs in white need to be reallocated.

This choice is based on the placement of the previous
rectangle. Rectangles R0 and R1 are always assigned to
different sets based on the choice for R0. If the maximum
in `i−1 is given by

⌈
distC

⌉
and Ri−1 ∈ U1, assign Ri to U2

(resp. if Ri−1 ∈ U2, assign Ri to U1). If the maximum in
`i−1 is given by distI/O and Ri−1 ∈ U1 (resp. U2), assign
Ri to U1 (resp. U2). Similarly, we impose locality in L.

Lemma 4. The aggregated rectangles do not overlap.

Proof: Since all rectangles in R are shifted to the left
and all rectangles in L are shifted to the right, the shifted
rectangles from different blocks do not overlap. Let Ul be
any left aggregated rectangle and Ur to be any right aggre-
gated rectangle. We have fl = τmaxl 6 τ0 6 τminr = sr. It
follows that two rectangles Ul, Ur with Ul ∈ L and Ur ∈ R
from the same block do not overlap.

Now we show that rectangles in R from one block do not
overlap. Let `h−1 = τmaxh−1 − τminh−1 . Since τmaxh−1 < τminh the
rectangles Jh−1 and Jh do not overlap. Now, let `h−1 =∑
j∈Rh−1

λj . In this case, rectangles Jh and Jh−1 belong
to different sets and do not overlap. It remains for us to
show that the rectangle Jh does not overlap with previous
rectangles. Let Uj be the first rectangle in Rh. From the
execution of Algorithm 3, we have `h−1 + λj > Q. Hence,
fj −mini∈Rh−1

si > Q. Taking into account that τj = dj −
Q > fj −Q, we obtain

τminh = τj > fj −Q > min
i∈Rh−1

si = sh−1 > τminh−1 > τmaxh−2

Similarly, rectangles in L from one block do not overlap.

Lemma 5. The aggregated rectangles and the local rectan-
gles do not overlap.

Proof: We prove this result for jobs in R. Let Ri be the
first aggregated rectangle that belongs to the same set as R0.
It follows that `i−1 =

∑
j∈Ri−1

λj . As shown in Lemma 4
we have τmini > si−1 > f0. Since τmini is integer, we have
τmini > df0e and rectangles R0 and Ri do not overlap.
Similarly, we can prove this result for jobs in L.



Following the procedure above, we can find a solution of
height 2LB to the auxiliary problem which partitions the
rectangles into two subsets, and packs them in two strips of
height LB without intersections.

Now, consider the topology of an instance of the schedul-
ing problem. We number the computing nodes in VC inde-
pendently from the I/O nodes, respecting their ordering on
the line. Furthermore, we set W = mC and we associate the
unit interval [i − 1, i] with the computing node i. For each
I/O node j ∈ V I/O we set τj = 0 if the I/O node precedes
all computing nodes, τj = mC if the I/O-node follows all
computing nodes and τj = k if the I/O node is located
between the computing nodes k and k+ 1. For the j-th I/O
node we create a rectangle Rj such that its area is Aj .

Lemma 6. Let S be a feasible solution of the auxiliary
problem with height H . Then there exists a feasible solution
of the scheduling problem with makespan H .

Proof: Let the rectangle Uj has coordinates (sj , yj) and
(fj , yi) for its bottom left corner and its bottom right corner,
respectively. We assign the job j corresponding to the j-th
I/O node on computing nodes {sj + 1, . . . , fj} in the time
interval (yj , yj + hj ], where hj =

Aj

λj
. Let V I/O

t = {j ∈
V I/O|τj = t}. If sj < t < fj then job j occupies all I/O
nodes from V I/O

t . If sj = t that job j occupies the node
V I/O(j) and all I/O nodes from V I/O

t to the right of the node
V I/O(j). If fj = t that job j occupies the node V I/O(j) and all
I/O nodes from V I/O

t to the left of the node V I/O(j). Thus, the
job is also local due to condition 3 of the auxiliary problem.
Suppose that a job i and a job j overlap on some I/O node.
Let i < j. Since the rectangles Ri and Rj do not overlap
we have τi = fi = sj = τj due to conditions 4 and 5. But
in this case, the job i does not occupy the I/O-nodes to the
right of the i-th I/O node and the job j does not occupy the
I/O-nodes to the left of the j-th I/O node. Hence these jobs
do not overlap.

This directly yields the following result.

Theorem 7. There exists a polynomial time factor 2 approx-
imation algorithm for the problem of scheduling malleable
jobs with respect to contiguity and locality constraints on
line in the uniform proportional-malleable model.

B. Generalized-Malleable model

Bleuse et al. [3] introduced an integer linear program
for the rigid model with respect to contiguity and locality
constraints in order to minimize the total load of each node;
note that the maximum load over all nodes is a lower bound
to the makespan of the schedule. By solving the relaxed
version and rounding this solution, they obtain one allocation
whose makespan is at most twice the maximum load in
the solution returned by the linear program (LP). Having
fixed a valid allocation for each job, the problem coincides
with the already known Dynamic Storage Allocation prob-

0 1 2 3 4 5 6 7 8 9 10

Figure 4. Possible valid allocations for a job j asking for 3 computing
nodes (Qj = 3) and the 4th node as input/output.

lem for which they use an already known 3-approximation
algorithm [17] to create a feasible schedule, getting a 6-
approximation algorithm for the rigid model.

We extend the integer linear program of [3] as follows.
Let Aj be the set of all potential allocations for each job
j ∈ J . In the malleable model, the set Aj contains more
allocations than the rigid model, as in the former one we
have also to decide the number of computing nodes to be
used for the execution. Due to the contiguity and the locality
constraints, there are Qj+1 allocations using Qj computing
nodes, Qj allocations using Qj − 1 computing nodes, and
so on. Hence, |Aj | 6

∑Qj

i=1(i+ 1): the number of potential
allocations for each job j remains polynomial.

Each allocation ` ∈ Aj contains a number of computing
nodes as well as the required I/O node. Note that, an
allocation may include more I/O nodes that will not be used
during the execution of j, neither by j nor by any other
job due to the locality constraint. By slightly abusing the
notation, given an allocation `, we write i ∈ ` if the node i is
included in `, and we denote by |`| the number of computing
nodes included in `. Moreover, given an allocation ` ∈ Aj
for a job j ∈ J , we denote by pj` = ajf(|`|) the processing
time of j if it is executed according to `. Note that the
number of different pj` is also polynomial. An example
of all possible allocations can be seen in Fig. 4. For each
job j ∈ J and allocation ` ∈ Aj , we introduce a binary
indicator variable xj,` which is equal to one if j is executed
according to the allocation `, and zero otherwise. Moreover,
for each node i ∈ V (computing and I/O) we introduce a
non-negative variable Λi which corresponds to the total load
of jobs whose assigned allocation includes the node i. Let
also Λ be a variable corresponding to the maximum load
among all nodes. Then, we consider the following integer
linear program which minimizes the maximum load.

min Λ, (ILP)
s.t. Λ > Λi ∀i ∈ V (C1)

Λi >
∑
j∈J

∑
`∈Aj

∑
i∈`

xj`pj` ∀i ∈ V (C2)

∑
`∈Aj

xj` = 1 ∀j ∈ J (C3)

xj` ∈ {0, 1} j ∈ J , ` ∈ Aj (C4)

Constraints (C1) take the maximum load over all nodes.



Constraints (C2) compute the total load for each node,
while Constraints (C3) ensure that each job is assigned to
an allocation. By relaxing the integrity Constraints (C4) to
xj` ∈ [0, 1] for each j ∈ J and ` ∈ Aj , we can solve the
corresponding LP in polynomial time. An optimal solution to
the relaxed linear program is a lower bound to the makespan
of an optimal solution for our problem.

The main differences of the above integer linear program
with respect to the one for rigid jobs is that: (i) there is a
quadratic number to Qj of potential allocations for each job
j (instead of linear) and (ii) the processing time of j depends
on the allocation and the number of computing nodes used
by it (instead of a single pj for all potential allocations).

Consider now an optimal solution of the relaxed linear
program. In this solution, let x̃j` be the value of the indicator
variable for each job j ∈ J and allocation ` ∈ Aj , and Λ̃i be
the value of the variable corresponding to the load of node
i. In the following, we explain how to round these indicator
variables and get an integral allocation for each job j ∈ J .
Let x̄j` be the integral value of the indicator variable for each
job j ∈ J and allocation ` ∈ Aj after the rounding and Λ̄i
the corresponding load of node i. We denote by Li(j) the
contribution of job j to the load of node i ∈ V in solution
Λ̃i: Li(j) =

∑
`:i∈` x̃j`pj`. Let Ṽj = {i : Li(j) > 0} be the

set of nodes having a positive fractional load for the job j.
Given an allocation ` ∈ Aj , we consider the worst case

increase of the load of a machine if we decide to schedule
j according to `. Specifically, for each node i ∈ Ṽj in this
allocation ` we compute the ratio pj`

Li(j)
, while the worst case

corresponds to the node for which this ratio is maximized.
Finally, we decide to schedule j according to the allocation
`∗ that minimizes this worst case ratio and we set x̄j`∗ = 1.
All the other variables for the job j are set to zero, i.e., x̄j` =
0 for each ` 6= `∗. Intuitively, the above procedure aims to
choose the allocation for each job j ∈ J that increases as
little as possible the impact of j on the load of the nodes,
without regarding the load of the other jobs.

When a single allocation has been selected for each job,
our problem coincides with the Dynamic Storage Allocation
problem and we can apply the 3-approximation algorithm
proposed in [17]. Algorithm 4 summarizes this procedure.

In what follows, we bound the approximation ratio of
Algorithm 4. We initially focus on the rounding procedure
(Lines 2–7 of the algorithm). Our analysis is performed
for each job j ∈ J separately and the approximation
ratio of our algorithm depends on the function f and
Qmax = max{Qj , j ∈ J }. However, the algorithm works
for instances with different values of Qj .

The key idea of our analysis is, given a job j ∈ J , to find
a worst-case assignment for the variables xj`, ` ∈ Aj , that
maximizes the quantity min`∈Aj{ratio`j}: it will maximize
the minimal increase of the contribution of task j to the load
of a machine between Λ̃i and Λ̄i. Then, any other assignment
for the variables xj`, including the one obtained by solving

Algorithm 4:
1 Solve the relaxed version of (ILP)
2 for each job j ∈ J do
3 for each node i ∈ {1, . . . ,m} do
4 Li(j) =

∑
`:i∈` x̃j`pj`

5 for each allocation ` ∈ Aj do
6 ratio`j = maxi∈`,i∈Ṽj

{
pj`
Li(j)

}
7 Choose the allocation `∗ = argmin`∈Aj

{ratio`j}
8 Create a feasible schedule by applying the algorithm

proposed in [17] for the Dynamic Storage
Allocation problem using the allocations
determined by `∗.

the relaxed (ILP), will lead to a smaller increase. In order to
do this, we create the following feasibility linear program
for the job j ∈ J , where α is a constant which corresponds
to the value of min`∈Aj{ratio`j} we are searching for.

pj` > α
∑
`′:i∈`′

xj`′pj`′ ∀` ∈ Aj , i ∈ ` (R1)∑
`∈Aj

xj` = 1 (R2)

xj` > 0 ∀j ∈ J , ` ∈ Aj (R3)

Constraints (R1) express the ratio between the integral load
if allocation ` is selected to execute j and the fractional
load based on the obtained assignment for a node i, i.e.,
correspond to the quantity pj`

Li(j)
. Constraints (R2) ensure

the j is assigned and guarantees the constraints (C3) of ILP.
Observe that, the values of pj` = ajf(|`|) and pj`′ =

ajf(|`′|) in Constraint (R1) depend on the same job j. Thus,
aj can be eliminated and the constraint depends only on the
number of computing nodes of allocations `, `′ (which take
value in {1, 2, . . . , Qj}) and the function f . In other words,
we obtain the same feasibility linear program for all jobs
requiring the same number of computing nodes Qj , and thus
the value of α depends only on the function f and the Qj ,
and not the specific job. In order to determine the value of
α, we perform a binary search. An infeasible solution to
the above linear program implies that it is not possible to
have a gap of α and hence we need to choose a smaller
value of α. At the end of the binary search procedure, we
get the maximum value of α that makes the linear program
(R1)–(R3) feasible. Then, the following lemma holds.

Lemma 8. For a job j ∈ J and a node i ∈ V , it holds that
pj`∗ 6 αLi(j), where α is the maximum value which makes
the linear program (R1)–(R3) feasible.

As an example, we calculated the value of α for different
values of Qj in the proportional-malleable model. Fig. 5
illustrates some of these values.
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Figure 5. The value of α with respect to differentQj ’s for the proportional-
malleable model.

Theorem 9. Let αmax be the maximum value over all
jobs which makes the linear program (R1)–(R3) feasible.
Algorithm 4 achieves an approximation ratio of 3αmax.

Proof: For each job j ∈ J , let `∗j be the allocation
selected by Algorithm 4 to execute j. Then, for the integral
load of the node i ∈ V we have

Λ̄i =
∑

j∈J :i∈`∗j

pj`∗j 6
∑

j∈J :i∈`∗j

αmaxLi(j)

= αmax

∑
j∈J :i∈`∗j

∑
`:i∈`

x̃j`pj`

= αmax

∑
j∈J :i∈`∗j

∑
`∈Aj

∑
i∈`

x̃j`pj` = αmaxΛ̃i

By construction, Λ̃ = maxi∈V{Λ̃i} is a lower bound the
makespan of an optimal schedule for our problem. Then,
the theorem follows, since in Line 8 of Algorithm 4 the
3-approximation algorithm for the Dynamic Storage Allo-
cation is used in order to create the final schedule.

IV. CONCLUSION

In this work we studied the makespan minimization prob-
lem on the malleable and the rigid models under contiguity
and locality constraints. We give inapproximability results
for the rigid model and complexity results for the malleable
one. Focusing on the malleable model, we give approxi-
mation algorithms for the proportional uniform setting as
well as the generalized one. As future work, it would be
interesting to search for a constant factor approximation
algorithm for the generalized-malleable problem and further
close the approximability gap for both malleable and rigid
settings. Furthermore, one can try to extend the topological
constraints and therefore the algorithms mentioned in this
work in more complex and differently structured topologies.
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