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ABSTRACT

In this paper, we introduce a model for the speed scaling setting in
the framework of explorable uncertainty. In the model, each job has
a release time, a deadline and an unknown workload that can be
revealed to the algorithm only after executing a query that induces
a given additional job-dependent load. Alternatively, the job may be
executed without any query, but in that case its workload is equal to
a given upper bound. This assumption is motivated for instance in
applications like code optimization, or file compression. We study
the problem of minimizing the overall energy consumption for
executing all the jobs in their time windows. We also consider the
related problem of minimizing the maximum speed used by the
algorithm. We present lower and upper bounds for both the offline
case, where all the jobs are known in advance, and the online
case, where the jobs arrive over time. We start with the single
machine setting and we finally deal with the more general case
where multiple identical parallel machines are available.
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1 INTRODUCTION

Speed scaling is a standard and well-known mechanism to handle
energy consumption in computing systems. Given that the char-
acteristics of the jobs may not be known in advance, many works
in speed scaling adopt the frameworks of online optimization [1],
or stochastic optimization [18]. However, in some situations it is
possible to obtain the exact job characteristics at some extra cost.
The operation that allows to obtain the exact value of some part of
the input is called a query. Kahan [24] was the first to formalize this
notion known as explorable uncertainty. He applied this framework
in the context of selection problems. Since then, a series of problems
have been studied (e.g. see the survey [15]). In most of these works,
the aim is the minimization of the number of queries needed to
produce the desired solution. In this paper, we introduce a model for
speed scaling problems, inspired by the model introduced recently
for classical scheduling problem under explorable uncertainty in
[14]. In the model of Diirr et al. [14], the uncertain information
concerns the processing time of each job for which an upper bound
is known in advance. It is possible to learn the exact processing
time by querying at the price of a unit cost. If a job is executed
without a query, then its execution time is equal to its upper bound.
Contrary to the previous approaches, queries are executed directly
on the machine running the jobs and so it is important to balance
the time spent on queries and the time spent on the execution of
jobs. More recently, an extension of this model has been considered
in [4], where the querying times are job-dependent.

In this paper, we propose the study of the following natural
extension of this model in the speed scaling setting: each job has
a release time, a deadline and an unknown workload that can be
revealed to the algorithm only after executing a query that induces
a given additional job-dependent load. Alternatively, the job may be
executed without any query, but in that case its workload is equal to
a given upper bound. This assumption is motivated by the fact that
a query could correspond to a code optimizer as mentioned in [14].
In that case, the code optimizer needs some workload to process
the job and potentially reduces its workload. The upper bound on
the workload of a job corresponds to the workload of the job when
the code optimizer is not executed. Another possible application
for this assumption is file compression. The minimization objective
is the overall energy consumption for executing all the jobs in their
time windows (between their release dates and deadlines). We also
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consider the related problem of minimizing the maximum speed

used by the algorithm.

Formulation of the problem. In the speed scaling model [27], the
speed of a machine can be modified by the scheduler in order
to save energy. Specifically, higher speed corresponds to better
performance, but higher energy consumption. To quantify this, we
assume that if the machine at a time ¢ runs at speed s(t), then
the power needed is P(s(t)). In integrated systems produced by
the standard CMOS technology, the power can theoretically be
described as P(s(t)) = s(t)3, but in practice this exponent varies for
different architectures. In this paper, we study the more general case
where the power is described by the function P(s(t)) = s(t)%, where
a > 1is considered to be constant. Then, the energy consumption
is computed as E = f P(s(t))dt.

In the classical speed scaling setting, each job j is characterized
by a triple (r;,dj, w;), which represents the release time, the dead-
line and the workload of the job respectively. The workload of j
should be entirely executed in the interval (r;, d;] which is called
its active interval. In this paper, we augment this framework by
introducing an uncertainty on the workload of the jobs. Here, the
workload, w;, is an upper bound rather than an exact value on the
actual work needed for the completion of a job. The exact load,
w? < wj, can be revealed to the algorithm only after executing a
query of additional load c; € (0, w;]. Hence, in our setting, each job
is characterized by a quintuple (r;,dj, cj, wj, w}f), where w;f is not
known before the end of the potential execution of the query. Note
that, in the case where the query is not executed, the scheduler is
obliged to execute the upper bound of the workload wj.

We call the above enhanced model as Query-Based Speed-Scaling
model (QBSS). The QBSS model is online by nature, since the value
of w]*. for each job j is revealed only after the potential execution
of the query c;. However, we distinguish between the offline and
the online versions with respect to the classical scheduling setting.
In the offline version, the entire input is known in advance, i.e., the
total number of jobs to be scheduled, as well as their characteris-
tics, except for the exact loads w;f. In the online version, the input
becomes available to the algorithm over time: at time ¢ = r;, a new
job j and its characteristics are revealed, except again for its exact
load w7. In other words, the algorithm does not know in advance
how many jobs it has to schedule, at which time they will arrive or
what are their characteristics. In both cases, if the exact load of a
job j becomes known at the same time as its other characteristics,
then the QBSS model reduces to the classical speed scaling setting,
since the scheduler can simply decide whether to make the query
for j or not based on the value of min{wj,c; + w;f}.

Our contribution and organisation of the paper. In this paper,
we study an enhanced speed scaling setting (called QBSS), where
queries can be optionally executed in the system in order to reveal a
more accurate value of the workload of jobs. The main objective is
the energy minimization, while the maximum speed minimization
is also studied.

There are two additional questions to answer for each job j in
the QBSS model: whether the query will be done or not, and, if yes,
how to partition the active interval of the job among the execution
of its query and its exact load. Both decisions have a crucial impact

on the speeds and on the consumed energy. For the first question,
doing always the query leads to constant approximation algorithms,
whereas never doing it leads to unbounded ratios (Section 4.1).
However, in most cases a better decision can be made by comparing
the values of ¢; and &, where ¢ ~ 1,6180 is the golden ratio.
Note that the optimal algorithm has complete knowledge of the
instance, including the exact loads. Hence, it can take this decision
by comparing w; and c; +w;f. For the second question, the algorithm
has to determine a splitting point 7; = rj+x(dj—r;), with0 < x < 1
so as 7j € (rj,d}), indicating the latest time at which the query has
to finish execution and the earliest time at which the exact work of
J may start its execution.

We introduce the notion of equal window algorithms according to
which the active interval of a job is split in two equal sub-intervals:
the query is executed in the first half, and the exact work in the
second half. This is motivated by an instance consisting of a single
job, where a different splitting leads to stronger lower bounds (see
Lemma 4.3). A further discussion, as well as several lower bounds for
the offline version of our model when a single machine is available
are given in Section 4.1, where the use of randomization or oracles
that answers optimally to one of the questions above are explored.

Subsequently in Section 4, we consider the offline case where all
jobs have a common release date and we present a series of results
based on different assumptions on the deadlines. Specifically, if all
jobs have a common deadline, we propose in Section 4.2 the algo-
rithm CRCD which achieves a 2-approximation ratio with respect to
maximum speed and a min{2%~1¢%, 2% }-approximation ratio with
respect to energy. A better analysis is also given for special values
of a. In Section 4.3, we consider the case where all deadlines are
powers of two and we propose a (4¢)%*-approximation algorithm
(CRP2D) with respect to energy. In Section 4.4, we extend the previ-
ous result for arbitrary deadlines and we obtain an approximation
ratio of (8¢)% (algorithm CRAD) by rounding down the deadlines
of the instance to the closest power of two.

In Section 5 we consider the online case, and we adapt the well-
known AVR and BKP online algorithms for the classical speed
scaling setting to the QBSS model. The competitive ratio of our
algorithms (AVRQ and BKPQ) has an additional multiplicative factor
with respect to their version in the classical setting: a factor of 2%
for AVRQ in which the query is made for all jobs, and a factor of
(2 + ¢)* for BKPQ in which the query is decided based on the
golden ratio. Note that, BKPQ is also (2 + ¢)e-competitive with
respect to maximum speed. Finally, in Section 6 we study the QBSS
model on parallel identical machines and we propose a modification
of the algorithm AVR(m), which turns out to be 2% (2%~ 1a® + 1)-
competitive with respect to energy.

In Section 2, we describe the related works with respect to the
speed scaling setting as well as the query optimisation model. In
Section 3, we present our notation and some preliminary results.
We conclude in Section 7. Our results are summarized in Table 1.

2 RELATED WORK

Speed scaling. Since the seminal paper of Yao et al. [27], in 1995,
which introduced the speed scaling mechanism to reduce the con-
sumption of CPU energy, a series of papers, e.g. [2, 3, 5, 6, 9-13, 21],
and surveys, e.g. [1, 8, 19], have been appeared. In [27], each job has



Table 1: Summary of our results
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to be executed preemptively between its arrival time and deadline
by a single variable-speed processor. An off-line algorithm (YDS)
that is optimal with respect to energy is proposed, while two online
algorithms are described for the same problem. Firstly, the Aver-
age Rate heuristic (AVR) is shown to have a constant competitive
ratio, i.e., 2%~ 1%, for any power function with a > 2. A lower
bound of ¢ is stated but not proved in this paper. Bansal et al. [12]
showed that this competitive ratio is essentially tight. They provide

a nearly matching lower bound of M, where ¢ is a function
of a that approaches zero as « approaches infinity. Secondly, the
Optimal Available (OA) heuristic is introduced but not analysed in
the original work [27]. Bansal et al. [13] gave a tight a®* bound on
the competitive ratio of OA with respect to energy. Furthermore,
they propose a new online algorithm (BKP) that is e-competitive
with respect to maximum speed, and 2 (%)a e*-competitive with
respect to energy, which is lower than the ratio of OA for any & > 5.
They also show that no deterministic online algorithm can have a
better competitive ratio with respect to maximum speed.

Albers et al. [2] study the same problem of dynamic speed scaling
but in multi-processor environments with m parallel variable-speed
processors, assuming that job migration is allowed at no cost. They
begin by solving optimally the offline version of the problem. Mov-
ing to the online version, they extend the two algorithms proposed
by Yao et al. [27] into OA(m) and AVR(m) for the multiple ma-
chines. They show that OA(m) is @*-competitive and that AVR(m)
achieves a competitive ratio of 24 1a® + 1.

Explorable uncertainty. Kahan [24] was the first to introduce the
notion of explorable uncertainty studying some selection problems.
Since then, many other problems have been studied in this frame-
work. For instance, in [17, 22, 24], the problem of finding the k-th
smallest value in a set of uncertainty intervals has been studied.
In [26], caching problems in distributed databases have been stud-
ied. Other problems that have been studied include, the shortest
path problem [16], the knapsack problem [20] and the minimum
spanning tree problem [23, 25]. The goal in most of these works is
the minimization of the number of queries to guarantee an exact
optimum solution. In [26], the trade-off between the number of
queries and the precision of the returned solution has been studied.

More close to our work are the works on scheduling under ex-
plorable uncertainty [4, 7, 14]. In [14], the authors consider the
problem of scheduling jobs on a single machine when the cost of
each query/test is unitary. The authors propose lower and upper
bounds on the competitive ratio for deterministic and random-
ized algorithms. They also consider the problem of minimizing the

makespan for which they propose optimal deterministic and ran-
domized online algorithms. In [4], the authors extend the problem
to non-uniform testing times and they present new competitive
algorithms for different variants of the problem. In [7], a single-
machine scheduling problem is considered, where given a set of n
unit-time jobs, and a set of k unit-time errors, the objective is to
reveal n error-free timeslots with the minimum number of queries.
The authors present both lower bounds and asymptotically tight
upper bounds for different variants of the problem.

3 NOTATIONS AND PRELIMINARIES

We consider a set of n jobs J which should be executed on a single
machine or on a set of m parallel machines M. Each job j € J
is characterized by a quintuple (r;,dj, cj, wj, w}“) The scheduler
should decide if the initial workload w; will be executed, or if a
query of load ¢; € (0, w;] will first run in order to reveal the exact
(compressed) load w* < wj, which will be executed afterwards. In
any case, the whole execution of the job j should be done during
its active interval (rj,d;]. We assume that the preemption of the
execution of jobs is permitted, while each machine can execute at
most one job at each time. We consider two objectives: the min-
imization of the maximum speed used, and the minimization of
the total energy consumption with respect to the speed scaling
mechanism. Then, our goal is to find a feasible preemptive schedule
that optimizes one of these objectives.

For a job j € J, we denote by p; the amount of work an algo-
rithm chooses to execute, i.e., pj = c; + w;f if the query is executed,
otherwise pj = w;. Let p} = min{wj, ¢j +w;f} be the load executed
by the optimal algorithm for j. The following lemma describes the
relation between the load p* executed by the optimal solution and
the load p; executed by an algorithm which decides the execution

of the query based on the relation of the quantities c¢; and % where

¢ is the golden ratio, i.e., ¢ = 1, 6180.

LEMMA 3.1. Consider an algorithm which decides to make the
query for a job j € J only ifc; < % Then, we have p; < ¢p;f.

In the classical speed scaling setting without uncertainty, the
instance can be described as a set of jobs, each one characterized
by the triple (rj,dj, wj). Let §; = d:jrj be the density of the job j.
The density is an important ingredient in most of the algorithms
proposed for this setting as it is related with the speed. Note that
the optimal offline solution for the QBSS model coincides with the
optimal offline solution in the classical speed scaling setting by
using a job (r}, dj,p;) for each job j € 7.

Due to space limitations, some proofs are omitted.

4 OFFLINE

4.1 Lower Bounds

In this section, we will compare the performance of an algorithm
in the QBSS offline model, i.e an algorithm which does not know
the values w;f, to an optimal algorithm, which knows these values.
Our aim is to give lower bounds on the approximation ratio of any
algorithm in our setting, for the two objectives that we consider,
the minimization of the maximum speed, and the minimization of
the total energy. All our results hold for both the single machine



case and the multiple machines case, since they will only need to
consider a single task. Before introducing our results, let us define
a new setting, specifically for instances with one job, which we call
the oracle model.

Recall that x, 0 < x < 1, is the fraction of the window (r},d;]
in which the query is executed. In other words, in the case where
we decide to make the query, then this will be executed in (rj,7; +
x(dj — rj)], while the exact work w7 will be executed in (r; +
x(dj — rj),d;]. In the oracle model, we suppose the existence of
an oracle that can give us the best value of x for the single job of
the instance. Therefore, in this model the algorithm needs to take
only one decision, i.e. to make or not the query for the job (if the
decision is to make the query, the oracle will dictate where to split
the window).

Note that the existence of such an oracle is highly improbable,
because it translates to knowing the exact load w}f of the job upon
its arrival, which conflicts with the setup of our model. The oracle
model is however interesting to give lower bounds on the approxi-
mation ratio of an algorithm in our setting for two reasons. Firstly,
a lower bound on the approximation ratio with the oracle model
helps us to better understand the difficulty of our problem. It allows
us to see whether the difficulty of a problem is due to the fact that
we don’t know if it is worthy to do the query or not, or due to the
fact that, once we have chosen to do a query, we don’t know the
exact load w? before the query has been completed. Of course, a
lower bound in the oracle model is also valid in the general model.
Secondly, in the following lemmas we mainly create instances of
a single task. In the oracle model, once it has been decided that
the query will be done, the speed to execute this task will be con-
stant during its whole interval, since this choice minimizes both the
maximal speed and the energy due to the convexity of the power
function.

LEMMA 4.1. Any algorithm which never makes the query, can be
arbitrarily bad with respect to maximum speed and to energy.

Proor. We consider an instance consisting of a single job j for
whichr; =0,d; =1, ¢j = ewj, and w}f = ewj, with £ < 1 a small
positive constant. If the algorithm does not execute the query, then
it uses speed s = whereas the speed used by an optimal

Wi
d{;—rj ’ )
. - Pj Cjtw;
algorithm is s* = - = ——1

=T =Ty

the ratio of such an algorithm is & = —Z= = -1, which can
s cjtw; 2¢e

be arbitrarily large. Since the speed is constant during the whole
interval of size 1, we get that the energy used by the algorithm is
E = s%, while the optimal energy is E* = (s*)“. The approximation

. Concerning the maximum speed,

ratio of the algorithm, concerning energy, is thus at least % =
()% = (zlg)“, which can be arbitrarily large. O

LEMMA 4.2. For any € > 0, there is no deterministic (¢ — €)-
approximate algorithm with respect to maximum speed, even in the
oracle model. Likewise, there is no (¢* — ¢)-approximate algorithm
with respect to the energy, even in the oracle model. Here ¢ ~ 1,6180
is the golden ratio.

LEMMA 4.3. For any € > 0, there is no deterministic (2 — €)-
approximation algorithm with respect to maximum speed. Moreover,

there is no deterministic (2471

respect to energy.

— €)-approximation algorithm with

ProoF. We consider an instance consisting of a single job active
in the interval (rj,d;], for which ¢; = 1 and w; = 2. Let A be a
deterministic algorithm. In the case where A does not make the
query, then its speed will be constant during the whole interval and

we have that s = dl = -2 In this case the adversary will set
j-rj  djTj

w}’f = 0. Therefore, for the speed of an optimal algorithm we have
* _ _Cj
=7
maximum speed is at least 2, while with respect to energy is at least
24,
Let us now consider the case where A makes the query. Recall
that the query is executed in (7, 7j +x(dj —r;)] and the exact work
in (rj +x(dj = rj),d;]. Thus, the speed of A during the whole first

interval is s; = x(dc—J—r) while during the whole second interval
J '

1 . . . .
S = -1, The approximation ratio of A with respect to

=T

wr
issp = WZI}*W We have two sub-cases with respect to x. If

x € (O, %], then the adversary will set w;f = 0, and hence the speed
of an optimal algorithm s* = dcTJr will be constant for the whole
J T

interval, while s; > (d—ijr) In this case, the approximation ratio
J
of A with respect to maximum speed is at least i—l > 2, while with
ci a
J
x(dj—rj)sf‘ _ x(x(dj—rj)) _

(=) = (Flye T
J ]

respect to energy is at least % =

x17% > 207 If x € |3, 1), then the adversary will set w; = w;

having s* = dtjr«' Then the maximum speed used by A is s >
J

Wj wj _ 2
max {s1,s2} > s3 > a0 = P

2
approximation ratio of A with respect to maximum speed is at

least ‘;—E = ﬁ > 2, while with respect to energy is at least I% =

() ()

(@%)"
dj-rj

The next lemma deals with randomized algorithms. We consider
that for a given instance I, a randomized algorithm makes the
query with a probability pr, and does not make it with probability
1 — p1. The approximation ratio of a randomized algorithm is the
maximum value, over all instances, of the expected value of the
objective function (energy or maximum speed) of the algorithm
over the value of an optimal solution. We focus in this paper on
deterministic algorithms, but it is worth noticing that the problem
is also difficult, even with a randomized algorithm, and even in
the oracle model. As in the previous proofs, we will use a proof
with a single task: the algorithm will only have to choose with
which probability it will do the query (if the query is done then
the window is divided into two parts optimally, so that the speed is
constant during the whole interval).

er . In this case, the
J

(l—X) (dj—rj)sg‘ _

(dj-rj)(s") =(1-x0 =277 =

LEMMA 4.4. For any € > 0, there is no (4/3 — €)-approximate
randomized algorithm with respect to maximum speed, even in the

oracle model. Likewise, there is no (% (14 ¢%) - e) -approximate ran-

domized algorithm with respect to energy, even in the oracle model.



Algorithm 1: CRCD

1 for each job j € J do

2 if jeB, ie,cj < % then
3 L Add (o, %, ¢j)in set Q;
+ | ifjeA ie,c;> 7 then

s || Add (0.2, %) in set Wi

6 Schedule the jobs in Q U ‘W in an arbitrary order during
the interval (0, %] using speed s(t) = X jcquw, 95

// At time % all queries are done;

for each job j € J do

9 if j € B then
L Add (%,D, w;f) in set W*;

if j € A then
L Add (Q,D, ﬁ) in set Ws;

N

®

-
=]

-
oy

-
N

13 Schedule the jobs in ‘W* U ‘W, in an arbitrary order during
the interval (%,D] using speed s(t) = 3 jeuuw, 0

LEMMA 4.5. The competitive ratio of an equal window algorithm
is at least 3 with respect to the maximum speed, and at least 37!
with respect to energy.

Note that this last result holds even if we restrict to instances
where the optimal algorithm always does the query (since in the
example of the proof above both the equal window algorithm and
the optimal algorithm always do the query). This shows that, even
if an oracle would tell us whether the query should be done or not,
the difficulty of splitting the window for each job (query, real work)
is significant.

4.2 Common Release, Common Deadline

In this section, we consider that all jobs are released at time 0, and
they have to finish execution at time D. We present Algorithm 1
which is an approximation algorithm with respect to both maximum
speed and energy. For each job of our instance, the algorithm creates
two jobs of the classical speed scaling setting. In order to do this,
it first partitions the jobs into two subsets A and B, where A and
B are defined as follows: A= {j € J : ¢; > %}andB: {jeTJ:
cj < % }. By construction, we have that AUB =9 and AN B = 0.

For the jobs in A the algorithm chooses to execute their initial
workload without doing a query. Specifically, for each job j € A, it
creates two jobs j; and jp with half the initial workload to be sched-
uled in the first half and the second half of the initial interval respec-
tively: (rj,, dj,, wj,) = (0,2, %) and (rj,, dj,, wj,) = (2,D, ).
On the other hand, for the jobs in B the algorithm chooses to make
the query and hence the exact load of these jobs is revealed once
the execution of their query is finished. Specifically, for each job
J € B, it creates at time 0 the job (0, % c;j) to be scheduled in the
first half of the initial interval. At the end of this first half-interval,
the exact load w;f of j is known, and hence the algorithm creates

the job (%, D, w;f) to be scheduled in the second half-interval.

THEOREM 4.6. Algorithm 1 achieves an approximation ratio of 2
with respect to maximum speed and of min{2%~1$%, 2} with respect
to energy.

Proor. The optimal solution for this problem is computed by
using the offline optimal YDS algorithm [27]. Since all jobs are active
during the same interval (0, D], the speed during the whole interval
is constant and equal to the sum of densities of all jobs. In an optimal
solution, the load for each job j € J is p;f = min{wj,c; + w}f}, and
hence its density is 5; = w

eachtimetiss* =s*(t) = ¥ je g ‘% and the total energy consumed
by the optimal solution is

D £\
E*:/O (s*(t))adtzD(Zj%)

Algorithm 1 produces a schedule which uses two distinct speeds

= %. Then, the speed at

s1 and sy in the time intervals (0, %] and (%,D] respectively. For
these speeds we have

wij
2 ¢j
D N Yy
JjEQUW; jeWw, 2 jeQ 2
. . * 2p" *
w; 2¢; op; p; ;o
= —_ — < —_ — < —_ =
Z D +Z D S Z D +Z D \22 D 2s
jeEA j€eB jeA jE€B jeg
and
5 v
w= ), =), =5t ), o7
JEW UW, jeW, 2 jew: 2

. 2w op 2p% p*
Wwj J J J J *
= — < — < =
jeA jeB jEA j€B JjeT
where the first inequality in both cases holds by Lemma 3.1, ¢; <
min{c; + w;f,wj-} = p; and w;f < min{c; + w;f, wjt = p;f. Hence,
Algorithm 1 is 2-approximation with respect to maximum speed.
For the energy consumption of our algorithm we have:
D

5 D
EI:/ sf(dt+/ sgdt
0 L
2
D Wi 2c;\% D Wi 2w\ &
ZE(Z_jeAﬁ]"‘ZjeBﬁj) +E(ZjeAﬁj+ZjeBT])

We can now bound the total energy consumption of Algorithm 1.
We use two different approaches. In the first approach, we apply
the property x* + y* < (x + y)“. Specifically, we have

D wj 2c; wj 2w «
J J J J
E<3 (ZjeA DtLjeBD *LjeaD tLjeB D
D

B 2c;+2w \ ¥
2

2wj
(ZjeA 5 +2XjeB—p
—9oa-1p P p\®
= 2jeAD t2jeB D

op; ¢p; \*
<2°7'p (ZjeA R +2jeB Tj)

L\
— 2“*1¢‘XD (Z] %) — 2a71¢aE*



where the second inequality holds by Lemma 3.1.

In the second approach, we bound the energy of the entire in-
terval by twice the maximum energy consumed in one of the two
half-intervals. Hence, we have

o (o4
D wj 2¢j D wj ZW;"
E<2- - it ) R i e
< maxz%DJ';BD Z;ZQD-F]%;D
[e4
_ D max Z%+ZZC’ >y Z
Jj€EA Jj€B JjEA JjE€B
<Dmae[S 5 W ) z“’izz”?a
I X —_— —_— R 7 7
jeA b jeB D jeEA b jeB b
* *a *a
=D Z%+Z% <29D Z% = 2%E*

Jj€EA Jj€B J
where the second inequality holds using Lemma 3.1 and the facts
that ¢; < mm{wj,cj+w } = p] andw mln{w],cj+w } = p].
The third inequality holds since ¢ < 2. O

In what follows in this section, we give a more tight analysis of
Algorithm 1 for special values of @ based on the following lemma.

LEMMA 4.7. Leta > 2 andx > y. Then (x +y)* > x% + y* +

ax®ly,

THEOREM 4.8. Ifa > 2, then Algorithm 1 achieves a competitive

ratio of max,>1 {min {fi(r), f2(r)}} with respect to energy, where
a-1

fi(r) = 2071 (1 + r_“)’ fg(r) = 20 1ga [1 - (ar:W] andr = %,

2w}

wherex—Z]EA D +Z]EB [ andy = Z]EA D +Z]EB Dj

In general, comparing the three ratios p; = 2%~ 1¢%, py = 2%
and p3 = max,>1 {min {2“‘1 (1 + rl,,) 20 1pa [1 - W”} for
different values of o, we get that p; is better for 1 < a < 1.44, py is
better for 1.44 < @ < 2 and p3 is better for a > 2.

la J125] 15 [175] 2 [225] 25 [ 275 [ 3 |
p1 ][ 217 1291 [ 390 [ 523 ] 7.02 | 9.41 [ 12.63 | 16.94
p2 || 237 [ 282336 | 4 | 475|565 6.72 8
03 0 0 0 [276]3.70]5.25] 6.72 8

4.3 Common Release, Power of 2 Deadlines

In this section, we consider that all jobs are released at time zero,
but they have a different deadline. We assume that the deadlines
are powers of 2 and that 2¥ is the biggest deadline of our instance.

We present here Algorithm 2 which is an approximation algo-
rithm with respect to energy. We split again the set of jobs J into
two subsets: A = {j € J : ¢cj > —}andB ={jeJ:¢cj< %}
We further split B into the subsets B[ ={jeB:dj= 26},0 < £ <k,
with respect to the deadline of the jobs. As in the previous section,
for each job in our instance, Algorithm 2 creates one or two jobs of
an instance of the classical speed scaling setting.

In order to analyze our algorithm, we define the three following
instances of the classical speed scaling setting:

Algorithm 2: CRP2D
1 for each job j € J do
if jeB, ie,c; < % then
3 L Add (o, d7’ cj) in set Q;
if jeAie,cj> % then
5 L Add (0,dj, wj) in set W;

'S

6 Run YDS algorithm to determine the speed YDSS (t) for
each time t € (0, Zk] for the jobs in QU W;

7 In the interval (0, %] execute the (parts of) jobs in Q U W
scheduled by YDS during this interval, using speed
s(t) =s"PS (1)

s for each discrete time 7, t=0,1,....kdo

9 // the queries for the jobs in B( are finished;

10 for j € By do

no || Add(Fdj ) inset Wy
12 In the interval (2 2¢], execute the (parts of) jobs in

Q U W scheduled by YDS during this interval as well
as the jobs in W/, using speed

s(t) = sYPS (1) + Zjew; 0j;

o [*: (O,dj,p;f)Vj €eJ=AUB
o I”: (0, dj,cj) and (0, dj, *)Vj € Band (0,dj, w;)Vj € A

. 11’/2 (O, 5 ,cj) and( 5 ,dj,w*)V] € Band (0,dj,wj)Vj € A

LEMMA 4.9. Let E* and E’ be the energy consumption in an optimal
schedule for the instance I* and 1’ respectively. Then, E’ < $*E*.

Proor. Given an optimal solution for the instance I*, we are
going to create a feasible schedule, S, for the instance I’.

Consider an arbitrary job j € J and its corresponding job
(0,dj, p;) of the instance I* which is executed in q intervals in
the optimal schedule for this instance: (¢1,¢{], (2, ;].... (tq, t’].
Let sp, 1 < p < g, be the speed used in the interval (ip, t; 1. By
definition, we have that

q t;, q
=2 [t = - 105y
p=1 p p=1

In the schedule S, we use in the interval (#p,1,]. 1 < p < g, the
speed ¢sp,. Hence the work that can be executed in this interval is

q q

Dty —tp)dsp =6 > (ty —tp)sp = 6p; > p;

p=1 p=1
where the inequality follows from Lemma 3.1. Thus, in these in-
tervals we can execute the jobs (0,d}, cj) and (0,d;, w;f) or the job
(0,dj, wj) of the instance I’. By doing this for each job, we get a fea-
sible schedule for the instance I” which at each time ¢ uses speed ¢
times bigger than the speed of the optimal schedule for the instance
I*, and hence the energy consumption E(S) in the schedule S is
at most JE*. Therefore, an optimal schedule for I’ will use even
smaller energy, i.e., E’ < E(S) < #*E*, and the lemma follows. O



LEMMA 4.10. Let E’ and E;/

optimal schedule for the instancel” and 11//2 respectively. Then El/z <
20F.

be the energy consumption in an

Proor. We consider that both optimal solutions for the instances
I’ and I] J2 are created using the YDS algorithm. Let s7, (¢) be the

speed at each time ¢ in an optimal schedule for the instance I’. Due
to the YDS algorithm and the fact that the jobs have a common
release date, this speed is non-increasing with respect to the time,
ie, s (t1) > sp,(t2) for each t; < t;. Moreover, the speed can
change only at a deadline.

Note that the optimal schedule for I” is not feasible for I] J2 In
order to make it feasible, we first transform the optimal schedule for
I’ into an intermediate schedule S which at each time ¢ uses speed
s(t) = 2s},(¢). Specifically, for any ¢, 0 < £ < k, consider the work
executed during the time interval (2/~1, 2]. By doubling the speed
during this interval, we can execute all this work during the first
half, i.e., (2[_1, of — 2[_2], while the second half, i.e., (2[ —2f-2 2[],
remains idle. In a similar way we double the speed during (0, %],
and we are able to execute all of its work during (0, %] while (;11, %]
remains idle. By slightly abusing the definitions, we assume that
the speed of the machine for any time t satisfies s(¢) = 2s},(¢), even
during the idle intervals of S where no work is executed. Note that,
for each time interval (0, 2f], —1 < ¢ < k, the half of it is idle in
the constructed schedule S. However, S is still not feasible for the
instance Il’ J2 In what follows, we make S feasible by shifting some
jobs in time.

Py ———— T*

I/

Figure 1: The figure shows the intervals of the three differ-
ent instances. On the top, there are the intervals of instance
I*, in the middle, the intervals of instance I’ and on the bot-

tom, the intervals of the instance Il’ J2°

For each job j € A, there is a job (0, dj, wj) which is added both
in I] /2 and in I’. For these jobs, their allocation in S is already
feasible since they have the same active interval in I’ and Il’ J2

For each job j € By, 0 < ¢ < k, the instance I’ contains two

jobs (0, dJ, ¢j) and (0, dj, w; ), wh1le the instance I. 1/2 contains the

jobs (0, 7, cj) and (7, dj, wj). Hence, in order to guarantee the
feasibility of S, we shift in (dTJ, d;] the (parts of) jobs (%’, dj, w’l’)
ofIl’/z allocated in (0,
of) jobs (0, 5 ,cj) ofll/2 d;j]. We make these shifts

starting with the jobs having deadline 2°, we continue with those
having deadline 2! and so on.

We will prove by induction the following statement: “For each ¢,
0 < ¢ < k, in the ¢-th iteration of our shifting procedure there is

enough idle space in order to allocate all jobs (0,2¢71, ¢ j) of I' 12t

the interval (0, 2°~1] and all jobs (2¢71, 2¢, w; ) ofIl/2 to the interval
(Zt’ 1, 2[]».

] Similarly, we shift in (0, - ] the (parts

allocated in (7,

e Basis: As explained before, the intervals ( ] and (Z, 1] in the
schedule S are idle before any shifting due to the doubllng of the
speed. At the same time, the (parts of the) jobs (0, 3> ¢j) which
were infeasibly allocated after the doubling in S appear only
in the interval ( ] Similarly, the (parts of the) jobs (5, 1, w*)
which were mfeasrbly allocated after the doubling appear only in
the interval (0, %] Moreover, the speed during the whole interval
(0, 1] is constant, due to the YDS algorithm Hence we can shift
all the infeasible (parts of) jobs (0, 4 2 ,¢;j) to the interval ( ] and
all the infeasible (parts of) jobs (2, 1, w}f) to the interval (4, 1].

o INDUCTION: Assume now that the statement is true for £ — 1.

Consider first the jobs (0,2¢7! ,cj) of 11/2 Some parts of these

jobs may have been allocated in the interval (271, 2¢ — 2¢72],
making their execution infeasible. However, these parts are ex-
ecuted for at most 2°=2 time which corresponds exactly to the
idle time during the interval (0, 2/!]. Thus, we can safely shift
their execution to the left, since the speed used in (0, Zf_l] is at
least the speed used in (2/71, 2¢ — 2/=2], by the definition of the
YDS algorithm, getting a feasible schedule for these jobs.

Consider now the the jobs (271, 2¢, w; of I/ 1/2 Some parts of

these jobs may have been allocated in the interval (0, 2~1], mak-
ing their execution infeasible. However, these parts are executed
for at most %+2_2+2_l +-+-+2f73 = 272 time which corresponds
exactly to the idle time during the interval (2/ — 2¢=2, 2¢].If the
speed used in (0,2/71] is equal to the speed used in (2¢71, 2¢],
then we can safely shift their execution to the right, getting a fea-
sible schedule for these jobs. If the speed used in (0, 2¢~1] is bigger
than the speed used in (2/71, 2], then the jobs (0, 2¢, w}f) of I’ are
not executed at all during (271, 2¢] in the optimal schedule for
the instance I” obtained by the YDS algorithm, since they belong
on a different critical interval. Hence, the jobs (201,21, w;f) of

I J2 1€ also not executed in (2¢71, 2¢]. They are already feasible.

As a result, the schedule S is feasible for I ! 12 after all the shifts,

and it uses speed s(t) = 2s,(t), for any time ¢. Then, the energy
consumption E(S) of S is at most two time the energy consumption



of the optimal solution for I’. Therefore, an optimal schedule for
Il’/2 will use even smaller energy, i.e., E;/z < E(S) < 2%E’, and the
lemma follows. |

LEmMA 4.11. Given an optimal schedule for the instance 11,/2 and

a schedule given by Algorithm 2, we have that s(t) < 2s;, (t) for
1/2

each time instant t.

ProoF. By the construction of I] , and the definition of Q and
W in Lines 1-5 of the algorithm, we have that Q U ‘W C Il//z'
In Line 6, an optimal schedule is created for the jobs in Q U ‘W.
Since both optimal solutions for I] /2 and for the jobs in Q U ‘W are
computed by the YDS algorithm, and due to the properties of this
algorithm, we have that sYDS (1) < 5}2/2 (1), for each t € (0, 2¥].

Similarly, by the construction of Il’ /2 and the definition of ‘W,"’s

in Lines 8-11 of the algorithm, we have that UI;:() Wycr /o More-

over, the jobs in W}, 0 < ¢ < k, are of the form (22—( 2t w}‘) and
hence the active intervals of any two jobs belonging to two different
sets W," and W), are time-disjoint. Thus, in an optimal solution for
t
the jobs in Ulgzo W', the speed used during the interval (27, 24
is )] jew: ;. Therefore, using the same arguments as before, for
2(’

eacht € (5, 2¢], we have that Zje’W; 6j < s;‘{/z(t).

For the speed of the algorithm, for any time ¢ € (0, %], we
have that s(¢) = sYPS(1) < s;‘, (see Line 7). Moreover, for any

1/2

£,0 < £ < k, and any time t € (2—[,2[], we have that s(t) =
sYPS (1) + Y jew: 8 <5}, (1) +s, (1) < 25}, (t) (see Line 12),
¢ 1/2 1/2 1/2

and the lemma follows. )

’ .
CoroLLARY 4.12. Let E and E| ,, be the energy consumption of the

schedule created by Algorithm 2 and of an optimal schedule for the

instance Il’/2 respectively. Then, E < Z“E;/Z.

THEOREM 4.13. Algorithm 2 achieves a competitive ratio of (4¢)*
with respect to energy.

Proor. Note that the energy consumption of an optimal sched-
ule for our original instance and of an optimal schedule for the
instance I* is exactly the same, as they contain exactly the same set
of jobs with the same characteristics. Then, the proof of the theorem
is an immediate consequence of Lemmas 4.9 and 4.10, and Corol-
lary 4.12. Specifically, we have: E < 20‘E1/2 < 47E' < (49)?E*. O

4.4 Common Release, Arbitrary Deadlines

In this section we adapt the previous result for jobs with arbi-
trary deadlines. Given an instance I of our original problem, we
create an instance I by rounding down the deadline of all jobs to
a power of two: for each job (r;,d;, cj,wj,w;) € J,add a job
(r}, d]’., cj, wj, w;f) in I, where d} = max{2{[2} € dj}. Then, run Al-
gorithm 2 using instance I as input. We call this algorithm CRAD.

LEMMA 4.14. Let E and E be the energy consumption of an optimal
schedule for the instance I and I respectively. Then, E < 2%E.

COROLLARY 4.15. CRAD achieves a competitive ratio of (8¢)%
with respect to energy.

5 ONLINE

In this section, we consider the QBSS model when the jobs arrive
online and they should be executed on a single machine.

5.1 AVR with Queries

The online AVR algorithm for the classical speed scaling setting
works as follows: at each time ¢, the machine runs at speed sAVR () =
2 jite(r;.d;] 67 and it executes the unfinished job with the smaller
deadline which is released before t. Yao et al. [27] proved that AVR
is 2% 1@%-competitive with respect to energy.

In this section we propose the online algorithm AVRQ, an adapta-
tion of AVR to the QBSS model. AVRQ does the query for all the jobs
by selecting as a splitting point the half of their interval. Specifically,
for each job (rj,dj, cj, wj, w}f) in ', two jobs of the classical speed

scaling setting are created and added to the set J’ (in an online

. j+d . . i+d
manner): the job (r;, % cj) at time r;, and the job (rJJrT’ dj, w;)

. j+d; . . .
at time 27 The AVR algorithm runs using as input the set of

jobs J which is created online.

The following lemma extends the lower bound for AVR proposed
in [13] and gives a lower bound to the competitive ratio of AVRQ
with respect to energy.

LEMMA 5.1. The competitive ratio of algorithm AVRQ is at least
(2a)* with respect to energy.

Let AVR" be the original AVR algorithm when executed using
the set of jobs J* created as follows: for each j € 7, add the job
(rj, dj, p}’f) to J*. The following theorem compares, for each time
t, the speed used by the algorithm AVRQ with the speed of AVR™.

THEOREM 5.2. For any time instantt, we havesVRQ (t) < 2s4VE' (1),

PROOF. At any time ¢, the speed of AVRQ is

AVRQ A ¢ W
s (t) < Ljegie(rd;) max{(dj—rj)/Z’ (dj—rj)/z}
_ max{cj,w]’f}
=2Xjee(rid)] —dr,

min{wj,c]-+w;}

<2Yjegite(r,d;] d;-r;

_ Pi _ ., AVR'
= ZZjeJ*:te(rj,dj] di-r; = 2 (®) o

COROLLARY 5.3. AVRQ is 22%1a®-competitive with respect to
energy.

5.2 BKP with Queries

The online BKP algorithm for the classical speed scaling setting
works as follows: for the time instants t, t; and t3 with t; < t < tg,
let w(t, t1, t2) be the total work of jobs that have arrived by time ¢,
have a release time of at least ¢; and a deadline of at most #2. At any
time ¢, the machine runs at speed sBXP (¢) = e max;, 4, % and
it executes the unfinished job with the smallest deadline which is re-
leased before t. Bansal et al. proved that BKP achieves a competitive



ratio of 2(;%;)%e® with respect to energy, while it is e-competitive
with respect to maximum speed.

In this section, we propose the online algorithm BKPQ, an adap-
tation of BKP to the QBSS model. For each job (rj,dj, cj, wj, w;f) in

J, BKPQ decides to make the query only if ¢; < % using as split-

ting point 7; = 4 ;dj . Hence, in the case of a query, two jobs of the
classical speed scaling setting, corresponding to (rj, dj,cj,wj, w}‘f),
are created and added to the set of jobs J”’ (in an online manner):
the job (rJ, d’ dj,w *) at time

d;
+ 27 In the case where no query is made, then a single job, cor-

respondmg to (rj,d},c],w],wj) is added to the set J': the job

c]) at time r;, and the job (i2%

(rj,dj, wj) at time r;. The BKP algorithm runs using as input the
set of jobs J/ which is created online.

Let BKP* be the original BKP algorithm when executed using
the set of jobs J* created as follows: for each j € J, add the job
(rj.dj, p;f) to J*. The following theorem compares, for each time
t, the speed used by the algorithm BKPQ with the speed of BKP*.

THEOREM 5.4. For any time instant t, we have sBEPQ (1) < (2 +
9)s"F (1),

Proor. Let t; and t; be time instants such that

wi(t, t1, t2) wi(t, t],t)
=max ———
(t2—t1)  #uy (t—t])

for the jobs in J”’. We define three disjoint subsets of . and we
explain how the corresponding jobs in J’ contribute to w(t, t1, t2):

o Let L be the set of queried jobs whose queries are entirely pro-
cessed in the interval (t1, £2], but not its exact loads themselves,
and start before time t.

e Let R be the set of queried jobs whose exact load is entirely
processed in the interval (#1, t2], but not its queries themselves,
and start before time ¢.

e Let C be the set of jobs (corresponding to queries, exact loads
or initial workloads) that are entirely processed in the interval
(t1, t2] and start before time ¢.

Let W(L) = Zjercj WR) = Zjeg w; and W(C) = X jec pj
be the total work of jobs in J” which belong to £, R and C, respec-
tively. By definition, W (£)+W (R)+W (C) describes the total work

that is executed in (#1, t2] by BKPQ. So, for any time t € (t1, t2], we

have that sBKPQ (1) = W

In a similar way, let W*(£) = Xje £ pj, W*(R) = X jer p; and
W(C) = Xjec b i We consider the following three bounds:

(1) Consider a job j € L. pr*f = wj thenc; < % < wj =p;,If
pj—c]+wj then ¢; < ¢; w}f:p*..Thus,foreachjEL\)ve
p and W(L) < W*(L).
(2) Consider ajob j e R pr;f = wj then w; < wj = p;f. If
p;‘ =cj +w;k then wj <cj +w;f =p;f. Thus, for each j € R we
p and W(R) < W*(R).
(3) For each je C we have p; < qﬁp; by using Lemma 3.1. Thus,
W(C) < ¢W*(C).
Consider now the time interval (%, t3) such as ty = max{0, 2t; —
to}and t3 = 2ty —t;. Foreach j € Lwehavet; <rj <t <7j <t
and hence d; = 27; — rj < 2t — t; = t3. For each j € R we have

have ¢; <

have w

t1 < 7jandd; < tp,and hence rj = 27 —d; > max{0, 2t; —t2} = to.
Therefore, each job j € LURUC should be executed in the interval
[to, 3] by any algorithm and also by BKP*. As a result, we have
W* (L) + W*(R)+ W*(C)
(13— to)
_ W* (L) +W*(R) + W*(C) (1)
3(tz —11)

As explained before, for the speed of BKPQ at any time ¢ € (#4, t2]
we have

BT (1) >

$BKPO (1) = W(L) +W(R) +W(C)
(k2 —11)
< W*(L) + W*(R) + ¢W*(C)
(t2 —t1)
_ W*(L)+ W (R) + W*(C) + (¢ — )H)W*(C)
B (ta—t1)
<3P (1) + (¢ - DB (1) = 2+ 9)sBF (1)

The first inequality follows by the three bounds presented above. In
the next line we just add and subtract W*(C). For the last inequality

BKP" (t) = —*(tci since

we use Inequality 1, as well as the fact that s
all jobs in the set C are entirely executed in the interval (4, t2] by

any algorithm and also by BKP*. O

CoROLLARY 5.5. BKPQ is (2 + ¢)“2(;%7)% % -competitive with
respect to energy, and (2 + ¢)e-competitive wzth respect to maximum

speed.

6 MULTIPLE MACHINES

In this section we adapt to the QBSS model the online AVR(m)
algorithm proposed by Albers et al. [2] for the classical speed scaling
setting on a set of m parallel identical machines M. AVR(m) is
(297 1% + 1)-competitive with respect to energy consumption.

For completeness, we briefly present AVR(m). The algorithm
works online per each unit time slot (¢, ¢ + 1] and it schedules
6; amount of work from each active job during (t,t + 1]. Let J;
be the set of active jobs in (¢, ¢ + 1]. Moreover, let U C J; be
the unscheduled jobs of J; and R € M be the remaining unused
machines at each step of the algorithm. In the beginning, we set
U = J; and R = M. We denote by A = 3} ;cy §; the total work of
the jobs in U. The jobs in U will be characterized as big or small
depending on their densities. Intuitively, each big job will occupy
one machine during the whole slot (¢, t + 1], while small jobs will
share the remaining machines in (¢, t+1]. The algorithm searches in
an iterative way the job j = argmax{d; : j € U} with the maximum
density in U and if §; > %I then it is characterized as a big one. In
this case, the algorithm schedules j with speed § 5 in the machine
of the lower index in R which is then removed from R. Moreover,
the algorithm updates J; = J; \ {j} and it searches for the next
big job. If no big job exists, then all the remaining jobs are small
and they are allocated to the remaining machines using speed ﬁ.
Note that, at each time moment the speed of a machine with lower
index is not less than the speed of a machine with larger index.

In this section we propose the online algorithm AVRQ(m) which
makes the query for all jobs by selecting as a splitting point the half
of their interval. Specifically, for each job (rj,d;, cj, wj, w}f) in9,



two jobs of the classical speed scaling setting are created and added

to the set J’ (in an online manner) the job {'(j) = (rj, r;dj ,Cj)

at time rj, and the job {’(j) = (24 ritd; dj,w*) at time ’ 4 The
AVR(m) algorithm runs using as 1nput the set of jobs J’ Wthh is
created online.

We start our analysis with two technical lemmas.

LEMMA 6.1. Let two sets of non-negative rational numbers A =
{a1,...an} and B = {by, ..., bn} be given such that b; < 2a; for all
j=1,...,n. Let 1y and g be permutations of numbers from A and
B, respectively, in which the numbers are ordered in non-increasing
order. Then g (i) < 2ma(i) foralli=1,...,n

LEMMA 6.2. Let a sequence of non-negative rational numbers

n
. . i1 aj
ai,...an and an integer m > 2 be given. If a; > % then
i ai i ai N G i Gi
SE— > S5, otherwise, 25— < S,

Let AVR*(m) be the original AVR(m) algorithm when executed
using the set of jobs J* created as follows: for each j € , add the
job (rj,dj, p;) to J*. The following theorem compares, for each
time ¢, the speed used by the algorithm AVRQ(m) with the speed
of AVR*(m).

THEOREM 6.3. For any time instant t, and any machine i, we have
SR (1) < 25RO (1),

ProOF. We consider the set of jobs J”” which is produced from
J* by replacing each job (r;, dj,p;f) with two jobs,

Y(t) = (rj, r]+d’ p’) ndy/(t) = (rj;dj,dj, %)ASince the number
of jobs and the1r densities in each unit time slot (¢,¢ + 1] do not
change, then the speed of the machines in the schedules obtained
by AVR(m) when applied to the sets of jobs J* and J"’ does not
change either.

Algorithm AVRQ(m) also creates two jobs, let {(j) and {’(j) for
each original job j € J using the same intervals as in J"’. Hence,
the number of active jobs in J” and J "’ is the same at each unit
time slot, and by definition we have

< 26y (;) forall jeJ )

Op(j) < 28y(j) and §p(j)

since ¢j < p and w; < p.

Denote by J,” € J" and J," € J” the set of active jobs in the
unit slot (¢, + 1]. We order the jobs in each set in non-increasing
densities. Note that |7,’| = |J}/| = r. Let a; be the density of the
j-thjob in J" and b; be the density of the j-th job in J . Lemma 6.1
and Inequalities (2) imply that b; < 2a;.

Let k be the number of big jobs in the set J,”” and ¢ be the number
of big jobs in the set J,". We consider three cases.
k we have:

AVR* (m) (t)

(1) Case k = ¢. For each machine i <

S?VRQ(m) (t) = bi < 2a; = 25,

For each machine i > k we have:
Yt bj ket .
sAVRQUm) () o 2T UL T g VR ) )
! - m—k !
(2) Case k > ¢. For each machine i <

£ we have:

SBVRQUM) (1) = by < 2a; = 25™VF M (1)

For each machine i > ¢ we have by, < 2 h+1 L fort+1<h<k.
Successively applying Lemma 6.2 we get

r .
;=(+1 bj < Z;:Hz bj < o =k bj
m—-t  m—-f-1 S m—k
Hence, we obtain:
r :
AVRQ(m)( £ = Z] =t+1 bj < Jj=k+1 bj
! -t m-k
‘:k aj *
SR ¢ psVRIm)
m—k !
(3) Case k < ¢. For each machine i < k we have
AVRQ(m) (1) = by < 2a; = ZSAVR (m) (t)
For each machine i, k < i < ¢, we have

DAY .
S?VRQ(m)(t) =b; < 2a; < 2J_k—+1k — zsll_\VR (M)(t)
m—

where the last inequality follows by the definition of AVR* (m).

bj
oA s fork+1<h<t.

For each machine i > ¢ we have by, >
Successively applying Lemma 6.2 we get:
r . R .
Zj=k+1 b] Z;={’+2 b] ;:Hl bJ
> D S —
m—k m—-k-1 m—£

Hence, we obtain:

AVRQ(m) Z;:Hl bj Z;:k+1 bj
s (1) <
! m-—¢ m—k
r
1 G .
zfmk% < 2sPVR ) ()
and the theorem follows. O

COROLLARY 6.4. AVRQ(m) is 2% (2% 1a® + 1)-competitive with
respect to energy.

7 CONCLUSION

In this paper, we studied an enhanced speed scaling setting, where
queries can be additionally executed in the system in order to reveal
a more accurate value of the workload of jobs. The main minimiza-
tion objective was the energy consumption, while the maximum
speed minimization was also studied. We proposed various lower
bounds for the offline and the online settings. In particular, we
showed how to use known online algorithms (AVR and BKP) of the
classical speed scaling context in the speed scaling with explorable
uncertainty setting. Notice also that our approach can directly be
applied to the preemptive-non-migratory variant of the problem
[21]. An interesting open question is whether the Optimal Available
(OA) algorithm of [27] could be extended in this new framework.
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