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Abstract. We study in this paper a non-utilitarian discrete choice model
for preference aggregation. Unlike the Plackett-Luce model, this model is
not based on the assignment of utility values to alternatives, but on prob-
abilities pi to choose the best alternative (according to a ground truth
ranking r∗) in a subset of i alternatives. We consider k−1 parameters pi
(for i= 2 to k) in the model, where k is bounded by the number m of
alternatives. We study the application of this model to voting, where we
assume that the input is a set of choice functions provided by voters. If
k=2, our model amounts to the model used by Young [25] in his statis-
tical analysis of Condorcet’s voting method, and a maximum likelihood
ranking is a consensus ranking for the Kemeny rule (1959). If k>2, we
show that, under some restrictive assumptions about probabilities pi, the
maximum likelihood ranking is a consensus ranking for the k-wise Ke-
meny rule [10]. In the general case, we provide a characterization result
for the maximum likelihood ranking r and probabilities pi. We propose
an exact and a heuristic algorithm to compute both ranking r and prob-
abilities pi. Numerical tests are presented to assess the efficiency of these
algorithms, and measure the model fitness on synthetic and real data.

1 Introduction

Preference aggregation is ubiquitous in multiple fields, among which are social
choice [2, 22], information retrieval [7], collaborative filtering [17], or peer grad-
ing [20]. The aggregation problem is formulated as follows: given n agents (or
voters) and m alternatives (or candidates), each agent’s preferences are speci-
fied by a ranking (permutation) of the alternatives, and the aim is to determine
a single consensus ranking. Alternatively, preferences can also be expressed as
choice functions instead of rankings [1], i.e., each agent chooses her preferred
candidate among various subsets of candidates. A choice function allows more
possibilities for the voters (cyclic preferences are even possible), and may be
easier to elicit if only a few subsets of candidates are considered. However, if all
subsets of candidates are considered, their number becomes quickly very large
(2m). The procedure producing a consensus ranking from the n agents’ prefer-
ences (expressed as rankings or choice functions) is called a voting rule.

A stream of research aims to rationalize voting rules by using statistical mod-
els for rank data, whose characteristics depend on the application domain (see
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e.g. [24]). This assumption of a statistical model behind the agents’ preferences
dates back to Condorcet. As emphasized by Young [25], “Condorcet argued that
if the object of voting is to determine the ‘best’ decision for society but voters
sometimes make mistakes in their judgments, then the majority alternative (if
it exists) is statistically most likely to be the best choice.”

Young’s examination of Condorcet’s work through the lens of modern statis-
tics leads him to put forward the Kemeny rule [12]. This well-known rule consists
of producing a consensus ranking r that minimizes the number of disagreements
between r and the pairwise preferences of the agents on the candidates. Young
shows that a consensus ranking for the Kemeny rule is a Maximum Likelihood Es-
timate (MLE) of a “ground truth” ranking r∗ of the alternatives if one assumes
that the pairwise preferences of the voters follow a statistical model parame-
terized by r∗ under specific assumptions. The assumptions (already made by
Condorcet) are: 1) in every pairwise comparison, each voter chooses the better
alternative in r∗ with some fixed probability p, with p> 1

2 ; 2) each voter’s judg-
ment on every pair of alternatives is independent of her judgment on every other
pair1; 3) each voter’s judgment is independent of the other voters’ judgments.

When voters’ preferences are expressed as rankings, it is also known that a
consensus ranking for the Kemeny rule is an MLE of a ground truth ranking
r∗ for a distance-based statistical model for ranking data [5]. Consider indeed
the conditional probability distribution Pr on rankings r′ of candidates defined
by Pr(r′|r∗)∝2−δ(r

∗,r′), where δ(r∗, r′) is the Kendall tau distance between r∗

and r′ (number of pairwise disagreements between r∗ and r′). Assuming that
each voter’s judgment is independent of the other voters’ judgments, it is easy
to show that the Kemeny rule returns a ranking r maximizing Pr(r1, . . . , rn|r)=∏n
j=1 Pr(rj |r)=2−

∑
j δ(r,rj), i.e., an MLE of r∗.

Other works about the use of MLE for preference aggregation explore the es-
timation of the parameters of discrete choice models from voting data. A discrete
choice model consists of predicting the probabilities, called choice probabilities,
of choosing c∈S when presented with a subset S of alternatives, for each pos-
sible subset S [14]. A set of agents’ rankings can be seen as choice data by
considering that each ranking rationalizes a choice function. A choice function
f picks a favorite alternative in any subset S of alternatives. For instance, the
ranking 1�2�3 (where “�” stands for “is preferred to”) rationalizes the choice
function f({1, 2}) = 1, f({1, 3}) = 1, f({2, 3}) = 2, and f({1, 2, 3}) = 1. The
most famous discrete choice model is due to Plackett-Luce. It consists of assign-
ing a utility uc to each alternative c, and setting the probability Pr(f(S) = c)
to choose c in S equal to uc/

∑
d∈S ud. The corresponding voting rule returns

the ranking of alternatives by decreasing order of maximum likelihood utilities.
Unlike most discrete choice model, the model we propose hereafter does not
rely on the assignment of utility values (or utility distributions) to alternatives.
Like the Plackett-Luce model, and unlike the model we will propose and study,
most discrete choice models rely on the assignment of utility values (or utility
distributions) to alternatives.

1 Note that this assumption allows the preferences to be cyclic.
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The use of discrete choice models based on utilities for preference aggregation
deviates from Young’s point of view. Indeed, Young uses distinct parameters
to model, on the one hand, the respective “objective” skills of the candidates,
namely the parameter r∗ (ground truth ranking), and on the other hand, the
“reliability” of the judgments of the voters, namely the parameter p (the closer
the probability p is to 1, the more consistent the preferences are with the ground
truth ranking). In discrete choice models based on utilities, the utilities are used
both for modeling the objective skills of the candidates and the reliability of the
judgments (the greater the differences in utilities, the more reliable the voters’
judgments). Besides, unlike Young’s model, that is related to the Kemeny rule,
the consensus rankings obtained by sorting the candidates by decreasing order
of maximum likelihood utilities are not related to well-identified voting rules.

Our contributions. We propose a discrete choice model inspired by Young’s
model for the Kemeny rule. Given a ground truth ranking r∗ of the alternatives,
the choice of an agent in a subset of i alternatives is consistent with r∗ with
a probability pi (pi is αi > 1 times greater than the probability to choose any
other given candidate in a subset of size i). Unlike many discrete choice models
used for social choice, the model is thus non-utilitarian, i.e., not based on the
assignment of utility scores to alternatives. While the introduction of utility
scores is appealing because the cardinal data are richer than the ordinal ones, the
interpretation of such utility scores is not always obvious, e.g., when comparing
artworks. We show the following results regarding the model we propose:

– Proposition 1 states that, if the value of αi does not depend on i, then a
maximum likelihood ranking is a consensus ranking for the k-wise Kemeny rule,
a recently introduced voting rule [10].
– If values αi depend on i, we provide a characterization result (Proposition 2)
for a maximum likelihood estimation of the ground truth ranking r∗ and αi’s.
The characterization involves a weighted variant of the k-wise Kemeny rule.
– Based on Proposition 2, we provide an exact algorithm and a heuristic algo-
rithm for determining a maximum likelihood couple in the general case.
– Finally, using synthetic and real data, we present numerical tests to assess the
efficiency of these algorithms, as well as the model fitness to data.

2 Related work

The related work concerns either the maximum likelihood approach to voting,
or set extensions of the Kemeny rule.

The maximum likelihood approach to voting. In this approach, we make the as-
sumption that a true “objective” ranking of the candidates exists, and that the
preferences expressed by the voters are noisy observations of this true ranking.
If the preferences are rankings drawn i.i.d. from a distribution, the probabil-
ity of observing a set P = {r1, . . . , rn} is then Pr(P|r) =

∏n
j=1 Pr(rj |r). Each

probability model for Pr(rj |r) induces a voting rule where a ranking maximizing
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Pr(P|r) (the likelihood) is a consensus ranking. Drissi-Bakhkhat and Truchon [8]
investigate a setting in which the probability of comparing two alternatives con-
sistently with a ground truth ranking r∗ is increasing with the distance between
them in r∗. This leads to a new voting rule that the authors examined from an
axiomatic point of view. While every noise model on the votes2 induces a voting
rule, Conitzer and Sandholm [6] study the opposite direction, using it as a way
to rationalize voting rules. They identify noise models for which an MLE ranking
is a consensus ranking of well-known voting rules (scoring rules and single trans-
ferable vote), and on the contrary, for other rules (Bucklin, Copeland, maximin),
they show that no such noise model can be constructed. Conitzer et al. [5] pursue
this line of work, providing an exact characterization of the class of voting rules
for which a noise model can be constructed. More recently, Caragiannis et al.
[4] study how many votes are needed by a voting rule to reconstruct the true
ranking. Another line of research focuses on the use of discrete choice models in
social choice. Soufiani et al. [23] study an extension of the Plackett-Luce model.
This model can be viewed as a random utility model in which the utilities of
alternatives are drawn i.i.d. from a Gumbel distribution. They propose a random
utility model based on distributions in the exponential family (to which Gumbel
distributions belong), as well as inference methods for the parameters.

Set extensions of the Kemeny rule. Gilbert et al. [10] introduce the k-wise Ke-
meny rule, show that the computation of a consensus ranking according to this
rule is NP-hard, and provide a dynamic programming procedure for this pur-
pose. At least two other set extensions of the Kemeny rule have been proposed.
Both extensions consider a setting in which, although the voters have preferences
over a set C, the election will in fact occur on a subset S ⊆C drawn according
to a probability distribution on 2C [3, 13]. A consensus ranking r is then one
that minimizes, in expectation, the number of voters’ disagreements with the
chosen candidate in S (a voter disagrees with r on S if tr(S) is not her most
preferred candidate in S). Baldiga and Green study a setting in which the prob-
ability Pr(S) only depends on the cardinality of S. Lu and Boutilier study a
special case of the previous setting, where each candidate is unavailable in S
with a probability p, independently of the others, i.e., Pr(S) = p|C\S|(1− p)|S|.
Proposition 2 later in the paper uses a weighted sum of disagreements δkα on
subsets of size at most k that is formally equivalent to the rule used by Baldiga
and Green for k = m: the weights logαi assigned to disagreements on subsets
S of size i= |S| play the role of Pr(S). However, the viewpoint we take here is
completely different, as the values αi are not given, but inferred from the choice
data. In addition, to determine a maximum likelihood ranking for our model, we
do not minimize δkα only, but the sum of δkα and another term.

2 When the votes are viewed as noisy perceptions of a ground truth ranking r∗, a noise
model is the mathematical description of the probabilities of the votes based on r∗.
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3 Preliminaries

In the following, we will consider that the preferences of the agents are expressed
as choice functions. A first possibility to elicit these choice functions is by asking
each agent to give her most preferred alternative for each subset of size at most
k – this may be a good solution if there are few candidates and k is not too
large, or when the agents are not able to give their preferences as rankings.
Another possibility is to ask for rankings, and infer choice functions from them
(the choice in a subset S of candidates is the highest ranked candidate among
S) – a ranking can be seen as a compact representation of a choice function.

Example 1. Let us consider 3 candidates {c1, c2, c3} and 10 voters with pref-
erences, expressed as rankings, as follows: 3 voters of type I have preferences
c1�c2�c3; 3 voters of type II have preferences c3�c1�c2; 2 voters of type III
have preferences c2�c1�c3; 2 voters of type IV have preferences c3�c2�c1.

This preference profile yields the choice function profile given in Table 1, where
each cell gives the favorite alternative fj(S) in S for voter j of the type corre-
sponding to the row. Considering the rightmost column, one sees that c1 (resp.
c3) is the preferred candidate in {c1, c2, c3} for voters of type I (resp. II and IV).

S={c1, c2} S={c1, c3} S={c2, c3} S={c1, c2, c3}
fj(S) (j of type I) c1 c1 c2 c1

fj(S) (j of type II) c1 c3 c3 c3

fj(S) (j of type III) c2 c1 c2 c2

fj(S) (j of type IV) c2 c3 c3 c3
Table 1. The choice function profile in Example 1.

Let V={1, . . . , n} be a set of n agents (or voters) and C a set of m alternatives
(or candidates). We denote by R the set of the m! possible rankings of C. For
k∈{2, . . . ,m}, we denote by ∆k the set of all subsets S of C such that 2≤|S|≤k.
Given a value k∈{2, . . . ,m}, each agent j∈V has a choice function fj : ∆k → C
which gives, for each subset S of alternatives of size at most k, her preferred
alternative in S (assuming that each agent has only one favorite alternative per
subset). We denote by Fk the set of all possible choice functions on sets of size
at most k. A choice function profile P= (f1, . . . , fn)∈Fnk is a tuple of n choice
functions fj , one per agent. In this setting, the purpose of preference aggregation
is to determine a consensus ranking from the choice functions in P. A voting
rule R :Fnk → (2R\{∅}) in which ballots are choice functions, maps each choice
function profile to a non-empty set of consensus rankings.

The statistical model for choice functions studied in this paper will reveal
closely related to a recently proposed voting rule, namely the k-wise Kemeny
rule [10]. To compute a consensus rankings for the k-wise Kemeny rule, one
needs only the information from the choice matrix derived from P, denoted by
MP . The choice matrix gives, for each subset S of candidates and each candidate



6 Durand M., Pascual F. and Spanjaard O.

c, the number of voters for which c is the preferred candidate in S. If only subsets
of size at most k matter, the choice matrix can be restricted to these subsets.

Example 2. The choice matrix synthesizing the results of all setwise contests for
the choice functions of Table 1 is given in Table 2. The matrix reads as follows:
for instance, considering the rightmost column, one sees that c1 is the most
preferred candidate in {c1, c2, c3} for 3 voters, c2 is the most preferred candidate
for 2 voters, and c3 is the most preferred candidate for 5 voters.

S {c1, c2} {c1, c3} {c2, c3} {c1, c2, c3}
c1 6 5 – 3

c2 4 – 5 2

c3 – 5 5 5

Table 2. The choice matrix for the instance of Example 1.

We now formally describe the k-wise Kemeny rule. Given a ranking r and a
subset S∈∆k of candidates, let tr(S)∈S denote the most preferred candidate in
S for r (i.e., for each candidate c 6= tr(S)∈S, tr(S) is ranked at a higher position
in r than c – is preferred to c). The k-wise distance δk(r, f) between a ranking
r and a choice function f ∈Fk is the number of disagreements between r and f
on sets of candidates of size between 2 and k:

δk(r, f) =
∑
S∈∆k

1tr(S) 6=f(S)

where 1tr(S)6=f(S) = 1 if tr(S) 6= f(S), 0 otherwise. Note that when k=2, δ2(r, f)
is the well-known Kendall tau distance between r and f ∈F2 (which associates a
winner to each pair of candidates). We may also express δk by splitting ∆k into
sets of subsets of the same cardinality. Let us denote by Ci the set of subsets of
C of cardinality equal to i. We have thus

⋃k
i=2 Ci = ∆k and δk can be written:

δk(r, f) =

k∑
i=2

∑
S∈Ci

1tr(S)6=f(S)

Given a profile P, the cost of a ranking r is the sum of the k-wise distances
between r and each choice function fj (j ∈ {1, . . . , n}) in the choice function
profile. It is thus the total number of disagreements between r and the voters on
all the possible subsets of candidates of size at most k:

δk(r,P) =

n∑
j=1

δk(r, fj) =

n∑
j=1

k∑
i=2

∑
S∈Ci

1tr(S)6=fj(S)

The k-wise Kemeny rule determines a ranking minimizing δk(r,P) among all
the rankings r ∈R. To compute such a consensus ranking, one needs only the
information from the choice matrix MP . It indeed minimizes δk(r,P):

δk(r,P) =

k∑
i=2

∑
S∈Ci

d(MP , S, r) (1)
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where d(MP , S, r) is the number of voters whose most preferred candidate in
S is not tr(S) (number of disagreements between r and MP for S). That is,
a consensus ranking for the k-wise Kemeny rule minimizes the number of dis-
agreements with the agents’ choice functions on subsets of cardinality at most k
(a disagreement occurs between a ranking r and choice function f on a subset
S of candidates if f(S) 6= tr(S)). The k-wise Kemeny rule generalizes the Ke-
meny rule, as it amounts to the usual Kemeny rule if k=2. Increasing k allows to
overcome a well-known drawback of the Kemeny rule, namely that very different
consensus rankings may coexist. The example below illustrates this.

Example 3. In Example 1, there are two consensus rankings for the Kemeny
rule, namely c1� c2� c3 and c3� c1� c2 since both of them induce 14 pairwise
disagreements with the preference profile. Candidate c3 is thus ranked last in the
former, and first in the latter. In contrast, for the 3-wise Kemeny rule, the only
consensus ranking is c3 � c1 � c2, with 14+5 = 19 disagreements (14 on pairs,
and 5 on {c1, c2, c3}), while there are 14+7=21 disagreements for c1�c2�c3.

4 A Non-Utilitarian Discrete Choice Model

We now present the statistical model on choice functions that we will study
in the remainder of the paper. The sample space (i.e., the possible observed
outcomes from which the parameter of the statistical model are inferred) is the
set of choice matrices. In this framework, the assumptions made by Condorcet
and Young (see the introduction) need to be adapted, as we consider not only
choices on pairs of candidates but also on subsets. Given a true ranking r∗ of C,
the following assumptions are made on random variables fj(S) for all voters j:

1. for every i∈{2, . . . , k}, S∈Ci, c∈S \{tr∗(S)}, the probability that fj(S) =
tr∗(S) is αi>1 times greater than the probability that fj(S)=c: Pr(fj(S)=
tr∗(S))=αi ·Pr(fj(S)=c); that is, it is α|S| more likely to choose the highest
ranked candidate of S in r∗ than any other given candidate of S.

2. for every pair {S, S′} of subsets in ∆k, fj(S) and fj(S
′) are independent.

For any pair {j, j′} of voters, we also assume that each voter’s preferred choice
on each subset of candidates is independent of the other voters’ preferences, i.e.:

3. for every {j, j′}⊆V and (S, S′)∈∆2
k, fj(S) and fj′(S

′) are independent.

For k = 2, these assumptions amount to those made by Young on pairwise
judgments in his analysis of Condorcet’s theory of voting. If k>2, the additional
parameters α|S| (for |S|>2) give more flexibility to fit the observed choice data,
at the cost of a greater computational load. Note that Assumption 1 means that
the probability that voter j agree with ranking r∗ on the preferred candidate in
S depends only on the size of S, and not on the members of S.

Assumptions 1 and 2 yield the following statistical model for choice functions
f , that we call k-wise Young’s model, parameterized by a ranking r and choice
probabilities pi =αi/(αi + i − 1) (conversely, αi = (i − 1)pi/(1 − pi)), where pi
represents Pr(f(S)= tr(S)) for |S|= i:



8 Durand M., Pascual F. and Spanjaard O.

Definition 1 (k-wise Young’s Model). Given a set C of m alternatives, the
k-wise Young’s model is defined as follows:

– the parameter space is R×Θ, where R is the set of rankings on C and Θ=
( 1
2 , 1]×. . .×( 1

k , 1] is the set of choice probabilities −→p =(p2, . . . , pk),
– for any (r,−→p )∈R×Θ, the probability Pr(f |r,−→p ) is

k∏
i=2

∏
S∈Ci

p
1−1tr(S)6=f(S)

i

(
1− pi
i− 1

)1tr(S)6=f(S)

where 1tr(S) 6=f(S) = 1 if tr(S) 6= f(S), 0 otherwise.

If r=r∗, we have indeed Pr(f(S)=c)=(1−pi)/(i−1) for c 6= tr(S) by Assumption
1, and the products in the formula for Pr(f |r,−→p ) follow from Assumption 2.

As the preferences revealed by the choices may be cyclic, sampling a choice
function according to this model can be decomposed into independent draws for
each subset S⊆C. Given a choice function profile P with n voters, if one assumes
the functions in P are independently sampled (in line with Assumption 3) from
a k-wise Young’s model of parameters r and −→p , the probability Pr(MP |r,−→p )
follows a multinomial distribution:

k∏
i=2

∏
S∈Ci

n!∏
c∈S nc!

p
n−d(MP ,S,r)
i

(
1− pi
i− 1

)d(MP ,S,r)
(2)

where nc denotes the number of voters that choose candidate c in subset S.
From Equation 2, it is clear that the likelihood of (r,−→p ) givenMP , denoted

by L(r,−→p |MP), is proportional to
k∏
i=2

∏
S∈Ci

p
n−d(MP ,S,r)
i

(
1− pi
i− 1

)d(MP ,S,r)
(3)

because the coefficients n!/(
∏
c∈S nc!) depend neither on r nor on −→p . Let us

now study different voting rules arising from Eq. 3. Depending on whether or
not restrictive assumptions are made about probabilities pi, we show that a
maximum likelihood ranking r is a consensus ranking for the k-wise Kemeny
rule, or for a weighted variant whose parameters vary with MP and r.

5 MLE of the Parameters of the k-Wise Young’s Model

A consensus ranking for the k-wise Kemeny rule is an MLE of a ground truth
ranking r∗ if one assumes that the choice function profile is sampled according to
the k-wise Young’s model when α2 = . . .=αk=α>1, i.e., in a subset S, candidate
tr∗(S) is the most likely to be chosen, with a probability α times greater than
any other given member of S, whatever the size of S. More formally:

Proposition 1 If there exists α> 1 such that α2 = . . .=αk =α, then, given a
choice matrix MP , a ranking r has maximum likelihood for the k-wise Young’s
model iff it minimizes δk(r,P), i.e., ranking r is a consensus ranking for the
k-wise Kemeny rule.
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Proof. Maximizing Equation 3 amounts to maximizing:

log

(
k∏
i=2

∏
S∈Ci

p
n−d(MP ,S,r)
i ·

(
1− pi
i− 1

)d(MP ,S,r))

=

k∑
i=2

∑
S∈Ci

(
(n− d(MP , S, r)) · log pi + d(MP , S, r) · log

(
1− pi
i− 1

))

=

k∑
i=2

∑
S∈Ci

n log pi −
k∑
i=2

∑
S∈Ci

d(MP , S, r) · log

(
pi

1−pi
i−1

)

For a given set of values pi, determining a ranking r that maximizes the above
formula is equivalent to minimizing:

k∑
i=2

∑
S∈Ci

d(MP , S, r) · log

(
pi

1−pi
i−1

)
As pi is the probability to choose tr(S) and (1−pi)/(i−1) the probability to

choose any other member of S, we have pi/(1−pi/(i−1))=αi. Furthermore, by
assumption, αi=α ∀i∈{2, . . . , k}. Consequently, the expression simplifies to:

(logα) ·
k∑
i=2

∑
S∈Ci

d(MP , S, r)

The coefficient logα is strictly positive because α>1 by assumption, and it can
therefore be omitted when minimizing according to r. From Equation 1, we have:

k∑
i=2

∑
S∈Ci

d(MP , S, r) = δk(r,P)

Therefore, whatever the vector −→p of choice probabilities, a ranking r that max-
imizes L(r,−→p |MP) minimizes δk(r,P), which concludes the proof. ut

For k = 2, this proposition amounts to the result of Young regarding the
interpretation of the Kemeny rule as an MLE of a ground truth ranking.

If we do not assume that the αi are equal, then the maximum likelihood
ranking may depend on −→α = (α2, . . . , αk), and we need to determine3 a couple
(r,−→α ) of maximum likelihood L(r,−→α |MP), even if we are only interested in r.
Determining such a couple (r,−→α ) defines a new voting rule in itself, which returns
r as a consensus ranking. The following result shows that it can be formulated
as a discrete optimization problem on the space of rankings, because, for each
ranking r, there exists a closed-form expression to determine the corresponding
maximum likelihood values αi.

3 From now on, we use indifferently −→p or −→α , because one vector can be inferred from
the other.
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Proposition 2 Given a choice matrix MP , a couple (r,−→α ) has maximum like-
lihood for the k-wise Young’s model if and only if ranking r minimizes

δkα(r,P)−
k∑
i=2

∑
S∈Ci

n log
αi

αi + i− 1
, (4)

where δkα(r,P) =

k∑
i=2

(logαi)
∑
S∈Ci

d(MP , S, r) (5)

and αi = ((i− 1) ·
∑
S∈Ci

(n− d(MP , S, r)))/(
∑
S∈Ci

d(MP , S, r)). (6)

Proof. From the proof of Proposition 1, we know that a couple (r,−→p ) has max-
imum likelihood iff, for a given choice matrix MP and ranking r, it maximizes:

f(−→p ) =

k∑
i=2

∑
S∈Ci

n log pi −
k∑
i=2

∑
S∈Ci

d(MP , S, r) · log

(
pi

1−pi
i−1

)
(7)

To determine an optimum of function f , each component pi can be optimized
independently from the others, because each one appears in a different term of
the sum from i=2 to k. Noting that

∑
C∈Ci n =

(
m
i

)
·n as there are

(
m
i

)
different

subsets C∈Ci, the partial derivative of order 1 is written as:

∂f

∂pi
(−→p )=

(
m
i

)
· n−

∑
S∈Ci

d(MP , S, r)

pi
−

∑
S∈Ci

d(MP , S, r)

(1− pi)
.

For pi∈ [0, 1], the derivative vanishes for:

pi =

((
m

i

)
· n−

∑
S∈Ci

d(MP , S, r)

)
/

((
m

i

)
· n
)
.

It is easy to prove that ∂2f
∂p2i

(−→p ) < 0 for pi ∈ [0, 1], thus the corresponding

stationary point of f is a maximum. From the values pi of maximum likelihood
we derive the values αi of maximum likelihood:

αi =
pi

1−pi
(i−1)

= (i− 1) ·
∑
S∈Ci(n− d(MP , S, r))∑

S∈Ci d(MP , S, r)

The result is obtained by expressing Eq. 7 in function of αi instead of pi, and
turning the maximization into a minimization of the opposite expression. ut

Note that, according to Proposition 2, the maximum likelihood value of each
pi given r corresponds to the observed proportion of agreements between r and
P on subsets of size i, which is consistent with intuition. The formula of the
likelihood of a couple (r,−→α ) is written as the sum of two terms:

– the term δkα(r,P) is a weighted sum of disagreements between r and P, where
the disagreements on subsets of size i are weighted by logαi;
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– the term −
∑k
i=2

∑
S∈Ci n log(αi/(αi + i− 1)) = − log

∏n
j=1

∏k
i=2

∏
S∈Ci pi;

as
∏n
j=1

∏k
i=2

∏
S∈Ci pi≤1, the opposite of its logarithm is positive, and the

term is all the greater as the empirical probability that the n choice functions
in P coincide with r is low.

Let us now present algorithms (an exact one and a heuristic one) to compute
a maximum likelihood couple (r,−→α ) given a choice matrix MP .

6 Algorithms for Determining an MLE

A brute force method for determining a couple (r,−→α ) of maximum likelihood
given P consists of computing a vector−→α of maximum likelihood for each ranking
r (thanks to Prop. 2), and, turning −→α into −→p , retaining the couple (r,−→p ) that
maximizes Eq. 3.

A Faster Exact Algorithm. It is possible to improve this procedure by con-
sidering only a subset of rankings r on the candidates. We know indeed from
Proposition 2 that, for any given −→α , the corresponding maximum likelihood
ranking r minimizes δkα(r,P) (see Eq. 5). Minimizing δkα(r,P) can be seen as a
multi-objective optimization problem, by associating to each r the vector:

−→
d P(r)=

(∑
S∈C2

d(MP , S, r), . . . ,
∑
S∈Ck

d(MP , S, r)

)
In multi-objective optimization problems, the goal is often to enumerate all the
Pareto optimal solutions, i.e., in our setting, the rankings r such that there

does not exist another ranking r′ for which
−→
d P(r′)≤

−→
d P(r), where −→x ≤−→y if

∀i∈{2, . . . , k} xi≤yi, and ∃i∈{2, . . . , k} xi<yi. A ranking r minimizing δkα(r,P)
is obviously Pareto optimal. Such a ranking actually belongs to a more restricted
set: the set of supported solutions, i.e., those that optimizes a weighted sum of the
objectives [9]. The weight assigned to each objective i is here logαi. An even more
restricted set can be considered: the set of extreme rankings. A Pareto optimal

ranking r is extreme if
−→
d P(r) is a vertex of the convex hull of {

−→
d P(r) : r∈R}

in the (k−1)-dimensional objective space, where R is the set of all rankings.
Indeed, it is well-known in multi-objective optimization that, for each supported
ranking r′, there exists an extreme ranking r such that δkα(r,P)=δkα(r′,P).

A recent work presents a method for enumerating the extreme solutions in
multi-objective optimization problems [19]. Based on such a method, we design
an exact procedure for determining a maximum likelihood pair (r,−→α ) by Prop. 2:

1. Determine all the extreme rankings by using Przybylski et al.’s method [19];

2. For each extreme ranking r, compute by Equation 6 the vector −→α r such that
(r,−→α ) has maximum likelihood;

3. Return a couple (r,−→α r) that minimizes Equation 4.
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Although this procedure allows us to reduce the number of rankings we need
to consider, there are still many of them, especially when the value of k in-
creases. For this reason, we now propose a faster heuristic giving a very good
approximation of an optimal couple (r,−→α ).

A Heuristic Algorithm. Instead of considering all the extreme rankings, we pro-
pose an Iterative Optimization (IO) heuristic, which alternates two steps:

– α-step: compute an −→α of maximum likelihood given r by Equation 6;
– r-step: compute an r of maximum likelihood given −→α by minimizing δkα(r,P)

(see Equation 5).

The minimization of δkα(r,P) is performed thanks to a weighted variant of the
dynamic programming algorithm proposed by Gilbert et al. [10] for the k-wise
Kemeny rule. The two steps are alternated until the same ranking is found in two
consecutive r-steps. The complexity of the dynamic programming algorithm that
computes a ranking r minimizing δkα(r,P) is O(2mm2n), thus the heuristic is not
polynomial time (but much faster than the exact algorithm, as will be seen later).
We launch the algorithm from a given vector −→α for the r-step (in the numerical
tests, we have set the values αi corresponding to pi = 1/i+ (i− 1)/(10i)).

7 Numerical Tests

We report here the results of several experiments4 to test the performance of
our heuristic and the fitness of the k-wise Young’s (k-wise) model compared to
that of the Plackett-Luce (PL) model on synthetic and real-world data.

Instances. The tests are carried out both on real data sets from the Preflib
library [16], and on three types of synthetic instances. The first type of syn-
thetic instances are uniform instances, in which the preferences of each voter
is a random ranking in the set R of all permutations. The second type of in-
stances, called PL instances, are preference profiles generated thanks to the PL
model [14, 18]. The third type of instances, called k-wise instances, are choice
matrices generated with our model. Given a ground truth ranking r∗, the choice
function of a voter is generated as follows: for each subset S of size i, the voter
chooses the winner in S w.r.t. r∗ with probability pi, and chooses any other
candidate in S with probability (1− pi)/(i− 1). We set k=m in all tests.

Performance of the heuristic. In order to evaluate the performance of the IO
heuristic, we compare the log-likelihood (LL) of the returned pair (r,−→α ) with
the one obtained by the exact method. Denoting by OPT (I) the value of the LL
of an optimal pair for a given instance I and by IO(I) the value of the LL of the
pair returned by the IO method, we calculate the ratio q=IO(I)/OPT (I). For

4 All algorithms have been implemented in C++, and the tests have been carried out
on an Intel Core I5-8250 1.6GHz processor with 8GB of RAM.
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all the real instances from the PrefLib library, and for all tested PL instances,
the heuristic always returns an optimal pair (r,−→α ). On uniform instances, the
result is not always optimal, but it is very close to the optimal LL: the ratio q
is above 0.9999 on average. The heuristic provides an excellent approximation
of an optimal pair (r,−→α ). Regardless of the type of instance, the IO method is
much faster than the exact multi-objective algorithm. For example, for m=k=8,
the IO method takes 260 (resp. 185) seconds on average to return a solution for
uniform (resp. PL) instances whereas the exact algorithm requires 30 000 (resp.
1000) seconds on average to determine an optimal pair for the same instances.

Model fitness. We now compare our model with the PL model in terms of
fitness with real-world data. We use instances from the sushi dataset [11], in
which 5000 voters give their ranking over 10 kinds of sushis. We randomly draw
n∈{50, 100} voters among the 5000. We apply the exact solution procedure pro-
posed above, and compare the results with those of the PL model. The likelihood
of a choice matrix w.r.t. the PL model for choice functions is written as follows:∏k
i=2

∏
S∈Ci

n!∏
c∈S nc!

∏
c∈S

(
uc∑

d∈S ud

)nc

where nc denotes the number of voters

choosing candidate c in S, and uc the utility of c. To compare the fitness of the
models, we use the Bayesian Information Criterion –BIC– [21]. Regarding the k-
wise model, we consider the case of constant αi’s (model α) and the general case
where the αi may vary (model αi). We compute the ratio BIC(µ)/BIC(PL) for
µ∈{α, αi}. For 50 voters, the obtained ratio is 1.054 (resp. 1.047) for model α
(resp. αi). This improves to 1.052 (resp. 1.045) for 100 voters. This shows that
for this dataset, the fitness of models α and αi is close to the PL model, although
the fitness of the latter is slightly better (by 5% at most).

Cross comparison. We now compare the PL model and the k-wise model on
PL instances and k-wise instances. In both cases, we compute a correlation
factor ρ between the returned ranking and the ground truth ranking used for
generation. The factor ρ is the Kendall-Tau distance normalized between 0 and
1 – 0 indicates that the two rankings are identical while 1 means that they are
opposite. Figure 1 shows the mean value of ρ in function of the level of correlation
of the voters’ preferences, for k-wise instances (left) and PL instances (right). For
k-wise instances, the correlation between the choice functions is controlled by
setting pi=1/i+x(1−1/i) for x∈ [0, 1]: all choice functions are equally likely and
independent from the ground truth ranking for x=0, while all choice functions
are perfectly consistent with the ground truth ranking for x=1. For PL instances,
the correlation between the rankings is controlled by setting up= 1 + (m − p)x
as utility of the candidate in position p in the ground truth ranking: the higher
x, the stronger the correlation. As one would expect, the MLE ranking for the
k-wise (resp. PL) model is closer to the ground truth ranking on k-wise (resp.
PL) instances. Interestingly, the k-wise model performs better on PL instances
than the PL model on k-wise instances. When instances are correlated enough,
the MLE ranking for both models always correspond to the ground truth.
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Fig. 1. Mean ρ (and 68% confidence interval) between the returned ranking and the
ground truth on k-wise instances (left) and PL instances (right).

8 Conclusion

We have studied here an extension of Young’s model for pairwise preferences
to choices in subsets of size at most k, showing that the maximum likelihood
ranking w.r.t. this model coincides with a consensus ranking for the k-wise Ke-
meny rule under certain assumptions on the choice probabilities. Relaxing these
assumptions, we have proposed inference algorithms for the model, learning the
choice probabilities from the data. The fitness of the model on real data is com-
parable with the Plackett-Luce model, although no utilities are embedded in
our model. This is a first step towards the use of non-utilitarian discrete choice
models for preference aggregation. For future work, correlating the choice proba-
bilities with the ranks of the candidates within the considered subset (according
to the ground truth ranking) is a natural research direction. Another direction
is to investigate if the k-wise Young’s model can be related to a k-wise distance-
based statistical model for rankings, similarly to the connection between Young’s
model for pairwise preferences and Mallows’ model [15] for rankings.
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