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Optimizing egalitarian performance
when colocating tasks with types

for cloud data center resource management
Fanny Pascual, Krzysztof Rzadca Member, IEEE,

Abstract—In data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but
the performance of the tasks deteriorates, as the colocated tasks compete for shared resources. Since the tasks are heterogeneous,
the resulting performance dependencies are complex. In our previous work [26], [27] we proposed a new combinatorial optimization
model that uses two parameters of a task — its size and its type — to characterize how a task influences the performance of other
tasks allocated to the same machine.
In this paper, we study the egalitarian optimization goal: the aim is to optimize the performance of the worst-off task. This problem
generalizes the classic makespan minimization on multiple processors (P||Cmax). We prove that polynomially-solvable variants of
P||Cmax are NP-hard for this generalization, and that the problem is hard to approximate when the number of types is not constant. For
a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms
on instances derived from a trace of one of Google clusters. Compared with baseline algorithms solving P||Cmax, our proposed
algorithms aware of the types of the jobs lead to significantly better tasks’ performance.
The notion of type enables us to extend standard combinatorial optimization methods to handle degradation of performance caused by
colocation. Types add a layer of additional complexity. However, our results — approximation algorithms and good average-case
performance — show that types can be handled efficiently.

Index Terms—cloud computing; scheduling; complexity; approximation algorithm; heterogeneity; co-tenancy; workload co-location
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1 INTRODUCTION

A modern cloud data center redefines the way the industry and
the academia compute. Resource management in data centers
significantly differs from scheduling jobs on typical High Per-
formance Computing (HPC) supercomputers. First, the workload
is much more varied [5], [30]. Indeed, data centers act as a
physical infrastructure providing virtual machines, or higher-level
services, such as memory-cached databases or network-intensive
web applications. In contrast, there are relatively few HPC-like
computationally-intensive batch jobs (we will use a generic term
task for all these categories). Thus, in a data center, a task usually
does not saturate the resources of a single node [19]. Second,
the loads of the tasks vastly differ: in a published trace [30],
tasks’ average CPU loads span more than 4 orders of magnitude.
Therefore, in contrast to HPC scheduling in which jobs rarely
share a node, multiple tasks are commonly allocated to the same
physical machine. Finally, certain classes of data center tasks, such
as web servers or databases, almost persistently serve user traffic
and never “complete”. Thus, in contrast to scheduling in HPC, the
aim is not to complete such tasks as soon as possible, but rather
to allocate sufficient resources so that its perceived performance is
satisfactory.
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Tasks colocated on a machine compete for shared hardware.
Despite significant advances in both OS-level fairness and VM
hypervisors, virtualization is not transparent: multiple studies
show [19], [20], [21], [29], [36] that the performance of colocated
tasks drops. Suspected reasons include difficulties in sharing the
CPU cache or the memory bandwidth. In order to optimize
the performance of the tasks, the resource manager should thus
colocate tasks that are compatible, i.e., that use different kinds of
resources. This, however, requires a performance model.

Typical approaches to colocating tasks on machines rely on
bin-packing [10], [16], [25], [31], [32], [33] thus they implicitly
assume a crisp performance model — as long as the total de-
mand of colocated tasks remains below the resources available
on a machine, the tasks’ performance is considered satisfactory.
Complex inter-tasks performance degradation have to be modeled
by placement constraints [10], [25].

In contrast, in our side-effects model [26], [27] rather than
trying to predict tasks’ performance from OS-level metrics, or
ignoring it, we derive it from two characteristics of each task:
task’s type (e.g.: a database, or a computationally-intensive job)
and task’s size relative to other tasks of the same type (e.g.: number
of requests per second). The total load of a machine is a vector: its
i-th dimension is the sum of sizes of tasks of the i-th type placed on
this machine. Each type additionally defines a performance func-
tion mapping this vector of loads to a type-relevant performance
metric. As datacenters execute multiple instances of tasks, such a
function can be inferred by a monitoring module [20], [29], [36]
which will match task’s reported performance (such as the 95th
percentile response time) with observed or reported loads.

We use a linear performance function: on each machine, the
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influence that a type t ′ has on the performance of a task of
type t is a product of the load of type t ′ on this machine and
a coefficient αt ′,t . The coefficient αt ′,t describes how compatible
t ′ load is with a task of type t (our coefficients are similar to
interference/affinity metrics proposed in [20], [29]). Low values
(0 ≤ αt ′,t < 1) correspond to compatible types (e.g. colocating a
memory-intensive and a CPU-intensive task): it is preferable to
colocate a task t with tasks of the other type t ′, rather than with
other tasks of its own type t. For yet another type t ′′, high values
(αt ′′,t > 1) denote types competing for resources.

In this paper, we study the egalitarian objective — we mini-
mize the maximum of the tasks’ costs (in our previous works [26],
[27] we studied the utilitarian objective — we minimized the
sum of the tasks’ costs). The egalitarian objective corresponds
to maximizing the quality of service proposed to all tasks. When
there is only one type, or when for all the types t, t ′ our coefficients
are αt,t ′ = 1, the cost of a task is the load of the machine
on which it is assigned and our problem is equivalent to the
classical multiprocessor scheduling, P||Cmax (minimization of the
makespan, i.e., the maximum load).

The contributions of this paper are as follows.
1) We prove that the notion of type adds complexity, as

makespan minimization with unit tasks P|pi = 1|Cmax, a poly-
nomially solvable variant of P||Cmax, becomes NP-hard when
types are considered. Moreover, the problem becomes hard to
approximate when the number of types T is not constant. We
then show how to cope with this added complexity.

2) We propose a polynomial time approximation scheme
(PTAS) for a constant T and constant values of the coeffi-
cients α .

3) We also provide a fast greedy approximation algorithm.
4) For a qualitative understanding of how the coefficients α

shape the optimal allocation, we study a special case where
there are two types. We identify two tipping points, i.e., val-
ues of α for which the optimal allocation radically changes.
For each of the three induced cases, we give a fast approxi-
mation algorithm.

5) We test our algorithms by simulation on a trace derived from
one of Google clusters. The simulations confirm excellent
average-case performance of our type-aware algorithms.

The paper has the following organization. In Section 2 we
formally define our resource management model. In Section 3 we
demonstrate that our problem is NP-hard and hard to approximate
within a constant factor when the number of types is non-constant.
In Section 4 we propose two approximation algorithms for a fixed
number of types: a PTAS, mostly of theoretical interest; and a
fast approximation called FILLGREEDY. In Section 5 we propose
four alternative heuristic algorithms. In Section 6 we analyze a
special case of the problem with two types for which we prove
approximation ratios for some of the heuristics. In Section 7, we
evaluate the algorithms by simulation. Finally, In Section 8, we
discuss related work.

2 SIDE-EFFECTS OF COLOCATING TASKS: A
MODEL

We consider a system that allocates n independent tasks J =
{1, . . . ,n} to m identical machines M = {M1, . . . ,Mm}. Each task
i has a known size pi ∈ N (our model is clairvoyant, a common
assumption in scheduling; the sizes can be estimated from pre-
vious submissions or users’ estimates). The size corresponds to

the load the task imposes on a machine: the request rate for a
web server; or the CPU load for a CPU-intensive computation.
We take other assumptions standard in scheduling theory: all the
tasks are known (off-line) and ready to be assigned to a machine
(released at time 0). We take these assumptions to derive results
on the basic model before tackling more complex ones. We denote
by pmax = maxi∈{1,...,n} pi the largest size and by W the total load,
W = ∑

n
i=1 pi. 1 We assume that the tasks are indexed by non-

increasing sizes: p1 ≥ p2 ≥ ·· · ≥ pn.
A partition (an allocation) is an assignment of each of the n

tasks to one of the m machines. A partition separates the tasks into
at most m subsets: each subset corresponds to the tasks allocated
on the same machine. Given a partition P, we denote by MP,i ∈M
the machine on which task i is allocated. Due to the similarities
with P||Cmax, we sometimes use the term “schedule” (and the
symbol σ ) for an allocation (and even the term of length for the
size of a task). In this case, only the allocation is meaningful (not
the order of the tasks on the machines).

The impact of task i on the performance of another task j is a
function of task’s size pi and task’s type ti. Types generalize tasks’
impact on the performance. The operator of the data center should
define types according to observed performance dependencies. A
type could correspond to a specific application (as in [20]); but it
could also be more general, gathering, for example, all webservers
under a single type, and all databases under another one. Here
we assume that the task’s type is known to the resource manager
either from the analysis of previous submissions, or from users’
declarations (this assumption corresponds to the clairvoyance
assumption in classic scheduling). Let T = {1, . . . ,T} be a set
of T different types of tasks. We denote by ti ∈T the type of task
i. For each type t ∈T , we denote by J(t) the set of the tasks which
are of type t. We denote by p(t)i the size of the i-th largest task of
type t (ties are broken arbitrarily).

We express performance of a task i by a cost function ci:
to simplify presentation of our results, we prefer to express our
problems as minimization of costs, rather than maximization of
performance (for a single type, our cost is synonymous with the
makespan). Note that the cost is unrelated to monetary cost (the
amount of money that a job pays to the machine) — we do not
consider monetary costs in this paper. The cost ci of task i depends
on the total load of tasks j colocated on the same machine MP,i,
but different types have different impacts:

ci = ∑
j on machine MP,i

p j ·αt j ,ti (1)

Note that the cost function takes into account the task i itself, as
well as the other tasks of the same type. A coefficient αt,t ′ ∈ R≥0
defined for each pair of types (t, t ′) ∈T 2, measures the impact of
the tasks of type t on the cost of the tasks of type t ′ (allocated
on the same machine). If αt,t ′ = 0 then a task of type t has no
impact on the cost of a task of type t ′. The higher the αt,t ′ ,
the larger the impact. Coefficients are not necessarily symmetric,
i.e., it is possible that αt,t ′ 6= αt ′,t . The coefficients αt,t ′ can be
estimated by monitoring tasks’ performance as a function of their
colocation and their sizes (a data center runs many instances of
similar services). Previous works [20], [29], [36] and to some
extent [37] show how to form a performance model as a function

1. To compute the cost of allocation, our model weights the loads by
coefficients. We define W as a simple sum of loads of tasks (perhaps of
different types) and pmax as a simple maximum; however, this does not lead to
inconsistencies, as we use these values only as bounds.
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TABLE 1
Table of notations.

ci cost of task i (as defined in Equation 1)
J set of the tasks
J(t) set of the tasks of type t
m number of machines
Mi i-th machine
M set of machines
n number of tasks
pi size of the i-th largest task
p(t)i size of the i-th largest task of type t
pmax largest size of a task: pmax = maxi∈{1,...,n} pi = p1
T number of types
ti type of task i
T set of the types
W total load : W = ∑

n
i=1 pi

W (t) total load of tasks of type t: W (t) = ∑ti=t pi
αt,t ′ coefficient which measures the impact of a unit of task of type t

on the cost of a task of type t ′
αmax maximal value of the coefficients: αmax = max(t,t ′)∈T 2 αt,t ′

α coefficient αt,t ′ when we consider only two types t and t ′ (T = 2)

of colocation—we discuss the similarities in Section 8. In this
paper, following the assumption of clairvoyance, common in
scheduling, we assume that the coefficients αt,t ′ are given.

We consider the linear cost function which generalizes, by
adding coefficients αt,t ′ , the fundamental scheduling problem
P||Cmax [13]. Assuming linearity is a common approach when
constructing models in operational research or statistics (e.g. linear
regressions). Likewise, in selfish load balancing games [22], [35],
it is assumed that the cost of each task is the total load of the
machine (their model does not consider types). We assume that
the impact the type has on itself is normalized with regards to
tasks’ sizes, i.e., αt,t = 1 (although some of our results, notably
the PTAS, do not need this assumption). We denote maximal
coefficient by αmax = max(t,t ′)∈T 2 αt,t ′ .

We denote by MCT (MINMAXCOST WITH TYPES) the prob-
lem of finding a partition P∗ minimizing the maximum cost
C(P) = maxi∈{1,...,n} ci. The partition P∗ minimizes the worst per-
formance a task experiences in the system, and thus corresponds
to the egalitarian fairness.

Notations which are used through the paper are summarized in
Table 1 (note that the table purposely skips notation used for, e.g.,
a single proof).

3 COMPLEXITY AND HARDNESS OF MCT FOR T
NOT FIXED

MCT is NP-hard as it generalizes the NP-hard problem P||Cmax
when there is only one type. We first show that a polynomially-
solvable variant of multiprocessor scheduling (P|pi = 1|Cmax)
becomes NP-hard when tasks are of different types. Thus types
add another level of complexity onto an already NP-hard problem.

Proposition 1. The decision version of MCT is NP-complete,
even if all the tasks have unit size, and even if there are only two
machines.

Proof. We reduce from the NP-complete PARTITION prob-
lem [11]. In PARTITION the input is a finite set A = {a1, . . . ,ak} of
k positive integers summing up to 2B (∑a∈A a = 2B). The question
is: can A be partitioned into two disjoint sets A1,A2 such that
∑a∈A1

a = ∑a∈A2
a = B?

The instance of MCT corresponding to the instance of PAR-
TITION is as follows. We have 2 machines {M1,M2}, k + 2
types, and k + 2 tasks {1, . . . ,k + 2}. Each task is of size 1,
and each of a different type (for all i ∈ {1, . . . ,k + 2}, type of
task i will be i). For each type i ∈ {1, . . . ,k}, and for each type
j ∈ {1, . . . ,k+2}, with i 6= j, we set αi, j = ai (we have αi,i = 1).
We have αk+1,k+2 =αk+2,k+1 = 2B (and αk+1,k+1 =αk+2,k+2 = 1).
For each type i ∈ {1, . . . ,k}, we have αk+1,i = αk+2,i = ai.

Let us now show that the answer of the PARTITION problem is
“yes” if and only if, in the corresponding instance of MCT, there
exists an allocation P with maximal cost at most B+1.

Let us first assume that there is a partition (A1,A2) of A.
For each integer i ∈ {1, . . . ,k}, if ai ∈ A1 (respectively ai ∈ A2),
then we put task i on machine M1 (respectively M2). Task
k + 1 (resp. k + 2) is on machine M1 (resp. M2). We first show
that in this solution the cost of each task on M1 is B + 1.
The cost of task k + 1 is αk+1,k+1 + ∑ j on M1, j 6=k+1 α j,k+1 =
1+∑ j on M1, j 6=k+1 a j = 1+∑a j∈A1

a j = B+ 1. The cost of each
task i 6= k + 1 on M1 is αi,i + αk+1,i + ∑ j on M1, j/∈{i,k+1}α j,i =
1+ ai +∑ j on M1, j/∈{i,k+1} a j = 1+∑a j∈A1

a j = B+ 1. Likewise,
the cost of each task on M2 is B+1. Therefore, there is a solution
of maximal cost at most B+1 for problem MCT.

Let us now assume that there is a solution P of maximal
cost at most B + 1 for MCT. We know that tasks k + 1 and
k+2 are not on the same machine in P (otherwise the maximum
cost would be at least 2B + 1). Let us assume without loss of
generality that task k+ 1 is on M1 and task k+ 2 is on M2. Let
A1 be the set of numbers of A which corresponds to tasks of
{1, . . . ,k} on M1 in P. Likewise, let A2 be the set of numbers
of A which corresponds to tasks of {1, . . . ,k} on M2 in P. We
first consider the tasks assigned to M1. The cost of task k+ 1 is
αk+1,k+1 +∑ j on M1| j∈{1,...,k}α j,k+1 = 1+∑ j on M1| j∈{1,...,k} a j =
1+∑a j∈A1

a j. The cost of task i 6= k+ 1 on M1 is αi,i +αk+1,i +

∑ j on M1| j∈{1,...,k}, j 6=i α j,i = 1+ai +∑ j on M1| j∈{1,...,k}, j 6=i a j = 1+
∑ j on M1| j∈{1,...,k} a j = 1+∑a j∈A1

a j. Hence, each task assigned to
M1 has a cost equal to 1+∑a j∈A1

a j.
The value of ∑a j∈A1

a j is at most B, since P is a solution of
maximal cost at most B+1. Likewise, we can show that each task
on M2 has a cost equal to 1+∑a j∈A2

a j, and we know that this
cost is at most B+1. Therefore, we get that ∑a j∈A2

a j ≤ B. Since
∑a j∈A1

a j +∑a j∈A2
a j = 2B, we get that ∑a j∈A1

a j =∑a j∈A1
a j = B:

the answer to the PARTITION problem is “yes”.

We now show that if the number of types is not fixed, MCT
is hard to approximate within a constant factor, even if all tasks
have the same size (again, in contrast to polynomially-solvable
P|pi = 1|Cmax).

Proposition 2. MCT is strongly NP-hard, even if all tasks have
unit size. Moreover, there is no polynomial time r-approximate
algorithm for MCT, for any number r > 1, unless P = NP.

Proof. We show that a r-approximate algorithm for MCT would
solve the NP-complete PARTITION INTO CLIQUES, PIC [11]. In
PIC, the input is a graph G = (V,E) and a positive integer K ≤ |V |
(we assume that V are labeled from 1 to |V |). The question is
whether the vertices of G can be partitioned into k ≤ K disjoint
sets V1,V2, . . . ,Vk such that, for 1≤ i≤ k, the subgraph induced by
Vi is a complete graph.

Given an instance of PIC, we create the following instance of
MCT. The number of machines is m = K. There are n = |V | tasks
{1, . . . ,n} (a task corresponds to a node of the graph). Each task
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is of a different type. Types are labeled from 1 to |V |: the type of
task i is i. All the tasks are of size 1. For each type i, αi,i = 1. The
set of edges of G corresponds to 0 cost coefficients between the
corresponding tasks: for each pair of types (i, j), i 6= j: αi, j = 0 if
{i, j} ∈ E and αi, j = r if {i, j} /∈ E.

We claim that a solution of the MCT instance costs either 1
or at least r+1. We also claim that the answer for the instance of
PIC is “yes” if and only if the optimal cost of the MCT instance
is 1. If a solution of cost 1 exists, an r-approximate algorithm has
to return a solution of cost at most r. As all other solutions cost
at least r+1, the r-approximate algorithm has to return a solution
of cost 1. Since K ≤ |V |, if we assume that the r-approximate
algorithm runs in polynomial time, then it solves in polynomial
time the NP-complete PIC. This leads to a contradiction, unless
P = NP.

We show that the cost of a solution of the MCT instance is
either 1, or at least r+1. If, on all the machines, for each pair (i, j)
of tasks on the same machine we have αi, j = 0, then the maximum
cost of a task is 1 (its own size, 1, times αi,i = 1). Otherwise, there
is a machine with two tasks of types i and j with αi, j = r. The
maximum cost is thus larger than or equal to the cost of task i,
which is at least 1×αi,i +1×αi, j = 1+ r.

We show that the solution for the instance of PIC is “yes”
if and only if there is a solution of cost 1 for the corresponding
instance of MCT. Assume first that there is a solution for PIC:
the vertices of G can be partitioned into k ≤ K disjoint sets
V1,V2, . . . ,Vk such that, for 1 ≤ i ≤ k, the subgraph induced by Vi
is a complete graph. For each i ∈ {1, . . . ,k}, we assign to machine
Mi the tasks corresponding to the vertices of Vi. Since all the tasks
on the same machine correspond to a clique in G, their coefficients
αi, j are all 0 (when i 6= j). The only cost of a task i is its own size
times αi,i, that is 1. Thus, the cost of the optimal solution of the
instance of MCT is 1.

Likewise, assume that there is a solution of cost 1 for the
instance of MCT. Since the maximum cost of a task in the instance
of MCT is 1, all the values αi, j between the tasks on the same
machine are 0 (for i 6= j), and thus that the corresponding vertices
form a clique in G. Therefore, it is possible to partition the vertices
of G into m = K cliques: there is a “yes” solution for PIC.

4 APPROXIMATION FOR FIXED NUMBER OF TYPES

The inapproximability proof of the previous section means that we
can develop constant-factor approximations only for MCT with a
constant number of types (and constant coefficients). We show
in this section two approximation algorithms: a PTAS and a fast
greedy approximation algorithm called FILLGREEDY.

4.1 A PTAS
Our PTAS (Algorithm 1) has a similar structure to the PTAS
proposed by Hochbaum and Shmoys for P||Cmax [15]: it uses
dichotomic search to find a minimal target maximum cost C (the
target is the makespan in [15]). During the search, for a certain C,
if the optimal cost is at most C, the algorithm returns a (1+ ε)-
approximate schedule; otherwise, the algorithm detects that no
such schedule exists.

In order to build a schedule close to the optimum, the al-
gorithm partitions the tasks into two sets: the long tasks and
the small tasks. The long tasks are rounded down to the nearest
multiple of some given number X . The small tasks of a same type
are gathered together in some new long tasks of size X called

Algorithm 1: A PTAS for MCT with constant T and α

1 J′ = /0;
2 for j ∈ J, p j ≥C/(γk) do // round down long tasks

3 p j′ = p j− (p j mod C/(γk)2 ) ;
4 J′ = J′∪{ j′} ;
5 for t ∈ T do // glue short tasks to containers

6 W (t)
s = ∑ j∈J(t),p j<C/(γk) p j ; // load of small tasks of type t ;

7 while W (t)
s > 0 do

8 p j′′ = min(C/(γk),W (t)
s ) ;

9 J′ = J′∪{ j′′} ; // j′′ is a new container ;
10 W (t)

s =W (t)
s − p j′′ ;

11 for t ∈ T do remove from J′ m containers of type t ;
12 σ

′∗ = partition of J′ by solving (by dynamic programming)
OPT (n

′(1)
1 , . . . ,n

′(1)
(γk)2 , . . . ,n

′(T )
1 , . . . ,n

′(T )
(γk)2) =

1+min
s(1)1 ,...,s(T )

(γk)2
∈C

OPT (n
′(1)
1 − s(1)1 , . . . ,n

′(T )
(γk)2 − s(T )

(γk)2);

13 if σ
′∗ requires more than m machines then return /0;

14 σ = σ
′∗ ;

15 for k=1 to m do // add removed containers

16 for k=1 to T do σ [k] = σ [k]∪{C/(γk)};
17 for k=1 to m do // replace containers by small tasks

18 for t ∈ T do
19 i = number of type t containers in σ [k] ;
20 replace i containers by tasks of total load W ,

iC/(γk)≤W ≤ (i+1)C/(γk);
21 Replace in σ rounded long tasks with original long tasks;

containers (a more detailed description follows). This gives us a
modified instance made of the rounded long tasks and the newly
introduced container tasks. Since the number of different sizes
in this instance is probably (much) smaller than in the original
instance, these tasks are scheduled optimally using dynamic pro-
gramming. Compared to the original PTAS of Hochbaum and
Shmoys, the two main differences are the treatment of short tasks
(which, in our algorithm, are not simply greedily scheduled, but
are packed into containers), and the sizes of the long tasks. Our
PTAS works even if αi,i 6= 1. The algorithm uses the following
constant parameters: a number C denoting the requested maximum
cost; an integer k; and γ = T αmax

(
2+ 1/(minαi,i)

)
(we assume

that T and αi, j are constants). Given C, the algorithm either returns
a schedule of cost at most C(1+1/k), or proves that a schedule of
cost at most C does not exist.

The algorithm starts by constructing an instance I′ for which
the optimal cost is a lower bound of the optimal cost for the
original instance I. The algorithm partitions tasks into two sets:
long tasks of size at least C/(γk), and the remaining short tasks
(tasks of size smaller than C/(γk)). Long tasks are rounded down
to the nearest multiple of X = C/(γk)2. Short tasks of a single
type are “glued” into container tasks of sizes C/(γk), except
the last container task which might be shorter (of size W (t)

s

mod (C/(γk), where W (t)
s is the load of short tasks of type t:

W (t)
s = ∑ j∈J(t),p j<C/(γk) p j). Then, the algorithm reduces the load

in container tasks by removing m containers (the shortest one and
m−1 others) of each type. Note that if the total load of short tasks
of type t is smaller than mC/(γk), there are less than m containers,
and they are all removed in this step; later, when reconstructing
schedule, the algorithm adds the number of containers that have
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been removed. We omit this detail from Algorithm 1 to make the
code more readable. The number of tasks in I′ is smaller than or
equal to the number of tasks in I, and the total load in I′ is smaller
than or equal to the total load in I (the number of tasks and the
load does not change only if all the tasks are long and their sizes
are multiples of C/(γk)2).

The algorithm then schedules the tasks of I′

using dynamic programming. For a given configuration
n
′(1)
1 , . . . ,n

′(1)
(γk)2 , . . . ,n

′(T )
1 , . . . ,n

′(T )
(γk)2 , where n

′(t)
i is the number of

tasks in I′ of type t and size iC/(γk)2, OPT denotes the minimal
number of machines needed to schedule the configuration with
cost smaller than C. Let s(t)i be a number of tasks of type t
and of size iC/(γk)2. To find OPT , the dynamic programming
approach checks all the possible configurations C of task sizes
for a single machine s(1)1 , . . . ,s(T )

(γk)2 that result in cost smaller than

or equal t to C, i.e.: s(1)1 , . . . ,s(T )
(γk)2 ∈ C ⇔ ∀t such that∑i s(t)i >

0 : ∑t ′ ∑
(γk)2

i=1 αt ′,ts
(t ′)
i iC/(γk)2 ≤ C. If OPT is larger than m, the

algorithm ends. Otherwise, the returned schedule σ
′∗ forms a

scaffold to build a schedule σ for the original instance I. First, the
algorithm adds a container for each type on each machine (this
container was removed before the dynamic programming). Then,
the algorithm replaces containers by actual short tasks. Assume
that σ

′∗ scheduled i− 1 containers of type t on machine m; the
previous step added at most one container. The algorithm replaces
i containers of a total load iC/(γk) by scheduling unscheduled
short tasks of type t with a total load of at least iC/(γk) and at
most (i+ 1)C/(γk) (which is always possible as a short task is
shorter than C/(γk)). Finally, the algorithm replaces long tasks
that were rounded down by the original long tasks.

Proposition 3. The PTAS returns a solution to MCT if and only
if there is a solution of MCT of cost at most C. Moreover, if such
a solution exists, the cost of the solution returned by the PTAS is
at most C(1+1/k).

Proof. Assume first that there is an optimal schedule σ∗ of
instance I using m machines and having cost at most C. Consider
a schedule σ ′ for I′ constructed according to σ∗. Each long task
in σ ′ is placed on the same machine as in σ∗. If σ∗ executes on
a machine a total load W ∗(t)s of small tasks of type t, this load is
replaced by bW ∗(t)s /(C/(γk)c containers, each of size C/(γk). σ ′ is
a valid schedule for I′ as it schedules all tasks in I′. Moreover, the
cost of σ ′ is at most C, as the load of each type on each machine
is not higher than the corresponding load in σ∗. As the dynamic
programming used in PTAS analyses all possible schedules, it will
return a schedule σ

′∗ using at most the same number of machines
as in σ∗.

Assume now that the dynamic programming returns a schedule
σ
′∗ of cost at most C. By adding a single container on each ma-

chine and each type, the cost increases by at most T αmaxC/(γk).
By replacing the containers by small tasks, the load of each type
is increased by at most C/(γk), thus the cost is increased by
at most T αmaxC/(γk). Finally, by replacing the rounded-down
long tasks by the tasks of the original sizes, the size of each
long task is increased by at most C/(γk)2. As the cost of σ

′∗

was at most C, and a long task is of size at least C/(γk), there
are at most γk/αi,i tasks of each type i (as the cost of each
type on itself has to be smaller than C). There are thus at most
T γk/(minαi,i) long tasks in total. The total increase of cost due
to long tasks (and the maximal influence between types) is thus at

most
(

T γk/(minαi,i)
)

αmax

(
C/(γk)2

)
. Consequently, the cost of

σ is bounded by C(σ)≤C+
(

CT αmax/(γk)
)(

2+1/(minαi,i)
)
=

C(1+1/k) (as γ = T αmax

(
2+1/(minαi,i)

)
).

Proposition 4. The PTAS runs in polynomial time O(nT (γk)2
).

Proof. T is a constant. We assume that n ≥ m as otherwise
the optimal solution is trivial: each task is allocated to a dif-
ferent machine. Thus, the runtime of all loops in Algorithm 1
is bounded by O(n). We upper-bound the cost of the dynamic
programming by computing the number of valid entries of
the (n

′(1)
1 , . . . ,n

′(1)
(γk)2 , . . . ,n

′(T )
1 , . . . ,n

′(T )
(γk)2) vector. This vector has

(T (γk)2) dimensions, and n
′(t)
i ≤ n for each pair (i, t). Thus there

are at most nT (γk)2
distinct vectors. For each of these vectors,

the algorithm must check at most as many entries as there are
possible single machine configurations. As there are at most
γk/αi,i tasks of type i on a single machine, there are at most(

1+ γk/(minαi,i)
)T (γk)2

such configurations to check. As γ , αi, j,
T and k are constant, the number of configurations to check is
a constant; thus, the complexity of the dynamic programming
algorithm is dominated by the number of valid entries to check,
O(nT (γk)2

).

4.2 A greedy list-scheduling approximation
We propose FILLGREEDY, a greedy 2T m

m−T -approximate algorithm
for MCT with a constant number of types. FILLGREEDY groups
tasks by clusters. All the tasks of the same type are in the same
cluster. Two tasks of different types i and j are in the same cluster
only if their types are compatible (αi, j ≤ 1 and α j,i ≤ 1). While
minimizing the number of clusters is NP-hard (by an immediate
reduction from PARTITION INTO CLIQUES), any heuristics can be
used, as the approximation ratio does not depend on the number
of clusters.

Clusters are processed one by one. At least one machine is
dedicated to each cluster. We assume that m, the number of
machines, is smaller than or equal to the number of clusters K.
This is a realistic assumption since K ≤ T , and in a data center,
T should be much smaller than m. Let L = (∑ pi)/(m−T ), and
let Lmax = max{2L,L+ pmax}. The algorithm considers the tasks
cluster by cluster. It puts tasks from the current cluster on a
machine until the load of the machine reaches Lmax. Then, it
“opens” a new machine and puts tasks on this new machine again
until the load reaches Lmax. This continues until all the tasks of the
current cluster have been assigned to a machine. In other words,
a task of the currently considered cluster is scheduled on a new
machine if and only if the current load on the current machine plus
the size of the task is larger than Lmax. When all tasks of a cluster
have been scheduled, the algorithm schedules in the same way
and starting on a new machine, the tasks of the following cluster.
We demonstrate (Proposition 5) that the number of machines
is sufficient to schedule the tasks without having to open a
(m+ 1)-st machine. However, in practice, in order to minimize
the maximum cost, rather than fixing the maximum machine load
to Lmax, we perform a dichotomic search over [1,Lmax] to find
the smallest possible threshold leading to a feasible allocation.
Once the clusters are created, the complexity of FILLGREEDY

with dichotomic search over [1,Lmax] is O(n log(Lmax)) (there are
log(Lmax) steps, and assigning a machine to each of the n tasks is
done in O(1)).
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Proposition 5. Algorithm FILLGREEDY is a 2T m
m−T -approximate

algorithm for MCT.

Proof. We first show that the allocation is feasible, i.e. the al-
gorithm uses at most m machines. Let mused be the number of
machines to which at least one task is allocated. Among these
mused machines, at most K have load smaller than L. Indeed, for
each cluster the algorithm allocates tasks to a machine beyond L
(as Lmax ≥ L+ pmax), unless there are no remaining task. Thus,
for each cluster, only the load of the last opened machine can be
smaller than L. Thus, the load allocated on these mused machines
is at least (mused −K)L = (mused −K) W

m−T . Since the total load
is W , we have (mused −K) W

m−T ≤W . Thus mused−K
m−T ≤ 1, and so

mused −K ≤ m−T . Since K ≤ T , we have mused ≤ m. Thus, the
allocation returned by FILLGREEDY is feasible.

We now show that the cost is 2Km
m−T -approximate. We consider

an instance I of MCT. Let O be an optimal solution of I for
MCT, and let OPT be the maximum cost of a task in O . Since,
for each type i, αi,i = 1, we have OPT ≥ pmax. Let Lmax(O) be the
maximum load of a machine in O . Let us consider that this load
is achieved on machine i. We have Lmax(O) ≥ W

m (by the surface
argument). Since there are at most T types on machine i, there is
at least one type which has a load of at least Lmax(O)

T on machine i.
The cost of a task of this type on machine i is thus at least Lmax(O)

T ,
and therefore OPT ≥ Lmax(O)

T ≥ W
T m .

Let S be the solution returned by FILLGREEDY for instance
I. Let C(S ) be the maximum cost of a task in S . Let Lmax(S )
be the maximum load of a machine in S . Since two tasks i and j
are allocated to the same machine only if they belong to the same
cluster, i.e. only if αti,t j ≤ 1, the cost of each task is at most equal to
Lmax(S ), and thus C(S )≤ Lmax(S ). Moreover, by construction,
we have Lmax(S ) ≤ max{2L,L + pmax}. We consider the two
following cases:
• max{L, pmax}= pmax:
C(S ) ≤ Lmax ≤ L + pmax = W

m−T + pmax =
( T m

m−T

) W
T m + pmax.

Since we know that OPT ≥ pmax and OPT ≥ W
T m , we have

C(S )≤ ( T m
m−T +1)OPT < 2T m

m−T OPT .
• max{L, pmax}= L:
C(S ) ≤ Lmax ≤ 2L = 2W

m−T = 2
( T m

m−T

) W
T m ≤

2T m
m−T OPT because

OPT ≥ W
T m .

5 HEURISTICS FOR ANY NUMBER OF TYPES

In this section, we propose other algorithms for MCT. We later
show (in Section 6) that these algorithms are fast approximations
when there are two types. Each of these algorithms uses as a
sub-procedure an algorithm A solving P||Cmax. This procedure
can be for example the LPT (Longest Processing Times first) list
algorithm, or an approximation scheme for P||Cmax. The input of
A is the number of machines and the set of tasks of our problem:
we thus do not consider types and we convert pi, the size of task i
in our problem, to a simple duration of the task. In Section 6, we
will prove approximation ratios of our algorithms for MCT as a
function of the approximation ratio of A .
• SCHEDMIXED applies A on all tasks and all machines.

Let σ be the schedule constructed by A on m machines with
tasks J. SCHEDMIXED(A ) returns the partition P of the tasks
corresponding to the allocation in σ (tasks on Mi in P are the
tasks on Mi in σ ). SCHEDMIXED thus corresponds to the baseline
approach — ignoring the types and allocating tasks only by their
size.

• SCHEDJUXTAPOSE first applies algorithm A on each of
the T types separately: for each type t, A schedules J(t), the set
of tasks of type t, on the m machines. Then, SCHEDJUXTAPOSE

juxtaposes (joins) the T obtained schedules. Let σt be the schedule
obtained by applying A on tasks J(t) of type t on m machines.
SCHEDJUXTAPOSE merges the schedules by reversing the order
of the machines for every other type: the tasks on machine Mi in
the returned schedule are the tasks allocated to Mi in σ2k+1 and
the tasks allocated to Mm−i+1 in σ2k. Note that such reordering
does not change the approximation ratio proved in Section 6 —
compared to the schedule where each machine Mi contains the
tasks of Mi of every schedule σt . However, when A = LPT ,
in practice, this allows to decrease the makespan, and thus the
maximum cost.
• BESTSCHEDULE(A ) returns the partition with the low-

est cost among the results of SCHEDJUXTAPOSE(A ) and
SCHEDMIXED(A ).
• GREEDYDEDICATED(B) takes in input, besides the set of

tasks and the number of machines, types grouped into K clusters
such that each pair of types in each cluster is compatible (as in
Section 4.2). Machines are partitioned into K sets — a set for each
cluster — and two tasks of different clusters are not assigned to the
same machine. For each cluster i, and for each possible number
of machines mi ∈ {1, . . . ,m−K + 1}, GREEDYDEDICATED runs
an algorithm B (one of SCHEDMIXED, SCHEDJUXTAPOSE or
BESTSCHEDULE), on the tasks of cluster i, on mi machines.
GREEDYDEDICATED returns an allocation of the minimal cost
over all legal partitions of machines onto K clusters by ex-
haustive search over vectors [mi] : ∑

K
i=1 mi = m. For example,

when there are two types and α > 1, each cluster contains one
type. GREEDYDEDICATED executes for each m1 ∈ {1, . . . ,m−1},
algorithm B twice: first, for tasks J(1) of type 1 allocated on the
first m1 machines; second, for tasks J(2) of type 2 allocated on
the remaining m−m1 machines. Out of these (m−1) allocations,
GREEDYDEDICATED returns the allocation with the smallest cost.

Let CA be the complexity of Algorithm A . Algo-
rithm SCHEDMIXED is in O(CA ); SCHEDJUXTAPOSE and
BESTSCHEDULE are in O(TCA ); GREEDYDEDICATED is in
O(KmKCA ).

6 SPECIAL CASE: TWO TYPES

To show how the coefficient α shapes the optimal allocation,
we study in this section a series of special cases with only two
types (T = 2) and a symmetric coefficient α = αt ′,t = αt,t ′ . This
special case also enables us to prove approximation ratios of the
algorithms introduced in the previous section. For one of the
sub-cases we propose a slight refinement of FILLGREEDY called
GREEDYFOR2TYPES that achieves a better approximation ratio.

We distinguish three cases based on α: compatible types when
α ≤ 1; incompatible when 1 < α < 2; and clashing when α ≥ 2.
These boundary values have the following motivation.

To illustrate the difference between compatible and incompat-
ible types, we consider divisible loads instances. The definition
follows the one used in scheduling: if W (i) is the load of the tasks
of type i ∈ {1,2}, this load can be assigned in any way to the
machines (as if it was composed of a huge number of tiny tasks
each of size ε).

When α < 1, the types are compatible. A task from a different
type results in a smaller cost than a task from the same type. Thus,
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the optimal allocation of I evenly shares all machines between the
two types: each machine executes a load W (i)/m of type i.

When α = 1, any allocation that has load (W (1)+W (2))/m on
each machine is optimal (the impact of a task of type 1 or 2 on
another task is the same).

When α > 1, a task from a different type results in a larger cost
than a task from the same type. Thus, in divisible load instances,
there is at most one machine that is shared between the two types.
If there were more than one shared machine, we could reduce
the cost by exchanging tasks between the machines. Note that for
standard (non-divisible load) instances, there might be more than
one shared machine.

To distinguish the cases of incompatible and clashing types,
we now focus on non divisible load instances. When α < 2, there
can be up to m machines which have to be shared in an optimal
solution, as in the following instance. There are m tasks of each
type: type 1 has only long tasks (of length p); type 2 has only
short tasks (of length ε). In an allocation with m shared machines,
the maximum cost is α p+ ε . In an allocation with less than m
shared machines, at least one machine executes two tasks of type
1, so the maximum cost is at least 2p. Thus, if α < 2, and if ε is
sufficiently small, a schedule with m shared machines has a lower
cost. In contrast if α ≥ 2, we prove in Proposition 11 that there is
always at most a single shared machine.

6.1 Compatible types (α ≤ 1)
Proposition 6. Let A be a O(X), (1+ ε)-approximate algorithm
for P||Cmax. Algorithm SCHEDJUXTAPOSE(A ) is a O(X), (1+
ε)(1+α)-approximate algorithm for MCT for T = 2 and α ≤ 1.

Proof. Let I be an instance of MCT. Let P be the partition
returned by algorithm SCHEDJUXTAPOSE(A ) for instance I. Let
Cost(P) be the cost of P. Let P∗ be an optimal solution of instance
I for MCT, and let OPT be the cost of P∗. Let C∗1 (resp. C∗2) be
the makespan of an optimal schedule of I1 (resp. I2) for problem
(P||Cmax). Let C1 (resp. C2) be the makespan of schedule S1 (resp.
S2). We have: C1 ≤ (1+ ε)C∗1 and C2 ≤ (1+ ε)C∗2 since A is a
(1+ ε)-approximate algorithm for problem (P||Cmax). Moreover,
we have C∗1 ≤OPT . Indeed, in P∗ all the tasks of I1 are partitioned
into at most m subsets (machines): the maximum load of tasks of
type 1 on a same machine in P∗ is at least C∗1 . Since the cost of
a task of type 1 is at least the load of the tasks of type 1 on the
same machine (because α1,1 = 1), we have OPT ≥C∗1 . Likewise,
we have OPT ≥C∗2 . Let us assume without loss of generality that
C1 ≤C2. The cost of P is smaller than or equal to C1 +αC2, since
the cost of a task of type 1 is the load of the tasks of type 1 on
the same machine (at most C1) plus α ≤ 1 times the load of the
tasks of type 2 on the same machine (at most C2). Thus Cost(P)≤
C1 +αC2 ≤ (1+ ε)(C∗1 +αC∗2)≤ (1+ ε)(1+α)OPT .

Proposition 7. Let A be a (1+ ε)-approximate algorithm for
P||Cmax. SCHEDMIXED(A ) is a 2(1+ε)

1+α
-approximate algorithm for

MCT for T = 2 and α ≤ 1.

Proof. Let I be an instance of MCT. Let P be the partition re-
turned by algorithm SCHEDMIXED(A ) for instance I. Let Cost(P)
be the cost of P.

Let C∗max be the makespan of an optimal solution of problem
(P||Cmax) on instance I. Let Cmax be the makespan of the schedule
returned by A on instance I. Since A is a (1+ ε)-approximate
algorithm for problem (P||Cmax), we have Cmax ≤ (1 + ε)C∗max.
Moreover, Cost(P) ≤Cmax since the cost of each task is equal to

the load of the tasks of the same type on the same machine times α

times the load of the tasks of the other type on the same machine,
and α ≤ 1.

Let P∗ be an optimal solution of instance I for MCT, and let
OPT be the cost of P∗. Let Mi be the most loaded machine in P∗

and let Cmax(P∗) be the makespan of P∗ (i.e. Cmax(P∗) is equal
to the sum of the sizes of the tasks on Mi in P∗). Let L1 (resp.
L2) be the load of the tasks of type 1 (resp. type 2) on Mi in
P∗. Without loss of generality, assume that L1 ≥ L2. The cost of
the tasks of type 1 on Mi is L1 +αL2. Thus, OPT ≥ L1 +αL2 =

L1 +α(Cmax(P∗)− L1) ≥ Cmax(P∗)
2 +α

Cmax(P∗)
2 = ( 1+α

2 )Cmax(P∗).
The last inequality holds because L1 ≥ Cmax(P∗)

2 and α ≤ 1.
Since Cost(P) ≤ Cmax ≤ (1 + ε)C∗max and OPT ≥

( 1+α

2 )Cmax(P∗)≥ ( 1+α

2 )C∗max, we have Cost(P)≤ 2(1+ε)
1+α

OPT .

SCHEDJUXTAPOSE has lowest approximation for α close to 0,
while SCHEDMIXED has lowest approximation for α close to 1.

Proposition 8. Let A be a (1 + ε)-approximate algo-
rithm for problem (P||Cmax), which runs in O(X). Algorithm
BESTSCHEDULE(A ) is a O(X),

√
2(1 + ε)-approximate algo-

rithm for MCT for T = 2 and α ≤ 1.

Proof. The approximation ratio of SCHEDJUXTAPOSE(A ) is
(1 + ε)(1 + α) (Proposition 6). The approximation ratio of
SCHEDMIXED(A ) is 2(1+ε)

1+α
(Proposition 7). Thus, the approxi-

mation ratio of algorithm BESTSCHEDULE(A ) is min{(1+ε)(1+
α), 2(1+ε)

1+α
}. The maximum is achieved when (1+ ε)(1+α) =

2(1+ε)
1+α

⇒ (1 + α) = 2
1+α
⇒ (1 + α)2 = 2 ⇒ α2 + 2α − 1 = 0

Since α ≥ 0, this means that α = −2+
√

8
2 =

√
2− 1. The maxi-

mum approximation ratio is obtained for α =
√

2− 1. It is thus
(1+ ε)(1+α) =

√
2(1+ ε). Therefore, BESTSCHEDULE(A ) is√

2(1+ ε)-approximate. Furthermore, if A runs in O(X), then
SCHEDJUXTAPOSE(A ) also runs in O(X) since it runs twice
algorithm A , and algorithm SCHEDMIXED(A ) also runs in O(X)
since it simply runs once algorithm A . Therefore, algorithm
BESTSCHEDULE(A ), which runs once SCHEDJUXTAPOSE(A )
and once SCHEDMIXED(A ) also runs in O(X).

Corollary 1. Let LPT be the algorithm which greedily schedules
n tasks in decreasing order of their lengths on parallel machines.
Algorithm BESTSCHEDULE(LPT ) runs in O(n logn) and has an
approximation ratio of 4

√
2

3 < 1.89 for MCT.

6.2 Incompatible types (1 < α < 2)
In this section, we show that SCHEDMIXED is a α(1+ε) approxi-
mation when 1 < α ≤ 2. We also introduce GREEDYFOR2TYPES,
a 2-approximate greedy algorithm running in O(n), and which
refines FILLGREEDY (whose approximation ratio is in this case

4m
m−2 , i.e., 4 for a large number of machines.)

Proposition 9. Let A be a (1+ ε)-approximate algorithm for
problem (P||Cmax), which runs in O(X). Algorithm SCHEDMIXED

returns an α(1+ ε)-approximate solution for MCT in O(X), for
T = 2 and 1 < α ≤ 2.

Proof. The proof is similar to the one of Proposition 7. Let us
consider an instance I of MCT. This instance can be considered
as an instance of problem (P||Cmax), by considering m machines
and tasks of lengths p1 . . . , pn. Let Cmax be the makespan of the
schedule returned by A on I and let C∗max be the optimal makespan
of a schedule of I for problem (P||Cmax). We have Cmax ≤ (1+
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ε)C∗max since A is a (1+ ε)-approximate algorithm for problem
(P||Cmax). Let us now consider the schedule returned by A as a
solution for MCT (the assignment of the tasks to the machines
is the one done in the schedule returned by A ). The maximum
load of a machine in this solution is, by definition, Cmax. Since
αi,i < α , the cost of a task on a machine is smaller than α times
the load of its machine, and thus smaller than αCmax. Likewise,
since the maximum load of any solution of MCT on I is at least
C∗max, we have OPT ≥C∗max. Hence, the maximum cost of a task
in the solution returned by A is at most αCmax ≤ α(1+ε)C∗max ≤
α(1+ ε)OPT .

We now define a fast greedy algorithm for MCT called
GREEDYFOR2TYPES. Like FILLGREEDY, GREEDYFOR2TYPES

first assigns all the tasks of type 1, and then all the tasks of type
2. It fills the machines until a threshold and opens a new machine
for the first task of the second type. Tasks gradually fill machines
(as in FILLGREEDY): a task (other than the first task of the second
type) is assigned to the current machine if the resulting total
load on that machine is at most L = W/m+max{W/m, pmax};
otherwise, a new machine is opened. The difference between the
two algorithms is that, with GREEDYFOR2TYPES, one machine
can be shared between types. Indeed, if the algorithm tries to open
machine m+ 1, then all the remaining tasks are assigned to the
last machine on which a task of type 1 is assigned.

Proposition 10. Algorithm GREEDYFOR2TYPES is a O(n), 2-
approximate algorithm for MCT for T = 2 and 1 < α ≤ 2.

Proof. Let Mx be the last machine on which a task of type 1 is
assigned. By construction, Mx is the only machine which might
have tasks of both types. On all the machines except Mx, the load
is at most L = W/m+max{W/m, pmax}. Let OPT be the cost
of an optimal solution for MCT. Since α ≥ 1, OPT ≥ pmax and
OPT ≥W/m. Thus, the cost of each task executing on machine
different than Mx is at most L≤ 2OPT .
We now show that the cost of a task assigned to Mx is also at most
2OPT . If there are only tasks of type 1 on Mx, then the load of
this machine is at most L (otherwise, the total allocated load of
type 1 would be greater than W), thus the cost of the tasks on Mx
is at most L ≤ 2OPT . If there are tasks of type 2 on Mx, on all
other machines the load is larger than W/m. Thus the load on Mx
is smaller than W − (m−1)W/m =W/m. Therefore, the cost of a
task on Mx is smaller than αW/m≤ 2OPT since α ≤ 2. Hence, the
solution returned by GREEDYFOR2TYPES is 2-approximate.

6.3 Clashing types (α ≥ 2)
For large coefficients, we show that an optimal solution uses at
most one shared machine. We then use this result to show that
an algorithm that uses no shared machine is a (1+ 1

1+α
)(1+ ε)

approximation.

Proposition 11. If α ≥ 2, there is an optimal solution that uses at
most one shared machine.

Proof. The proof is by contradiction. Let α ≥ 2. Assume that
there is an instance in which all optimal solutions have at least
two shared machines. Let us consider, for this instance, an optimal
solution with a minimal number of shared machines (this number
is thus at least two). Let Mk and Mk′ be two shared machines in
this solution.

Let us assume that machine Mk executes load of a = W (1)
k of

type 1 and b =W (2)
k of type 2. Machine Mk′ executes load of a′ =

W (1)
k′ of type 1 and b′ =W (2)

k′ of type 2. Without loss of generality,
we label types such that type 1 has higher load (a+ a′ ≥ b+ b′)
and machines such that machine Mk is allocated most of type 1
load (a≥ a′). If the maximal cost of a task on these two machines
is larger than or equal to max(a+a′,b+b′) = a+a′, then we put
tasks of type 1 on Mk and tasks of type 2 on Mk′ and the maximum
cost of these tasks will be max(a+a′,b+b′) = a+a′. As we have
not increased the maximum cost, and decreased by two the number
of shared machines, we contradict the assumption that we started
with a solution having a minimal number of shared machines.

Let us now assume that the maximum cost of the tasks of Mk
and Mk′ is smaller than max(a+a′,b+b′) = a+a′. We consider
two cases. In the first case, a ≥ b. On Mk, the maximum cost is
then the cost of tasks of type 2. It is equal to b+αa. We have
assumed that the maximum cost on Mk and Mk′ is strictly smaller
than a+a′, so b+αa < a+a′. As b > 0, αa < a+a′. As a≥ a′,
αa < 2a, which leads to a contradiction since α ≥ 2.

In the second case, a < b. Thus, on Mk, the maximum cost is
the cost of tasks of type 1. It is a+αb, and a+αb > a+αa > αa.
We have assumed that the maximum cost on Mk and Mk′ is smaller
than a+a′, thus αa < a+a′ ≤ 2a, which, as in the previous case,
leads to a contradiction since α ≥ 2.

We now consider algorithm GREEDYDEDICATED, defined in
Section 5.

Proposition 12. Given a (1+ ε)-approximate algorithm A for
P||Cmax which runs in O(X), GREEDYDEDICATED is a O(mX),
(1+ 1

1+α
)(1+ ε)-approximate algorithm for MCT for T = 2 and

α ≥ 2.

Proof. For α ≥ 2, there is an optimal solution σ∗ with at most
one shared machine (Proposition 11). Let OPT be the cost of σ∗

for MCT. We consider two cases. If there is no shared machine
in σ∗, then we define σ ′ = σ∗. If there is a shared machine Mi
in σ∗, assume that this machine executes load W (1)

i of type 1 and
W (2)

i of type 2. Thus, W (1)
i +W (2)

i ≤ 2OPT
1+α

, and therefore we have
min{W (1)

i ,W (2)
i } ≤

OPT
1+α

. We now construct from σ∗ a schedule
σ ′ that will not use a shared machine. The smaller out of W (1)

i and
W (2)

i is moved to the first machine dedicated for its type. The cost
of σ ′ is at most OPT (1+ 1

1+α
) and it is equal to the makespan on

some machine (there is no shared machine anymore).
Let us consider now the allocation returned by GREEDYDED-

ICATED and let us denote its makespan by Cmax. As αt,t = 1 and
no machine is shared, the maximum cost is equal to the makespan,
Cmax. Let C∗(noshared)

max be the minimal makespan of a schedule
in which there is no shared machine. Assume that this optimal
schedule uses m∗1 machines for type 1. GREEDYDEDICATED

tests all m1 ∈ {1, . . .m}. For each m1 (including m∗1) it executes
a (1 + ε)-approximate algorithm A . Thus, the makespan Cmax

returned by GREEDYDEDICATED is at most (1+ ε)C∗(no shared)
max .

Since no machine is shared in σ ′, Cmax ≤ (1+ε)C∗(no shared)
max ≤

(1+ ε)Cmax(σ
′)≤ (1+ ε)OPT (1+ 1

1+α
).

7 EXPERIMENTS

7.1 Method
7.1.1 Data
We use the cluster trace from Google [30], the standard dataset
for datacenter/cloud resource management research. The trace
describes all tasks running during a month on one of the Google
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clusters. For each task, the trace reports in its task record table,
among other data, the task’s CPU, memory and disk IO usage
averaged over a 5-minute long period. This trace is certainly not
ideal for our needs: the trace reports the usage of raw resources
(CPU, memory, network, disk), and not the load of applications.
However, to our best knowledge, there are no publicly-available
traces describing loads and performance of applications (in con-
trast to raw resources).

We generate a random sample of 10,000 task records (see [27]
for more information on the sample). Each task record corresponds
to a task in our model. To generate loads and types, we use data on
the mean CPU utilization and the assigned memory. We normalize
CPU and memory utilization to their respective maximums. We
remove 45% of task records that reported less than 0.005 in both
normalized CPU and normalized memory usage.

To assign one of T types to a task, we analyze the ratio ρ of the
weighted CPU to the weighted memory usage. For T = 2, a task
with ρ ≤ 1 is of type 1 (memory-intensive), and a task of ρ > 1
is of type 2 (CPU-intensive). This partitions the dataset in almost
equal halves. For T = 3, we pick thresholds log(ρ1) =−0.66 and
log(ρ2) = 0.66. We chose these thresholds from the histogram of
the distribution of ρ — they correspond to values of ρ for which
the number of tasks significantly diminishes. Type 1 is memory-
intensive (10%), type 3 is CPU-intensive (11%) and type 2 is
a mixed CPU-memory task. An alternative would be to use the
disk IO measurements also reported in the trace. However, in only
3% of tasks the normalized disk IO dominates both CPU and
memory: this would result in 3-type instances having a very small
number of tasks of the 3rd type, and these instances would thus
be very close to 2-type instances. For T = 4 we use thresholds
of log(ρ1) = −0.66, then ρ2 = 1, and log(ρ3) = 0.66. Type 1 is
memory-intensive (10%), type 2 is memory-CPU (40%), type 3 is
CPU-memory (39%), and type 4 is CPU-intensive (11%).

To assign load to a task, we take the maximum from the
weighted CPU and weighted memory, multiply this maximum by
100 and round it to the nearest integer.

To generate an instance of n tasks belonging to T types (with
T ∈ {2,3,4}), we take a random sample of n tasks from the
dataset. Thus, the proportions of types in the generated instance
are similar to the dataset. However, a random sample might have
less than T types: if it is the case, we remove a task from the most
common type in the instance and add a task of a missing type.

We generate the coefficients α in four different ways. In all
instances coefficients are normalized (αt,t = 1) and generated from
a uniform distribution from the following ranges:
• compatible: coefficients are smaller than 1;
• incompatible: coefficients are between 1 and 2;
• clashing: coefficients are between 1 and 4;
• mixed: there are 2 incompatible clusters (see Section 4.2). In
instances with 3 types, t1 and t2 are mutually compatible and
incompatible with t3. Similarly, in instances with 4 types, types t1
and t2 are compatible; types t3 and t4 are compatible; but both t1
and t2 are incompatible with both t3 and t4.

Note that the way we set the coefficients in non-compatible
scenarios does not necessarily correspond to the way we partition
the trace into types. We continue with these discretionary values
as, first, we want to test our algorithms for variety of settings; and,
second, we are not aware of any better dataset.

We generate an instance by choosing one of the four different
ways of setting the coefficients, a number of types T ∈ {2,3,4},
and a category of instance – small or large. In small in-

stances, the number of tasks is n∈{10,20,50,100,200,500,1000}
and the number of machines is m ∈ {2,3,5,10} (we generate
all possibilities). In large instances, the number of tasks is
n ∈ {200,500,1000,2000,5000} and the number of machines is
m∈ {20,50,100} (again, we generate all possibilities). Finally, we
discard unfeasible combinations: for incompatible and clashing
coefficients, instances in which the number of types is higher
than the number of machines; for mixed instances, instances in
which the number of types is smaller than 3. For each feasible
combination, we generate 30 instances. Overall, we generate
12930 feasible instances.

7.1.2 Algorithms
We study all the proposed algorithms except the PTAS. We briefly
recall each algorithm below:
• SCHEDMIXED (denoted by mix in plots, Sections 5 and 6.1): the
algorithm allocates tasks to machines without using the informa-
tion on types; it is thus a baseline for the type-based approaches.
• FILLGREEDY, ( f ill in plots, Section 4.2): the algorithm al-
locates compatible types to common machines loading each
machine until a threshold. We use binary search to optimize the
threshold up to which each machine is loaded. We also sort tasks
in each cluster by decreasing lengths (which makes our algorithm
analogous to the last-fit decreasing bin packing algorithms).
• SCHEDJUXTAPOSE ( jux in plots, Section 5): the algorithm
allocates each type separately on all machines and then juxtaposes,
or joins, the allocations. When juxtaposing schedules of different
types, we reverse the order of machines for every other type (as
in LPT with a small number of tasks, the machines with smallest
indices have the highest load).
• BESTSCHEDULE (best in plots, Section 5: the algorithm in-
ternally runs SCHEDMIXED and SCHEDJUXTAPOSE and then
returns the allocation with the lowest cost among the two).
• GREEDYDEDICATED (ded in plots, Sections 5 and 6.3): the
algorithm separates types into compatible clusters; incompatible
types do not share machines; the algorithm runs one of SCHED-
MIXED, SCHEDJUXTAPOSE or BESTSCHEDULE to allocate tasks
within each cluster.
• GREEDYFOR2TYPES (g2 in plots), (Section 6.2): a modification
of FILLGREEDY that shares up to one machine between types.
• FILLREBALANCE (fill-r in plots), a further modification of
GREEDYFOR2TYPES: as in GREEDYFOR2TYPES (and as in
FILLGREEDY) the algorithm starts by assigning tasks to machines
by types: each type opens a new machine and machines are filled
up to a certain treshold (as in FILLGREEDY, we optimize this
treshold with binary search). When the algorithm runs out of new
machines, it tries to assign each of the remaining tasks to one of
the m machines (it might mix types in this step). To test whether a
task fits on a machine, the algorithm computes the cost (in contrast
to GREEDYFOR2TYPES which computes load).

We use LPT as A , the underlying scheduling algorithm for
the single type problem (P||Cmax). LPT orders tasks by decreasing
sizes; tasks are processed sequentially and each task is assigned to
a machine with the smallest total load (note that we consider here
the load and not the cost).

We run FILLGREEDY on all instances; SCHEDJUXTA-
POSE, SCHEDMIXED and BESTSCHEDULE on compatible in-
stances; SCHEDMIXED, GREEDYFOR2TYPES, FILLREBALANCE

and GREEDYDEDICATED on incompatible and clashing in-
stances. On mixed instances, we run SCHEDMIXED (as in Sec-
tion 6.2), GREEDYFOR2TYPES and FILLREBALANCE. We also
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run GREEDYDEDICATED between the two clusters. In this case
the algorithm used inside the clusters (algorithm A ) is either
SCHEDJUXTAPOSE (denoted by d− jux in plots), SCHEDMIXED

(d−mix in plots) or BESTSCHEDULE (d−best in plots).

7.1.3 Scoring
For meaningful comparisons of algorithms’ results across in-
stances having vastly different loads, we compute the relative
scores by weighting the maximum cost returned by an algorithm
on an instance to a lower bound. As a lower bound, we use a
maximum from pmax and a solution of a following quadratically-
constrained program with binary variables (QCP). pmax, the max-
imum size of the task, is a lower bound of the cost for instances
in which αt,t = 1 for each type t. Indeed, each task has to be
allocated to some machine; and the lowest cost the task imposes
on its type is when the task is alone (placing any other task with
αt ′,t > 0 increases type’s t cost on this machine). The QCP is the
following:

minc,such that (2)
∀k ∈ [1,m],∀τ : uτ,k ∑

t
xt,kW (t)

αt,τ ≤ c (3)
∀t : ∑

k
xt,k = 1, (4)

∀k ∈ [1,m],∀t : 0≤ xt,k ≤ 1, (5)

∀k, t : ut,k ∈ {0,1}, (6)

∀k, t : xt,k ≤ ut,k. (7)

This program computes the cost c in a relaxed version of our
problem. We allocate fractions of loads W (t) rather than individual,
discrete tasks. A decision variable xt,k specifies a fraction of type’s
t total load W (t) allocated on machine k. To calculate type’s t
cost (Eq. 3), we take into account the load on a machine k iff t
places some load on k. We use an auxiliary binary variable ut,k to
model such usage (ut,k = 1 iff xt,k > 0, Eq. 7). We use the Gurobi
solver [14] to solve this optimization problem. As the formulation
uses binary variables ut,k, it is significantly more difficult to solve
than a standard linear program. If the solver does not finish in 15
minutes (which happened in 8% of the considered instances), we
interrupt it and take the best lower bound on the optimum found
so far.

7.2 Results
Figure 1 presents the normalized cost by instance size and type.
All the results discussed below are statistically-significant (two
sided paired t-test, p-values smaller than 0.0001). On average and
across all instance types, the type-oblivious SCHEDMIXED results
in higher costs than type-aware methods.

Incompatible and clashing coefficients (Fig. 1c, 1d, 1g, 1h)
test the behavior of the algorithms when sharing a machine
between types might be more costly than dedicating machines
to types. On these instances SCHEDMIXED is the sole algorithm
that consistently shares a machine between types. Our results
clearly show that its costs are the highest, thus they underline
the motivation for type-aware approaches. FILLGREEDY and
GREEDYDEDICATED allocate a single type to a machine on
incompatible and clashing coefficients (the algorithms operate on
clusters of mutually-compatible types, but in these instances all
types are mutually incompatible, thus the clusters contain exactly
a single type). FILLREBALANCE slightly improves FILLGREEDY.
In instances with small number of machines, sharing a machine
might lead to a better allocation. FILLREBALANCE reduces the

mean cost in small, clashing instances from 1.09 to 1.07; and in
small, incompatible instances from 1.15 to 1.08. In large instances,
the reduction is less than 1% — when there are more machines,
sharing one or two has a smaller impact. Except for small, incom-
patible instances, GREEDYDEDICATED produces allocations with
the lowest cost among the three: its mean costs are 1.20 for small,
incompatible instances and 1.02 for large, incompatible instances.
The results of GREEDYDEDICATED on clashing instances (Fig. 1d
and 1h) are almost identical to the results on incompatible
instances (Fig. 1c and 1g) — the minor differences are caused
by random generation of other parameters of the instance.

Instances with compatible coefficients (Fig. 1a and 1e)
highlight the consequences of different ways machines can be
shared between types (thus the differences between FILLGREEDY,
SCHEDMIXED and SCHEDJUX). FILLGREEDY has the highest
average costs among these algorithms. On the average, SCHED-
MIXED, the algorithm allocating jobs as if there were no types,
produces schedules with lower cost than SCHEDJUX, the algo-
rithm allocating each type separately and only then joining the
allocations (SCHEDMIXED means are 1.10 for small instances
and 1.18 for large). However, BESTSCHEDULE, choosing for each
instance the best out of SCHEDMIXED and SCHEDJUX has even
lower costs (1.04 for small, 1.07 for large), demonstrating that it
is occasionally better to use the type-aware SCHEDJUX.

Finally, mixed coefficients (Fig. 1b and 1f) test both sharing
(between compatible types) and dedicating machines (to incom-
patible clusters). As expected, the algorithm combining the best-
performing algorithms from the instances discussed above —
GREEDYDEDICATED using BESTSCHEDULE inside clusters —
dominates other algorithms with means 1.14 for small instances
and 1.03 for large ones. We clearly see the advantage of using
type-aware algorithms, as SCHEDMIXED (mixing incompatible
clusters) has a significantly higher mean score (1.41 for small
instances, 1.62 for large).

8 RELATED WORK

We introduced the side-effects performance model [26], [27],
where we studied a utilitarian (min-sum) objective. We proved
that the problem is NP-hard and we showed a dominance property
(for each type, there is an order of the machines such that the tasks
are assigned by decreasing sizes to the machines). This allowed us
to give an exact polynomial time algorithm when there is a single
type. For the general case, we proposed two algorithms, which
are exponential in the number of types and either the number of
machines or the number of admissible tasks’ sizes.

Alternative models of data center resource management.
Cloud resource management is a thriving research area. In

the brief description below, we do not aim to provide a complete
bibliography for this rapidly expanding field, especially as there is
a recent survey [28]; we rather contrast our approach with papers
representative of various approaches.

Many colocation performance models are too complex for
combinatorial results [18], [23], [24]. Schedulers rely on heuris-
tic approaches with no formal performance guarantees [4], [6],
[17], [34]. In bin-packing approaches (e.g., [31], [33], [16]),
tasks are modeled as items to be packed into bins (machines)
of known capacity [7]. To model heterogeneity, bin packing is
extended to vector packing: item’s size is a vector with dimensions
corresponding to requirements on individual resources (CPU,
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Fig. 1. The maximum cost of the solutions returned by various heuristics normalized by the lower bound. All instances. In boxplots the middle line
represents the median, the box spans between the 25th and the 75th percentile, the whiskers span between the 5th and the 95th percentile, and
the circles show the remaining points (outliers).

memory, disk or network bandwidth) [32]. Garefalakis et al. [10]
additionally considers placement constraints (e.g., tasks’ affinity
and anti-affinity). Mann [25] adds joint optimization of VMs
to PMs and application components to VMs. Alternatively, if
tasks have unit-size requirements, simpler representations can be
used, such as maximum weighted matching [2]. Bin packing and
related approaches assume that machines’ capacities are crisp and
that, as long as machines are not overloaded, any allocation is
equally good for tasks. In our model, machines’ capacities are
not crisp—instead, tasks’ performance gradually decreases with
increased load.

Flow-based approaches (e.g. [12]) encode affinities and con-
straints in a flow graph and then solve min cost max flow problem
to determine the optimal (or approximate) placement for many
tasks simultaneously. Gog et al. [12] report excellent placement
latency (an aspect we have not addressed in this paper—we
only demonstrated acceptable time complexity of our proposed
algorithms). However, like bin-packing, flow-based approaches
also do not consider performance degradation (beyond encoding
task affinities and anti-affinities).

Statistical approaches. Bobroff et al. [3] use statistics of the
past CPU load of tasks (CDF, autocorrelation, periodograms) to
predict the load in the “next” time period; then they use bin
packing to calculate a partition minimizing the number of used
bins subject to a constraint on the probability of overloading
servers. Cortez et al. [8] use machine learning to predict VM
resource consumption for more efficient oversubscription.

Di et al. [9] analyze resource sharing for streams of tasks to
be processed by virtual machines. Sequential and parallel task
streams are considered in two scenarios. When there are sufficient
resources to run all tasks, optimality conditions are formulated.
When the resources are insufficient, fair scheduling policies are
proposed.

Analysis of effects of colocation. Studies showing performance
degeneration when colocating data center tasks include [19], [21],
[36], [37]. Xu et al. [37] forms models of cloud tasks performance
as a function of their resource consumption and colocation and
proposes an optimization algorithm based on a metaheuristic.
Podzimek et al. [29] analyze the performance of colocated CPU-
intensive benchmarks. Kim et al. [20] measure performance of
several colocated HPC applications. For each pair of colocated
applications, they measure the runtime normalized by the runtime
the application has without a co-runner. Our αt,t ′ coefficients
are similar in spirit (and could possibly be set by) their interfer-
ence/affinity metrics. Additionally [20] give a greedy allocation

heuristic, but they don’t study its worst-case performance nor the
complexity of the problem.

Related scheduling models. Considering tasks with types and
(in)compatibilities between types is close in spirit to scheduling
tasks with setup times [1]. Each task has a type from a set T of
types, and for each possible couple of types (i, j) ∈ T 2, there is
a setup time si, j if a task of type i is scheduled just before a task
of type j. The difference between this problem and ours is that
setup times consider tasks scheduled sequentially over the time—
the setup time between two tasks t and t ′ delays task t ′ and all the
tasks scheduled after t ′. In contrast in our case tasks are scheduled
concurrently, thus a task influences all the tasks scheduled on the
same machine.

9 CONCLUSION

We considered a problem of allocation of tasks to machines in the
side-effects performance model. Performance of a task depends
on the load of other tasks colocated on the same machine. We
use a linear performance function: the influence of tasks of type
t ′ on a task of type t is their total load times a coefficient αt ′,t
which describes how compatible types t ′ and t are. We minimize
the maximal cost. We prove that this NP-hard problem is hard
to approximate if there are many types. However, handling a
limited number of types is feasible: we show a PTAS and a fast
approximation algorithm, as well as a series of heuristics that are
approximation algorithms for two types. We simulate allocations
resulting from algorithms on instances derived from one of Google
clusters. Our simulations show that algorithms taking into account
types lead to significantly lower costs than non-type algorithms.

Our results show a possible way to adapt to data centers
the large body of work in scheduling, which development
has been often inspired by advances in HPC platforms. We
deliberately chose to study a fundamental problem, a minimal
extension to P||Cmax. We envision that more realistic variants
of data center resource management problem, taking into
account release dates, non-clairvoyance or on-line, can be taken
into account similarly as they are considered in classic scheduling.
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