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Abstract

We study a problem involving a set of organizations. Each organization has its own pool
of clients who either supply or demand one unit of an indivisible product. Knowing the profit
induced by each buyer/seller pair, an organization’s task is to conduct such transactions within
its database of clients in order to maximize the amount of the transactions. Inter-organizations
transactions are allowed: in this situation, two clients from distinct organizations can trade and
their organizations share the induced profit. Since maximizing the overall profit leads to unac-
ceptable situations where an organization can be penalized, we study the problem of maximizing
the overall profit such that no organization gets less than it can obtain on its own. Complexity
results, an approximation algorithm and a matching inapproximation bound are given.

Keywords : approximation algorithm with performance guarantee; complexity; matching problem;
cooperation

1 Introduction

We are given a two-sided assignment market (B, S, A) defined by a set of buyers B, a disjoint set
of sellers S, and a nonnegative matrix A = (aij)(z‘,j)e Bxs Where a;; represents a profit if the pair
(i,7) € B x S trades. In this market products come in indivisible units, and each participant either
supplies or demands exactly one unit. The units need not be alike and the same unit may have
different values for different participants.

We study a problem involving a set of organizations {Oy, ..., O,} which forms a partition of the
market. A buyer (resp. seller) is a client of exactly one organization. It is assumed that for every
transaction (i, j), the organizations of ¢ and j make an overall profit a;; which is divided between
the seller’s organization and the buyer’s organization as follows. The seller’s organization receives
ps a;; while the buyer’s organization gets py, a;;, where py and p, are fixed numbers between 0 and
1 and such that p, +ps = 1. Thus a;; is a sort of commission that these two organizations divide
according to pp and ps. We assume without loss of generality that 0 < p, < ps < 1 (if the profit
of the buyer is larger than the profit of the seller, then we rename p, into ps and the other way
around). Moreover, we consider in this paper values such that ps + pp = 1.

*A preliminary version appears in the proceedings of the 6th Workshop on Approximation and Online Algorithms
(WAOA 2008).



In this model, buyers and sellers do not make pairs by themselves, but these pairs are formed by
their organizations. Each organization acts as a selfish agent who only knows its list of clients and
only cares about its profit. Thus, each organization O; shall maximize the weight of a matching on
its own list of clients (this task can be done in polynomial time for example by using the Hungarian
method [9]). However the global profit can be better if transactions between clients of distinct
organizations are allowed. This leads to a situation of cooperation where the agents accept to
disclose their lists of clients by reporting them to a trusted entity. This trusted entity can conduct
transactions between a buyer and a seller from distinct organizations, and of course, it can also do
it for two clients of the same organization. The trusted entity shall maximize the collective profits.
However, maximizing the collective profits by returning a maximum weight matching may lead to
unacceptable situations: each organization is selfish so it does not want to cooperate if its profit is
worse than it could obtain on its own. The optimization problem faced by the trusted entity is then
to maximize the collective profit so that no organization is penalized.

1.1 The MultiOrganization Assignment problem MOA

The market is modelled by a weighted bipartite graph G = (B, S; E;w) and q sets (representing the
organizations) Oy, ..., O, forming a partition of BUS. Every buyer (resp. seller) is represented by a
vertex in B (resp. S), E C B x S is the edge set representing pairs and w : £ — R is a nonnegative
weight function. The subgraph of G induced by O; is denoted by G;. We have G; = (B;, Si; Ei; w)
where B; = BN O; and S; = SN O;. A set M C E is an assignment (or a matching) if and only if
each vertex in (B, S; M;w) has degree at most one. The weight of an assignment M (i.e. the sum
of the weights of its edges) is denoted by w(M), and the profit of organization O; in M is denoted
by w;(M) and defined as

wi(M) = > pyw(lz,y]) + > psw([z,y])

{lzyleM: (z,y)€B; xS} {[z,y]€M: (z,y)EBxS;}

where ps and p;, are two nonnegative rational numbers such that ps +p, =1 and 0 < p, < ps < 1.

We say that an edge whose endpoints are in the same organization (resp. in distinct organiza-
tions) is internal (resp. shared). Let G be the graph G in which we removed all the shared edges.
The maximum weight matching of G is denoted by M (i.e. M is the maximum weight matching
of G reduced to its internal edges). Let M; be the restriction of M to G;. The multiorganiza-
tion assignment problem (MOA for short) is to find a maximum weight matching M of G such that
w;(M) > w;(M) for all i € {1,...,q}. Here w;(M) is what organization O; can get on its own.
Then M is a feasible solution to the MOA problem. As a notation, M* denotes a maximum weight
matching of G whereas M}, 4 is an optimum for MOA.

1.2 Applications

We give here two applications where MOA arises.

1.2.1 The “agencies problem”

Each organization has its own pool of sellers (S) and buyers (B) who either supply or demand one
unit of an indivisible product. Consider for example that organizations are real estate agencies.
Each organization receives a commission on each transaction it deals, and its goal is to maximize
its profit. Therefore each organization accepts the assignment given by a trusted entity if and only
if its profit is at least equal to the profit it would have had without sharing its file with the other



organizations. The overall aim is then to find an assignment which maximizes the total amount of
transactions done, while guaranting that no organization decreases its profit by sharing its file.

1.2.2 A scheduling example

Each organization (which can be a university, laboratory, etc.) owns unit tasks (given by its users),
and several (possibly different) machines. During some given time slots, the machines are available
to schedule the tasks of the users. Each user gives her preferences for a given machine and a
given time slot. These preferences are represented by integers (a;j) between 0 (a task cannot be
scheduled on this machine at this time), and a given upper bound. The goal of each organization is
to maximize the average satisfaction of its users, represented by the sum of the satisfactions of its
users divided by the number of users, in the returned assignment. Therefore an organization will
accept a multiorganization assignment if and only if the average satisfaction of its users is at least
as high as when the organization accepts only the tasks from its users. Here, an unmatched user’s
satisfaction is 0. This corresponds to MOA when S is the set of users, B the set of couples (time
slot, machine), ps = 1 and p, = 0.

1.3 Related work

The multi-organization assignment problem is a variant of the classical assignment problem (see [17]
for a recent survey). Besides its combinatorial structure, MOA involves self-interested agents whose
cooperation can lead to significant improvements but a solution is feasible only if it does not harm
any local utility.

Non cooperative game theory studies situations involving several players whose selfish actions
affect each other [13]. In Tucker’s prisoner’s dilemma, two players can either cooperate (C), i.e. stay
loyal to the other prisoner, or defect (D), i.e. agree to testify against the other.

C D
cl 33 0,4
D| 4,0 1,1

Table 1: the prisoner’s dilemma

A social optimum is reached if both play C but the situation where both prisoners defect is the
only stable situation (a Nash equilibrium). In fact, the game designer of the prisoner’s dilemma
filled the payoff matrix in way such that any prisoner has an incentive to defect. MOA models the
opposite situation where the game designer tries to fill the payoff matrix such that each organization’s
(weakly) dominant strategy is to cooperate, i.e. to disclose its list of clients and follow the trusted
entity. The game designer has to compute a Nash equilibrium (a stable matching) that optimizes
the social welfare (total profit).

The maximum weight matching M* is sometimes unstable because the organizations are selfish.
Then, one has to consider a different optimum M7}, which is the maximum weight Nash equilib-
rium (no organization can increase its profit by using its own maximum weight matching instead of
the solution returned by the trusted entity). Interestingly, a theoretical measure of this loss of profit
due to the selfishness of the organizations exists. Known as the price of stability (PoS) [19, 2], it is
defined as the (worst case) ratio between the most socially valuable state and the value of the best
Nash equilibrium. For MOA, PoS= w(Mj,p4)/w(M*).



MOA is related to cooperative game theory [13]. A central issue in this field is to allocate the
value of a coalition to its members. Shapley and Shubik associate to any two-sided assignment
market (B, S, A) a cooperative game with transferable utility (the assignment game) and show that
its core is nonempty and has a lattice structure [20].

MOA is close in spirit to other works which study, at an algorithmic level, how to make organiza-
tions cooperate. In [15, 6], the authors study a scheduling problem involving several organizations.
Each of them has a set of jobs to be completed as early as possible and its own set of processors. A
selfish schedule is such that the processors only execute jobs of their owner. The authors propose
algorithms which return schedules with good makespans and in which the organizations cooperate
without being penalized. In [11, 10], the authors study the selfish distributed replication problem.
This problem involves several nodes of a network whose task is to fetch electronic contents (objects)
located at distant servers. Instead of taking an object from its server at each request, the nodes can
save time by making a local copy. An intermediate strategy is to get an object from another node
which is closer than the server. The optimization problem is to fill the (bounded) memory of each
node in order to minimize the overall expected response time. Since an optimum solution can be
unacceptable to selfish nodes (e.g. a node’s memory is filled with objects that it rarely requests),
the authors of [10] propose equilibrium placement strategies where no one is penalized.

1.4 Contribution

We investigate the computational complexity of MOA in Section 2. In particular, we show that the
problem is strongly NP-hard if the number of organizations if not fixed. It is weakly NP-hard
for two organizations. A possible proof of strong NP-hardness for a fixed number of organizations
is discussed and some pseudo-polynomial and polynomial cases are given as well. We provide an
approximation algorithm with performance guarantee p, and a matching proof of inapproximation
in Section 3. We also show in this section that the price of stability of MOA is pp. Section 4
deals with connections between MOA and the multicriteria matching problem. Section 5 is devoted
to generalizations of MOA and also generalizations of the results of this article. We conclude in
Section 6.

2 Complexity results

We prove that MOA is strongly NP-hard in the general case. We also show that the restriction of
MOA to 2 organizations is weakly NP-hard. Next we show pseudopolynomial and polynomial cases.

2.1 Computationally hard cases

Let ps and pp be two numbers such that 1 > ps > p, > 0 and ps + pp, = 1. Given a positive profit P
and an instance of MOA, the decision version asks whether the instance admits a matching M such

that vie{l,...,q} U)Z(M) > w(MZ) and w(M) > P.
Theorem 1 The decision version of MOA is strongly NP-complete for every values ps and py.

Proof: Let ps and pp be two numbers such that 1 > ps > pp > 0 and ps + pp, = 1. Given a positive
profit P and an instance of MOA, the decision version asks whether the instance admits a matching
M such that Vieqy g wi(M) > w(M;) and w(M) > P.

Given a bound W, a set A = {ay,...,as,} of 3m positive integers such that Zf’fl a; = mW and

Vi=1,...,3m, % <a; < %, the 3-PARTITION problem is to decide whether A can be partitioned



Figure 1: Bipartite graph obtained by the transformation of an instance I = {aj,...,ag} of the
3-PARTITION problem where W = %Z?Zl a;j. There is an edge with weight a; between b3 ; and
g,y for all pairs (z,y) € {1,2} x {1,2,3}. These edges are shaded in the picture except those with
weight aq.

into m subsets Ay, As, ..., A, such that the sum of the numbers in each subset is equal (thus
ZajeAi aj = W and |A4;| = 3 for all © € {1,...,m}). The 3-PARTITION problem is strongly NP-
complete (problem [SP15] in [7]).

Given an instance I of the 3-PARTITION problem, we build a corresponding instance I’ of MOA
as follows (see Figure 1 for an illustration):

e we are given m + 1 organizations Oy, ...,Opy1, 6. g=m+1

® O;,41 has 3m buyers and m sellers respectively denoted by b,,41,1 t0 byg1,3m and sp41,1 to

Sm—l—l,m
o for i =1,...,m: O; has 3 sellers denoted by s; 1, s;2, s;,3 and one buyer b;
e The edge set is given by {[b;, 5;.1], [bi, Smt1,4] 10 =1, ... ,m} U {[bms1,55 5i.1], [bmt1,5s Si2], [bmg1,js 863

ijell,...,m}x{1,... 3m}}

o fori= 17 s, M w([bi78i71]) = w([bi,8m+17i]) =W
[ ] fOI‘ ’L',j S {1, e ,m} X {1, e ,3m}: ’w([berLj, Si,l]) = ’w([berLj, SZ"Q]) = ’w([berLj, Si,3]) = CL]'
o P=2Wm

We have w; (M) = (ps+pp)W =W fori=1,...,m and wy,+1(M) = 0. We claim that I’ admits
a feasible assignment M such that w(M) > 2mW if and only if I admits a partition into m subsets
Ay, Ag, ..., A, such that ZajeAi aj =W and |A;| =3 forallie {1,...,m}.

Let A = (A1, As, ..., Ap) be a YES solution to the instance I of 3-PARTITION. We build a
corresponding matching M, solution to the instance I’ of MOA as follows: M = § at the beginning
and for each triple a,, ay, a, of A;, we add edges [bp11.2,5i1], [bmt1,y, Si,2) and [bym41,2, 54,3] to M.
We also add edge [b;, sy41.4) to M for all i € {1,...,m}.



We remark that M is a feasible assignment. Indeed, organization O; (i = 1,...,m) has 4 shared
edges in M, that is [bs, Spp1,i] with weight W, [by41.2, 5i,1] with weight ag, [bm41,y, 5i,2] with weight
ay and [bp, 11,2, Si,3] with weight a.

Since A is a YES solution to I, we know that a, + ay+a, = W. Hence, wi(M) = (ps + py)W =
wi(M) for i =1,...,m. We also have wy,41(M) > w1 (M) since all the weights are nonnegative
and wy, 41 (M) = 0. Thus, M is a YES solution to instance I’ of the decision version of MOA because
the total profit made by the organizations is 2mW.

Conversely, let M be a YES solution to the instance I’ of the decision version of MOA with
P = 2mW. By definition we have w(M) > 2mW, w;(M) > W for i = 1,...,m and wy, 41 (M) > 0.
Observe that M N {[b;,si1] | i = 1,...,m} = 0. Indeed, if k edges in {[b;,s:1] | i = 1,...,m}
belong to M then the total profit would be strictly less than 2mW since w(M) < kW + (m —
EYW 4329 a; — kmin{a; 16 =1,...,3m} < (2m — EYW < 2mW. Furthermore, M must be perfect
since otherwise w(M ) < 2mW. Indeed, the maximum weight matching has a weight 2mWW and it
is obtained only if all the edges [b;, Sp114] (with @ € {1,...,m}) are selected and if all the vertices
bm1,; (with j € {1,...,3m}) are saturated by the matching.

We build a partition A = (A1, Ag, ..., Ap), solution to the instance I of 3-PARTITION corre-
sponding to M as follows: for i = 1 to m, put in A; the weight of the (shared) edges incident to
8.1, Si2 and s;3. One can observe that A is a feasible 3-partition of I. Take an organization O;
(¢ =1,...,m), 4 shared edges are incident to its nodes in M. The one incident to b; has weight W.
The total weight of the three others must be at least W since wi(M ) = (ps + pp)W. Hence, each A;
is assigned 3 values whose sum is at least W but if this sum exceeds W for at least one organization,
we would have Z;’:l a; > Wm which is a contradiction. As a consequence, each A; is assigned 3

values whose sum is exactly W. U

Theorem 2 The decision version of MOA is NP-complete, for every values ps and py, even if there
are 2 organizations and the underlying graph is of mazximum degree 2.

Proof: Let ps and p, be two reals such that 1 > pg > pp > 0 and ps+pp = 1. The reduction is done
from PARTITION: given a set {ai,...,an} of n integers such that Y ", a; = 2W, decide whether
there exists J C {1,...,n} such that > ;. ;a; = W. PARTITION is known to be NP-complete
(problem [SP12] in [7]).

From an instance I of PARTITION, we build I’, an instance of MOA, in the following way:

e we are given 2 organizations O; and Os

O1 has n + 1 sellers and n + 1 buyers respectively denoted by s;; and by; fori=1,...,n+1

Os has also n+1 buyers and n+1 sellers respectively denoted by b ; and s9; fori =1,...,n+1

The edge set of the underlying graph is given by {[s1n+1,b2n+1]} U
{[b2,n+15 52,041} U {52,041, b1} U {[b1is s14], [51,65 02,4] [b1,is s24] i =1,...,n}

The weights are defined by:
L] w([bu, 8171']) = 60,2‘ and w([bgﬂ', 8172‘]) = U)([SQJ', 6172‘]) = 3ai for i = 1, oo, n

o w([bant1,52n+1]) = 6W and w([s1nt1,b2n+1]) = W([b1nt1,52,n41]) =3W +1



byt 8141 815 by

S2.n41 b2,n+1 bz,j 2.5
O,

Figure 2: The construction of I'.

The underlying graph is made of a collection of n 4 1 disjoint paths of length 3. Figure 2 gives
an illustration of this construction.

Organization O; can make a profit wi (M) = (ps + pp) oy 6a; = 12W if it works alone. The
local profit of organization Oy is wo(M) = (ps + pp)6W = 6W. Thus, globally, the weight of this
matching is 18W.

We claim that I’ admits a feasible assignment M such that w(M) > 18W + 2 if and only if I
admits a set J C{1,...,n} with 3. ;a; = W.

Let J be a subset of {1,...,n} such that 3 ;c;a; = W (and then, } .;,a; = W). We
build the assignment M as follows: M = {[bsj, 51, [s2,b14] : 7 € JyU{[b1j,814] : j ¢ J} U
{Is1,n41,02,n41], [b1,n41, S2,041]} R

Clearly, the cost of M is given by w(M) = 18W + 2. Now, let us verify that M is a feasible
solution. The local profit of organization O1 is (ps+pb) D_ ;¢ 5 645+ (ps+1b) 35 3a;+(Ps+po) BW +
1) = 12W + 1 > w; (M) whereas the profit of organization Oy becomes (ps + pp) > jes da; + (ps +
pp)(BW 4 1) = 6W + 1 > wy(M).

Conversely, let M be a feasible assignment such that w(M ) > 18W + 2. The following property
can be easily proved.

Property 2.1 Any optimal solution of MOA can be supposed to be mazimal with respect to inclusion.
Furthermore any feasible solution of MOA can be completed so that it can be supposed to be maximal
with respect to inclusion.

Now, remark that M necessarily contains the edges (51,041, b2.n+1] and [by 41, S2.p41] since on
the one hand, the weight of any maximal matching on the graph induced by all vertices except
{81 nt1 $2n41, 01041, b2 41} is 12W, and on the other hand w([bypt1,52n41]) = 6W. Thus,
M must contain some edges [bg j,s1;] or [by 4 52,j] in order to compensate the loss of the edge
[lig,n+1,527n+1] Let J = {j <n:[byj, 51, € M} By property 2.1, M is completely described by
M = {[baj,s1,5], [brjs2,5] - j € Ty U{[brjs15]:5 ¢ J}U {[81,n+1abz,n+1] [b1n+1, S2.n41]}-

The profit of organization Oz is (ps + pp) ZjeJ?)aj + (ps +pp)BW +1) =3 ZjeJaj +3W + 1.
Since that profit is at least wy(M) = 6W, we deduce that djesa; = W — 1. Finally, > jes 4

3
must be an integer, so > jegaj = W. On the other hand, the profit of organization O; is given by

(ps + 1) 2255 60+ (Ps +pb) 2oje s 3a;+ (s +pp) BW +1) = 637 1a;—3> cya;+3W+1. This

quantity must be at least w; (M) = 6 > j—1aj. Since 37 ; a; is an integer, we obtain » .. ;a; < W.
In conclusion, ZjeJ a; = W which means that {a1,...,a,} can be partitioned into two sets of weight
w. O

Is MOA strongly NP-complete for two organizations? We were not able to answer this question
but we can relate it to another one stated more than 25 years ago and which is still open: Is the
exact weighted perfect matching problem in bipartite graphs strongly NP-complete?



Given a graph whose edges have an integer weight and given a value W, the problem EX-
ACTPM is to decide whether the graph contains a perfect matching M of total weight exactly W
[3, 8, 12, 14]. Papadimitriou and Yannakakis [14] prove that EXACTPM is (weakly) NP-complete in
bipartite graphs. Barahona and Pulleyblank [3] propose a pseudopolynomial algorithm in the case
of planar graphs and Karzanov [8] gives a polynomial algorithm when the graph is either complete
or complete bipartite and the weights are restricted to 0 or 1. Mulmuley, Vazirani and Vazirani
[12] show that ExAcTPM has a randomized pseudo-polynomial-time algorithm. However, the de-
terministic complexity of this problem remains unsettled, even for bipartite graphs (Papadimitriou
and Yannakakis conjectured that it is strongly NP-complete [14]).

ExacTPM is an auto-reducible problem, that is, finding a perfect matching of weight W is
polynomially equivalent to deciding whether such a matching exists.

Here, we prove that there is a Turing reduction from MOA when there are 2 organizations to
ExacTtPM. Thus, we conclude that if MOA with 2 organizations is strongly INP-complete then
ExacTPM is also strongly NP-complete in bipartite graphs. Notice that this result also holds
when there is a constant number of organizations.

Proposition 2.1 If EXACTPM is solvable in polynomial time in bipartite graphs when weights
are polynomially bounded, then MOA with two organizations and weights polynomially bounded is
polynomial for every values ps and py.

Proof: Let pp, ps be two rational numbers such that 1 > ps > pp > 0 and ps + pp, = 1, and let
I = (G,w) be an instance of MOA with two organizations where G = (V, E). W.l.o.g. w(e), psw(e)
and ppw(e) are integers for every edge e € E (otherwise, multiplying each weight by the denominator
of py if pp # 0, we obtain an equivalent instance). Moreover for all e € E, w(e) < P(|V]) for some
polynomial P. Let R be the weight of a maximum weight matching of G. Consider the bipartite
graph G’ = (V’, E’) built from G by adding dummy vertices and edges with weight 0 such that any
matching of G' can be completed into a perfect matching of G’ with the same value. Formally, we
add a copy of K|g| g with |S| new B-vertices and B new S-vertices. Each new B-vertex (resp.,
S-vertex) is completely linked to the S-vertices (resp., B-vertices) of G. Then, each shared edge
e = [u,v] € E is replaced by a path of length 3 [u, uc], [te, Ve, [Ve, v] Where ue, v, are new vertices.
Note that either {[u,u.], [ve,v]} or {[ue,ve]} is included in a perfect matching of G'. Consider
the weight function w’ defined as w'(e) = (R + 1)3w(e) if e is internal to organization O; and
w'(e) = (R+1)?w(e) if e is internal to organization Oz. Moreover, if ¢ = [u,v] € E is a shared edge
then w'([u, ue]) = (R+ 1)psw([u, v]) if u € SNO; and w'([u, ue]) = (R4 1)ppw([u, v]) otherwise (i.e.
u € BNO7). We also set w'([v,v]) = psw([u,v]) if u € SNOz and w'([v, ve]) = pyw([u, v]) otherwise.
The weight of each remaining edge of G’ is 0. It is clear that G’ is built within polynomial time and
w’ remains polynomially bounded. Let I' = (G', w").

For any matching M, we denote by M; (resp., Ms) the restriction of M to organization O; (resp.,
02) and by Mgpareq the set of shared edges of M. Denote by W7 (resp., W5) the contribution of the
shared edges of M to the profit of organization Oy (resp., Oz). We have w(Mgpareq) = W1 + Wo
since ps + pp = 1.

We claim that w(M) = w(My)+w(Mpareq) +w(Ms) if and only if there exists a perfect matching
of I' with weight W = (R+1)3w(M1) + (R+1)?w(Ms) + (R+ 1)W1 + Ws. Moreover, M is a feasible
solution to MOA if and only if w(M;) + W; > w;(M) for i = 1,2.

One direction is trivial. So, let M’ be a matching of I’ with value w'(M') = W = (R+1)3A +
(R+1)2B + (R+ 1)C + D. By the choice of R, we must get w(M]) = A, w(M}) = B and
w(M! ) = C+ D, where C (resp., D) is the contribution of M/, . to the profit of organization

shared

O1 (resp., O2). The profit of organization Op (resp. O3) according to M’ is A+ C' (resp. B+ D).



Figure 3: Construction of G’ and perfect matching M’ from G and matching M.

In conclusion by applying at most R* times the polynomial algorithm for EXAcTPM, we find
an optimal solution of MOA. By an exhaustive search, we try all values of A, B,C, D at most equal
to R such that A+ C > wy(M) and B+ D > we(M). O

Proposition 2.2 MOA with a constant number of organizations can be solved in pseudopolynomial
time when the underlying graph has a maximum degree of 2.

Proof: Here, we deal with 2 organizations, but the result can be extended to any constant number
of organizations. The proof is based on Proposition 2.1, and uses the pseudopolynomiality result
of [3] for EXACTPM in planar graphs. However, the construction of G’ is slightly different because
when one adds a copy of K|g||p| the resulting graph may be not planar. So, let I = (G,w) be an
instance of MOA with 2 organizations where G = (V, F) is a bipartite graph of maximum degree 2.
W.lo.g., assume that G is 2-regular, that is a collection of disjoint even cycles (by adding dummy
vertices and edges of weight 0). Then, for each cycle C of G, we add a copy C” of C' and we link each
vertex of C' to its copy in C’. Finally, as it is done in Proposition 2.1, each shared edge e = [u,v] of
a cycle C' in G is replaced by a path of length 3 [u, u.], [te, ve], [ve, v] Where ue, ve are new vertices.
The weights are defined similarly to the ones given in Proposition 2.1. Figure 3 gives an illustration
of this construction.

Obviously, G’ is planar. Moreover, any matching M can be converted into a perfect matching
M’ of G'. Thus, by applying the argument given in Proposition 2.1, the result follows. O

2.2 Polynomial cases

MOA is trivially polynomial when there is a unique organization or when the underlying graph is
of maximum degree 1. Furthermore an exhaustive search can efficiently solve the problem if the
underlying graph G = (V, E) contains O(log |E|) shared edges. Let MOAg; be the subcase where
w([i, j]) € {0,1} for all (4, j) € Bx.S. We prove that an optimum to MOA ; is a maximum cardinality



assignment of the underlying graph though a maximum cardinality assignment is not necessarily a
solution of MOAg 1.

Theorem 3 MOA( ;1 is polynomial.

Proof: Let M be an assignment on an unweighted bipartite graph G = (B, S; F). Recall that
a path in G is alternating with respect to M if it alternates edges of M and edges of E \ M.
Furthermore, an alternating path 7 is augmenting if no edge of M is incident to its endpoints. The
word “augmenting” means that (M \ 7) U (7 \ M) is a matching of size |M |+ 1. M is of maximum
size on G if G does not admit any augmenting alternating path with respect to M (by contradiction,
if this was not the case, we could increase the size of M).

Let I be an instance of MOAg 1 defined upon G. Let M be an optimal matching built as follows.
Start with the feasible matching M and increase its size with augmenting alternating paths while
it is possible.

Let M7 be the matching produced at step j. We suppose that ¢ steps are needed to obtain M.
Hence, M° = M and M* = M. We mainly prove

wi( M) > wi(M7), Vi€ {1,...,q} (1)

for all j € {0,...,t — 1}. This inequality states that the use of an augmenting alternating path
cannot deteriorate the profit of any organization.
Given v € V and a matching M, let ¢(v, M) be the contribution of v to the profit of its organi-

zation in M:
ps if v € S and an edge of M is incident to v

c(v,M)=1<¢ p, ifv € B and an edge of M is incident to v
0  otherwise

Let V' be the vertices of 7/, the augmenting alternating path such that M7' = (M7 \ 7/)U(z’\ M7).
We deduce that

wi (M) = wi(37) = 37 (e, M) = e(w, 1) ) (2)
veV’
for all i € {1,...,¢}. One can observe that ¢(v, M7) = ¢(v, M7t1) if v € V' and v is not an extremal

node of 7’. Indeed, a buyer b € V/ matched with a seller s € V' in M7 is still matched in MJ+! but
with another seller. Similarly, a seller s € V' matched with a buyer b € V' in M7 is still matched
in M7+1 but with another buyer. If v € S NV’ (resp. v € BNV') and v is an extremal node of 7’
then ¢(v, M) = 0 and ¢(v, M7t1) = p, (resp. c(v, M7) = 0 and c(v, M7*1) = p;). Hence,

(v, ML) — ¢(v, M7) > 0 (3)

for all v € V because p; > p, > 0. Using (2) and (3) we obtain w;(M/+1) — w;(M7) > 0 for all
ie{l,...,q}. M is a feasible assignment because wi (M) > w; (M) > > w(MO) = w(M;)
for all i € {1,...,q} (we recall that M is the maximum weight matchmg of G reduced to its
internal edges, and M; is the restriction of M to G;). In addition, w(M) = w(M*) because the
algorithm stops when no augmenting alternating path exists. In conclusion, M is optimal because
w(M*) = w(My04)- O

3 Approximation

Recall that ps and p, are any values such that 0 < p, < ps <1 and ps + p, = 1. We start by the
following property.

10



Property 3.1 w;(M*) > pyw(M;), and this bound is asymptotically tight.

Proof: Let C; be the set of edges of M* which have at least one endpoint belonging to organization
0;. We have w(C;) > w(M;), otherwise we could obtain a matching of weight larger than w(M*)
by replacing the edges of C; by the ones of M;. The profit of O; is wi(M*) > ppw(C;), and thus
wi(M*) > ppw(M;).

Let € be a small positive number. Let us now show that the above bound is tight, by considering
the following instance: there are two organizations Op and Oy such that there are in O; two nodes
by and s; linked by an edge of weight 1 — ¢, and there is in O one node sy linked to by by an edge
of weight 1. We have: w(M;) =1 — ¢, M* = {[by, s2]}, and wl((]\]\//ll.)) =, which tends towards p,
when ¢ tends towards 0. Z U

Let us consider algorithm APPROX given below.

Algorithm APPROX
e Construct the graph G' = (V', E’) from G = (V, E) as follows: V' =V, and E' = E, except
that the weights of the edges are modified: for each edge [u, v] such that u belongs to
organization O; and v belongs to organization O;, w'([u,v]) = w([u,v]) if u and v belong to
the same organization (i = j), and otherwise w’([u,v]) = pp w([u,v]).

e Return a maximum weight matching of G'.

Theorem 4 APPROX is a py-approximate algorithm for MOA, and this bound is asymptotically tight.

Proof: Let ps, py be two numbers such that 1 > ps > p, > 0 and ps+pp, = 1. Let M be a matching
returned by algorithm APPROX on graph G. We first show that the profit of each organization O;
in M is at least w(M;). Thus M is a solution of MOA.

Let M) be the set of edges of M such that both endpoints belong to O;, and let M*t(®) be
the set of edges of M such that exactly one endpoint belongs to O;. Since M is a maximum weight
matching of G, w'(M™ ) 4w/ (M) > w'(M;) = w(M;), otherwise we could have a matching
with a larger weight by replacing the edges of (M nt(@) g M em(i)) in M by the edges of M;. Thus the
profit of O; is at least w(M™®)) 4 py w(MeHD)) = w/ (M™D) 4w/ (MHD)) > w(M;) = w;(M).

Let us now show that APPROX is pp-approximate. The edges of G’ are the same as the ones
of GG, except that the weight of some of them has been multiplied by p, < 1. Thus M, which is a
maximum weight matching of G’, has a weight w(M) > pyw(M*) > pyw(Mz04)-

Let us show that this bound is asymptotically tight by considering the following instance. Here,
we assume p, > 0. Recall that p, < 1/2 since 1 > ps > pp > 0. Let £ > 0 such that e < 1/p, — 1.
There are two organizations, organization O1, which owns two vertices b; and sy, also linked by
an edge of weight 1, and organization Os, which owns two vertices by and so, linked by an edge of
weight 1. There are two shared edges, between b; and s9, and between by and s;: both edges have
weight pib — . Algorithm APPROX returns the matching M ={[b1, s1], [b2, s2]} with weight 2 in G’
because the weight of {[b1, s2], [b2,s1]} in G' is 2(1 — ppe) < 2. The optimal solution would have

been Mj;o4 = {[b1,52], [b2,51]}. The ratio between the weights of these two solutions is %:
MOA
ﬁ’ which tends towards p, when e tends towards 0. ]
Py —2¢

Theorem 4 implies that the price of stability of MOA defined as the maximum, over all the instances,
of w(M3;04)/w(M¥) is at least p,. In fact, we are able to prove that PoS= pj,.

Proposition 3.1 The price of stability is py.

11
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Figure 4: The instance I; resulting from the above reduction

Proof: It follows from Theorem 4 that w(M}),,
M such that w(My;p4) = w(M) > pyw(M*).

Let us now show that this bound is tight. There are two organizations: organization Oy, which
owns two vertices by and si, linked by an edge of weight W7, and organization Os, which owns one
vertex ss, linked to b; by a link of weight W5. Suppose that W; = & such that 0 < e < 1 and W =1

)/w(M*) > p, since APPROX returns a matching

when p, = 0. The ratio % = ¢, tends towards 0 = p; when ¢ tends towards (0. Suppose that
Wy =1and Wy = 1/p, — e such that 0 < € < 1/pp — 1 when p, > 0. The ratio w@gjz/[]\%’ff = lf)sbpb’
tends towards p, when ¢ tends towards 0. U

We can prove that Theorem 4 is best possible if P#NP, i.e. we cannot obtain a (py + €)-
approximation for all e > 0. Actually, we prove a slightly stronger result where n denotes the
number of vertices.

Theorem 5 For any polynomial P, it is NP-hard to obtain a (py + m)—appmm’mation for
MOA where at least three organizations are involved.

Proof: We describe a gap reduction. We start with an instance of PARTITION given by a set of n
integers {a1,...,an} such that > ; a; = 2W. For any real ¢t > 1, we construct an instance I; of

MOA as follows:

e we are given 3 organizations O1, O and Os.

O1 has n + 1 buyers and n + 1 sellers respectively denoted by b1 ; and s1; fori =1,...,n+1.

O has 2 buyers denoted by b2 1,b2 ,+1 and n + 1 sellers denoted by sg; for i =1,...,n+ 1.

O3 has one seller s3 1.

The edge set of the underlying graph is {[s1,,b14], [b1,i,52] 14 =1,...,n} U{[s1nt1,b21]} U
{b1ns1552n41), [S2,041, b2,n41)s D241, 53,1]

The weights are given by:
° w([su, bl,i]) = w([bu, 82,2‘]) = a; for ¢ = 1, R N

o w([s1pt1,b21]) = psW, w([b1nt1,52n+1)) = PsW, w([s2.n+1,b2n+1]) = tpeW + 2p,W, and
w([bg,nt1,83.1]) = tW.

An illustration of this construction is given in Figure 4.

If t = O(2PUVD) where |V| = 3n 4 6 is the order of the underlying graph, then it is not difficult
to see that the above construction is given within polynomial time.
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The profits the organizations can make on their own are respectively w1 (M) = (ps + pp) dora; =
2W, wa (M) = (ps + p) (tpeW + 2ps W) = tppW + 2psW and w3 (M) = 0.

We prove that there are only two distinct values for the optimal value of MOA, that are OPT(I;) =
topW + 3psW + 2W or OPT (1) = tW + 2p, W 4+ 2W, and OPT(I;) = tW + 2p,W + 2W if and only
if {a1,...,a,} admits a partition.

Observe that tW + 2p,W + 2W > tppy W + 3p, W + 2W if and only if ¢ > 1 since p, = 1 — ps and

s > 0. Let M} , be an optimal solution of MOA (with value OPT(I;)). Let us consider two cases:

Case [s2n41,b2n41) € M7 ,,. An optimal solution can be described by

{[s1,i,014] i =1,....n} U{[s1,n41,021]s [s2,n+1, b2,n41]}-
Actually, [s1,p41,b2.1] € M, because M . is maximal by Property 2.1 (cf page 7). Moreover, the
weight of any maximal matching on the graph induced by {si;,b14,52;:¢=1,...,n} has the same

value 2W. In this case, we get OPT (1) = tpyW + 3p, W + 2.

Case [soni1,b2nt1] & M- Edges {[bini1,s2n41]; [b2n41, 831, [S1,n41, 2]} belong to M7,
by Property 2.1. The contribution of these 3 edges to the profit of O is psw([b1nt1,S2.n+1]) +
pyw([b2ni1,53,1]) + Pow([s1mt1,02.1]) = tW + pW < tpyW + 2p, W = w([s2,n41,b2,n41]) since
ps > 0. Hence, a subset of shared edges between O; and Oy must belong to M} .. Let J* ={j <n:
(b1, s2,5] € M} be this subset. Then, M, , is entirely described by {[b1 n+1,52.n+1], [b2,n+1,53.1],
[$1,n41,021]} U {[blja52 i€ P U{lsi,b1,]:5¢ I}

To be feasible, Mf,,, must satisfy wi(M,n,) = w(Mi), ie. D g5 aj +ppd ey a; + (ps +
pp)psW > Z] 1 aj from which we deduce W > Z]EJ* a; because p, = 1 —pg and ps > 0. M™ must
also satisfy wy(M%,,) > w(My), i.e. ps Y jess aj + (ps + po)psW + tpyW > tpyW + 2p,W, which
is equivalent to ZjeJ* a;j > W. Then, we obtain ZjeJ* a; = ng{J* a;j = W. On the one hand
OPT(I;) = tW + 2p,W + 2W and on the other hand {a1,...,a,} has a partition given by J*.

Conversely, if {ai,...,a,} admits a partition then it is not difficult to prove that OPT(I;) =
tW + 2p W + 2W.

Now, assume that there is a (py + m) approximation of MOA given within polynomial time
for some ¢ > 0. Consider ty = 5c2F(VD

on instance Iy,.

and let apx (I, ) denote the value of the approximate solution

e {ay,...,a,} does not admit a partition. One has OPT(I;,) = 5¢2°VDp, W + 3p, W + 2W and
then apz(Iy,) < 5c2FWVDp, W + 3p, W + 2.

e {ai,...,a,} admits a partition. We have OPT(I;,) = 5c2°IVDW + 2p, W + 2W. Since
apz(Iy,) > (py + TM)OPT(L?()) by hypothesis and ps, < 1, we deduce apz(l;,) > 5W +
5c2PWVDp, W > 5e2PWVDp, W 4 3p, W + 2W.

In conclusion, apz allows us to distinguish within polynomial time whether {aq,...,a,} has a
partition or not, which is impossible if PZNP. O

4 MOA and multicriteria matching problems

This section deals with the design of exact or approximate algorithms for MOA with two organizations
(¢ = 2). We relate here MOA to multicriteria matching problems, and we present a conditionnal result
as we did in Proposition 2.1 (where we have linked the complexity of MOA with two organizations
and weights polynomially bounded to the complexity of ExacTPM).
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We relate MOA to the k-criteria matching problem where each edge is evaluated with k cost
functions (also called criteria) fi,..., fr. In this case, the cost of a matching for the criterium f;
is the sum of the values of the criterium f; for every edge in the matching. The goal is then to
find the set & of the solutions such that s € & if there is no solution better than s on all the
criteria simultaneously. An approximate solution is a matching which is on all the criteria (1 — ¢)-
approximate of a solution s € §. In [16], Papadimitriou and Yannakakis show that the k—criteria
matching problem admits a fully polynomial RNC scheme. In [18] Przybylski, Gandibleux and
Ehrgott propose an efficient exact method when k = 2 and the graph is bipartite (this problem is
also called biobjective or bicriteria assignment problem). More recently Berger, Bonifaci, Grandoni
and Schéfer [4] proposed a PTAS for a budgeted version of the matching problem which is equivalent
to the biobjective matching problem. We now show how to turn an instance of MOA with two
organizations into an instance of the biobjective assignment problem. Next we exploit the results
given in [4] and [18].

An instance of the biobjective assignment problem is composed of a simple graph G = (V, E)
and two functions f : E — Ry and s : E — R;. Then a matching M has two values f(M) =
Y ecar fle) and s(M) = > 1, s(e). Given an instance of MOA with two organizations, one builds
a corresponding instance of the biobjective assignment problem as follows. The graph (vertex and
edge sets) remains unchanged. Let us define f and s for an edge e = [u,v]. If u,v € O; then
f(e) =w(e) and s(e) = 0. If u,v € O3 then s(e) = w(e) and f(e) =0. If u € BNO; and v € SNO:
then f(e) = ppw(e) and s(e) = psw(e). Iff u € SNO; and v € BN Oy then f(e) = psw(e) and
s(e) = ppw(e). Therefore, we have wy (M) = f(M) and we(M) = s(M) for all M € M. It is not
difficult to see that the exact algorithm of Przybylski, Gandibleux and M. Ehrgott [18] can be used
to solve instances of MOA with two organizations.

Berger et al. [4] study the following problem

II(B) maximize  f(M)
such that: M e M
s(M)<B

where B is a given non negative budget and M is the set of all feasible matchings. The problem is
called maz-min budgeted matching. Let M* be an optimum to II(B). Berger et al. present a PTAS,
i.e. they are able to compute in polynomial time a feasible solution M such that s(M) < B and

f(M) > (1—¢)f(M*) for all € € (0,1).

Let us define two versions of the maz-maz budgeted matching.

IT'(B) maximize  f(M) Im"(B) maximize  s(M)
such that: M e M such that: M e M
s(M)> B f(M)>B

Let A" (resp. A”) be a PTAS for II'(B) (resp. II”(B)). In the sequel, A'(B,¢) and A"(B,¢)
denote the execution of A" and A” for a given budget B and a fixed parameter ¢ € (0, 1), respectively.
In particular, A'(B,e) returns a matching M such that s(M) > B and f(M) > (1—¢)f(M*) where
M* denotes an optimum solution to II'(B). Similarly, A”(B,¢) returns a matching M such that
f(M) > B and s(M) > (1 —¢)f(M**) where M** denotes an optimum solution to II"(B).

In the sequel, (G,w) denotes the instance of MOA while (G, f,s) denotes the corresponding
instance of maz-max budgeted matching.
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Algorithm 2 takes as input € and an instance of MOA and returns a (1 — ¢)-approximate solution
of MOA for this instance. It consists in iteratively computing a (1 — ¢)-approximate solution for the
corresponding max-max budgeted matching problem with a budget slowly decreasing until a solution
of MOA is found.

Algorithm 2:
Input: (G,w) instance of MOA, (G, f, s) the corresponding instance of maz-maz budgeted
matching and € € (0,1)

Output: a feasible (1 — ¢)-approximate solution M

Compute M* and M on (G, w);

M = M;

Execute A”(w1(M),e) and denote by M” the resulting matching;

if (w;(M") > w;(M), i =1,2) A (w(M") > w(M)) then

| M« M,
end

_ [1og(wa(M))—log(w(M*))] .
R‘_( (a1 og(o )W’

for r =0 to R do
Execute A'(max{(1 — &)"w(M*),ws(M)},e) and denote by M" the resulting matching;
if (wi(M") > wi(M), i =1,2) A (w(M") > w(M)) then
M+ M";
end

end
Return M ;

Theorem 6 There is a PTAS for MOA with two organizations (q = 2) if there is a PTAS for the
maz-max budgeted matching problem.

Proof: Let us consider Algorithm 2. As usual we suppose that w(M) < 2F (") for some polynomial
P. Here n is the number of vertices and M is any feasible matching. We deduce that R+1 < P(n).
Then Algorithm 2 is polynomial because A’ and A" are polynomial and A’ is executed R+ 1 times.

Case A: If wi(My5,4) < wlgM)/(l — €) holds for i = 1,2 then M is a (1 — ¢)-approximation of
Mo because w(M) = w1 (M) +wa(M) > (1 —e)(wi(My0,4) +wa(My0,)) = (1= e)w(Mjro0)-
In addition, M is by definition a feasible solution to MOA.

Case B: If wi(M};04) < wi(M)/(1 —¢) and w2 (M304) > wy(M)/(1 — €) then we are going to
show that M” is a (1 — ¢)-approximation of M}, 4. Let M be an optimal solution to I1”(wy (M)).
Since A” is (1 — ¢)-approximate and M, is a feasible solution to II”(w; (M)),

wa(M") > (1 = e)wz(M) > (1 — e)wa(Mjs0.4) (4)

holds. We know that .

w1 (M") > wi (M) (5)
holds because M” is a feasible solution to IT”(w; (M)). Inequality (4) and wa (M}, p4) > wa(M)/(1—
e) give )

wg(M”) > U)Q(M). (6)

We deduce from inequalities (5) and (6) that M" is a feasible solution to MOA. Inequality (5) and
wi(M504) < wi(M)/(1 —¢) lead to

wi(M") = (1= e)wi(Mys04)- (7)
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Therefore inequalities (4) and (7) give w(M") > (1 — e)w(My;04)-
Case C: Suppose that

wi(Mio4) > wi(M)/(1 ) (8)
holds. In the loop of Algorithm 2, A’ is executed with a budget which ranges from (1— £)ow(M*) =
w(M*) to max{ws (M), (1 — &)Fw(M*)}. We know that (1 — )w(M*) < wy(M) because

R := [(log(wz(M)) — log(w(M")))/log(1 — £)].
Since wa (M) < wa(Mi;o4) < w(Mioa) < w(M*), there exists r* € [0, R] such that
max{wz (M), (1 — )" w(M*)} < wa(Mjgoa) < (1 =€) w(M*). (9)

Let M be an optimum solution to IT'( max{wy (M), (1—6)T*E(M*)}). We know that M"" is a (1—¢)-

approximation of M. By definition, wi (M) > (1 —e)w; (M) and wy(M"™") > (1 —¢)" w(M*) hold.
Using inequality (9) we know that (1 — e)wa(M};04) < (1 — &) w(M*). We deduce

(
wa(M™) > (1= &) w(M*) > (1 — e)wa(Mjro4)- (10)
Since M, is a feasible solution to II'( max{ws (M), (1 — &)™ w(M*)}), w1 (M) > wy (M;,) and
wi(M™) > (1 = e)w (M) > (1 - &)wi(Mys04) (11)
Using (10) and (11) we get w(M™") > (1 — &)w(M},y ). Using (8) and (11) we get

wi (M™) > wy (M).

Since wo (M) > max{wy (M), (1 — &) w(M*)} > wy(M), M is a feasible (1 — ¢)-approximate
solution to MOA. O

Unfortunately, we were not able to build A" and A”. However Berger [5] provides a weaker
result : a modification of Berger et al.’s result yields a polynomial time algorithm which outputs a
matching M satisfying s(M) > (1 —£€)B and f(M) > (1 —¢)f(M*) where M* denotes an optimum
solution to II'(B) and &,e € (0,1).

5 Generalizations

5.1 Relaxation of the selfishness of the organizations

Suppose that each organization O; accepts a proposed global matching if its own profit is at least
w(]\ZZ) /x where z > 1 is fixed. This means that each organization accepts to divide by x the profit it
would have without sharing its file with the other organizations. The problem, denoted by MOA(x)
is then to find a maximum weight matching M such that w;(M) > w(M;)/z for all i € {1,...,q}.
Let M:mzt(:v

If x = 1, an organization does not accept to reduce its profit, and this problem is the one stated
in the introduction. If x > 1/py, the organizations accept to divide their profits by 1/py. Property
3.1 page 11 shows that in a maximum weight matching M*, the profit of organization O; is at least
pyw(M;). Thus M,y = M*. Our aim is now to solve MOA(z) for 1 < x < 1/py. With a slight
modification of the proof of Theorem 1, we can show that this problem is strongly NP-hard for
each value x smaller than 1/p,. One can also extend APPROX to a slightly modified algorithm®
ApPPROX(z) and prove that it is (z pp)-approximate algorithm for MOA(z) and this bound is tight.
In addition, the price of stability is x p, for this generalization.

) denote such a maximum weight matching.

!The weight of shared edges is multiplied by zp;, instead of py.
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5.2 General graphs

One can extend MOA to general graphs when ps = p, = 1/2. In this case, the distinction between
buyers and sellers is lost. For example, the problem has the following application: Numerous web
sites offer to conduct home exchanges during holidays. The concept is simple, instead of booking
expensive hotel rooms, pairs of families agree to swap their houses for a vacation. We model the
situation with a graph G = (V, E) whose vertices are candidates for house exchange. The vertex
set is partitioned into g sets/organizations O; ... O,. Vertices within an organization are its clients.
Every edge [a,b] € E has a weight w([a,b]) representing the satisfaction of candidates a and b if
they swap. Pairs are formed by the organizations which only care about the satisfaction of their
clients. In case of a mixed-organizations exchange [a,b], it is assumed that the satisfaction of
both participants is w([a,b])/2. The problem is to maximize the collective satisfaction while no
organization is penalized.

Theorems 3 to 5 and Proposition 3.1 (where p;, is replaced by 1/2) hold for general graphs since
the proofs do not use the fact that G is bipartite.

6 Conclusion

We studied cooperation, at an algorithmic level, between organizations. We showed that the price of
stability is pp, and we studied the complexity of MOA. We presented polynomial cases, and showed
that the problem is NP-hard in the general case. We also gave an approximation algorithm, match-
ing the inapproximation bound when there are at least 3 organizations. There remain some open
problems: is it possible to have an algorithm with a better approximation ratio when there are two
organizations?? Is this problem strongly NP-hard in this case (we notice that this problem is related
to the open Exact Perfect Matching problem)? When we consider that each organization accepts a
solution if it does not reduce its profit by a factor larger than x, is it possible to get an algorithm
with an approximation ratio better than x p;, (with 1 < 2 < 1/py)? An interesting direction would
also be to study fairness issues in this problem. For example, among all the solutions of the same
quality, return the one which maximizes the minimum w;(Mcont) — Mi, that is the minimum increase
of profit of the organizations.
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