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Abstract

We study the problem of non-preemptively scheduling n indepen-
dent sequential jobs on a system of m identical parallel machines in
the presence of reservations, where m is constant. This setting is prac-
tically relevant because for various reasons, some machines may not be
available during specified time intervals. The objective is to minimize
the makespan C\,.x, which is the maximum completion time.

The general case of the problem is inapproximable unless P = NP;
hence, we study a suitable strongly NP-hard restriction, namely the
case where at least one machine is always available. For this setting
we contribute approximation schemes, complemented by inapproxima-
bility results. The approach is based on algorithms for multiple subset
sum problems; our technique yields a PTAS which is best possible in
the sense that an FPTAS is ruled out unless P = NP. The PTAS
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presented here is the first one for the problem under consideration; so
far, not even for well-known special cases approximation schemes have
been proposed. Furthermore we derive a low cost algorithm with a
constant approximation ratio and discuss FPTASes for special cases
as well as the complexity of the problem if m is part of the input.

1 Introduction

In parallel machine scheduling, an important issue is the scenario where the
machines are not continuously available but time intervals of unavailabil-
ity have to be taken into account; this problem occurs due to periods of
regular maintenance or because high-priority jobs have already been preal-
located in the system. In either case we obtain deterministic off-line models
capturing realistic industrial settings and scheduling problems in parallel
computing. More precisely, we study the problem of scheduling sequential
jobs on a system of m identical parallel machines, where m is constant; how-
ever, these machines may be unavailable for certain periods of time which
are known a priori. The jobs must be executed non-preemptively; this set-
ting is also called the non-resumable case [18, 20, 21] in the literature. The
objective is to minimize the makespan Cpax, which is the maximum of the
completion times of all jobs. Cpax is one of the most well-studied objectives
in the field of scheduling and usually regarded as an “easy” objective in
the sense that most problem formulations permit good approximation al-
gorithms. Quite restricted special cases of the model considered here have
already been studied, as discussed in the sequel; however, on the algorith-
mic side, only list scheduling algorithms or similar approaches and exact
exponential algorithms have been analyzed and experimentally evaluated.
Contributions. We use algorithms for multiple subset sum problems
to govern the non-preemptive scheduling of jobs on identical parallel ma-
chines with reservations. On the algorithmic side we obtain a PTAS for
the case of an arbitrary number m of machines which is based on dual ap-
proximation [8]; furthermore we discuss FPTASes for m € {1,2} with one
reservation and a fast greedy algorithm. These algorithms are complemented
by inapproximability results which show that for arbitrary m no FPTAS is
possible; furthermore, we show that the problem does not become easier if
the number of reservations per machine is restricted to one. Finally we show
that the problem formulation where m is part of the input does not permit
an approximation ratio better than 3/2; all of our inapproximability results
are based on the assumption P # NP and use gap creation arguments.
This article is organized as follows. In Sect. 2 we formalize the problem
and discuss the inapproximability of the general case. In Sect. 3 we present
a PTAS for a suitably restricted problem as well as FPTASes for m € {1,2}
with one reservation in Subsect. 3.1 and sketch how to obtain a fast approx-
imation algorithm for the general problem in Subsect. 3.2; furthermore, in



Subsect. 3.3 our approximation algorithms are complemented by hardness
results. Finally we conclude with a summary in Sect. 4.

Related problems and previous results. Lee [17] and Lee et al. [19]
study identical parallel machines which may have different starting times;
here, the LPT policy (where tasks are greedily scheduled from the largest
to the smallest task) is analyzed. Lee [18] study the case where at most one
reservation per machine is permitted while one machine is always available
and obtain approximation ratios for low-complexity list scheduling algo-
rithms. Liao et al. [21] present an experimental study of an exact algorithm
for m = 2 within the same scenario. Hwang et al. [10] study the LPT pol-
icy for the case where at most one interval of unavailability per machine is
permitted; they prove a tight bound of 14 [m/(m — \)]/2 where at most
A € [m — 1] machines are unavailable simultaneously. In [20], Chapt. 22,
additional problem definitions and a survey about previous results can be
found. Scharbrodt et al. [25] present approximation schemes and inapprox-
imability results for a setting where the reservations are regarded as jobs
and, in contrast to our problem, also contribute to the makespan. Further-
more, Liao & Sheen [22] study the preemptive case where the reservations
are given implicitly by availability periods; they prove this problem formu-
lation to be polynomially solvable.

So far, the model under consideration in this article has not been ap-
proached with approximation schemes, not even for well-established special
cases [10, 18, 21].

The approach taken in our work is based on multiple subset sum prob-
lems. These are special cases of knapsack problems, which belong to the
oldest problems studied in combinatorial optimization and theoretical com-
puter science; hence we benefit from the fact that they are relatively well
understood. For the classical problem (KP) with one knapsack, besides the
result by Ibarra & Kim [11], Lawler presented a sophisticated FPTAS [16]
which was later improved by Kellerer & Pferschy [14]; see also the text-
books by Martello & Toth [23] and Kellerer et al. [15] for surveys. The case
where the item profits equal their weights is called the subset sum prob-
lem and denoted as SSP. The problem with multiple knapsacks (MKP) is
a natural generalization of KP; the case with multiple knapsacks where the
item profits equal their weights is called the multiple subset sum problem
(MSSP). Various special cases and extensions of these problems have been
studied [1, 2, 3, 4, 5, 12, 13], finally yielding PTASes for various problem
formulations [2, 4, 13] including the case upon which our approach is based.

2 Problem Definition and Preliminaries

Now we formally define our problem. Let m € N* denote the number of
machines, where m is considered to be a constant. A problem instance [



consists of n jobs characterized by processing times p1, ..., pn, and r reserva-
tions Ry,...,R,. For each k € [r], Ry = (i, Sk, tx) indicates unavailability
of machine ij in the time interval [sg,tx), where sg,tp € N,ix € [m] and
sk < tg. We suppose that for reservations on the same machine there is no
overlap; for two reservations Ry, Ry such that iy = 7 holds, we assume
[Sk,tr) N [skr,tir) = 0. For each machine ¢ € [m] let R, := {Ry, € I|iy, =i}
denote the set of reservations for machine i. Finally, for each i € [m] sup-
pose that R} is sorted increasingly with respect to the starting times of the
reservations; more precisely, R, = {(¢,si1,ti1),- .., (i, Sir;, tir;) } such that
8;1 < -+ < 84, Where we set r; := \R;| These assumptions are established
algorithmically in O(rlogr) time by sorting {R1, ..., R,} lexicographically
with respect to the first two components of its elements and partitioning
it into RY,..., R}, and finally merging adjacent reservations in R} for each
i € [m]. In the sequel we use P(I) := >_7_, p; to denote the total process-
ing time of an instance I and for each S C [n] we write P(S) 1= 3 ;¢ p;
for the total processing time of S. Finally let pmax = max{p;|j € [n]}.
A schedule is a function o : [n] — [m] x [0,00) which maps each job to
its executing machine and starting time; if ¢ is clear from the context it
may be dropped from notation. Our goal is to compute a non-preemptive
schedule of the tasks such that no task is scheduled on a machine that is
unavailable, and, on each machine at most one task runs at a given time;
the objective is to minimize the makespan Cpax. Using the 3-field notation,
we denote our problem by Pm|nr-a|Chax, where the job characteristics in-
dicate the non-resumable setting with availability constraints [18, 20]. For
this problem, Lee [18] remarked that LPT performs arbitrarily badly. Later
Eyraud-Dubois et al. [6] proved the following result.

Theorem 1. Pm|nr-a|Cpax does not admit a polynomial time algorithm
with a constant approximation ratio unless P = NP,

The inapproximability of the general case is due to the permission of
intervals in which no machine is available. Hence it is reasonable to suppose
that at each time step there is an available machine. This is not sufficient
since we can prove in this case the same inapproximability result by con-
sidering, for example, the following instance. There is, for a given period
p, a set of reservations which alternate on two machines in a such a way
that there are no two reservations at the same time and the period between
two consecutive reservations is smaller than the length of any task of the in-
stance. In this case, no task can be put during time period p and we get the
same inapproximability result as in the case where there is on each of these
machines a big reservation of length p. Thus we will suppose in the sequel
that at least one machine is always available. If we regard reservations as
preallocated high-priority jobs, then, since the machines are identical, the
reservations can be put on the machines in such a way that w.l.o.g. the first
machine is always available, hence i, # 1 for each reservation Ry. This can



be done by distributing the reservations one by one and always putting a
reservation on the machine with maximum index ¢ € [m] among the available
machines.

We use Pm, Lup|nr-a|Cax to denote this restricted problem; 1up means
that at least one machine is always available. This problem is still strongly
NP-hard for m > 2, as we will see later in Theorem 5.

3 Algorithms and Hardness Results

We present approximation algorithms and complexity results. In Subsect. 3.1
we obtain approximation schemes; in Subsect. 3.2 we discuss fast greedy
algorithms that are based on the same idea. We close the section with
complexity results in Subsect. 3.3.

3.1 Polynomial Time Approximation Schemes

We explain the multiple subset sum approach for m > 2 in detail to obtain
a PTAS for Pm, lup|nr-a|Cpax; however our approach will work only for
m constant. Later we discuss the cases m € {1,2}, which admit FPTASes
for the case where only one reservation is permitted. Our idea is based
on obtaining a complementary representation for the periods of availability
in order to reduce the problem to MSSP which admits a PTAS [2, 4]; we
derive a dual approximation algorithm [8] by using binary search on the
makespan where a PTAS for MSSP serves as a relaxed decision procedure,
as illustrated in Fig. 1. In Sect. 2 we argued how to obtain sorted sets R of
reservations for each i € [m]\ {1}. We use the algorithm in Fig. 2 to obtain
sets of inclusionwise maximal availability intervals A; for each i € [m], each
one containing elements (i, s, t) indicating that machine i is available in [s, )
where s € N;t € NU {oo}. Below we discuss the single steps in detail.

Step 1 in Fig. 2 defines all time available on the first machine as an
interval of availability. Step 2.1 checks if there is no reservation on machine

target makespan ¢t = 14

my Ay

ma Ay ‘ Ry
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Figure 1: Sketch illustrating the approach of the algorithm in Fig. 4. The
grey zones Ry,...,Rs are the reservations. If the target makespan is 14,

we try to fill all the jobs in knapsacks of sizes corresponding to Aq,..., Ar;
zones A and A7 end at time 14



1. Set Ay :={(1,0,00)} and for each i € [m] \ {1} set 4; := 0.
2. For each i € [m] \ {1} execute Steps 2.1-2.3.

2.1. If r; = 0, set 4; := {(4,0,00)} and proceed with the next iteration
of the loop started in Step 2.

2.2. Set t:=0.
2.3. For each r € [r;] execute Steps 2.3.1-2.3.2.

2.3.1 If s; = 0, then proceed with the next iteration of the loop
started in Step 2.3, otherwise set A; := A; U {(i,¢, s4)} and
t =t

2.3.2 If r = r;, then set 4; := A; U{(i,t,00)}.

Figure 2: Algorithm 1

i; in this case the entire processing time [0, 00) on machine 7 is added to
the set A; of availability intervals for machine ¢. In the innermost loop,
the variable ¢ serves as a pointer indicating the next time step in which the
current machine becomes potentially available. Step 2.3.1 covers the case
in which the current reservation starts at time zero, which can only be the
case for the first reservation on the current machine; in this case no interval
is generated, otherwise the processing time before the current reservation
is added to A;. Finally, Step 2.3.2 checks if the current reservation is the
last one on the current machine and handles the case correspondingly. The
running time of the algorithm in Fig. 2 is linear in m,r and independent
from n; furthermore at most 2r intervals of availability are generated. For
a fixed machine ¢ € [m], we use the initial sorting of R} to obtain that the
intervals of availability for machine i are sorted with respect to their starting
times.

1. For each i € [m] execute Steps 1.1-1.2.

1.1. Set Al(t) = {(i,¢,t') € Ai|s' < t)} and a; := |AL(t)].
1.2. If a; > 0, set tiq, := min{tiq,,t}.

Figure 3: Algorithm 2

However more important is the subroutine in Fig. 3 that uses A1,..., A,
to generate the finite intervals of availability for a fixed finite planning hori-
zon [0,t) where t € N. Step 1.1 in the algorithm in Fig. 3 removes all
intervals of availability that begin outside of [0,¢) while Step 1.2, if neces-
sary, truncates the last interval on a machine to fit exactly into the planning



horizon. The running time of the algorithm in Fig. 3 is independent from
n and linear in m,r. In the sequel we denote A(t) := U™, A}(t) and will
use the at most 2r intervals stored in A(t) as knapsacks in which we like
to pack the jobs in [n]. To this end, we use a PTAS for MSSP and for
each job j € [n] define an item j with weight p; to obtain an instance of
MSSP. The algorithm is described in Fig. 4, where MSSPPTAS is a PTAS
for MSSP where the knapsack capacities are permitted to be different [2, 4].
We suppose that MSSPPTAS does not only select a desired S C [n] but also
stores the feasible assignment to the knapsacks as a byproduct. In total, we
obtain the algorithm in Fig. 4; the approach is sketched in Fig. 1.

1. Use the algorithm in Fig. 2 to generate A; for each i € [m].
2. Set LB :=0and UB := P(I).
3. While UB — LB > 1 repeat Steps 3.1-3.3.

3.1 Set t := |(UB — LB)/2|. Use the algorithm in Fig. 3 to generate
A(t), the set of availability intervals for fixed planning horizon
[0, ).

3.2 Use MSSPPTAS with accuracy €¢/m to select a set of jobs S C [n]
such that

P(S) > (1 — ¢/m)max{P(5")|S" C [n],
S’ permits a feasible packing into the intervals in A(t)}.

3.3 If P(S) < (1 —€/m)P(I) then set LB :=t else store S and set
UB :=1t.

4. Schedule the jobs in the last stored set S into the interval [0, UB)
as indicated by the solution generated by MSSPPTAS when S was
returned; schedule the jobs in [n] \ S in the interval [UB, o) on the
first machine without unnecessary idle time.

Figure 4: Algorithm MultiSubsetSumScheduler

Theorem 2. The algorithm in Fig. 4 is a PTAS for Pm, lup|nr-a|Cpax.

Proof. Since the first machine is available at each time step t € [0, 00), the
sum of processing times P(I) is an upper bound for the optimal makespan
Cr .x; hence in Step 2, the lower bound LB and the upper bound UB are
initialized to have the following properties.

1. LB < C¥

max*



2. Thereis a set S C [n] such that the jobs in S permit a feasible schedule
into the time horizon [0, UB) and P(S) > (1 —¢/m)P(I).

The second property is due to the fact that, since C} .. < UB, all jobs
can be scheduled in [0, UB) and thus it is impossible that the algorithm
MSSPPTAS returns a set S C [n] such that P(S) < (1 —¢/m)P(I) holds;
both properties are invariant under the update of LB and UB in Step 3.3.
The number of iterations of the binary search in Step 3 is bounded by
log P(I) < log(npmax) = logn + log pmax which is polynomially bounded in
the encoding length of I. On termination of the binary search in Step 3,
LB + 1 = UB holds, hence UB < Cf} .. since LB < Cf} .. is satisfied.
This means that the set S selected in Step 4 can be scheduled in [0, UB)
and satisfies P(S) > (1 — ¢/m)P(I); hence P([n]\ S) < eP(I)/m holds.
Furthermore the jobs in [n] \ S can be scheduled on the first machine in
[UB, c0) since the first machine is available. We have P(I)/m < Cf..; in
total, the makespan of the schedule generated by the algorithm in Fig. 4 is
bounded by UB + eP(I)/m < C¥ ., + €Ck . = (1 +€)C} .. and we obtain
the desired approximation ratio. Since the running time of MSSPPTAS is
polynomially bounded in r and n, the claim is proved. O

However, since the running time of MKPPTAS may grow exponentially
in 1/e, the running time of the algorithm in Fig. 4 may also grow exponen-
tially in m. MSSP does not admit an FPTAS even for the special case of
two knapsacks of equal capacity, unless P = NP holds, as discussed in [15],
Subsect. 10.4. Hence it is impossible for the approach used above to yield
an FPTAS for Pm, lup|nr-a|Crax by replacing MSSPPTAS with a better
algorithm, which is not surprising in the light of Corollary 6 in Subsect. 3.3.

For m =1 the situation is different. Lee [18] remarked that 1|nr-a|Ciax
is strongly NP-hard via reduction from 3-Partition. The problem is inap-
proximable in the general case by Theorem 1 and remains inapproximable if
the number of reservations is restricted to two, as can be seen in Lemma 8
in Subsect. 3.3. However, if there is only one reservation, an FPTAS can be
obtained since SSP admits an FPTAS [13, 15]. This case corresponds to a
simple knapsack problem — if all tasks can be scheduled before the reserva-
tion, we get an optimal solution; otherwise we use the FPTAS for SSP to
schedule as much load as possible before the reservation.

As in [21] we study the case m = 2 with one reservation R; = (2, s,t) and
show how to obtain an FPTAS based on dynamic programming and scaling
the state space. In total, the problem for m = 2 with one reservation is a cc-
benevolent problem in the sense of [26] and hence admits an FPTAS. Here
C’ .= P(I) yields a 2-approximation, hence we have C}, . < C’' < 2C}
Furthermore we denote by A the interval [0, 00) on machine 1, by B the
interval [0, s) on machine 2 and by C the interval [t,c0) on machine 2. For
a (partial) schedule o we use A(o) to denote its load in A, B(o) to denote



its load in B and C(o) to denote its load in C. The states of the dynamic
program can be organized as a table by defining

F[k,z,y] :== min{oo, min{B(c)|o is a schedule for the jobs in [k]
such that A(c) =z and C(0) = y}}

for each k € [n] and z,y € {0,...,C’}, where co indicates the nonexistence
of such a schedule. We obtain the recurrence relation

F[k,%,y] = mln{F[k - 17‘T _pk7y]7F[k - 17%?] _pk]}
if F[k—1,z,y] +pr > s (job k can not be placed in B) and
Flk,z,y] = min{F[k — 1,z — pg,y], F[k — 1,2,y — pi), F[k — 1, z,y] + pr.}

if Flk—1,z,y] + pr < s (job k can be placed in B); this recurrence relation
can be proved in detail by induction on k. Hence, we can solve the problem
P2, 1up|nr-a|Cpax with one reservation to optimality. Here we have, for
instance, the options of inductively iterating over k € [n] or to use some
recursive implementation which stores intermediate values; the latter will
result in a so-called lazy evaluation approach. Both approaches lead to
the pseudopolynomial runtime bound O(nC"?) = O(n3p2,,) by selecting
x,y € {0,...,C"} in order to minimize the value

max{z,t + y} : Fln,z,y] # 0o,y >0
f(z,y) =< max{z, F[n,z,y]} : F[n,x,y] # oo,y =0
00 : Fln,z,y] = 00

which, in the case f(z,y) # oo, is the makespan of a corresponding schedule.
A suitable schedule can either be found by backtracking or maintaining suit-
able auxiliary data structures while evaluating the states; both approaches
can be implemented within the given runtime bound.

Now we discretize the state space of the dynamic program by defining a
scaling factor K := €C’/(2n) and introducing scaled job sizes ¢; := [p;/K|
for each j € [n]. The values ¢; are used for computation of the indices on
the x and y axes while the values p; are still used to compute the values
for the states of the dynamic program, where now z,y € {0,...,[C'/K]}.
Hence, the discretized makespans of schedules for the jobs in [n] now have
the load values Kx and Ky for the intervals A and C, respectively. In total,
the values of f defined above are modified by replacing x by Kz and y by
Ky in the maximum expressions; finally, the described algorithm yields the
following result.

Theorem 3. P2, lup|nr-a|Cmax with one reservation admits an FPTAS.



1. Sort items by size in non-increasing order yielding p; > - -+ > py; sort
knapsacks by capacity in non-decreasing order yielding c¢; < --- < ¢p,.

2. Iterate items in the order generated in Step 1; at each step, assign the
current item to the knapsack with minimum index it can be feasibly
packed into, if any. Discard the current item otherwise.

Figure 5: Algorithm GreedyMSSP

Proof sketch. We obtain [C'/K| € O(n/e), hence the runtime bound of the
sketched algorithm is bounded by O(n3/e?) which is polynomial in both
1/e and the encoding length of the instance. Furthermore the inequality
Kqj > p;j > K(qj — 1) is valid for each j € [n]; with calculations similar to
those in [16], we obtain K} ;cqqj < > ;cqPj + €Chay for each S C [n]. In
particular, this inequality is satified for suitable job sets Sy, S2 C [n] which
constitute the machine loads in A and C in an optimal schedule; in total
this yields the desired approximation ratio. O

3.2 Greedy Algorithms

In [5] a greedy 2-approximation algorithm for MSSP with running time
O(n?) is briefly mentioned; the subject is also discussed in [15], Subsect.
10.4.1, with a slightly different approach. Here we present the algorithm
from [5] in Fig. 5; the following theorem is taken from [5].

Theorem 4. The algorithm in Fig. 5 is a 2-approximation algorithm for
MSSP; furthermore this approximation ratio is asymptotically attained.

By using the algorithm from Fig. 5 instead of MSSPPTAS and changing
the bound 1 — ¢/m to 1/2 in Step 3 of the algorithm in Fig. 4 we obtain
an approximation algorithm with ratio 1 + m/2 for Pm, lup|nr-a|Cpax by
following the lines of the proof of Theorem 2. Note that this result also holds
for the problem formulation where m is part of the input; hence, we also
obtain an approximation algorithm with ratio 14+ m/2 for P, lup|nr-a|Cax
as well. On the other hand, scheduling all jobs on the first machine here
yields an m-approximation algorithm; hence the algorithm sketched above
yields a better bound than this approach only if m > 2 holds.

In [18], Lee studied the case where at most one reservation per machine
is permitted and one machine is always available; an approximation ratio
of (m +1)/2 for LPT is proved. For our generalization Pm, 1up|nr-a|Cmax
we obtain the same asymptotic behavior in m with our greedy approach.
Comparing our result here with the bound 1+ [m/(m — \)]/2 for LPT [10]
where A € [m —1] is the maximum number of machines which are permitted
to be unavailable at the same time, we basically get the same ratio for our

10
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Figure 6: Sketch illustrating the proof of Theorem 5

case A = m — 1. In total, we obtain similar approximation ratios for more
general problems, which comes at the cost of increased computational effort,
however.

3.3 Hardness Results

We present an inapproximability result which shows that the PTAS for
Pm, lup|nr-a|Cpax is close to best possible; hence Pm, 1up|nr-a|Ciax is sub-
stantially harder than Pm||Cpnax which permits an FPTAS [24].

Theorem 5. Pm, lup|nr-a|Cyax is strongly NP-hard for m > 2.

Proof. We use reduction from 3-Partition which is strongly NP-complete [7];
see Fig. 6 for a sketch of the construction. Given an instance I of 3-Partition
we define an instance I’ of the problem Pm, lup|nr-a|Cpax for m > 2. We
set p; 1= a; for each i € [3n] (small jobs), pap+1 := n(B + 1) (dummy job)
and define suitable reservations R; := (2,i(B + 1) — 1,i(B + 1)), i € [n],
Ryti = (241i,0,n(B + 1)) for each i € [m — 2]. I’ can be generated from
I in time polynomial in the length of I and has an optimal makespan of
Clax = n(B +1) if and only if I is a yes-instance of 3-Partition by putting
the small jobs according to the existing partition Si,...,S, in the intervals
[0,B),...,[(n —1)(B + 1),n(B + 1) — 1) on machine 2 and putting the
dummy job on machine 1; conversely in a schedule with makespan exactly
n(B+1) the dummy job must be put on machine 1 and hence the small jobs

run on machine 2 which indicates the partition of S into Si,...,.S, since
no more than 3 small jobs can fit into an interval of length B. In total,
Pm, lup|nr-a|Cpax is strongly NP-hard. O

Since the objective values of feasible schedules for Pm, 1up|nr-a|Cyax are
integral and C} .. < P(I), the next result follows immediately.

max

Corollary 6. Pm, lup|nr-a|Cnax does not admit an FPTAS for m > 2
unless P = NP.

It is a natural question whether the problem becomes easier if the number
of reservations per machine is restricted to one. Surprisingly, this is not the
case, which can be shown by adaptation of a construction from [1]. The

11



following result implies that Pm, lup|nr-a|Cyax with at most one reservation
per machine for m > 3 is strongly NP-hard.

Theorem 7. Pm, lup|nr-a|Cpax does not admit an FPTAS, even if there
is at most one reservation per machine, for m > 3 unless P = NP.

Proof. We use a reduction from Equal Cardinality Partition or ECP, which
is NP-complete [7]; see Fig. 7 for a sketch of the construction.

e Given: Finite list I = (a1, ...,ay) of even cardinality with a; € N* for
each ¢ € [n], A € N* such that )" | a; = 24 holds.

e Question: Is there a partition of the list I into lists I; and Iy such
that |I1| =n/2 = |I3| and }_;; ai = A=}, a; holds?

Given an instance I of ECP we define an instance I’ of Pm, lup|nr-a|Cmax
for m > 3 as follows. We set p; := 2A + a; for each i € [n]| (small jobs),
Pn+1 = 2A(n + 1) (dummy job) and Ry := (k,A(n + 1),2A(n + 1)) for
k € {2,3} and Ry = (k,0,2A(n + 1)) for each k € [m]\ {1,2,3}. Then
I’ has an optimal makespan of C%.. = 2A(n + 1) if and only if I is a
yes-instance. Let I be a yes-instance of ECP and consider a suboptimal
schedule of I'; its makespan is at least 2A(n + 1) + A. Given an FPTAS for

Pm, lup|nr-a|Cpax, choose € € (0,1) such that

2An+1)+ A 2n+3

1 < =
TS T Amt 1) amie

holds, which is equivalent to € < 1/(2n + 2); consequently € can be chosen
such that 1/e is polynomially bounded in n and hence polynomially bounded
in the encoding length of I. Then, the FPTAS generates a schedule with
makespan Cpax such that

2A(n+1)+ A

< *
Cimax < (14 €)Crax < 2A(n + 1)

2A(n+1)=2A(n+1)+ A
holds. Hence I’ is solved to optimality in polynomial time and I is identified
as a yes-instance of ECP, which is impossible unless P = NP. O

Theorem 7 does not cover the case m = 2 for which there is an FPTAS,
see Theorem 3; however, for the case m = 2, we obtain a similar result if we
permit an arbitrary constant number of reservations as in Theorem 5.

Next, we discuss the hardness of 1|nr-a|Chax; more precisely, if more
than one reservation is permitted, the problem is also inapproximable unless
P = NP, as mentioned in [6].

Lemma 8. 1|nr-a|Cax, if more than one reservation is permitted, does not
admit a constant approximation ratio unless P = NP.
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(a) Structure of reservations  (b) Optimal solution of I’

Figure 7: Sketch illustrating the proof of Theorem 7

Finally we show that the problem formulation where the number m of
machines is part of the input does not permit an approximation ratio of 3/2
or better, even if there is at most one reservation per machine. The proof
is based on a construction from [25]; again the problem P, lup|nr-a|Chax is
harder than P||Ciax which is strongly NP-hard but permits a PTAS [9].

Lemma 9. P, lup|nr-a|Cyax, even if there is at most one reservation per
machine, does not admit a polynomial time approrimation algorithm with
ratio 3/2 — €, unless P = NP, for any e € (0,1/2].

Proof. We use a reduction from the following version of 3-Partition which is
NP-complete; the NP-completeness can be proved via a reduction from the
problem Numerical Matching with Target Sums [7].

e Given: Disjoint sets A, B containing n respectively 2n elements of
sizes a; € N for each i € [n], b; € N for each i € [2n] and L € N such
that 37, a; + 327", b; = nL holds.

e Question: Is there a m € Sz, such that a; + br(2i—1) + br(2s) = L holds
for each i € [n]?

Given an instance I of the above problem we define an instance I’ of
P, lup|nr-a|Cmax as follows. We choose a constant K € N such that we
have K > (1/2 — €)L/(2¢); we use n + 1 machines and suitable reservations
R = (i+1,2K+ L —a;,2K + L) for each ¢ € [n — 1]. Furthermore we
introduce small jobs by p; := b; + K for each i € [2n] and a dummy job
pont1 := 2K + L. Note that I’ can be generated from [ in running time
polynomial in the encoding length of I. Finally I’ has an optimal makespan
of C .« = 2K+ L if and only if I is a yes-instance of the above problem. Let
I be a yes-instance of the above problem and consider a suboptimal schedule
of I'; the makespan is at least 3K + L since every job in I’ has processing
time larger than K and is either scheduled on machine i € [n]\ {1} or on ma-
chine 1 together with the dummy job, unless the dummy job is scheduled on
a machine other than the first one. Suppose there is a polynomial-time ap-
proximation algorithm A with approximation ratio 3/2—¢; then, A executed
on I’ generates a schedule with makespan Cp.x such that

Conax < (3/2 — €)C% = (3/2 — €)(2K + L) < 3K + L

13



Table 1: Complexity results

lProblem [mzl [m:Q [m23
Pm|nr-a|Cmax no polynomial time algorithm
arbitrary with constant approximation ratio
reservations unless P = NP
Pm|nr-a|Cmax NP-hard, | no polynomial time algorithm
at most one FPTAS with constant approximation ratio
reservation per machine unless P = NP
Pm, 1up|nr-a|Cmax P strongly NP-hard,
arbitrary (r=0) PTAS, no FPTAS
reservations unless P = NP
Pm, lup|nr-a|Cmax P NP-hard, | strongly NP-hard
at most one reservation | (r =0) FPTAS PTAS, no FPTAS
per machine unless P = NP
P, 1up|nr-a|Cmax no polynomial time algorithm
at most one reservation | with approximation ratio better than 3/2
per machine unless P = NP

holds, where the last inequality follows from the equivalence

3K+L _ 3 (1/2 — )L

hudnlal A K> /=9~
oK +L 2 ‘TN o

which can be proved by elementary calculation. Hence A solves I’ to opti-

mality in polynomial time and I is identified as a yes-instance of the above

problem, which is impossible unless P = NP holds. O

4 Conclusion

We studied scheduling on a constant number of identical parallel machines
with reservations and have shown that a restriction to Pm, lup|nr-a|Cpax 18
necessary to obtain a bounded approximation ratio. On the algorithmic side
we have taken an approach that is based on using approximation algorithms
for SSP and MSSP. For the case of arbitrary constant m our approach yields
a PTAS and we have shown that no FPTAS exists unless P = NP holds,
even if the number of reservations per machine is restricted to one. In total,
for the general problem as well as various special cases we have settled the
approximability; the results are summarized in Tab. 1. Furthermore we
have shown that P, 1up|nr-a|Cpax can not be approximated arbitrarily close
unless P = NP; we propose the investigation of this problem more closely in
order to obtain a tight approximation ratio.
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