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Abstract

We consider the problem of designing truthful mechanisms for scheduling selfish tasks (or agents)—whose objective is the
minimization of their completion times—on parallel identical machines in order to minimize the makespan. A truthful mechanism
can be easily obtained in this context (if we, of course, assume that the tasks cannot shrink their lengths) by scheduling the tasks
following the increasing order of their lengths. The quality of a mechanism is measured by its approximation factor (price of anarchy,
in a distributed system) w.r.t. the social optimum. The previous mechanism, known as SPT, produces a (2 − 1/m)-approximate
schedule, where m is the number of machines. The central question in this paper is the following: “Are there other truthful mechanisms
with better approximation guarantee (price of anarchy) for the considered scheduling problem?” This question has been raised by
Christodoulou et al. [Coordination mechanisms, in: Proc. of ICALP 2004, Lecture Notes in Computer Science, Vol. 3142, 345–357.]
in the context of coordination mechanisms, but it is also relevant in centrally controlled systems. We present (randomized) truthful
mechanisms for both the centralized and the distributed settings that improve the (expected) approximation guarantee (price of
anarchy) of the SPT mechanism. Our centralized mechanism holds for any number of machines and arbitrary task lengths, while
the coordination mechanism holds only for two machines and task lengths that are powers of a certain constant.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Internet is a complex distributed system where many entities wish to maximize their own profits. Protocols
organize this network, and their aim is to maximize the social welfare. The underlying assumption is that the agents on
which the protocols are applied are trustworthy. This assumption is unrealistic in some settings as the agents might try
to manipulate the protocol by reporting false information in order to get some advantages. With false information, even
the most efficient protocol may lead to unreasonable solutions if it is not designed to cope with the selfish behavior of
the single entities.
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In this paper, we deal with the problem of scheduling tasks on parallel identical machines in order to minimize the
makespan, (this problem is also known as P ‖Cmax). There are m identical machines and n tasks of arbitrary lengths,
where each task is owned by an agent. The lengths of the tasks are known to their owners only.

In the first part of the paper, we focus on the following process: at first the agents declare their lengths; then, given
these bids, the system allocates the tasks to the machines. The objective of the system is to minimize the makespan,
i.e. the date at which the last task finishes its execution. The aim of each agent is to minimize its completion time and
thus an agent may lie if by doing so, she can improve its completion time.

The field of Mechanism Design can be useful to deal with the selfishness of the agents. Its main idea is to pay
the agents to convince them to perform strategies that help the system to optimize a global objective function. The
most famous technique for designing truthful mechanisms is perhaps the Vickrey-Clarke-Groves (VCG) mechanism
[10,12,18]. However, when applied to combinatorial optimization problems, this mechanism guarantee the truthful-
ness under the hypothesis that the objective function is utilitarian (i.e. the objective function is equal to the sum
of the agents’ valuation) and that the mechanism is able to compute the optimum (for instance, it works for the
shortest path problem [17]). Archer and Tardos introduce in [2] a method which allows to design truthful mech-
anisms for several combinatorial optimization problems to which the VCG mechanism does not apply. However,
neither approach can be applied to our problem and thus we design a new ad hoc mechanism that is able to retain
truthfulness.

In the second part of the paper, we change our setting and we are interested to the development of a truthful coor-
dination mechanism [9] for the same scheduling problem. The notion of coordination mechanism has been introduced
in order to improve the performance of a system with independent selfish and non-colluding agents. In a coordination
mechanism, we assume that the system designer can select the scheduling policies of each machine (e.g. each machine
schedules its tasks in order of decreasing lengths), but the designer must design the system once and for all (i.e. it
should not depend on the values bidded by the tasks). Another important and natural condition is the decentralized
nature of the problem: the scheduling on a machine should depend only on the lengths of the tasks assigned to it and
should be independent of the tasks’ lengths assigned to the other machines. Knowing the coordination mechanism and
the values bidded by the other tasks, each task chooses on which machine it will be scheduled, and is then scheduled
on this machine according to the policy of the machine.

A truthful mechanism can be easily obtained (if we, of course, assume that the tasks cannot shrink their lengths) by
scheduling the tasks following the increasing order of their lengths. This mechanism can also be adapted to a truthful
coordination mechanism. This mechanism, known as SPT, produces a (2 − 1/m)-approximate schedule. The central
question in this paper is the following: “Are there other truthful mechanisms with better approximation guarantee (price
of anarchy) for the considered scheduling problem?”

1.1. Results in this paper

Since there is no deterministic truthful mechanism with an approximation ratio better than the one of SPT, we focus,
like in [2], on randomized truthful mechanisms. Thus, we assume that each agent aims to maximize her expected profit.
A mechanism is then called truthful if, for each agent, bidding her true schedule length maximizes her expected profit
regardless of what the other agents bid.

In Section 3, we consider the selfish task allocation model and we give a centralized algorithm which is truthful even
if the values of the lengths are not restricted, and has an expected approximation ratio of 2 − 1

m+1 ( 5
3 + 1

3m
), which is

smaller than the one of an SPT schedule (e.g. if m = 2 its approximation ratio is smaller than 1.39 whereas it is 1.5 for
an SPT schedule).

In Section 4, we consider the two-machines case. We first study a coordination mechanism in which the first
machine always schedules its tasks in order of increasing lengths, and the second machine schedules its tasks with a
probability p� 2

3 in order of increasing lengths and with probability (1−p) in order of decreasing lengths. The expected
approximation ratio of this (randomized) coordination mechanism, that we prove to be 4

3 + p
6 , is better than the one of

SPT ( 3
2 ). We show that this coordination mechanism is truthful if the tasks are powers of a constant larger than or equal

to 4−3p
2−p

, but not if the values of the task lengths are not restricted. We also show that if p < 1
2 then this coordination

mechanism is not truthful even if the tasks are powers of any integer larger than 1. In Section 4.3, we consider some
other randomized coordination mechanisms based on the deterministic coordination mechanisms in which the tasks

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057


ARTICLE IN PRESS
E. Angel et al. / Theoretical Computer Science ( ) – 3

are scheduled in order of increasing or decreasing lengths (and thus which have expected approximation ratios better
than the one of SPT), and give negative results on their truthfulness.

1.2. Related works

Scheduling with selfish agents have been intensively studied these last years, starting with the seminal work of Nisan
and Ronen [17], and followed by a series of papers [1–5,7,15]. However, all these works differ from our paper since in
their case, the selfish agents were the machines while here we consider that the agents are the tasks. Furthermore, in
most of these works the mechanisms have to give a payment to the agents in order to induce them to report their true
private values, whereas we wish in this paper to design algorithms which are truthful without giving a payment to the
tasks.

However there are some similarities among these works and ours. For example, in [4], the authors study the case
where the agents can lie in one direction (that is they either overbid or underbid). However they study this for one-
parameter agents (which can be used when the agents are the machines, but not when they are the tasks), and in the
context of mechanism with verification (which implies that the mechanism can recognize the true value of an agent,
and can punish her). The impact of restrictions on the values that the agents can bid has also been considered in other
contexts, such as allocation of goods to competing requests [13,16]. Several works also consider truthful mechanisms if
the tasks or the agents values are restricted: Kovacs proved in [15] that the LPT algorithm is truthful and 3-approximate
if the machine’s speeds are powers of two, and Ambrosio et al. proved in [1] that LPT is not truthful if the machine’s
speeds are powers of a constant smaller than 1.78.

A more related work is the one of Auletta et al. who considered in [6] the problem of scheduling selfish tasks
in a centralized case. Their work differs from ours since they considered that each machine uses a round and robin
policy and thus that the completion of each task is the completion time of the machine on which the task is (this
model is known as the KP model). They considered that the tasks can lie in both directions, and that there are some
payments.

Another closely related work is the one of Christodoulou et al. [9] who considered the model that we study here, but
only in the distributed context of coordination mechanisms. They proposed different coordination mechanisms with a
price of anarchy better than the one of the SPT mechanism. Nevertheless, these mechanisms are not truthful. In [14],
the authors gave coordination mechanisms for the same model for related machines (i.e. machines can have different
speeds), but their mechanisms are also not truthful.

2. Preliminaries

We are given m machines (or processors) and n tasks T1, . . . , Tn. Let li denote the execution time (or length) of task
Ti . We use the identification numbers to compare tasks of the same lengths: we will say that a task Ti is larger than
a task Tj if and only if li > lj or (li = lj and i > j ). The machines have the same speed, and the length of each
task is known by an agent, its owner. Each agent declares a value b greater than or equal to the real length of the task
(we make the assumption, like in [9] that the agents cannot shrink their lengths). The aim of each agent is to minimize
its completion time, and an agent may lie if by doing so she can improve its completion time.

We consider two different models of execution:
• in the first one, used in Section 3, if Ti bids a value b > li , then its execution time remains li ,
• in the second one, used in Section 4, we assume that if Ti bids a value b > li , then its execution time is b, i.e. Ti

(or its owner) will not get the result of its execution before b time units after the beginning of the execution of Ti .
This model of execution is called the weak model of execution in what follows.
We adopt the following definition of randomized mechanism: A randomized mechanism can be seen as a probability

distribution over deterministic mechanisms; for instance given two deterministic mechanisms M1 and M2, with a
probability p the mechanism will be M1 and with probability (1 − p) it will be M2.

In the centralized setting (Section 3), the schedule will be obtained as follows: given the randomized mechanism, the
agents will declare their lengths and the system will assign them to the machines following the deterministic mechanism
M1 with probability p or M2 with probability (1 − p).

In the distributed setting (Section 4), given the randomized mechanism, each task bids a value which represents its
length, and then the selected deterministic coordination mechanism is announced to the tasks (it is M1 with probability
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Fig. 1. DSPT schedule.

p and M2 with probability (1 − p)). Each task chooses on which processor it will be scheduled, according to the
policies of the processors: it goes on the processor on which it will minimize its expected completion time.

We say that a (randomized) mechanism is truthful if for every task the expected completion time when it declares its
true length is smaller than or equal to its expected completion time in the case where it declares a larger value. More
formally, we say that a mechanism M is truthful if Ei(li)�Ei(bi), for every i and bi � li , where Ei(bi) is the expected
completion time of task Ti if it declares bi . In order to evaluate the quality of a randomized mechanism, we use the
notion of expected approximation ratio (price of anarchy).

We will refer in the sequel to the list scheduling algorithms LPT and SPT, where LPT (resp. SPT) [11] is the algorithm
which greedily schedules the tasks, sorted in order of decreasing (resp. increasing) lengths, as soon as a machine is
available. An LPT (resp. SPT) schedule is a schedule returned by the LPT (resp. SPT) algorithm.

3. Truthful centralized mechanism

We give in this section a truthful randomized mechanism for the centralized setting. This mechanism is obtained by
using a new deterministic (truthful) algorithm, which will be used with a certain probability p, and the LPT algorithm
(which is not truthful but has a good approximation ratio), with a probability (1 − p).

3.1. Algorithm: LDS

Let us consider the following algorithm, denoted by DSPT (for Delayed SPT), and which returns an SPT schedule
in which a delay (or idle time) may have been inserted before each task:

Let {T1, T2, . . . , Tn} be n tasks to be scheduled on m�2 identical processors,
{P1, P2, . . . , Pm}. Let us suppose that l1 � l2 � · · · � ln.
Tasks are scheduled alternatively on P1, P2, . . . , Pm, in order of increasing
length, and Ti+1 starts to be executed when exactly 1

m
of task Ti has been

executed. Thus T1 starts to be scheduled on P1 at time 0, T2 is scheduled on
P2 at time l1

m
, T3 is scheduled on P3 (on P1 if m = 2) when 1

m
of T2 has

been executed, i.e. at time l1
m

+ l2
m

, and so forth. . .

The schedule returned by DSPT will be called a DSPT schedule in the sequel. Fig. 1 shows a DSPT schedule, where
m = 3.

Lemma 1. Let us suppose that we have n tasks {T1, . . . , Tn} to schedule on m machines {P1, . . . , Pm}. Let idle(i) be
the idle time added by algorithm DSPT before task i. For each i ∈ {1, . . . , n}, we have idle(i)�0.

Proof. Algorithm DSPT adds, at each step i ∈ {1, . . . , n}, task Ti on processor Pi mod m. Let us show that the idle
time before each task is larger than or equal to 0. It is trivial that idle(i)�0 for the m tasks scheduled in the first
position. Let Ti be a task which is not scheduled in the first position (i.e. Ti is scheduled after task Ti−m). Task Ti

starts to be executed at exactly 1
m

of the execution of task Ti−1, which starts to be executed at exactly 1
m

of the
execution of Ti−2, . . . , Ti−m+1 which starts to be executed at exactly 1

m
of the execution of Ti−m. Thus Ti starts

to be executed 1
m

(li−1 + li−2 + · · · + li−m) time units after the beginning of Ti−m. Since li−1 � li−2 � · · · � li−m,
1
m

(li−1 + li−2 + · · · + li−m)� li−m, and so idle(i)�0. �
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Theorem 1. DSPT is 2 − 1
m

-approximate: the makespan of a DSPT schedule is smaller than or equal to (2 − 1
m

)OPT ,
where OPT is the makespan of an optimal schedule for the same tasks.

Proof. We have n tasks T1, . . . , Tn, such that l1 � · · · � ln, to schedule on m processors. Each task Ti starts to be
executed exactly when 1

m
of Ti−1 has been executed. So, if n�m, then the makespan of the DSPT schedule is:

1
m

(l1 + · · · + ln−1) + ln � 1
m

(n − 1)ln + ln � (2m−1)ln
m

�(2 − 1
m

)ln �(2 − 1
m

)OPT , since ln �OPT .
Let us now consider the case where n > m. Let i ∈ {m + 1, . . . , n}. Task Ti starts to be executed when 1

m
of Ti−1 is

executed, and Ti−1 started to be executed when 1
m

of Ti−2 was executed, etc., T(i−m)+1 started to be executed when 1
m

of Ti−m was executed. So the idle time between Ti and Ti−m is idle(i) = 1
m

(li−m + li−m+1 + · · · + li−1) − li−m.
Let i ∈ {2, . . . , m}. The idle time before Ti is equal to idle(i) = 1

m
(l1 + · · · + li−1), and there is no idle time

before T1, which starts to be executed at time 0. Thus, the sum of the idle times between tasks is
∑n

i=2idle(i) =
1
m

((m − 1)ln−m+1 + (m − 2)ln−m+2 + · · · + ln−1).
Let j ∈ {n − m + 1, . . . , n − 1}. Let end(j) be the idle time in the schedule after the end of task Tj and before the

end of Tn: end(j) = lj+1 − m−1
m

lj + end(j + 1), where end(n) = 0. So the sum of the idle times after the last tasks

and before the end of the schedule is
∑n−1

j=n−m+1 end(j) = (m − 1)(ln − m−1
m

ln−1) + (m − 2)(ln−1 − m−1
m

ln−2) +
· · · + (ln−m+2 − m−1

m
ln−m+1).

The sum of the idle times on the processors, from the beginning of the schedule until the makespan, is the sum of
the idle times between tasks (and before the first tasks), plus the sum of the idle times after the end of the last task
of a processor and before the makespan. It is equal to

∑n
i=2 idle(i) + ∑n−1

j=n−m+1 end(j) = 1
m

((m − 1)ln−m+1 +
(m − 2)ln−m+2 + · · · + ln−1) + (m − 1)(ln − m−1

m
ln−1) + (m − 2)(ln−1 − m−1

m
ln−2) + · · · + (ln−m+2 − m−1

m
ln−m+1)

= (m − 1)ln.
Let � be the makespan of a DSPT schedule. � is the sum of the tasks plus the sum of the idle times, divided by m:

� = (
∑n

i=1li )+(m−1)ln

m
=
∑n

i=1li

m
+ (m−1)ln

m
. Since

∑n
i=1li

m
�OPT and ln �OPT , we have: ��(2 − 1

m
)OPT . �

Let us consider the following algorithm, denoted by LDS in the sequel:
Let m be the number of processors. With a probability m

m+1 , the output schedule

is a DSPT schedule; and with a probability 1
m+1 , the output schedule is

an LPT schedule.

Theorem 2. The expected approximation ratio of LDS is 2 − 1
m+1 ( 5

3 + 1
3m

).

Proof. The approximation ratio of a DSPT schedule is 2 − 1
m

(see Theorem 1), and the approximation ratio of an
LPT schedule is 4

3 − 1
3m

(see [11]). Thus the expected approximation ratio of LDS is m
m+1 (2 − 1

m
) + 1

m+1 ( 4
3 − 1

3m
) =

1
m+1 (2m − 1 + 4

3 − 1
3m

) = 1
m+1 (2(m + 1) − 5

3 − 1
3m

) = 2 − 1
m+1 ( 5

3 + 1
3m

). �

3.2. Truthfulness

Theorem 3. The algorithm LDS is truthful.

Proof. Let us suppose that we have n tasks T1, . . . , Tn, ordered by increasing lengths, to schedule on m processors.
Let us show that any task Ti does not have incentive to bid a length higher than its true length. Let us suppose that
task Ti bids b > li , and that, by bidding b, Ti is now larger than all the tasks T1, . . . , Tx , and smaller than Tx+1. In the
LPT schedule, the tasks Tx+1 to Tn are scheduled in the same way, whatever Ti bids (li or b). By bidding b, Ti can, at
best, start (li+1 + · · · + lx) time units before than if it had bidded li . Thus the expected completion time of Ti in LDS
decreases by at most 1

m+1 (li+1 + · · · + lx) time units when Ti bids b instead of li .
On the other hand, by bidding b instead of li , Ti will end later in the DSPT schedule: in this schedule, tasks from

Ti+1 to Tx will be started before Ti . Since a task Tj starts to be scheduled when 1
m

of its predecessor Tj−1 is executed,
by bidding b, Ti starts 1

m
(li+1 + · · · + lx) time units later than if it had bidded li . Thus, the expected completion time

of Ti in LDS is increased by m
m+1 ( 1

m
(li+1 + · · · + lx)) = 1

m+1 (li+1 + · · · + lx).
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Thus, as a whole, the expected completion time of Ti cannot decrease when Ti bids a higher value than li , and we
can deduce that LDS is truthful. �

No better approximation ratio can be achieved by choosing probabilities for DSPT and LPT in a different way.
Indeed, if we have m�2 machines, m − 1 tasks of length m and m tasks of length 1, then, by bidding 1 + � (where � is
a negligible positive value), the task of length 1 which is the last one in the LPT schedule will gain (m − 1) time units
in the LPT schedule, whereas it will loose 1

m
(m − 1) time units in the DSPT schedule.

Note that in the case where m = 2, the expected approximation ratio of LDS is 25
18 < 1.39. This algorithm is truthful,

even in the case where the tasks can take any value, and it has a better approximation ratio than SSL(p) introduced in
Section 4 (but LDS is not a coordination mechanism because a processor has to know the tasks scheduled on the other
processors).

We can also note that, since the approximation ratio of a DSPT schedule is 2 − 1
m

(like SPT), and the approximation
ratio of an LPT schedule is 4

3 − 1
3m

, the schedule returned by LDS is, in the worst case, 2 − 1
m

-approximate, which is
not worse than the approximation ratio of an SPT schedule.

4. Truthful coordination mechanisms

We focus in this section on truthful coordination mechanisms, in the case where there are two machines.

4.1. Coordination mechanism: SSL(p)

Let us first consider the following algorithm, denoted by SSL(p) in the sequel:
Let p ∈ R such that 0�p�1. With a probability p, the output schedule is an
SPT schedule: the tasks are greedily scheduled in order of increasing lengths.
With a probability (1 − p), the output schedule is an SPT–LPT schedule:
an SPT–LPT schedule is a schedule in which a processor, denoted by PSPT,
schedules the tasks in order of increasing lengths, and the other processor,
denoted by PLPT, schedules the tasks in order of decreasing lengths. A task
Ti is scheduled on PSPT if the total length of the tasks smaller than Ti is
smaller than or equal to the total length of the tasks larger than Ti ; otherwise
it is scheduled on PLPT.

We can easily transform the centralized algorithm SSL(p) into a (randomized) coordination mechanism. Indeed, we
can obtain, as showed in [9], an SPT–LPT schedule by having a processor, PSPT, which schedules its tasks in order of
increasing sizes and the other processor, PLPT, which schedules its tasks in order of decreasing sizes. Thus, each task
Ti will go on PSPT if the total length of the tasks smaller than Ti is smaller than or equal to the total length of the tasks
larger than Ti ; otherwise Ti will have incentive to go on PLPT. Likewise, we can obtain an SPT schedule by having two
processors P1 and P2 which schedule tasks in order of increasing sizes, and P2 which adds a little idle time � (which we
know to be smaller than the length of any task) before its first task, at the very beginning of the schedule. In this way, the
smallest task will go on P1, the second smallest on P2, and so forth, and we will get the only possible Nash equilibrium,
which is an SPT schedule. Hence, the coordination mechanism corresponding to SSL(p) is the following one:

Let p ∈ R such that 0�p�1. Let � be a small number smaller than the
length of every task. The first processor P1 schedules, starting at time 0, its
tasks in order of increasing sizes. The second processor P2 schedules with
a probability p its tasks in order of increasing sizes, starting its first task at
time �; and P2 schedules, with a probability (1 − p), its tasks in order of
decreasing sizes, starting its first task at time 0.

Theorem 4. The expected approximation ratio of SSL(p) is 4
3 + p

6 .

Proof. The approximation ratio of an SPT schedule is 3
2 (see [11]), and the approximation ratio of an SPT–LPT schedule

is 4
3 (see [9]). Thus the expected approximation ratio of SSL(p) is p 3

2 + (1 − p) 4
3 , i.e. p( 3

2 − 4
3 ) + 4

3 = 4
3 + p

6 . �
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4.2. Truthfulness

In this section, we will use the weak model of execution, as explained in the Preliminaries. When we assume that all
the lenghts of the tasks are powers of a constant C, then we assume that a task can only bid a value which is a power
of C. If it was not the case (i.e. if a task bids a value which is not a power of C), we could round the value of this task
to the nearest higher power of C.

Theorem 5. Let p ∈ R and such that 2
3 �p�1. Algorithm SSL(p) is truthful if the lengths of the tasks are powers of

any constant C� 4−3p
2−p

.

Proof. Let us suppose that we have n tasks to schedule, and that we know that these tasks are powers of C (and thus that
they have to bid a value which is a power of C). Let us suppose that a task Ti , of length li , bids lk (lk > li). Let us show
that the expected completion time of Ti is smaller when Ti bids li rather than lk . Let � = {T1, . . . , Ti, . . . , Tk, . . . , Tn+1}
be n + 1 tasks (the n tasks that we have to schedule, plus a task Tk of length lk which represents the task Ti which
bids lk instead of li), and let us suppose that l1 � · · · � li � · · · � lk � · · · � ln+1. If Ti bids li then the tasks we have to
schedule are the tasks �\Tk; if Ti bids lk , then the tasks to be scheduled are �\Ti (thus Tk represents Ti in this case).
SSL(p) is truthful if, for every i, the expected completion time of Ti is smaller if it bids li than if it bids any other value
lk > li .

Thus, this algorithm is truthful if the worst expected completion time of Ti when it bids li is always smaller than
the best expected completion time of Ti when it bids lk > li . The worst completion time of Ti which bids li in an SPT

schedule is

∑i−1
j=1 lj

2 + li : this is the case when Ti starts to be executed when all the smaller tasks have already been

completed. The best completion time of Ti which bids lk in an SPT schedule is
(
∑k

j=1 lj )−li

2 : this is the case when Tk

is completed at the same time as Tk−1.
There are two cases for Ti in the SPT–LPT schedule: it is either scheduled on PSPT after the tasks which are smaller

than li , and ends at time
∑i

j=1 lj (case 1), or it is scheduled on PLPT after the tasks which are larger than li , and then

ends at time (
∑n+1

j=i lj ) − lk (case 2). It is the same thing in the case where Ti bids lk: Tk is either scheduled on PSPT

and then ends at time (
∑k

j=1 lj )− li (case A), or it is scheduled on PLPT and then ends at time
∑n+1

j=k lj (case B). In the
SPT–LPT schedule, Ti (resp. Tk) chooses between the cases 1 and 2 (resp. the cases A and B) the one that minimizes
its completion time.

SSL(p) is truthful if the worst completion time of Ti which bids li in an SPT schedule, times p, plus the completion
time of Ti which bids li in an SPT–LPT schedule, times (1 − p), is smaller than the best completion time of Ti which
bids lk (Ti is then identified by Tk) in an SPT schedule, times p, plus the completion time of Tk in an SPT–LPT schedule,
times (1 − p). Thus, SSL(p) is truthful if

p

⎛
⎜⎜⎜⎝

i−1∑
j=1

lj

2
+ li

⎞
⎟⎟⎟⎠+ (1 − p)

⎛
⎜⎜⎜⎜⎝min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i∑
j=1

lj

(
n+1∑
j=i

lj

)
− lk

⎞
⎟⎟⎟⎟⎠

�p

⎛
⎜⎜⎜⎜⎝

(
k∑

j=1
lj

)
− li

2

⎞
⎟⎟⎟⎟⎠+ (1 − p)

⎛
⎜⎜⎜⎜⎝min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
k∑

j=1
lj

)
− li

n+1∑
j=k

lj

⎞
⎟⎟⎟⎟⎠

⇔ (1 − p)

⎛
⎜⎜⎜⎜⎝min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i∑
j=1

lj

n+1∑
j=i

lj − lk

⎞
⎟⎟⎟⎟⎠ �p

(
k∑

j=i

lj

)
− 3li

2
+ (1 − p)

⎛
⎜⎜⎜⎜⎝min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∑
j=1

lj − li

n+1∑
j=k

lj

⎞
⎟⎟⎟⎟⎠ .
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There are now four cases to consider (the four combinations of the two choices of Ti and the two choices of Tk):
• Case 1A: In the SPT–LPT schedule, Ti is scheduled on PSPT, and Tk is scheduled on PSPT.

In the SPT schedule, Tk does not end before Ti because lk > li and the lengths of the other tasks are the same ones.
Likewise, in the SPT–LPT schedule, since Ti and Tk are both scheduled on PSPT, Tk cannot end before Ti . So the
expectation of the completion time of Tk is not smaller than the one of Ti and SSL(p) is truthful in this case.
• Case 2A: In the SPT–LPT schedule, Ti is scheduled on PLPT, and Tk is scheduled on PSPT.

This case cannot happen. Indeed, ifTi is scheduled onPLPT, then the length of the tasks before it onPLPT (
∑n+1

i+1 lj−lk)

is smaller than the length of the tasks which would be scheduled before it on PSPT (
∑i−1

1 lj ). Since lk > li , the length
of the tasks scheduled before Tk on PLPT (

∑n+1
k+1 lj = (

∑n+1
i+1 lj − lk) −∑k

i+1 ) is smaller than the length of the tasks

scheduled before Tk on PSPT (
∑k−1

1 lj − li = ∑i−1
1 lj +∑k−1

i+1 ). Thus, the completion time of Tk is smaller on PLPT
rather than on PSPT, and the case where Ti is scheduled on PLPT and Tk on PSPT does not occur.
• Case 2B: In the SPT–LPT schedule, Ti is scheduled on PLPT, and Tk is scheduled on PLPT.

SSL(p) is truthful if

(1 − p)

((
n+1∑
j=i

lj

)
− lk

)
�p

⎛
⎜⎜⎜⎜⎝

(
k∑

j=i

lj

)
− 3li

2

⎞
⎟⎟⎟⎟⎠+ (1 − p)

n+1∑
j=k

lj

⇔ (1 − p)

((
k∑

j=i

lj

)
− 2lk

)
�p

⎛
⎜⎜⎜⎜⎝

(
k∑

j=i

lj

)
− 3li

2

⎞
⎟⎟⎟⎟⎠

⇔
(

k∑
j=i

lj

)
− 2lk �p

⎛
⎜⎜⎜⎝

(3
k∑

j=i

lj ) − 3li − 4lk

2

⎞
⎟⎟⎟⎠

⇔ 3p

2
li �2(1 − p)lk +

k∑
j=i

lj

(
3p

2
− 1

)
.

There is necessarily a task between Ti and Tk in �, otherwise Ti (i.e. Ti which bids li) and Tk (i.e. Ti which bids lk)
would start after the same tasks - and so at the same time - in the SPT schedule (and in the SPT–LPT schedule), and
then Ti would not decrease its expected completion time by lying on its execution time. So,

∑k
j=i lj �2li + lk .

Since p� 2
3 , we know that (

3p
2 − 1)�0. Thus, SSL(p) is truthful if

3p

2
li �2(1 − p)lk + (2li + lk)

(
3p

2
− 1

)

⇔
(

3p

2
− 2

(
3p

2
− 1

))
li �

(
2(1 − p) +

(
3p

2
− 1

))
lk

⇔
(

2 − 3p

2

)
li �

(
1 − p

2

)
lk

⇔ li �
1 − p

2

2 − 3p
2

lk.

⇔ li �
2 − p

4 − 3p
lk.

Since lk > li , and tasks are powers of C� 4−3p
2−p

, we know that lk � 4−3p
2−p

li , and so the above inequality is fulfilled.

Thus, if p� 2
3 , and if the tasks are powers of C� 4−3p

2−p
, SSL(p) is truthful.
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Fig. 2. Left: If the tasks are powers of a constant larger than or equal to C(p) then SSL(p) is truthful. Right: Expectation of the approximation ratio
(e.a.r) of SSL(p).

• Case 1B: In the SPT–LPT schedule, Ti is scheduled on PSPT, and Tk is scheduled on PLPT.
SSL(p) is truthful if

(1 − p)

(
i∑

j=1
lj

)
�p

⎛
⎜⎜⎜⎜⎝

(
k∑

j=i

lj

)
− 3li

2

⎞
⎟⎟⎟⎟⎠+ (1 − p)

n+1∑
j=k

lj .

In the SPT–LPT schedule, Ti is scheduled on PSPT and not on PLPT, so
∑i

j=1 lj �(
∑n+1

j=i lj ) − lk . Thus, SSL(p) is
truthful if

(1 − p)

((
n+1∑
j=i

lj

)
− lk

)
�p

⎛
⎜⎜⎜⎜⎝

(
k∑

j=i

lj

)
− 3li

2

⎞
⎟⎟⎟⎟⎠+ (1 − p)

n+1∑
j=k

lj .

This inequality is the same one that in case 2B, so the end of the proof is the same as in the previous case.
Thus, in every case, if p� 2

3 , and if the tasks are powers of a constant larger than or equal to 4−3p
2−p

, SSL(p) is
truthful. �

Fig. 2 (Left) gives an illustration of Theorem 5: if we know that the tasks are powers of a constant larger than or
equal to C(p), then SSL(p) is truthful. Fig. 2 (Right) illustrates Theorem 4 and shows the expected approximation ratio
of SSL(p).

We saw that SSL(p) is truthful if the tasks are powers of C = 4−3p
2−p

. In fact, the only sufficient condition we have for
this algorithm to be truthful is that, for every i, li+1 = li or li+1 �C × li . Thus, if we know that the lengths of the tasks
belong to a set S = {x1, x2, . . . , xk} such that for each j , xj+1 �C × xj , then SSL(p) is truthful. However, SSL(p)

is not truthful if the possible values of the tasks are not restricted, and it is not truthful if p < 1
2 , even if the tasks are

powers of any integer B > 1.

Theorem 6. Let p ∈ R be any number such that 0�p < 1. Algorithm SSL(p)is not truthful if the tasks can take any
value.

Proof. Let � be any number such that 0�� < 1 −p. Let us consider the following tasks: two tasks T1 and T2 of length
1, a task T3 of length 2 − � and a task T4 of length 2. If T3 bids its true value, 2 − �, it is expected to end at time
p(3 − �) + (1 − p)(4 − �), because it is scheduled after a task of length 1 in the SPT schedule, and after the task of
length 2 in the SPT–LPT schedule. If T3 does not bid its true value, but bids 2 + � instead, its expectation of completion
time is then p(3 + �) + (1 − p)(2 + �). Indeed, in this case T3 is scheduled in the SPT schedule after a task of length
1, but it is scheduled at the first position on PLPT in the SPT–LPT schedule.
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Fig. 3. Schedules returned when T , the task colored in grey, bids B. Left: SPT–LPT schedule, Right: SPT schedule. The number in each task
represents its length.

Whatever the value of p is, the expected completion time of T3 when it bids 2 + � instead of 2 − � is smaller than
the expected completion time of T3 when it bids its true value. Thus this algorithm is not truthful if we do not restrict
the possible values of the tasks. �

Theorem 7. Let p ∈ R be any number such that 0�p < 1
2 . Algorithm SSL(p) is not truthful, even if the tasks are

powers of an integer B (B > 1), whatever the value of B is.

Proof. Let B > 1 be any integer number, and let p be any positive number smaller than 1
2 . Let us suppose that the

tasks are powers of B (and then they must bid a power of B). Let us show that SSL(p) is not truthful, by showing that
there is an instance in which a task T can improve its expected completion time by bidding a value larger than its true
value.

Let x be an even number larger than B2−1
(B+p( 1

2 −2B))
, and let us consider the following instance: (xB+1) tasks of length

B, and x tasks of length B2. Let T be the last task of length B (i.e. the task of length B which has the largest index:
T = TxB+1 if the tasks {T1, T2, . . .} are labelled by increasing lengths). Let us now show that the expected completion
time of T in SSL(p) will be smaller if it bids B3 instead of B.

The completion time of T which bids B is xB
2 + B in the SPT schedule, and xB2 + B in the SPT–LPT schedule (see

Fig. 3). Thus its expected completion time in LDS is p( xB
2 + B) + (1 − p)(xB2 + B) = p( xB

2 − xB2) + (xB2 + B).
The completion time of T which bids B3 is xB2 + B3 in the SPT schedule (it is on the last position in this schedule,

after xB
2 tasks of length B and x

2 tasks of length B2), and the completion time of T which bids B3 is B3 in the SPT–LPT
schedule (it is on the first position on the processor which scheduled its tasks from the largest to the smallest). Thus its
expected completion time in LDS is p(xB2 + B3) + (1 − p)(B3) = pxB2 + B3.

SSL(p) is not truthful if the expected completion time of T which bids B3 is smaller than its completion time when
it bids B. So it is not truthful if

pxB2 + B3 < p

(
xB

2
− xB2

)
+ (xB2 + B)

⇔ B3 − B < −pxB2 + pxB

2
− pxB2 + xB2

⇔ B3 − B < x

(
B2 + p

(
B

2
− 2B2

))

⇔ B2 − 1 < x

(
B + p

(
1

2
− 2B

))

x > B2−1
(B+p( 1

2 −2B))
, because B + p( 1

2 − 2B) > 0 since 0�p < 1
2 .

Since x is an even number larger than B2−1
(B+p( 1

2 −2B))
, x fulfills the above condition and so SSL(p) is not truthful if

p < 1
2 . �

4.3. Other coordination mechanisms: negative results

SL(p) is the algorithm where we have with a probability p an SPT schedule, and with a probability (1 − p) an LPT
schedule. LSL(p) is the algorithm where we have with a probability p an LPT schedule, and with a probability (1 −p)
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an SPT–LPT schedule. We saw in Section 4.1 that there exist coordination mechanisms which return an SPT or an
SPT–LPT schedule. Likewise, by adding small delays on the processors—which both schedule the tasks in order of
decreasing lengths—, the authors showed in [9] a coordination mechanism which returns an LPT schedule (the delays
are negligible here since we can fix them as small as we want). Let us now give negative results on the truthfulness of
these mechanisms.

Theorem 8. Let p ∈ R be any number such that 0�p < 1. Algorithm SL(p) is not truthful if the tasks can take any
value.

Proof. Let � be any number such that 0�� <
1−p
1+p

. Let us consider the following tasks: a task T1 of length 1, a task T2
of length 1+ � and a task T3 of length 2. If T1 bids its true value, 1, it is expected to end at time t1 = p + (1−p)(2+ �),
because it is scheduled at the beginning of the SPT schedule, and after T2 in the LPT schedule. If T1 does not bid its
true value, but bids 1 + 2� instead, it is expected to end at time t2 = (1 + 2�), because it is scheduled at the beginning
of the SPT and the LPT schedules. Since � <

1−p
1+p

, t2 is smaller than t1, and so SL(p) is not truthful. �

Theorem 9. Let p ∈ R be any number such that 0�p < 1
2 . Algorithm SL(p) is not truthful, even if the tasks are

powers of a constant B (B > 1), whatever the value of B is.

Proof. Let B > 1 be any real number, and let p be any positive number smaller than 1
2 . Let us suppose that the

tasks are powers of B (and then they must bid a power of B). Let us show that SL(p) is not truthful, by showing that
there is an instance in which a task T can improve its expected completion time by bidding a value larger than its true
value.

Let x = � B2−1
B(1−2p)

� + 1, and let us consider the following instance: 2x tasks of length B2, and one task, T , of length

B. Let us now show that the expected completion time of T in SL(p) will be smaller if it bids B3 rather than B.
The completion time of T which bids B is B in the SPT schedule, and xB2 + B in the LPT schedule, where T is

scheduled after x tasks of lengths B2. Its expected completion time in SL(p) is then t1 = pB + (1 − p)(xB2 + B) =
B+(1−p)xB2. The completion time of T which bids B3 is xB2+B3 in the SPT schedule (it is scheduled after x tasks of
lengthsB2), andB3 in the LPT schedule. Its expected completion time in SL(p) is then t2 = p(xB2+B3)+(1−p)(B3) =
B3 + pxB2.

SL(p) is not truthful if t1 < t2: t1 < t2

⇔ B3 + pxB2 < B + (1 − p)xB2

⇔ B3 − B < x(B2(1 − 2p))

⇔ x >
B2 − 1

B(1 − 2p)
.

Since x = � B2−1
B(1−2p)

� + 1 fulfills the above condition, the expected completion time of T in our instance is smaller if

T bids B3 rather than if its bids its true value B, and so SL(p) is not truthful. �

Theorem 10. Let p ∈ R be any number such that 0�p�1. Algorithm LSL(p) is not truthful, even if the tasks are
powers of a constant B (B > 1), whatever the value of B is.

Proof. Let B > 1 be any real number, and p be any number such that 0�p�1. Let us suppose that the tasks are
powers of B. Let us show that LSL(p) is not truthful, by showing that there is an instance in which a task T can improve
its expected completion time by bidding a value larger than its true value.

Let us consider the following instance: 2B + 1 tasks of length B, and 2B2 tasks of length 1. Let T be the last task
of length B (i.e. the task of length B which has the largest index).

The completion time of T which bids B is B2 + B in the LPT schedule (T is scheduled after B tasks of length B),
and 2, B2 + B in the SPT–LPT schedule (T is scheduled after 2B2 tasks of length 1). The completion time of T

which bids B2 is B2 in the LPT schedule, and B2 in the SPT–LPT schedule (T is scheduled at the beginning of
both schedules). The expected completion time of T is smaller when T bids B2 rather than B, so LSL(p) is not
truthful. �
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In the negative results of this section, we used the weak model of execution: we assume that if Ti bids a value b > li ,
then its new execution time is b. Of course, these results also hold for the second execution model, in which if Ti bids
a value b > li , then its new execution time will still be li (Ti does not have to wait b time units after its start to get its
result).
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