Available online at www.sciencedirect.com
—ey

“».“ ScienceDirect Theoretical

Computer Science

i TR LHER
ELSEVIER Theoretical Computer Science 111 (RRIT) KII—111

www.elsevier.com/locate/tcs

Truthful algorithms for scheduling selfish tasks on parallel
machines™
Eric Angel, Evripidis Bampis, Fanny Pascual*

LaMI-Université d’Evry Val d’Essonne, CNRS UMR 8042, 523 Place des Terrasses, 91000 Evry, France

Received 18 January 2006; received in revised form 7 July 2006; accepted 28 July 2006

Communicated by M. Mavronicolas

Abstract

We consider the problem of designing truthful mechanisms for scheduling selfish tasks (or agents)—whose objective is the
minimization of their completion times—on parallel identical machines in order to minimize the makespan. A truthful mechanism
can be easily obtained in this context (if we, of course, assume that the tasks cannot shrink their lengths) by scheduling the tasks
following the increasing order of their lengths. The quality of a mechanism is measured by its approximation factor (price of anarchy,
in a distributed system) w.r.t. the social optimum. The previous mechanism, known as SPT, produces a (2 — 1/m)-approximate
schedule, where m is the number of machines. The central question in this paper is the following: “Are there other truthful mechanisms
with better approximation guarantee (price of anarchy) for the considered scheduling problem?” This question has been raised by
Christodoulou et al. [Coordination mechanisms, in: Proc. of ICALP 2004, Lecture Notes in Computer Science, Vol. 3142, 345-357.]
in the context of coordination mechanisms, but it is also relevant in centrally controlled systems. We present (randomized) truthful
mechanisms for both the centralized and the distributed settings that improve the (expected) approximation guarantee (price of
anarchy) of the SPT mechanism. Our centralized mechanism holds for any number of machines and arbitrary task lengths, while
the coordination mechanism holds only for two machines and task lengths that are powers of a certain constant.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Algorithmic game theory; Truthful algorithm; Scheduling; Coordination mechanism; Mechanism design

1. Introduction

The Internet is a complex distributed system where many entities wish to maximize their own profits. Protocols
organize this network, and their aim is to maximize the social welfare. The underlying assumption is that the agents on
which the protocols are applied are trustworthy. This assumption is unrealistic in some settings as the agents might try
to manipulate the protocol by reporting false information in order to get some advantages. With false information, even
the most efficient protocol may lead to unreasonable solutions if it is not designed to cope with the selfish behavior of
the single entities.

* A short version of this paper has been published in the first Workshop on Internet and Network Economics (WINE 2005), LNCS 3828.
* Corresponding author. Tel.: +33 6 88577716.
E-mail addresses: angel @lami.univ-evry.fr (E. Angel), bampis @lami.univ-evry.fr (E. Bampis), fpascual @lami.univ-evry.fr (F. Pascual).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.07.057

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://www.elsevier.com/locate/tcs
mailto:angel@lami.univ-evry.fr
mailto:bampis@lami.univ-evry.fr
mailto:fpascual@lami.univ-evry.fr
http://dx.doi.org//10.1016/j.tcs.2006.07.057

2 E. Angel et al. / Theoretical Computer Science 111 (1111) INI-111

In this paper, we deal with the problem of scheduling tasks on parallel identical machines in order to minimize the
makespan, (this problem is also known as P ||Cnax). There are m identical machines and n tasks of arbitrary lengths,
where each task is owned by an agent. The lengths of the tasks are known to their owners only.

In the first part of the paper, we focus on the following process: at first the agents declare their lengths; then, given
these bids, the system allocates the tasks to the machines. The objective of the system is to minimize the makespan,
i.e. the date at which the last task finishes its execution. The aim of each agent is to minimize its completion time and
thus an agent may lie if by doing so, she can improve its completion time.

The field of Mechanism Design can be useful to deal with the selfishness of the agents. Its main idea is to pay
the agents to convince them to perform strategies that help the system to optimize a global objective function. The
most famous technique for designing truthful mechanisms is perhaps the Vickrey-Clarke-Groves (VCG) mechanism
[10,12,18]. However, when applied to combinatorial optimization problems, this mechanism guarantee the truthful-
ness under the hypothesis that the objective function is utilitarian (i.e. the objective function is equal to the sum
of the agents’ valuation) and that the mechanism is able to compute the optimum (for instance, it works for the
shortest path problem [17]). Archer and Tardos introduce in [2] a method which allows to design truthful mech-
anisms for several combinatorial optimization problems to which the VCG mechanism does not apply. However,
neither approach can be applied to our problem and thus we design a new ad hoc mechanism that is able to retain
truthfulness.

In the second part of the paper, we change our setting and we are interested to the development of a truthful coor-
dination mechanism [9] for the same scheduling problem. The notion of coordination mechanism has been introduced
in order to improve the performance of a system with independent selfish and non-colluding agents. In a coordination
mechanism, we assume that the system designer can select the scheduling policies of each machine (e.g. each machine
schedules its tasks in order of decreasing lengths), but the designer must design the system once and for all (i.e. it
should not depend on the values bidded by the tasks). Another important and natural condition is the decentralized
nature of the problem: the scheduling on a machine should depend only on the lengths of the tasks assigned to it and
should be independent of the tasks’ lengths assigned to the other machines. Knowing the coordination mechanism and
the values bidded by the other tasks, each task chooses on which machine it will be scheduled, and is then scheduled
on this machine according to the policy of the machine.

A truthful mechanism can be easily obtained (if we, of course, assume that the tasks cannot shrink their lengths) by
scheduling the tasks following the increasing order of their lengths. This mechanism can also be adapted to a truthful
coordination mechanism. This mechanism, known as SPT, produces a (2 — 1/m)-approximate schedule. The central
question in this paper is the following: “Are there other truthful mechanisms with better approximation guarantee (price
of anarchy) for the considered scheduling problem?”

1.1. Results in this paper

Since there is no deterministic truthful mechanism with an approximation ratio better than the one of SPT, we focus,
like in [2], on randomized truthful mechanisms. Thus, we assume that each agent aims to maximize her expected profit.
A mechanism is then called truthful if, for each agent, bidding her true schedule length maximizes her expected profit
regardless of what the other agents bid.

In Section 3, we consider the selfish task allocation model and we give a centralized algorithm which is truthful even
if the values of the lengths are not restricted, and has an expected approximation ratio of 2 — m;ﬂ(% + ﬁ), which is
smaller than the one of an SPT schedule (e.g. if m = 2 its approximation ratio is smaller than 1.39 whereas it is 1.5 for
an SPT schedule).

In Section 4, we consider the two-machines case. We first study a coordination mechanism in which the first
machine always schedules its tasks in order of increasing lengths, and the second machine schedules its tasks with a

probability p > % in order of increasing lengths and with probability (1 — p) in order of decreasing lengths. The expected
approximation ratio of this (randomized) coordination mechanism, that we prove to be %‘ + %, is better than the one of
SPT (%). We show that this coordination mechanism is truthful if the tasks are powers of a constant larger than or equal
to 42__—3;, but not if the values of the task lengths are not restricted. We also show that if p < % then this coordination
mechanism is not truthful even if the tasks are powers of any integer larger than 1. In Section 4.3, we consider some

other randomized coordination mechanisms based on the deterministic coordination mechanisms in which the tasks

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

E. Angel et al. / Theoretical Computer Science 111 (1111) IHI-111 3

are scheduled in order of increasing or decreasing lengths (and thus which have expected approximation ratios better
than the one of SPT), and give negative results on their truthfulness.

1.2. Related works

Scheduling with selfish agents have been intensively studied these last years, starting with the seminal work of Nisan
and Ronen [17], and followed by a series of papers [1-5,7,15]. However, all these works differ from our paper since in
their case, the selfish agents were the machines while here we consider that the agents are the tasks. Furthermore, in
most of these works the mechanisms have to give a payment to the agents in order to induce them to report their true
private values, whereas we wish in this paper to design algorithms which are truthful without giving a payment to the
tasks.

However there are some similarities among these works and ours. For example, in [4], the authors study the case
where the agents can lie in one direction (that is they either overbid or underbid). However they study this for one-
parameter agents (which can be used when the agents are the machines, but not when they are the tasks), and in the
context of mechanism with verification (which implies that the mechanism can recognize the true value of an agent,
and can punish her). The impact of restrictions on the values that the agents can bid has also been considered in other
contexts, such as allocation of goods to competing requests [13,16]. Several works also consider truthful mechanisms if
the tasks or the agents values are restricted: Kovacs proved in [15] that the LPT algorithm is truthful and 3-approximate
if the machine’s speeds are powers of two, and Ambrosio et al. proved in [1] that LPT is not truthful if the machine’s
speeds are powers of a constant smaller than 1.78.

A more related work is the one of Auletta et al. who considered in [6] the problem of scheduling selfish tasks
in a centralized case. Their work differs from ours since they considered that each machine uses a round and robin
policy and thus that the completion of each task is the completion time of the machine on which the task is (this
model is known as the KP model). They considered that the tasks can lie in both directions, and that there are some
payments.

Another closely related work is the one of Christodoulou et al. [9] who considered the model that we study here, but
only in the distributed context of coordination mechanisms. They proposed different coordination mechanisms with a
price of anarchy better than the one of the SPT mechanism. Nevertheless, these mechanisms are not truthful. In [14],
the authors gave coordination mechanisms for the same model for related machines (i.e. machines can have different
speeds), but their mechanisms are also not truthful.

2. Preliminaries

We are given m machines (or processors) and n tasks 71, ..., T,. Let [; denote the execution time (or length) of task
T;. We use the identification numbers to compare tasks of the same lengths: we will say that a task 7; is larger than
atask T; if and only if [; > Ij or (I = l; and i > j). The machines have the same speed, and the length of each
task is known by an agent, its owner. Each agent declares a value b greater than or equal to the real length of the task
(we make the assumption, like in [9] that the agents cannot shrink their lengths). The aim of each agent is to minimize
its completion time, and an agent may lie if by doing so she can improve its completion time.

We consider two different models of execution:

e in the first one, used in Section 3, if T; bids a value b > [;, then its execution time remains /;,

e in the second one, used in Section 4, we assume that if 7; bids a value b > [;, then its execution time is b, i.e. T;
(or its owner) will not get the result of its execution before b time units after the beginning of the execution of 7;.
This model of execution is called the weak model of execution in what follows.

We adopt the following definition of randomized mechanism: A randomized mechanism can be seen as a probability
distribution over deterministic mechanisms; for instance given two deterministic mechanisms M1 and M2, with a
probability p the mechanism will be M1 and with probability (1 — p) it will be M2.

In the centralized setting (Section 3), the schedule will be obtained as follows: given the randomized mechanism, the
agents will declare their lengths and the system will assign them to the machines following the deterministic mechanism
M1 with probability p or M2 with probability (1 — p).

In the distributed setting (Section 4), given the randomized mechanism, each task bids a value which represents its
length, and then the selected deterministic coordination mechanism is announced to the tasks (it is M1 with probability

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

4 E. Angel et al. / Theoretical Computer Science 11 (1111) III-111

AN T, |
i n] s | Ty |
pln [l 7 || Ty

time

Fig. 1. DSPT schedule.

p and M2 with probability (1 — p)). Each task chooses on which processor it will be scheduled, according to the
policies of the processors: it goes on the processor on which it will minimize its expected completion time.

We say that a (randomized) mechanism is truthful if for every task the expected completion time when it declares its
true length is smaller than or equal to its expected completion time in the case where it declares a larger value. More
formally, we say that a mechanism M is truthful if E;(I;) < E;(b;), for every i and b; >1;, where E;(b;) is the expected
completion time of task 7; if it declares b;. In order to evaluate the quality of a randomized mechanism, we use the
notion of expected approximation ratio (price of anarchy).

We will refer in the sequel to the list scheduling algorithms LPT and SPT, where LPT (resp. SPT) [11] is the algorithm
which greedily schedules the tasks, sorted in order of decreasing (resp. increasing) lengths, as soon as a machine is
available. An LPT (resp. SPT) schedule is a schedule returned by the LPT (resp. SPT) algorithm.

3. Truthful centralized mechanism

We give in this section a truthful randomized mechanism for the centralized setting. This mechanism is obtained by
using a new deterministic (truthful) algorithm, which will be used with a certain probability p, and the LPT algorithm
(which is not truthful but has a good approximation ratio), with a probability (1 — p).

3.1. Algorithm: LDS

Let us consider the following algorithm, denoted by DSPT (for Delayed SPT), and which returns an SPT schedule
in which a delay (or idle time) may have been inserted before each task:

Let{Ti, T, ..., T,} be n tasks to be scheduled on m > 2 identical processors,
{P1, P>, ..., Py}. Letus suppose that [} <lr < - - - <I,,.
Tasks are scheduled alternatively on Py, P, ..., P,, in order of increasing

length, and T;4 starts to be executed when exactly % of task T; has been
executed. Thus 7 starts to be scheduled on P; at time 0, 75 is scheduled on
P, at time ln—‘1, T3 is scheduled on P3 (on Py if m = 2) when % of T, has
been executed, i.e. at time ﬁ—,‘l + %, and so forth. ..
The schedule returned by DSPT will be called a DSPT schedule in the sequel. Fig. 1 shows a DSPT schedule, where
m = 3.

Lemma 1. Let us suppose that we have n tasks {T1, ..., T,} to schedule on m machines {P1, ..., Py}. Let idle(i) be
the idle time added by algorithm DSPT before task i. For eachi € {1, ..., n}, we have idle(i) > 0.

Proof. Algorithm DSPT adds, at each step i € {1, ..., n}, task T; on processor P;modm- Let us show that the idle
time before each task is larger than or equal to O. It is trivial that idle(i) >0 for the m tasks scheduled in the first
position. Let 7; be a task which is not scheduled in the first position (i.e. 7; is scheduled after task 7;_,,). Task T;
starts to be executed at exactly % of the execution of task 7;_;, which starts to be executed at exactly % of the

execution of T;_», ..., T;_,,+1 which starts to be executed at exactly % of the execution of 7;_,,. Thus 7; starts
to be executed %(li_l +1li—2 + -+ 4+ lj_,,) time units after the beginning of T;_,,. Since l;_1 =l 2> -+ =l;_p,
LGy +lig+ -+ +limw) >li—m, and so idle(i) >0. O

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

E. Angel et al. / Theoretical Computer Science 111 (1111) IHI-111 5

Theorem 1. DSPT is?2 — %—approximate: the makespan of a DSPT schedule is smaller than or equal to (2 — n—11)OPT,
where OPT is the makespan of an optimal schedule for the same tasks.

Proof. We have n tasks 71, ..., T,, such that [< --- </, to schedule on m processors. Each task 7; starts to be
executed exactly when n% of T;_1 has been executed. So, if n <m, then the makespan of the DSPT schedule is:

L+t o)+ <Em =D, + 1, < B <2 - Ly, <2 - LyopT, since 1, <OPT.

Let us now consider the case where n > m. Leti € {m + 1, ..., n}. Task T; starts to be executed when % of T;_1 is
executed, and 7T;_; started to be executed when % of T; _» was executed, etc., T(; ;)1 started to be executed when %
of T;_,, was executed. So the idle time between T; and T;_,, is idle(i) = %(li_m + i+ -+ i) =l

Leti € {2,...,m}. The idle time before 7; is equal to idle(i) = %(ll + .-+ +1;_1), and there is no idle time
before 77, which starts to be executed at time 0. Thus, the sum of the idle times between tasks is Z;‘ﬁidle(i) =
%((m —Dhmr1r +m =Dl o + -+ l1).

Letje{n—m+1,...,n— 1}. Let end(j) be the idle time in the schedule after the end of task 7; and before the
end of 7y,: end(j) =141 — '"n:llj + end(j + 1), where end(n) = 0. So the sum of the idle times after the last tasks
and before the end of the schedule is Z'};Lmﬂ end(j) = (m — 1)1, — ’"T_ll,,_l) +(m —2)(y—y — mn;lln—Z) 4

ot (lp—my2 — mT_lln—m+l)~

The sum of the idle times on the processors, from the beginning of the schedule until the makespan, is the sum of
the idle times between tasks (and before the first tasks), plus the sum of the idle times after the end of the last task
of a processor and before the makespan. It is equal to Y 7, idle(i) + Z;l';:i—erl end(j) = %((m — Dl +
m =22+ +)+ m -1, — mT_lln—l) +(m—2)(y—1 — m,;lln—2) +oo g2 — %ln—m+l)
= (m — 1)I,.

Let & be the makespan of a DSPT schedule. ¢ is the sum of the tasks plus the sum of the idle times, divided by m:

) Hm—D, i — . Tl
o Dz oD sz=1 + (=Dl gince ZT=1 <OPT and I, <OPT, we have: ¢<(2 — LyoPT. O

Let us consider the following algorithm, denoted by LDS in the sequel:
Let m be the number of processors. With a probability
is a DSPT schedule; and with a probability m+r1,
an LPT schedule.

the output schedule

m
m—+1°
the output schedule is

Theorem 2. The expected approximation ratio of LDS is 2 — mLH(% + %m).

Proof. The approximation ratio of a DSPT schedule is 2 — % (see Theorem 1), and the approximation ratio of an
LII’T schedule 154% - 31Lm (see [111]). Thus the eysgpect?d approxim?timsl rati(l) of LDS is mLH(Z — %) + ﬁ(% — %m) =
i @m—l45—5) =5qCn+D-3-5)=2-57G+5) U

3.2. Truthfulness
Theorem 3. The algorithm LDS is truthful.

Proof. Let us suppose that we have n tasks 71, ..., T,, ordered by increasing lengths, to schedule on m processors.
Let us show that any task 7; does not have incentive to bid a length higher than its true length. Let us suppose that
task 7; bids b > [;, and that, by bidding b, T; is now larger than all the tasks 71, .. ., Ty, and smaller than 7y . In the
LPT schedule, the tasks Ty to T, are scheduled in the same way, whatever 7; bids (/; or b). By bidding b, T; can, at
best, start (/;+1 + - - - + [,) time units before than if it had bidded /;. Thus the expected completion time of 7; in LDS
decreases by at most m+rl(l,'+1 + --- 4+ [,) time units when 7; bids b instead of /;.

On the other hand, by bidding b instead of /;, 7; will end later in the DSPT schedule: in this schedule, tasks from
T; 1 to T, will be started before 7;. Since a task T starts to be scheduled when % of its predecessor 71 is executed,
by bidding b, T; starts %(l,-_H + - - 4 [,) time units later than if it had bidded /;. Thus, the expected completion time

of 7; in LDS is increased by -5 (- (li1 + -+ + 1)) = 15 G + -+ + L),

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

6 E. Angel et al. / Theoretical Computer Science 11 (1111) III-111

Thus, as a whole, the expected completion time of 7; cannot decrease when 7; bids a higher value than /;, and we
can deduce that LDS is truthful. [

No better approximation ratio can be achieved by choosing probabilities for DSPT and LPT in a different way.
Indeed, if we have m >2 machines, m — 1 tasks of length m and m tasks of length 1, then, by bidding 1 + ¢ (where ¢ is
a negligible positive value), the task of length 1 which is the last one in the LPT schedule will gain (m — 1) time units
in the LPT schedule, whereas it will loose %(m — 1) time units in the DSPT schedule.

Note that in the case where m = 2, the expected approximation ratio of LDS is % < 1.39. This algorithm is truthful,
even in the case where the tasks can take any value, and it has a better approximation ratio than SSL(p) introduced in
Section 4 (but LDS is not a coordination mechanism because a processor has to know the tasks scheduled on the other
processors).

We can also note that, since the approximation ratio of a DSPT schedule is 2 — % (like SPT), and the approximation
ratio of an LPT schedule is % - %, the schedule returned by LDS is, in the worst case, 2 — %-approximate, which is
not worse than the approximation ratio of an SPT schedule.

4. Truthful coordination mechanisms
We focus in this section on truthful coordination mechanisms, in the case where there are two machines.
4.1. Coordination mechanism: SSL(p)

Let us first consider the following algorithm, denoted by SSL(p) in the sequel:

Let p € Rsuchthat0< p <1. With a probability p, the output schedule is an
SPT schedule: the tasks are greedily scheduled in order of increasing lengths.
With a probability (1 — p), the output schedule is an SPT-LPT schedule:
an SPT-LPT schedule is a schedule in which a processor, denoted by Pspr,
schedules the tasks in order of increasing lengths, and the other processor,
denoted by Pppr, schedules the tasks in order of decreasing lengths. A task
T; is scheduled on Pspr if the total length of the tasks smaller than 7; is
smaller than or equal to the total length of the tasks larger than 7;; otherwise
it is scheduled on P pt.

We can easily transform the centralized algorithm SSL(p) into a (randomized) coordination mechanism. Indeed, we
can obtain, as showed in [9], an SPT-LPT schedule by having a processor, Pspt, which schedules its tasks in order of
increasing sizes and the other processor, P pr, which schedules its tasks in order of decreasing sizes. Thus, each task
T; will go on Pspr if the total length of the tasks smaller than 7; is smaller than or equal to the total length of the tasks
larger than 7;; otherwise 7; will have incentive to go on Pppr. Likewise, we can obtain an SPT schedule by having two
processors Py and P, which schedule tasks in order of increasing sizes, and P, which adds a little idle time & (which we
know to be smaller than the length of any task) before its first task, at the very beginning of the schedule. In this way, the
smallest task will go on Py, the second smallest on P,, and so forth, and we will get the only possible Nash equilibrium,
which is an SPT schedule. Hence, the coordination mechanism corresponding to SSL(p) is the following one:

Let p € R such that 0< p<1. Let ¢ be a small number smaller than the
length of every task. The first processor P; schedules, starting at time 0, its
tasks in order of increasing sizes. The second processor P> schedules with
a probability p its tasks in order of increasing sizes, starting its first task at
time ¢; and P> schedules, with a probability (1 — p), its tasks in order of
decreasing sizes, starting its first task at time 0.

. 4
Theorem 4. The expected approximation ratio of SSL(p) is 5 + %.

Proof. The approximation ratio of an SPT schedule is % (see [11]), and the approximation ratio of an SPT-LPT schedule

is % (see [9]). Thus the expected approximation ratio of SSL(p) is p% + (1 - p)%, i.e. p(% — %) + % = % + %. O

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

E. Angel et al. / Theoretical Computer Science 111 (1111) IHI-111 7
4.2. Truthfulness

In this section, we will use the weak model of execution, as explained in the Preliminaries. When we assume that all
the lenghts of the tasks are powers of a constant C, then we assume that a task can only bid a value which is a power
of C. If it was not the case (i.e. if a task bids a value which is not a power of C), we could round the value of this task
to the nearest higher power of C.

Theorem S. Let p € R and such that % < p< 1. Algorithm SSL(p) is truthful if the lengths of the tasks are powers of

any constant C > %.

Proof. Letus suppose that we have n tasks to schedule, and that we know that these tasks are powers of C (and thus that
they have to bid a value which is a power of C). Let us suppose that a task 7;, of length /;, bids Iy (Ix > [;). Let us show
that the expected completion time of 7; is smaller when 7; bids /; rather thanly. Let I’ = {Ty, ..., T;, ..., Ti, . .., Tps1}
be n + 1 tasks (the n tasks that we have to schedule, plus a task 7} of length [, which represents the task 7; which
bids /i instead of [;), and let us suppose that 1 < - - - <[; < -+ - <[k < -+ - <Iy41. If T; bids [; then the tasks we have to
schedule are the tasks I'\ T; if 7; bids I, then the tasks to be scheduled are I'\T; (thus T} represents 7; in this case).
SSL(p) is truthful if, for every i, the expected completion time of 7; is smaller if it bids /; than if it bids any other value
lk > l,’.

Thus, this algorithm is truthful if the worst expected completion time of 7; when it bids /; is always smaller than
the best expected completion time of 7; when it bids /; > [;. The worst completion time of 7; which bids /; in an SPT

i—1
>l
2

schedule is + [;: this is the case when T; starts to be executed when all the smaller tasks have already been

k
completed. The best completion time of 7; which bids / in an SPT schedule is (ZF#: this is the case when Ty
is completed at the same time as Tj_1.
There are two cases for 7; in the SPT-LPT schedule: it is either scheduled on Pspr after the tasks which are smaller
than /;, and ends at time le=1 [j (case 1), or it is scheduled on Pppr after the tasks which are larger than /;, and then

ends at time (Z’}:} lj) — Iy (case 2). It is the same thing in the case where T; bids Ii: T is either scheduled on Pspr

and then ends at time (le: 11j) —1; (case A), oritis scheduled on Pppr and then ends at time Z;’I,i [j (case B). In the
SPT-LPT schedule, 7; (resp. Tj) chooses between the cases 1 and 2 (resp. the cases A and B) the one that minimizes
its completion time.

SSL(p) is truthful if the worst completion time of 7; which bids /; in an SPT schedule, times p, plus the completion
time of 7; which bids /; in an SPT-LPT schedule, times (1 — p), is smaller than the best completion time of 7; which
bids Iy (7; is then identified by 7}) in an SPT schedule, times p, plus the completion time of 7} in an SPT-LPT schedule,
times (1 — p). Thus, SSL(p) is truthful if

h 2 n+1
pRY
j=k
i k k
> Y1) -3 Do li—1
j=1 Jj=i j=1
_ < _
< (I — p) | min el <p > 4+ (1 — p) | min e
lj — I lj
j=i j=k

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

8 E. Angel et al. / Theoretical Computer Science 11 (1111) III-111

There are now four cases to consider (the four combinations of the two choices of 7; and the two choices of T):
e Case 1A: In the SPT-LPT schedule, 7; is scheduled on Pspr, and 7} is scheduled on Pgspr.

In the SPT schedule, 7} does not end before 7; because /; > [/; and the lengths of the other tasks are the same ones.
Likewise, in the SPT-LPT schedule, since 7; and T} are both scheduled on Pspr, T cannot end before 7;. So the
expectation of the completion time of 7 is not smaller than the one of 7; and SSL(p) is truthful in this case.

e Case 2A: In the SPT-LPT schedule, 7; is scheduled on P pr, and T} is scheduled on Pspr.

This case cannot happen. Indeed, if 7; is scheduled on Py pr, then the length of the tasks before it on Pppr (Z:l:f li—Ix)
is smaller than the length of the tasks which would be scheduled before it on Pspr (Z’fl [). Since Iy > I;, the length
of the tasks scheduled before T} on Pppr (ZZII li = (ij{f I Zf 1) is smaller than the length of the tasks
scheduled before 7 on Pspr (Z’f_l li —1; = le ! lj + Z, il 1) Thus the completion time of T} is smaller on PLpt
rather than on Pspr, and the case where T; is scheduled on P pr and T; on Pspr does not occur.

e Case 2B: In the SPT-LPT schedule, T; is scheduled on Pjpr, and T} is scheduled on P pr.

SSL(p) is truthful if

k
n+1 <12::llj> =3 n+1
pl|Xh)—k])<p|—F— +(L—m§%h
Jj=i Jj=

k
L (3211-)—31,
< le -2k <p /=
j=i 2

3 k(3
& 7”11-@(1 — i+ YU <7p _ 1).

j=i

There is necessarily a task between 7; and 7Ty in I', otherwise 7; (i.e. T; which bids /;) and Ty (i.e. 7T; which bids /;)
would start after the same tasks - and so at the same time - in the SPT schedule (and in the SPT-LPT schedule), and
then 7; would not decrease its expected completion time by lying on its execution time. So, Zl;-:,-l =22l + .

Since p> 2, we know that (32 — 1) >0. Thus, SSL(p) is truthful if

3
7pzi <2(1 = p)li + Qi + 1) (7” - 1)

e (- (2
@(2—37[)>li<(1—§>1k

_2
& i<k
-7
2-p
& ;i < Ik
i 4_3pk

Since [} > li, and tasks are powers of C Z5 4_31’ , we know that [> 42_&1,; and so the above inequality is fulfilled.

Thus, if p> 3, and if the tasks are powers of C > 4 3 ” , SSL(p) is truthful.

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

E. Angel et al. / Theoretical Computer Science 111 (1111) IHI-111 9

1.6 7 1.5 -
151 1.49
1.4 1 1.48 1
0131 G 1.47
(0]
1.2 1.46 1
1.1 1.45
; 1.44

0.7 0.75 0.8 0.85 0.9 0.95 1 0.7 0.75 0.8 0.85 0.9 0.95 1
p p

Fig. 2. Left: If the tasks are powers of a constant larger than or equal to C(p) then SSL(p) is truthful. Right: Expectation of the approximation ratio
(e.a.r) of SSL(p).

e Case 1B: In the SPT-LPT schedule, T; is scheduled on Pspr, and T} is scheduled on Pj pt.
SSL(p) is truthful if

k
' < lj> — 3
1 j=i n+l1
(1—17)(21]‘) <p|——F— | +U0=-p X1
=1 =k

2 J

In the SPT-LPT schedule, 7; is scheduled on Pspt and not on Pp pr, so Z;:l l; < (Z'}III lj) — lx. Thus, SSL(p) is
truthful if

k
n+1 (12_:[1/> =3 n+1
A=p (| Xt)-t)<p|~—F——|+a-n1 1L
j=i Jj=k

This inequality is the same one that in case 2B, so the end of the proof is the same as in the previous case.
Thus, in every case, if p> %, and if the tasks are powers of a constant larger than or equal to 42_#, SSL(p) is

truthful, O !

Fig. 2 (Left) gives an illustration of Theorem 5: if we know that the tasks are powers of a constant larger than or
equal to C(p), then SSL(p) is truthful. Fig. 2 (Right) illustrates Theorem 4 and shows the expected approximation ratio
of SSL(p).

We saw that SSL(p) is truthful if the tasks are powers of C = ‘%. In fact, the only sufficient condition we have for
this algorithm to be truthful is that, for every i, [; 41 = [; or [;1 > C x [;. Thus, if we know that the lengths of the tasks
belong to a set S = {x1, x2, ..., x¢} such that for each j, xj;1>C x xj, then SSL(p) is truthful. However, SSL(p)
is not truthful if the possible values of the tasks are not restricted, and it is not truthful if p < %, even if the tasks are
powers of any integer B > 1.

Theorem 6. Let p € R be any number such that 0< p < 1. Algorithm SSL(p)is not truthful if the tasks can take any
value.

Proof. Let ¢ be any number such that 0<<e < 1 — p. Let us consider the following tasks: two tasks 77 and 73 of length
1, a task 73 of length 2 — ¢ and a task 7y of length 2. If 73 bids its true value, 2 — ¢, it is expected to end at time
p(3 —¢&) + (1 — p)(4 — ¢), because it is scheduled after a task of length 1 in the SPT schedule, and after the task of
length 2 in the SPT-LPT schedule. If 73 does not bid its true value, but bids 2 + ¢ instead, its expectation of completion
time is then p(3 + ¢) + (1 — p)(2 + ¢). Indeed, in this case 73 is scheduled in the SPT schedule after a task of length
1, but it is scheduled at the first position on Pppr in the SPT-LPT schedule.

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

10 E. Angel et al. / Theoretical Computer Science 11 (1111) III-111

z B tasks
Popr|B\B|B|B Wa P, E .. |B| B? ‘ |B2 ‘
P| B2 [B | - | B? B,|B| -~ |BlB|B* | - | B
—_— — ~——
x tasks % tasks 3 tasks

Fig. 3. Schedules returned when 7', the task colored in grey, bids B. Left: SPT-LPT schedule, Right: SPT schedule. The number in each task
represents its length.

Whatever the value of p is, the expected completion time of 73 when it bids 2 + ¢ instead of 2 — ¢ is smaller than
the expected completion time of 73 when it bids its true value. Thus this algorithm is not truthful if we do not restrict
the possible values of the tasks. [

Theorem 7. Let p € R be any number such that 0<p < % Algorithm SSL(p) is not truthful, even if the tasks are
powers of an integer B (B > 1), whatever the value of B is.

Proof. Let B > 1 be any integer number, and let p be any positive number smaller than % Let us suppose that the
tasks are powers of B (and then they must bid a power of B). Let us show that SSL(p) is not truthful, by showing that
there is an instance in which a task 7' can improve its expected completion time by bidding a value larger than its true
value.

2
Let x be an even number larger than B

(B+p(5-2B)°
B, and x tasks of length B2. Let T be the last task of length B (i.e. the task of length B which has the largest index:
T = Ty py if the tasks {T1, T», ...} are labelled by increasing lengths). Let us now show that the expected completion
time of 7 in SSL(p) will be smaller if it bids B> instead of B.

The completion time of 7" which bids B is "TB + B in the SPT schedule, and xB2 + B in the SPT-LPT schedule (see
Fig. 3). Thus its expected completion time in LDS is p(*2 + B) + (1 — p)(xB*> + B) = p(*2 — xB?) + (xB + B).

The completion time of T which bids B> is xB + B3 in the SPT schedule (it is on the last position in this schedule,
after % tasks of length B and 5 tasks of length B?), and the completion time of T which bids B> is B> in the SPT-LPT
schedule (it is on the first position on the processor which scheduled its tasks from the largest to the smallest). Thus its
expected completion time in LDS is p(xB> + B3) + (1 — p)(B?) = pxB* + B>.

SSL(p) is not truthful if the expected completion time of T which bids B is smaller than its completion time when
it bids B. So it is not truthful if

and let us consider the following instance: (xB + 1) tasks of length

B
px82 + B3 < p (% —sz> + (xB> + B)

xB
& B —B < —pr2 —I-pT _prz+sz

B
<:>B3—B<x<B2+p<E—ZBZ))
1
<:>Bz—1<x<B+p(§—2B>>

2
- B l—l
(B+p(}-2B))

Since x is an even number larger than

, because B + p(% —2B) > 0since 0< p < %

B2—1

m, x fulfills the above condition and so SSL(p) is not truthful if

p < % O
4.3. Other coordination mechanisms: negative results

SL(p) is the algorithm where we have with a probability p an SPT schedule, and with a probability (1 — p) an LPT
schedule. LSL(p) is the algorithm where we have with a probability p an LPT schedule, and with a probability (1 — p)

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

E. Angel et al. / Theoretical Computer Science 111 (1111) IHI-111 11

an SPT-LPT schedule. We saw in Section 4.1 that there exist coordination mechanisms which return an SPT or an
SPT-LPT schedule. Likewise, by adding small delays on the processors—which both schedule the tasks in order of
decreasing lengths—, the authors showed in [9] a coordination mechanism which returns an LPT schedule (the delays
are negligible here since we can fix them as small as we want). Let us now give negative results on the truthfulness of
these mechanisms.

Theorem 8. Let p € R be any number such that 0< p < 1. Algorithm SL(p) is not truthful if the tasks can take any
value.

Proof. Let ¢ be any number such that 0< e < };—p. Let us consider the following tasks: a task 77 of length 1, a task 7>
of length 1 4 ¢ and a task 73 of length 2. If 77 bids its true value, 1, itis expected toend attime t; = p+ (1 — p)(2+¢),
because it is scheduled at the beginning of the SPT schedule, and after 75 in the LPT schedule. If 7 does not bid its
true value, but bids 1 4 2¢ instead, it is expected to end at time #, = (1 + 2¢), because it is scheduled at the beginning
of the SPT and the LPT schedules. Since ¢ < L:—Z, t> is smaller than ¢, and so SL(p) is not truthful. [J

Theorem 9. Let p € R be any number such that 0< p < % Algorithm SL(p) is not truthful, even if the tasks are
powers of a constant B (B > 1), whatever the value of B is.

Proof. Let B > 1 be any real number, and let p be any positive number smaller than % Let us suppose that the
tasks are powers of B (and then they must bid a power of B). Let us show that SL(p) is not truthful, by showing that
there is an instance in which a task 7' can improve its expected completion time by bidding a value larger than its true
value.

Letx = LBﬁzf_zlp)J + 1, and let us consider the following instance: 2x tasks of length B?, and one task, T, of length
B. Let us now show that the expected completion time of T in SL(p) will be smaller if it bids B> rather than B.

The completion time of 7" which bids B is B in the SPT schedule, and xB% + B in the LPT schedule, where T is
scheduled after x tasks of lengths B2. Its expected completion time in SL(p) is then t; = pB + (1 — p)(xB> + B) =
B+ (1 — p)xB?. The completion time of 7' which bids B is xB> 4 B3 in the SPT schedule (it is scheduled after x tasks of
lengths B2), and B3 inthe LPT schedule. Its expected completion time in SL(p) isthent, = p(sz+B3)+(1—p)(B 3 =
B3 + pxB2.

SL(p) is not truthful if 1y < f: 1] < 12

& B3 +px32 <B4+ (1- p)x32
& B — B < x(B*(1-2p))
B?—1

<:>X>B(T2p).

Since x = I_Bﬁzf_zlmj + 1 fulfills the above condition, the expected completion time of 7" in our instance is smaller if
T bids B> rather than if its bids its true value B, and so SL(p) is not truthful. [

Theorem 10. Let p € R be any number such that 0< p <1. Algorithm LSL(p) is not truthful, even if the tasks are
powers of a constant B (B > 1), whatever the value of B is.

Proof. Let B > 1 be any real number, and p be any number such that 0 < p < 1. Let us suppose that the tasks are
powers of B. Let us show that LSL(p) is not truthful, by showing that there is an instance in which a task 7' can improve
its expected completion time by bidding a value larger than its true value.

Let us consider the following instance: 2B + 1 tasks of length B, and 2B? tasks of length 1. Let T be the last task
of length B (i.e. the task of length B which has the largest index).

The completion time of T which bids B is B> + B in the LPT schedule (7 is scheduled after B tasks of length B),
and 2, B> 4+ B in the SPT-LPT schedule (T is scheduled after 2B? tasks of length 1). The completion time of T
which bids B? is B? in the LPT schedule, and B? in the SPT-LPT schedule (7 is scheduled at the beginning of
both schedules). The expected completion time of T is smaller when T bids B? rather than B, so LSL(p) is not
truthful. [

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

12 E. Angel et al. / Theoretical Computer Science 11 (1111) III-111

In the negative results of this section, we used the weak model of execution: we assume that if 7; bids a value b > [;,
then its new execution time is b. Of course, these results also hold for the second execution model, in which if 7; bids
a value b > [;, then its new execution time will still be /; (7; does not have to wait b time units after its start to get its
result).

References

[1] P. Ambrosio, V. Auletta, Deterministic monotone algorithms for scheduling on related machines, in: Proc. of WAOA, 2004, pp. 267-280.
[2] A. Archer, E. Tardos, Truthful mechanisms for one-parameter agents, in: Proc. of FOCS, 2001, pp. 482-491.
[3] V. Auletta, R. De Prisco, P. Penna, P. Persiano, Deterministic truthful approximation mechanisms for scheduling related machines, in: Proc. of
STACS, 2004, pp. 608-619.
[4] V. Auletta, R. De Prisco, P. Penna, P. Persiano, The power of verification for one-parameter agents, in: Proc. of ICALP, 2004, Lecture Notes in
Computer Science, Vol. 3142, pp. 171-182.
[5] V. Auletta, R. De Prisco, P. Penna, P. Persiano, On designing truthful mechanisms for online scheduling, in: Proc. of SIROCCO, 2005, Lecture
Notes in Computer Science, Vol. 3499, pp. 3—17.
[6] V. Auletta, P. Penna, R. De Prisco, P. Persiano, How to route and tax selfish unsplittable traffic, in: Proc. of SPAA, 2004, pp. 196-204.
[7] Y. Azar, M. Sorani, Truthful approximation mechanisms for scheduling selfish related machines, in: Proc. of STACS, 2005, pp. 69-82.
[9] G. Christodoulou, E. Koutsoupias, A. Nanavati, Coordination mechanisms, in: Proc. of ICALP 2004, Lecture Notes in Computer Science,
Vol. 3142, 2004, pp. 345-357.
[10] E. Clarke, Multipart pricing of public goods, Public Choices, 1971, pp. 17-33.
[11] R. Graham, Bounds on multiprocessor timing anomalies, STAM Appl. Math. 17 (2) (1969) 416-429.
[12] T. Groves, Incentive in teams, Econometrica 41 (4) (1973) 617-631.
[13] M.T. Hajiaghayi, R.D. Kleinberg, M. Mahdian, D.C. Parkes, Online auctions with re-usable goods, in: Proc. ACM Conf. on Electronic Commerce
(EC) 2005, pp. 165-174.
[14] N. Immorlica, L. Li, V.S. Mirrokni, A. Schulz, Coordination mechanisms for selfish scheduling, in: Proc. of WINE, 2005, Lecture Notes in
Computer Science, Vol. 3828, pp. 55-69.
[15] A. Kovacs, Fast monotone 3-approximation algorithm for scheduling related machines, in: Proc. of ESA, 2005, Lecture Notes in Computer
Science, Vol. 3669, pp. 616-627.
[16] R. Porter, Mechanism design for online real-time scheduling, in: Proc. ACM Conf. Electronic Commerce (EC), 2004, pp. 61-70.
[17] N. Nisan, A. Ronen, Algorithmic mechanism design, in: Proc. of STOC, 1999, pp. 129-140.
[18] W. Vickrey, Counterspeculation, auctions and competitive sealed tenders, J. Finance 16 (1961) 8-37.

Please cite this article as: Eric Angel et al., Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science
(2006), doi: 10.1016/j.tcs.2006.07.057

http://dx.doi.org//10.1016/j.tcs.2006.07.057

