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Abstract. This paper is devoted to the study of truthful mechanisms
without payment for the many-to-many assignment problem. Given n
agents and m tasks, a mechanism is truthful if no agent has an incentive
to misreport her values on the tasks (agent a; reports a score wj; for
each task t;). The one-to-one version of this problem has already been
studied by Dughmi and Ghosh [4] in a setting where the weights w;; are
public knowledge, and the agents only report the tasks they are able to
perform. We study here the case where the weights are private data. We
are interested in the best approximation ratios that can be achieved by
a truthful mechanism. In particular, we investigate the problem under
various assumptions on the way the agents can misreport the weights.

Key words: Algorithmic game theory, truthful mechanism without pay-
ment, approximation algorithm, many-to-many assignment problem.

1 Introduction

We study here many-to-many assignment problems, where a set of tasks {¢1,...,tm}
are assigned to a set of agents {a1,...,an}. Let x;; = 1 if task ¢; is assigned to
agent a;. We tackle the case where one assigns p tasks per agent and q agents per
task, i.e. >3, z;; = pand 3, xi; = q. A weight w;; > 0 can represent the interest
shown by agent a; to perform task ¢;, but also an attendance level, a bandwidth,
etc. The aim of the optimization problem is to assign the tasks to the agents so
as to maximize some social objective, e.g. Z” wijzi; (in an utilitarian setting)
or min; Y, ; WijTij (in an egalitarian setting). This type of problem can occur in
various circumstances:

— Assignment of papers to reviewers for a conference. Consider a program
committee chair who has to assign the m submitted papers (the tasks) to n
reviewers (the agents). Each reviewer is assigned p papers and each paper
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is reviewed by ¢ reviewers. In order to perform the assignment, during the
bidding phase, for each paper t; each reviewer a; indicates an interest score
wj; on the conference system.

— Assignment of public resources to non-profit associations. Consider a town
council who allocates m time slots/room locations (the tasks) to n sports
or cultural associations (the agents). There are ¢ time slots in a week (m/q
room locations) and each association has the possibility of being assigned p
time slots/room locations per week (once for all). Furthermore, for each time
slot ¢;, each association a; indicates the expected number w;; of members
that would attend the activity.

— Assignment of time slots on an earth observation satellite. Consider an earth
observation satellite shared among n institutions (the agents). In the daily
management of the satellite, there are m time slots (the tasks) in a day
and a limited number ¢ of possible accesses to the same slot. For a given
institution, there is a maximum of p accesses per day and one access per
time slot. Furthermore, for each time slot ¢;, each institution a; indicates
the required bandwidth w;;.

In all these circumstances, based on the bids, the tasks are assigned to the agents
so as to maximize the social welfare (depending on the social objective). Once
the bids are known, the optimization problems involved are solvable in polyno-
mial time, except for the many-to-many case in the egalitarian setting (strongly
NP-hard by reduction from the 3-partition problem, see Section 4). These op-
timization problems have also been investigated from the fairness viewpoint in
at least two of the three situations described above, namely for the fair paper
assignment problem (see e.g. [5,6,11]) and for the fair sharing of a common
satellite resource (see e.g. [10]). Nevertheless, since the weights are private data,
an agent might have an incentive to misreport them in order to increase her
individual satisfaction (the individual satisfaction of an agent a; is > ; w;;z;;).

The aim of the present article is precisely to study truthful mechanisms for
many-to-many assignment problems. A mechanism is truthful if no agent i can
benefit by misreporting her weights w;;. At the same time, the mechanism should
guarantee a reasonable approximation to the optimal social objective. Note that
we focus on mechanisms without payment, since payments are not always pos-
sible or desirable [15] (as in most examples above).

Truthful mechanisms dedicated to the one-to-one version of the problem have
already been studied by Dughmi and Ghosh [4] for the utilitarian setting in a
restricted case where, for each pair (¢, j), it is public knowledge that the value of
task t; for agent a; is either w;; or 0, but agent a; holds private which of those
is the case for each t;. The authors justify considering such a discrete valua-
tion model by observing that, assuming the weights are private, no mechanism
can outperform the trivial one which allocates the tasks uniformly at random,
achieving an approximation ratio of n (as a consequence of classical results of
Vickrey concerning single item auctions [16]). Nevertheless, we believe that some
interesting results are still possible with private weights.



First, the result given by Dughmi and Ghosh [4] does not hold in the egalitar-
ian setting (in this case, returning a random assignment yields an approximation
ratio of n!). Second, for both the utilitarian and the egalitarian settings, positive
results are possible if one assumes some restrictions on the way the agents mis-
report their preferences. We consider two types of restrictions: the case where
the agents cannot overbid (i.e. they cannot bid weights that are larger than their
true weights), and the case where the agents cannot underbid (i.e. they cannot
bid weights that are smaller than their true weights). The former case occurs
for instance in the assignment of public resources to non-profit associations, as
described above: as soon as the actual attendance level at the various activi-
ties is controlled afterwards, an association cannot overbid, at the risk of losing
credibility. The latter case occurs for instance in the assignment of time slots
on an earth observation satellite, as described above: as soon as the bandwidth
allocated to an institution is equal to the indicated weight, there is no interest
for an institution to bid a value under the required bandwidth (an undersized
bandwith is equivalent to a bandwidth 0 for the institution). The rationale for
these restrictions is based on the assumption that the agents underbid in order
to avoid a task, and conversely they overbid in order to obtain a task. This
assumption holds for all the mechanisms we propose. Note that the restriction
on the way the agents misreport their preferences is related to the idea of so-
called mechanisms with verification [13]. Mechanisms with verification have been
studied both with payment [14,9] and without payment [1, 8].

Our Contribution. In Section 2, we study the case where the weights on the
edges are unrestricted. In particular, we provide an n-approximate randomized
mechanism for the egalitarian setting and we show that there is no (n/q — ¢)-
algorithm for this problem. In Section 3, we study the case where the agents
cannot overbid. This assumption does not change anything for the egalitarian
setting, but it enables to design a 2-approximate truthful mechanism for the
utilitarian setting (and we show this is the best ratio that can be achieved by
a truthful algorithm). In Section 4, we study the case where the agents can-
not underbid. Conversely to the previous case, this assumption does not change
anything for the utilitarian setting, but it enables to design an optimal truthful
mechanism for the egalitarian setting. Our results are summarized in Table 1,
where we indicate lower (LB) and upper (UB) bounds on the approximation
ratio of a truthful mechanism. Notation “det” (resp. “rand”) stands for determin-
istic (resp. randomized) mechanisms. When no approximation guarantee can be
achieved by a truthful mechanism, we write LB = oco. Note that all positive
results are based on polynomial-time algorithms, except the optimal truthful
mechanism for agents that do not underbid in the egalitarian setting.

Preliminaries. As customary, we view the many-to-many assignment problem
as a maximum weight b-matching problem in a complete bipartite graph G with
vertex set V = (A,T) (A for agents, T for tasks). Given degree constraints
b :V — N for the vertices, a b-matching is a set of edges M such that for
all v € V the number of edges in M incident to v, denoted by deg,,(v), is at
most b(v). Every agent a; has to perform (at most) b(a;) = p tasks, and every



utilitarian setting egalitarian setting

det: LB = det: LB = c©

rand: LB = (7 —¢),UB=2 |rand: LB= (7 —¢),UB=n

det: LB=2—¢[4],UB=2 |det: LB= 0
rand: LB = (%2 —¢),UB=2 |rand: LB= (% —¢),UB=n

q
det: LB =

rand: LB = (% —¢), UB =12 det: UB =1

Table 1. An overview of our results.

no restriction

no overbidding

no underbidding

task ¢; has to be assigned to (at most) b(t;) = ¢ agents. There are n = |A]
agents and m = |T'| tasks, and we assume that np = mq (otherwise some agents
would perform less than p tasks or some tasks would be assigned to less than ¢
agents). The weight w;; > 0 on edge {a;,t;} represents the interest (value) of
agent a; for task ¢;. Note that, since np = mq and by positivity of the weights
and completeness of the graph, constraints deg,,(v) < b(v) Vv are equivalent to
deg,;(v) = b(v) Vo (if some constraints are not saturated, it is always possible to
add (an) edge(s) to the b-matching to saturate them). Let M (i) denote the set of
indices of the p tasks assigned to agent a; in the b-matching M. The aim of each
agent a; is to maximize ¢,y wij- A deterministic mechanism (algorithm)
is truthful if no agent a; has an incentive to misreport the weights w;; (j =
Lioooom)t Xienr) Wis = Xojenr iy Wij Where M (resp. M) is the b-matching
returned by the mechanism if agent a; truthfully reports (resp. misreports) her
weights (ceteris paribus). For a randomized mechanism, we require truthfulness
in expectation: E[3 ¢ pri) wij] = ERX e nr i) wisl-

We recall that our aim is to obtain truthful mechanisms returning a b-
matching M which maximizes one of the following social objective functions:

— w(M) =321, > jem wij (in the utilitarian setting),
— or w(M) = min;eqq,.. ) ZjeM(i) w;; (in the egalitarian setting).

A deterministic (resp. randomized) mechanism is said to be c-approximate if,
for any instance, w(M™*)/w(M) < ¢ (resp. w(M*)/E[w(M)] < ¢) where M is
the b-matching returned by the mechanism, M* is an optimal b-matching and
E[w(M)] is the expected weight of M.

2 If Agents Have No Restriction on the Way They Bid

In this section, we show that no performance guarantee can be achieved by a
truthful deterministic mechanism, in both the utilitarian setting and the egali-
tarian setting. Furthermore, we show that there is are n-approximate randomized
truthful mechanisms (in both settings).

2.1 Utilitarian Setting

We show that no positive result can be expected for a deterministic mechanism.



Theorem 1 In the utilitarian setting, for any ¢ > 1, there is no c-approxrimate
truthful deterministic mechanism, even if n = m = 2.

Proof. Let ¢ > 1, n = m and p = ¢ = 1 (the b-matching problem reduces to a
matching problem). Assume that there is a c-approximate truthful mechanism
and consider the graph with two agents a1, a2 and two tasks t1,¢5. Let v > c and
wi1 = ¥, wiz = 0, we; = 1 and wes = 0. There are only two perfect matchings
My = {{a1,t1},{az2,t2}} and My = {{a1,t2}, {az, t1}} whose weights are v and
1 respectively. Since v > ¢, the mechanism must return M;.

Now, take the situation where wo; = 72. The weights of M7 and M, are then
~ and 2. Again, a c-approximate mechanism must return M since otherwise

* 2
Z((]IVVZ)) = 77 > c. Consequently, in the first situation, agent as has incentive to

declare a false weight wo, = 72 in order to get task t1, with value 1 instead of 0
(with the initial task ¢2). [ |

Note that as a consequence there is no f(n,m)-approximate deterministic
mechanism, for any function f.

In the randomized case, as mentioned earlier, Dughmi and Ghosh [4] have
observed that no truthful mechanism can perform better than the mechanism
returning a random assignment in the one-to-one case (whose approximation
ratio is n since each edge of an optimal matching has a probability 1/n to belong
to the returned matching). Their statement is based on a reference to a seminal
paper by Vickrey [16], whose scope is much broader than the simple assignment
problem. This result generalizes to the many-to-many case. First, note that the
approximation ratio of the mechanism returning a random b-matching is n/q =
m/p since each edge of an optimal b-matching has a probability ¢/n = p/m to
belong to the returned b-matching. The following theorem shows that this is the
best we can do:

Theorem 2 In the utilitarian setting, for any n, any q, any € > 0, there is no
(% — ¢)-approzimate truthful randomized mechanism.
Proof. Let v such that 1/y < 1/(n/q—e)—q/n. Consider the graph with n agents
and n tasks where w11 = v+ % —1,w;; = 1/q for i > 2, and all the other weights
are 0 (note that p = ¢ since n = m). Note that the optimal solution has value
wi1+(¢—1) x 1/q = 7. Let p; be the probability that edge (a;,t1) is taken in the
matching returned by the randomized mechanism. Then since any b-matching
without edge (a1,t1) (resp. with edge (a1,t1)) has value at most 1 (resp. v), we
get that the expected value of the solution is at most p1y + (1 — p1) < p1y + 1.
To achieve ratio n/q—e, we need p1y+ (1—p1) > v/(n/q—¢) and thus pyy+1 >
v/(n/q —€). Hence p1 > 1/(n/q — ) — 1/v > q/n (by the choice of +). Since
> pi = q (t1 is adjacent to ¢ edges in the returned b-matching), there exists
such that p; < ¢/n, say i = 2 wlog (note that i # 1 since p1 > ¢/n).

Now, consider the same situation as before but with we; = v2. By using the
same argument as above, we see that the mechanism has to choose edge (a2, t1)
with probability greater than ¢/n.



Then, in the first situation, if agent 2 truthfully reports her weight ws; she
gets t; with probability ps < q/n, while if she reports a weight 2 for this edge
she gets t; with probability greater than ¢/n. The mechanism is not truthful. m

2.2 Egalitarian Setting

Similarly to the utilitarian setting, we show that no positive result can be ex-
pected for a deterministic mechanism.

Theorem 3 In the egalitarian setting, for any ¢ > 1, there is no c-approxrimate
truthful deterministic mechanism, even ifn =2, m=2 andp=q=1.

Proof. Let ¢ > 1, n = m = 2 and p = ¢ = 1. By contradiction, assume
that there is a c-approximate truthful deterministic mechanism and consider
the graph with two agents a1, as and two tasks t1,ts. Let v > c and w11 = v+1,
wie = 7y, wo1 = 7+ 1 and wey = 7. There are only two perfect matchings
M1 = {{al,tl}, {ag,tg}} and M2 = {{al,tg},{GQ,tl}}. WlOg, assume that the
mechanism returns matching Mj.

Now, consider the same situation as before, but wes = 1. The weight of
matching M; (resp. Mz) is 1 (resp. ), where the weight of M; (resp. M) is
the minimal weight of an edge in M; (resp. Ms). Since the mechanism is c¢-
approximate, it must return matching My (because v > c).

Then, in the first situation, agent as has incentive to bid a false weight
waz = 1 in order to get task t1, with value v + 1 instead of v (with the initial
task o). Therefore, the mechanism is not truthful. [ |

Note that as a consequence there is no f(n,m)-approximate truthful deter-
ministic mechanism, for any function f.

In the randomized case, note that, in contrast to the utilitarian setting, re-
turning a random assignment is not n/g-approximate anymore for the egalitarian
setting (consider an instance where p = ¢ = 1, and thus n = m, where all the
weights are equal to 0, except weights w;; = 1 for i = 1,...,n: there is only one
matching over n! that has weight 1, all the others having weight 0). However, we
now show that it is possible to get an n-approximation thanks to the following
truthful randomized mechanism:

Let M* denote an optimal b-matching for the egalitarian setting.
Return with probability 1/n, for each k& € {0,...,n — 1}, the b-
matching where tasks with indices in M*((i + k)mod (n)) are
assigned to agent a; (i =1,...,n).

Theorem 4 In the egalitarian setting, the above mechanism is truthful and n-
approximate.

Proof. This mechanism is truthful since, whatever the bids, every agent a; has
the same expected value >} ; %ZJEM*(,C) wij = L3 w;; (since each task
is assigned to ¢ agents in M*). For k = 0, the mechanism returns M*. The
b-matching M* is thus returned with probability 1/n, and the mechanism is
n-approximate. [ |



Note that this mechanism is also a truthful n-approximate mechanism for the
utilitarian setting. The following theorem shows that no truthful mechanism can
have an approximation ratio better than n/q (the previous truthful mechanism
achieves therefore the best possible ratio when ¢ = 1):

Theorem 5 In the egalitarian setting, for any n, any q and any € > 0, there is
no (% — &)-approzimate truthful randomized mechanism, even if p = q.

Proof. Let us consider a truthful randomized mechanism. Consider the graph
with n agents and n tasks (p = q) where wjy =~ > 1fori=1,...,n, and all
the other weights are 1/¢ (see Figure 1, Situation 1). Since t; is assigned to ¢
agents, there exists an agent, say a; wlog., such that the randomized mechanism
returns a b-matching containing edge {a1,t1} with probability smaller than or
equal to g/n.

Agents Tasks Agents Tasks

Situation 1 Situation 2 (a1 lies)

Fig. 1. Illustration of Theorem 5. The sharp edges have weight 7, the dotted edges
have weight 0, and the unrepresented edges have weight 1/q.

Now, consider the same situation as before but wi; = v and wy; = 0 for j =
2,...,n (see Figure 1, Situation 2). Let p; be the probability that the randomized
mechanism returns a b-matching containing edge {a1,¢1} for this instance. The
expected weight of the returned b-matching is p; x 1+ (1 — p1) X 0 = p; (the
only non-zero b-matchings are the ones where edges {a1, 1} is chosen).

Since the mechanism is truthful, p; < g/n (otherwise, in situation 1, agent 1
would have incentive to bid false values in order to be in situation 2). Thus, in
situation 2, since p; < ¢/n, the expected weight of the returned b-matching is at
most ¢/n, while the optimal matching has weight 1. The mechanism is therefore
at most n/g-approximate. [ ]

3 If Agents Do Not Overbid

In this section, we assume that the agents cannot bid weights that are strictly
larger than their true weights. This assumption does not change anything in
the egalitarian setting, since the agents do not overbid in the situation used to



establish the lower bound in the unrestricted case. However, we can provide a
2-approximate deterministic truthful mechanism for the utilitarian setting.

Sort the edges by non-increasing weights. Let M = § and
(e1,...,em) denote the sorted list of the edges. For ¢ from 1 to m,
if M U{e;} is a b-matching then M = M U {e;}. Return M.

This greedy b-matching algorithm has been introduced by Avis [2] for the
case p = ¢ = 1, who has shown that it is 2-approximate. Mestre [12] has shown
that this approximation ratio also holds for b-matchings.

Note that the tie-breaking rule (to decide an ordering over edges of equal
weight) matters for the truthfulness of the mechanism. A convenient and simple
tie-breaking rule is the following one: if {a;,t;} and {a,,t; } are such that w;; =
wirjr, {a;, t;} is ranked before {a;, 1} if i <i' or if i =i’ and j < j'.

Now, we are able to show that the greedy b-matching algorithm is truthful.

Theorem 6 In the utilitarian setting, if the agents cannot overbid, the greedy
b-matching algorithm is a truthful 2-approrimate mechanism.

Proof. We have already said that it returns a 2-approximate matching. We now
show that it is also truthful.

By contradiction, assume that agent a; has incentive to lie on k weights. Let
M (resp., M’) be the b-matching returned by the algorithm with weights w (resp.
w'), i.e., when agent a; does not (resp. does) misreport her weights. By abuse of
notation, we denote by M (i) (resp. M’(4)) the set of edges incident to a; in M
(resp. M'). Let M (i) \ M'(i) = {{ai,tr()}, -, {@istry }}, where {ai, tre;)} is
the j*" edge of M (i) \ M’(i) examined by the algorithm for weights w.

One proceeds as follows to decompose MAM’ = (M \ M')U (M’ \ M) into
k edge-disjoint cycles C1, ..., C} alternating one edge in M \ M’ and one edge
in M’ \ M, each cycle C; including edge {a;, ;) }: initially, C1 = (); note that
{as,tr(1)} is necessarily the first edge in M AM' examined by the algorithm for
weights w (provided the agents cannot overbid); insert {a;,t.(1)} in Ci; then
extend C with the first edge in M'(tr(1))\ M (tr(1)) examined by the algorithm;
this latter edge concerns a given agent a;/; extend C; with the first edge in
M(")\ M'(i'); and so on until a cycle is created. This is cycle C;. One iterates
to obtain the other cycles Cs, ..., Ck.

Let {a;,t,(;)} denote the single edge in C; N M'(@). Since {aj,t,;)} is ex-
amined after {a;,t.(;)} in cycle Cj, one has w; ;) < w;(;). By summing up
these inequalities one obtains ZjeM,(i) w;j < ZJEM(Z.) w;j. Thus agent a; has
no incentive to underbid, and the mechanism is truthful. [ |

The following theorem, due to Dughmi and Ghosh in the simpler case where
p = q = 1, shows that no truthful deterministic mechanism can have a better
approximation ratio:

Theorem 7 ([4]) In the utilitarian setting, for any e € (0, 1), there is no (2—e)-
approximate truthful deterministic mechanism for the utilitarian setting, even if
n=2andp=q=1.



A similar proof makes possible to establish the following negative result for
randomized mechanisms:

Theorem 8 In the utilitarian setting, for any e € (0,1/3), there is no (4/3—¢)-
approzimate truthful randomized mechanism for the utilitarian setting, even if
n=2andp=q=1.

Proof. Let € € (0,1/3). Consider a v > 0 such that 3?;-:v >3-

By contradiction, suppose that there is a (4/3 — €)-approximate truthful
mechanism and consider the graph with 2 agents a1,as and 2 tasks t1,t3. Let
w1 = woy = 1 4+ v and wis = wee = 1. There are only two perfect matchings
My = {{a1,t1},{ag,ta}} and My = {{a1,t2},{az2,t1}} with same weights and
by symmetry, wlog., consider that the mechanism returns the matching M; with
a probability p; > 1/2 (see Figure 2 case (a). In solid (resp., dotted) lines is the
matching M (resp., Ms)).

147
a1@—— —011

aze=s gty
Agents Tasks Agents Tasks
Case (a): M; the matching returned Case (b): agent az lies on weight wao

Fig. 2. [llustration of Theorem 8.

Now, take the situation where was = 0 (see Figure 2, case (b)). The weights
of matching M (resp. M) is 14 (resp. 2++). By truthfulness, the mechanism
should return matching M; with probability at least p; (otherwise in the initial
situation agent 2 would have incentive to bid a false value for edge {az,t2}).
The expected weight of the matching returned by the mechanism in situation 2
is thus p1(14+v) + (1 —p1)(2+ ) =2+~ — p1. Since p; > 1/2, this weight is
smaller than or equal to 3/2 + ~. Since the weight of the optimal matching is
2+, the expected approximation ratio of the mechanism is larger then or equal

to % = ;;‘_:V > % — . Thus the mechanism is not (4/3 — ¢)-approximate. m

4 1If Agents Do Not Underbid

In this section, we assume that the agents cannot bid weights that are strictly
smaller than their true weights. This assumption does not change anything in
the utilitarian setting, since the agents do not underbid in the situations used
to establish the lower bound in the unrestricted case.

Let us then consider the egalitarian setting. We will show that there is an
optimal truthful mechanism. As a first remark, the optimization problem of



finding an optimal b-matching is strongly NP-hard: take the 3-partition problem
where given a set of 3n positive integers {s1, ..., s3,} of total sum nB we ask
whether there exist n subsets of weight B, each of them consisting of exactly
three elements. Build the graph with n agents and 3n tasks (one task t; for each
integer s;), the edges adjacent to a task ¢; being weighted by s;. It is easy to
see that the answer to the 3-partition problem is yes if and only if there exists
a b-matching of (egalitarian) value B.

So an optimal truthful mechanism is not polynomial time (unless P=NP),
even if p = 3. We consider the following mechanism, where P is an upper bound
on the optimal value (say P equals the sum of the p maximum edge weights
adjacent to agent a; for instance).

Set W + P. While no solution has been found:

— Consider for each agent a; the set S;(W) of all sets T of p
tasks such that theT' wi; > W.

— Use an algorithm A to determine whether there exists a way
to assign to each a; a set of tasks in S;(WW) such that each
task is assigned to ¢ agents.

If a solution is found, output it. Otherwise, set W < W — 1.

Note that the mechanism terminates: there necessarily exists a feasible as-
signment for W = 0 since the graph is then complete.

Stated like this, the mechanism might not be truthful. More precisely, to make
it truthful we have to be more careful on the way sets in S;(W) are assigned to
agents. Informally, by overbidding an agent may add new sets of tasks in .S;(W).
We have to be sure that by doing this she will not be better of. To ensure this,
we shall use an algorithm A which has the following stability property:

Stability: if 4 assigns on an instance I (defined by the set of agents and the
set S;(W) for each agent a;) the set of tasks M (i) € S;(W) to agent a;, then
on an instance I" where S{(W) 2 Si(W) (and S;(W) = S;(W) for each j # i),
4 assigns to a; either M (i) or a set in S,(W)\ S;(W).

It is not difficult to see that there exists a stable algorithm A. Indeed, just
compute (if any) an assignment of maximal total weight, where the weights
of sets in S1(W),..., S, (W) are such that any two assignments have different
weights, these weights depending only on n (not on W) 3. This way, when sets are
added to S;(W), if the (unique) maximum weight assignment has not changed
a; receives M (i), otherwise the new maximum weight assignment uses a set in
SI(W)\ S;(W) for a;, thus ensuring stability.

Theorem 9 In the egalitarian setting, if the agents cannot underbid, the mech-
anism with a stable algorithm A is both optimal and truthful.

% These weights can be defined as follows: the weight of a set M (k) in Sy (W) of tasks
is 2"Mk) where apx) € N is different for any two sets of tasks (for instance give
a weight v;; = 2/"~DTU=1 4o each edge (i,7) in G and define ar(x) as the total
weight Z].EM(,E) Vkj)-



Proof. The b-matching returned by the algorithm at the iteration W has value
at least W (by construction). Since we consider W by decreasing value, the
mechanism is clearly optimal. For truthfulness, consider a graph G with weights
w. Suppose that the mechanism has found a b-matching M when the threshold
is W, assigning the set of tasks M (7) to agent a;. We have ZJEM(Z.) wi; > W.
Suppose that agent a; reports weights wy;, j = 1,---,n where w;; > w;;. On this
new instance G' weighted by w’ (where wj; = wy; for k # i), suppose that the
mechanism has found a b-matching M’ for threshold W’. Since no underbid is
allowed, W’ > W. Hence, two cases may occur.

- If W > W, then necessarily in M’ agent a; receives a set M’(i) where
> jeM (i) Wij < W. Otherwise, a b-matching would have been found in G weighted
by w with threshold (at least) W + 1.

- If W' = W, then the set S;(W) (of the possible sets of p tasks for a; accord-
ing to weights w’) is obtained from S;(W) (with weights w) by adding all the
subsets of weight less than W according to w, but at least W according to w’.
Hence, by the stability property, in M’ agent a; either receives M (i), or one of
the added sets whose weight (according to w) is smaller than W. In both cases,
ZjeM’(i) wij < ZjeM(i) Wi

In both cases, agent a; is not better off, and the mechanism is truthful. ]

In the particular case p = ¢ = 1, the problem consists in finding an egalitarian
matching and is polynomial time. Our mechanism reduces indeed to finding at
each step W if there exists a perfect matching (polynomial time problem) in the
graph consisting of edges of weight at least W (using a stable perfect matching
algorithm); this is the threshold method [7], which is thus truthful by Theorem 9.

5 Final Remarks

Concerning the unrestricted case, note that the simple truthful mechanism that
consists in considering the agents in a random order, and assigning to each of
them her p preferred tasks among the available ones (random round robin), is
n-approximate in the utilitarian setting?. Despite the fact that its performance
guarantee is the same as the mechanism returning a random assignment, the
random round robin mechanism should be preferred since it is likely to return
much better b-matchings in practice.

In order to strengthen the result concerning the case where the agents do
not underbid, it would be interesting to investigate what approximation can
be achieved truthfully in polynomial time. Besides, another natural research
direction is to investigate the group strategyproofness of the mechanisms pre-
sented in the paper: a mechanism is group strategyproof if for every group of

4 Let W; be the total weight of the p edges of maximum weight which are adjacent
to a;. The expected cost of the solution returned is at least > ., (1/n)W;, and the
mechanism is clearly n-approximate. The bound is tight when all the edges have
weight 0, except the edges adjacent to the same p tasks which have weight M >> 1
for the edges adjacent to a1, and weight 1 for the edges adjacent to the other agents.



agents A" C A and every weights w’ such that wj; = w;; if i ¢ A’, one has
Y jenr () Wi < X jenr(s) Wij, Where M (resp. M) is the b-matching returned
by the mechanism for weights w (resp. w'). A third research direction is to
study other restrictions regarding the possible ways that the agents can lie, while
still showing positive approximation guarantees. For instance, what happens if
> ; Wij 18 a constant for all the agents ? (Think of a conference system that gives
the same capital of points to each reviewer) Another possible domain restriction
is the following: when attributing time slots to agents, one can assume that the
preferences of the agent are single-peaked [3], i.e. each agent has an ideal time
slot and her preferences decrease when moving away from the ideal point. It
would be interesting to study dedicated truthful mechanisms taking advantage
of these domain restrictions.
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