Truthfulness for the sum of weighted completion
times

Eric Angel* Evripidis Bampis** Fanny Pascual** Nicolas Thibault***

* IBISC, Université d’Evry Val d’Essonne, France
** Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, France
*** CRED, Université Panthéon-Assas, Paris 2, France

Abstract. We consider the problem of designing truthful mechanisms
for scheduling selfish tasks on a single machine or on a set of m paral-
lel machines. The objective of every selfish task is the minimization of
its completion time while the aim of the mechanism is the minimiza-
tion of the sum of weighted completion times. For the model without
payments, we prove that there is no (2 — €)-approximate deterministic
truthful algorithm and no (2 —¢)-approximate randomized truthful algo-
rithm when the tasks’ lengths are private data. When both the lengths
and the weights are private data, we show that it is not possible to get an
a-approximate deterministic truthful algorithm for any o > 1. In order
to overcome these negative results we introduce a new concept that we
call preventive preemption. Using this concept, we are able to propose
a simple optimal truthful algorithm with no payments for the single-
machine problem when the lengths of the tasks are private. For multiple
machines, we present an optimal truthful algorithm for the unweighted
case. For the weighted-multiple-machines case, we propose a truthful
randomized algorithm which is g—approximate in expectation based on
preventive preemption. For the model with payments, we prove that there
is no optimal truthful algorithm even when only the lengths of the tasks
are private data. Then, we propose an optimal truthful mechanism using

preventive preemption and appropriately chosen payments.

1 Introduction

A lot of attention has been devoted to scheduling problems in the literature of
algorithmic game theory starting from the seminal paper of Koutsoupias and
Papadimitriou [18]. Most of these papers consider that the social welfare is ex-
pressed as the makespan of the obtained schedule [2-7,9,18,19]. However, in
environments where jobs are owned by independent and competing agents for
the same resource(s), it is more natural to measure the social welfare using an-
other classical measure of performance, the average (weighted) completion time
of the tasks [21]. A few papers consider this objective [1,11,12,15], but not
in the context of truthfulness (they focus on coordination mechanisms and the
price of anarchy). Given the interest of the algorithmic-game-theory community
to mechanism design aspects of scheduling problems, it is a natural question to
know what is the difficulty of conceiving a truthful mechanism when the social
welfare is the weighted completion time of the tasks. In some applications, for
ethical or practical reasons, pricing is undesirable and so it is important to con-
ceive mechanisms without payments [8, 16]. In other applications however this

is not the case. Hence we consider both cases in the sequel. We focus on the
following problem: we are given a set of tasks where each task is owned by a
selfish agent who is the only one to know the length and/or the weight of his
task. The tasks have to be executed on a single-machine or on a set of identical
machines. The valuation of each agent/task is the opposite of his completion
time. The weight of a task models the importance of the task for the system
(and not the agent) and in that case it is more natural to consider that the
valuation of the agent is just the completion time of his task'. We study this
problem both with payments and without payments. When we use payments,
the objective of each agent is the maximization of his utility which is defined
as the difference between his valuation and his payment. When payments are
not allowed, the objective of each agent is the minimization of his (weighted)
completion time. Agents may lie concerning their length and/or weight if by
doing so, they are able to increase their utility. Our aim is to find a truthful
mechanism that minimizes the weighted sum of completion times.

Our contribution In the first part of the paper, we study the model without pay-
ments. When the lengths of the tasks are private data, we prove that there is no
(2 — €)-approximate deterministic truthful algorithm even in the case of a single
machine where the weights of all the tasks are unitary. We also show that there
is no (% — e)-approximate randomized truthful algorithm for the same environ-
ment. When both the lengths and the weights are private data, then we show
that it is not possible to get an a-approximate deterministic truthful algorithm
for any o > 1. In order to overcome these negative results we introduce a new
concept that we call preventive preemption. The intuitive idea behind preventive
preemption is simple: whenever a task bids a length smaller than its real length,
the scheduler will preempt it at the end of the declared processing time and he
will resume it later. Think for instance a planning of a meeting room. Once the
schedule of meetings is done, then every meeting has to finish or be interrupted
at the planned time. An interrupted meeting could continue only after all other
meetings are finished. Notice that as our mechanism is proved to be truthful no
task will be interrupted during the constructed schedule. This is in the same vein
as the approach used recently by Fotakis et al. [13] where selective verification
is used as a threat in order to construct a truthful mechanism. Using preven-
tive preemption as a threat, we are able to propose a simple optimal truthful
algorithm with no payments for the single-machine problem where the lengths
of the tasks are private and the weights are public. For multiple machines, we
are able to prove that this approach gives an optimal truthful algorithm for the
unweighted case. For the case of multiple machines with weights, given that the
problem is NP-hard even if all data are public, we turn our attention to the
development of approximate truthful mechanisms. We propose a truthful ran-
domized algorithm which is %—approximate in expectation based on preventive
preemption. We also show that the natural WSPT algorithm of Smith [21] is not

! Notice however that our results can be generalized to the case where the valuation
of the tasks is their weighted completion time.

truthful. In the second part of the paper, we consider the model with payments.
For the single-machine case, given that the optimal solution can be computed
in polynomial time and the social welfare is utilitarian, one may think that it is
sufficient to apply the well known Vickrey-Clarke-Groves (VCG) mechanism [10,
14, 22]. However, in what follows we prove that this is not true even when only
the lengths of the tasks are private data. Then, we propose an optimal truthful
mechanism for the single-machine case using preventive preemption and appro-
priately chosen payments. Our results are summarized in Table 1.

Without preemption With preventive preemption

Private lengths: Private lengths:

e B det (2 —¢) TA (thm 1) e m = 1: 3 optimal det TA (thm 4)

without |e ? rand (1.5 — &) TA (thm 2) |e m > 2, identical w: 3 optimal det TA (thm 5)
payment e m >2: Jrand 1.5 TA (thm 6)

Private lengths and weights: Private lengths and weights:
e B det o TA, for all a (thm 3)|e 3 det (2 — &) TA (thm 8)

with | Private lengths: Private lengths and weights:
payment|e A optimal TA (thm 7) e m = 1: 3 optimal det TA (thm 9)
e m >2: drand 1.5 TA (cor 2)

Table 1. Summary of the results presented in this paper. TA means “truthful algo-
rithm”, det means “deterministic” and rand means “randomized”. The number before
TA is the approximation ratio. For example, the sentence“# det (2 — ¢) TA (thm 1)”
in the first cell means that Theorem 1 shows that there does not exist any determinis-
tic truthful algorithm which has an approximation ratio of 2 — & (when payment and
preemption are not allowed, and when the lengths of the tasks are private). Unless
otherwise specified, the results hold for any number of machines.

1.1 Formal definition of the problem

We consider n agents, N = {1,2,---,n}, and a single machine or a set of m
parallel identical machines. Each agent i is the owner of a single task and he is
the only one to know the private data of his task. The private data of a task
can be either its length ¢; > 0 or both its length ¢; > 0 and its weight w; > 0.
When both the length and the weight of a task are private, we call these data
(tiyw;), the agent’s true data or the agent’s type (if only the length of the task
is private, then the agent’s type is just t;). Everything else is public knowledge.
From now on in this section, we assume for simplicity that both the length and
the weight of the tasks are private data. Each agent will report a pair (b;, w?) to
the mechanism that we call the agent’s bid. By B, we denote the set of all bids,
ie. B = {(b1,w}),...,(b,,wd)}. We adopt an extension of the strong model of
execution ([4]) where, once task i starts to be executed, it is executed during t;
units of time, independently of the value of his bid b; (i.e. even if b; # t;). In the
model of [4], the bid value b; should always be larger than or equal to t; while

here, b; may get any positive value (b; < t; or b; > ¢;). By C;, we denote the
completion time of task i.

For the model with payments, a mechanism is a pair M = (A4, P), where
A is an algorithm that finds an output o(B) and P is a payment function:
P(o(B),B) = (p1,p2,---,Pn). The output o(B) computed by A is a function of
the bids, B, of the agents, while the payment is a function of the output o(B)
and of the agents’ bids B. This means that, contrary to the framework with
verification introduced by Nisan and Ronen for scheduling problems [19], the
payments have to be computed without knowing the true types of the tasks.
Let us now define the output of A. Since the true types of the tasks are not
known by the mechanism, A is not able to produce a feasible schedule in which
the completion time of every task is known in advance. In the case where the
preemption of the tasks is not allowed, o(B) is defined as the order in which the
tasks will be executed on each machine along with the lengths of the idle-periods
that precede the tasks, if such idle periods exist. More formally, in the single-
machine case when the preemption of the tasks (the possibility of interrupting
and resuming the execution of the task later) is not allowed, we define the output
o(B) of algorithm A as a sequence of n pairs (I;,4) where i is a task and I; is
the length of the idle-period just before task 7. Notice that when no idle-periods
exist between the tasks, all I;’s will be equal to 0 and we will simply denote the
output by a sequence of n tasks. In the case where the preemption of the tasks
is allowed, the output o(B) will be defined in a similar way, the only difference
being that more than one time-intervals may represent a task, one time-interval
for each piece of the preempted task. For multiple machines, the above definitions
generalize in the natural way. The objective of the mechanism is to determine
a schedule of the tasks minimizing the sum of weighted completion times, or
equivalently maximizing the social welfare which is defined as — >, ., ,, w;C;.
For every task i, we define S; as the set of tasks scheduled before i on the same
machine in the output o(B), and T; as the set of real lengths of the tasks of .S; (i.e.
T; = {t; : j € S;}). The completion time of task i is C; = 3,5 (L; +t;)+1i+1;
and the utility of task ¢ is u;(¢;, o(B), B, T;) = —C;(t;, 0(B), B, T;) — pi(o(B), B),
where p;(o(B), B) is the payment, or in other words the amount that ¢ must pay.
It is important here to notice that the payments are computed before the real
execution of the tasks.

For the model without payments, a mechanism for this problem is an algo-
rithm A that determines an output o(B).

In both models, every task/agent i is considered as selfish: the strategy of
agent i is to declare a bid (b;,w?) in order to maximize his utility u;. Our aim
is to propose a truthful mechanism, i.e. a mechanism that gives incentive to the
agents/tasks to declare their true types. We say that a mechanism is truthful if
and only if for every ¢, 1 <i <n, and for every bid (b;, w?), j # 1, the utility u;
of task i reaches its maximum when i bids its true data, i.e. (b;, w?) = (¢, w;).
In other words, a mechanism is truthful if truth-telling is the best strategy for
a player i regardless of the strategies adopted by the other players.

2 No payments

In this section, we consider the problem of designing a truthful mechanism with-
out payments. We start by proving some negative results for truthful deter-
ministic or randomized algorithms. Then, we introduce the notion of preventive
preemption, and we show that by using it we are able to design optimal or
approximate truthful mechanisms.

2.1 Negative results: Private lengths
We first consider deterministic algorithms.

Theorem 1. Let € > 0. There is no truthful deterministic (2 — €)-approzimate
algorithm, even if all the tasks have the same weights.

Proof. Let A be a deterministic algorithm which is a-approximate, with o < 2.
Let us show that A is not a truthful algorithm.

Let us consider a first instance I7: a single machine and two tasks 77 and
T, of lengths M and M? respectively (with M > 1). Both tasks have the same
weight (in the sequel we will thus consider the criteria > C;, which is equivalent
to Y w;C; in this case). In an optimal schedule, T; is executed at time 0 and
T, starts when 77 has been executed, at time M. The cost of such a schedule is
Yicqioy Ci = M+ (M + M?) = M? +2M. In such a schedule task T starts at
time M.

Let S be a schedule of I in which task Tb starts before time M. In such a
schedule task T cannot be completed before the start of T5. The cost of S is
thus larger than or equal to M2 + (M? + M) = 2M? + M (in the best case
there is no idle time: task 75 is scheduled at time 0 and task T} starts as soon
as Ty is completed, i.e. at time M?). The ratio between the cost of S and the

2 N
IMZAM - 2MAL which tends towards

optimal cost is larger than or equal to $m57; STE
2 when M tends towards the infinity. Since A is an a-approximate algorithm,
with a < 2, A cannot return schedule S. Therefore, in the schedule returned by

A on instance I, T5 starts at the soonest at time M.

Consider now a second instance, I5: a single machine and two tasks T7 and T3
of lengths M and 1 respectively. Both tasks have the same weight. In an optimal
schedule T3 is executed at time 0 and T starts when T3 has been executed, at
time 1. The cost of such a schedule is 1+ (1+ M) = M + 2.

Let S be a schedule of I5 in which task T3 does not start before time M. The
cost of S is thus larger than or equal to M + (M +1) = 2M +1 (in the best case
task 77 is scheduled at time 0 and task T3 starts as soon as T} is completed, i.e.
at time M). The ratio between the cost of S and the optimal cost is larger than
or equal to 2}\1;1:—21, which tends towards 2 when M tends towards the infinity.
Since A is an a-approximate algorithm, with o < 2, A cannot return schedule
S. Therefore, in the schedule returned by A on instance I, T3 starts before time
M.

Let us now consider the following situation: task 73 bids a length M and task
Ty has a true length of M?2. Given the values bid by T, if Ty bid its true value,
then the instance corresponds to instance I;. As seen above, in the schedule
returned by A on instance I, T, starts at the soonest at time M.

Assume that task 75 lies and bids a length of 1 instead of M?2. The input of
the algorithm is now two tasks of length M and 1: it is instance I3 (the algorithm
cannot know that T5 lies). As seen above, since A is an a-approximate algorithm,
with a < 2, in the schedule returned by A on instance Iy, To starts before time
M. Task Ty decreases its starting time (and thus its completion time) by bidding
a false value. Therefore A is not a truthful algorithm.

If we consider the case of randomized algorithms, we are able to prove the
following result (the proof is omitted).

Theorem 2. Let A be a (randomized) truthful algorithm which does not intro-
duce idle times between the tasks. Then A is not a-approzimate, with a < %

2.2 Negative results: Private lengths and weights

If both the lengths and the weights of the tasks are private data then it is not
possible to obtain a truthful deterministic approximation algorithm.

Theorem 3. Let a > 1. There is no truthful deterministic a-approzimate algo-
rithm if both the lengths and the weights of the tasks are private values.

Proof. Let A be a deterministic algorithm which is a-approximate. Let us show
that A is not a truthful algorithm. Let M = 3a.

Let us consider a first instance I;: a single machine and two tasks 7; and
Ty. Task T} has a length of M? and a weight of 1. Task 75 has a length of M
and a weight of M. In an optimal schedule, T5 is executed at time 0 and T}
starts when T5 has been executed, at time M. The cost of such a schedule is
M? + (M + M?) =2M? + M.

Let S be a schedule of I in which task 77 starts before time M. In such a
schedule, task T5 cannot be completed before the start of T} : since no preemption
is allowed, 77 is executed before T5. The cost of S is thus larger than or equal
to M? + (M? + M)M = M3+ 2M? (in the best case there is no idle time: task
T7 is scheduled at time 0 and task T, starts as soon as Tj is completed, i.e. at
time M?). The ratio beween the cost of S and the optimal cost is thus larger
than or equal to 1\2/1]\3‘4@11\;1/[2 = z\gj\/ﬁzlw > % = «. Since A is an a-approximate
algorithm, A cannot return schedule S. Therefore, in the schedule returned by
A on instance I, T starts at the soonest at time M.

Let us now consider a second instance, I5: a single machine and two tasks
Ty and T5. Task T; has a length of 1 and a weight of M?2. Task T has a length
of M and a weight of M. In an optimal schedule T; is executed at time 0 and
Ty starts when T has been executed, at time 1. The cost of such a schedule is
M?+(1+ M)M =2M? + M.

Let S be a schedule of I3 in which task T does not start before time M. The
cost of S is thus larger than or equal to M? + (M + 1)M? = M3 + 2M? (in
the best case task Ty is scheduled at time 0 and task T3 starts as soon as Ty
is completed, i.e. at time M). The ratio beween the cost of S and the optimal
cost is larger than or equal to 1\2/[]‘3;[-211\1\{[2 = Agj\jijlu > % = «. Since A is an a-
approximate algorithm, A cannot return schedule S. Therefore, in the schedule

returned by A on instance I, T starts before time M.

Let us now consider the following situation: task 77 has a length M2 and
weight 1 and task T bids a length M and a weight M. Given the values bid
by T5, if T; bids its true values, then the instance corresponds to instance I;.
As seen above, in the schedule returned by A on instance I, T} starts at the
soonest at time M.

Let us now consider that task 77 lies and bids a length of 1 and a weight of
M?2. The input of the algorithm is now identical to instance I, (the algorithm
cannot know that 7} lies). As seen above, since A is an a-approximate algorithm,
in the schedule returned by A on instance Is, Ty starts before time M. Task T;
decreases its starting time (and thus its completion time) by bidding false values.
Therefore A is not a truthful algorithm.

2.3 Positive results: Single Machine with Preventive Preemption

In the remaining of this section, we show that if preventive preemption is used,
then it becomes possible to design a truthful mechanism without payments which
is optimal with respect to the social welfare. A preemptive schedule on a single
machine can be defined as a vector ¢ = (p1,...,p,) where for every task i,
1 < i < n, p; corresponds to the set of time-intervals during which task 17 is
executed, i.e. p; = [[L,rH)U---U[IF rF) with I} <7l <12 <r?2 <. <IF <ok
and Z§=1 (rf — lf) = t;, where t; is the true length of task ¢. In addition, for
every pair of tasks i, j, we have p; N p; = 0. Hence, in schedule o, task i starts
at time [}, it is preempted at time 7}, then its execution continues at time [?,
it is again preempted at time r? and so on until its completion. Clearly, for the
considered objective function, i.e. the sum of weighted completion times, any
schedule where at least one task is preempted is strictly worse than the optimal
non-preemptive schedule. Hence, given that we are interested in obtaining a
truthful algorithm which outputs an optimal outcome, we need to design an
algorithm which preempts the execution of a task only when the task bids a
false value of its length. However, there is no possibility for the mechanism
to know a priori if a task lies, and the mechanism has to define a (perhaps
preliminary) schedule based only on the values that the tasks bid, i.e. before
their real execution. Our algorithm is the following one: it schedules the tasks
following the increasing order of the ratio of the declared length to weight, i.e.
following Smith’s rule, and it executes each task i during b; units of time in the
time interval [I},1} + b;). Whenever the real length of a task is greater than its
declared one, then the task will be preempted at I} + b; and restarted after the
completion of all the b;’s, 1 < ¢ < n, following a round robin policy if more

than one tasks are preempted. We now introduce what we will call preventive
preemption.

Definition 1. An algorithm uses preventive preemption if it constructs a sched-
ule in which a task i is preempted (and resumed later), if and only if, b; < t;.

Our algorithm, that we call Weighted Shortest Processing Time with Preven-
tive Preemption (WSPT-PP), uses the concept of preventive preemption. Our
algorithm is based on the classical Smith’s rule WSPT (Weighted Shortest Pro-
cessing Time) which is optimal for the sum of the weighted processing times for
the single-machine case. As we prove below an important property of WSPT-PP
is that it is ¢truthful and consequently no task is finally preempted, since for every
task i, we have b; = t;. Let us now define more formally this algorithm?.

Algorithm WSPT-PP
1. Sort all tasks in the WSPT order (i.e. such that bl < b2 <. <

2. Schedule the first interval [I},r}) of every task 4 such that I = Z
and r} =1} +b;.

n T S‘@
30‘

i)-
1b;

3. After time t = Z;‘:l bj, schedule the tasks which are not already com-
-pleted using the round robin policy: For each x > 2, if Task i is not

completed at time (2?21 b]‘) + n(z —2) + 4 — 1, schedule this task in
the time interval [If,r]), with I = (E? 1 by) +n(z—2)+i-1
and r{ = (G by) +n(x—2)+i.

Theorem 4. WSPT-PP is a polynomial-time, optimal and truthful algorithm
for the single machine case where the private data of every task is its length and
the social welfare is the weighted sum of completion times.

Proof. Assume that task i bids b; > t;. By the definition of WSPT-PP, task i
will not start earlier than if it bids b; = ¢; (and thus it will not decrease its
completion time by lying). On the other hand, if task ¢ bids b; < t;, again by the
definition of WSPT-PP, it will be preempted b; units of time after its starting
time and it will be continued after date Z?Zl b;. Thus, its completion time will
be at least t; —b; + 7 bj = t; + Z?Zl b;. If it bids b; = ¢;, it will not be
preempted and its completlon time will be at most Z Fby =+ it b;. In

both cases task ¢ has no incentive to lie, and so WSPT-PP is truthful. Thus the
obtained schedule is without preemption, i.e. identical to the one obtained by
the classical WSPT algorithm. Given the optimality of WSPT, we obtain that
WSPT-PP is also optimal. ad

Remark. Notice that the previous results hold also if the valuation of each task
is defined as its weighted completion time.
2 Recall that in this section w? = w;.

2.4 Positive results: Parallel Machines with Preventive Preemption

It is well known that the Shortest Processing Time (SPT) algorithm computes an
optimal solution for the problem of minimizing the sum of completion times on
identical parallel machines [21]. Based on that, we can apply SPT with preventive
preemption (SPT-PP) on identical parallel machines and obtain a polynomial-
time optimal and truthful algorithm for the parallel machines case where the
social welfare is the minimization of the sum of completion times.

The proof of the truthfulness of SPT-PP is similar than the one of WSPT-
PP for the single-machine case and it is omitted here. Given the truthfulness of
SPT-PP, it is easy to see that no task will be preempted by SPT-PP and the
produced schedule will be the same as the one of SPT.

Theorem 5. SPT-PP is an optimal and truthful algorithm for the parallel ma-
chine case where the private data of every task is its length and the social welfare
18 the sum of completion times.

For the multiple machines case with weights, given that the problem is NP-
hard even if all data are public, we turn our attention to the development of
approximate truthful mechanisms. We propose the following simple algorithm
that we call RAND-WSPT-PP: Assign tasks independently and uniformly at
random to the machines, and on each machine schedule the tasks using the
WSPT rule by applying preventive preemption if necessary. It is easy to see
that a task 7 has no influence on the choice of the machine on which it will be
scheduled by lying on its length. In addition, according to the proof of Theorem
4 whatever the machine it is scheduled on, its best strategy is to declare b; = t;.
This means that all the tasks will declare their true lengths and the algorithm
will produce a non-preemptive schedule. It has been proved in [20] that this
algorithm is 3/2-approximate in expectation. Consequently, we get the following
result.

Theorem 6. RAND-WSPT-PP is a truthful randomized 3/2-approzimate in
expectation algorithm for the parallel machine case where the private data of
every task is its length and the social welfare is the weighted sum of completion
times.

Remark. The derandomization of this algorithm is WSPT-PP: the tasks are
sorted according to the non decreasing ratio of b; /w;’s, and they are scheduled
following this order as soon as a machine becomes available [21]. If we impose
large penalties on liars, e.g. by starting the exceeding part of a task at a time
equal to the sum of all the declared processing times of the tasks, then it is
easy to see that preventive preemption guarantees that no agent will lie when
we apply WSPT-PP. This gives a (1 ++/2)/2-approximation [17]. If however, we
impose that the exceeding part is started after the completion of the last task
on the same machine or on any machine, then the tasks have incentive to lie. To
see this consider the following example.

Ezample. Consider the following instance: two machines and three tasks: w, =
t1 =1, wy =ty =1, wg =2 and t3 = 2 + ¢ (where € is a small positive value,
e.g. € = 0.1). The schedule returned by WSPT-PP is the following one: each
task of length 1 is scheduled at time 0 on a machine. Task 3 is scheduled at
time 1, after a task of length 0. Its completion time is thus 3 + . Task 3 has
incentive to bid 2 — e. In this case, WSPT-PP schedules task 3 at time 0, and
tasks 1 and 2 are scheduled on the other machine. Since task 3 is alone on its
machine, it will be completed at time 2 + € even with preventive preemption.
Even if we consider a stronger version of preventive preemption, that we may
call preventive preemption with migration, where we execute the remaining part
of the preempted task on the machine of maximum load, then task 3 will finish
at time 2 + 2¢ instead of 3 — ¢ : task 3 has still incentive to bid a false value.

3 Introducing payments

3.1 Private lengths

Let us first prove that the VCG method cannot be applied for the single-machine
case without preventive preemption.

Theorem 7. There is no optimal truthful mechanism with payment for the sin-
gle machine case even in the unweighted case.

Proof. By contradiction, assume that there is an optimal truthful mechanism
minimizing the sum of completion times of the tasks on a single machine. It
is well known that the Shortest Processing Time first (SPT) algorithm, which
schedules the tasks in non-decreasing order of their lengths, is the only algorithm
that maximizes the social welfare — 3, . C;. Given that SPT does not insert
any idle time, a schedule can be defined as an ordering of the tasks. Let 1 and 2
be the two tasks to schedule (i.e. N = {1,2}) and consider the following scenario:
when task 2 tells the truth, we have to = by > by. In this case, SPT constructs a
schedule o where task 1 is scheduled before task 2 (o = (1,2)). Then the utility
of task 2 is uy = —Cs — ps = —t; — ty — p2. On the other hand, when task 2
lies and bids b, < by, SPT constructs o’ where task 2 is scheduled before task
1 (¢ = (2,1)) and the utility of task 2 becomes uf = —C% — py = —ta — ph.
Given that the mechanism is assumed to be truthful, we must have ug > u} (i.e.
task 2 should not have incentive to lie) and thus —t; — t3 — p2 > —ta — ph =
ph—po > t1. However, since t; is not known to the mechanism when the payments
are computed, it is clear that there is no any payment function satisfying this
property. O

Corollary 1. The VCG method cannot be applied for the single-machine case.

3.2 Private lengths and weights

In this section, we show that preventive preemption associated with payments
helps even when both the length and the weight of the tasks are private data.

Since now each agent can lie on his weight, algorithm WSPT-PP is not truthful
anymore. Indeed any task ¢ has incentive to bid b; = ¢; and wf > w; in order to
get a smaller ratio 2%, and then to decrease its completion time C;. Moreover, as

w??
shown by Theorem 8 below, when both weights and lengths are private values,
there is no optimal algorithm even if preemptive preemption is allowed (the proof
is omitted due to lack of space). We then propose an optimal truthful algorithm
which uses payment and preventive preemption.

Theorem 8. Let € > 0. There is no truthful deterministic (2 — €)-approzimate
algorithm which does not use payment when the weights of the tasks is a private
value, even when preventive preemption is allowed.

Theorem 9. For every task i, let s; be the starting time of task i in the schedule
obtained by WSPT-PP. The mechanism using algorithm WSPT-PP and the
following payment function p; = —s; + Zj# b; is polynomial-time computable,
optimal and truthful for the single machine case.

Proof. By the definition of algorithm WSPT-PP, —Si‘f'zj# b; is a positive value
and it can be computed by the scheduler using only the values (b1, w?),. .., (b,, w?).
Thus, p; = —s; + > ki b; is a valid payment function. Moreover, for every task
i, if 4 tells the truth, we have u; = —C; —p; = —(s; + ;) — (—s; + Zj# bj) =
—t; — Zj# b; whereas if i lies, by the definition of algorithm WSPT-PP, it can-
not be completed before time s; +t; and thus we have u; < —t; —Zj# b;. Hence,
task 7 takes no advantage of not telling the truth and so the mechanism is truth-
ful. Moreover, given the truthfulness of the mechanism, WSPT-PP constructs
the same schedule as WSPT without preemption. Thus, as WSPT constructs an
optimal solution minimizing the sum of the weighted completion times, so does
WSPT-PP. ad

For applications where the valuation of a task is its weighted completion time,
it is also possible to obtain payments that ensure that WSPT-PP is truthful (the
details will be given in the full version of the paper).

Multiple machines Notice that for multiple machines we can use the algorithm
RAND-WSPT-PP (see Section 2.4) with appropriate payments in order to obtain
a randomized truthful approximation algorithm.

Corollary 2. There exists a truthful %-approm’mate in expectation algorithm for
the parallel machine case with payments when the private data of every task are
its length and its weight.

Acknowledgments. The work of Evripidis Bampis and Fanny Pascual was partly
supported by the French ANR grant ANR-14-CE24-0007-01 “CoCoRICo-CoDec”.

References

1.

2.

10.
11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

F. Abed, J. R. Correa, and C.-C. Huang. Optimal coordination mechanisms for
multi-job scheduling games. In ESA, LNCS, pages 1324, 2014.

P. Ambrosio and V. Auletta. Deterministic monotone algorithms for scheduling
on related machines. In WAOA, volume 3351 of LNCS, pages 267280, 2004.

N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In STACS, volume 3404 of LNCS, pages 69-82,
2005.

E. Angel, E. Bampis, and F. Pascual. Truthful algorithms for scheduling selfish
tasks on parallel machines. Theoretical Computer Science, 369:157-168, 12 2006.

. E. Angel, E. Bampis, F. Pascual, and A. Tchetgnia. On truthfulness and approx-

imation for scheduling selfish tasks. Journal of Scheduling, 12:437-445, 2009.

E. Angel, E. Bampis, and N. Thibault. Randomized truthful algorithms for schedul-
ing selfish tasks on parallel machines. Theor. Comput. Sci., 414(1):1-8, 2012.

A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In
FOCS, pages 482-491, 2001.

M. Braverman, J. Chen, and S. Kannan. Optimal provision-after-wait in health-
care. In ITCS’1}, Princeton, NJ, pages 541-542, 2014.

G. Christodoulou, L. Gourves, and F. Pascual. Scheduling selfish tasks: About the
performance of truthful algorithms. In COCOON, volume 4598 of LNCS, pages
187-197, 2007.

E. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17-33, 1971.
J. Cohen and F. Pascual. Scheduling tasks from selfish multi-tasks agents. In
Euro-Par 2015, LNCS, pages 183-195, 2015.

R. Cole, J. R. Correa, V. Gkatzelis, V. S. Mirrokni, and N. Olver. Inner product
spaces for minsum coordination mechanisms. In ACM, STOC 2011, pages 539548,
2011.

D. Fotakis, Ch. Tzamos, and E. Zampetakis. Who to trust for truthfully maximiz-
ing welfare? CoRR, abs/1507.02301, 2015.

T. Groves. Incentive in teams. Econometrica, 41(4):617-631, 1973.

R. Hoeksma and M. Uetz. The price of anarchy for minsum related machine
scheduling. In WAOA 2011, LNCS, pages 261-273, 2011.

J. Hurst and L. Siciliani. Tackling excessive waiting times for elective surgery: a
comparison of policies in 12 oecd countries. 72(2):201-215, 2005.

T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean
weighted flow-time problem. SIAM J. Comput., 15(4):1119-1129, 1986.

E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. In STACS, volume
1563 of LNCS, pages 404—413, 1999.

N. Nisan and A. Ronen. Algorithmic mechanism design. In STOC, pages 129-140,
1999.

A. S. Schulz and M. Skutella. Scheduling unrelated machines by randomized round-
ing. SIAM J. Discrete Math., 15(4):450-469, 2002.

W.E. Smith. Various optimizers for single stage production. Naval Research Lo-
gistics Quarterly, 3:59—-66, 1956.

W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. J. Fi-
nance, 16:8-37, 1961.

