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SUMMARY

The distributed nature of the grid results in the problem of scheduling parallel jobs produced by several
independent organizations that have partial control over the system. We consider systems in which each
organization owns a cluster of processors. Each organization wants its tasks to be completed as soon as
possible. In this paper, we model an off-line system consisting of N identical clusters of m processors.
We show that it is always possible to produce a collaborative solution that respects participants’ selfish
goals, at the same time improving the global performance of the system. We propose an algorithm (called
MOLBA) with a guaranteed worst-case performance ratio on the global makespan, equal to 4. Next,
we show that a better bound (equal to 3) can be obtained in a specific case when the last completed
job requires at most m/2 processors. Then, we derive another algorithm (called ILBA) that in practice
improves the proposed, guaranteed solution by further balancing the schedules. Finally, by an extensive
evaluation by simulation, we show that the algorithms are efficient on typical instances. Copyright © 2008
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1. INTRODUCTION

The grid computing paradigm [1] introduces new and difficult problems in scheduling and resource
management. A grid can be viewed as an agreement to share resources between a number of inde-
pendent organizations (such as laboratories or universities), with little or no central administrative
control [2], forcing them to interact. An organization is an administrative entity grouping users and
computational resources. Organizations are free to join or to leave the system, if the gain experi-
enced is lower than the cost of participation. Therefore, in order to sustain the grid, the resource
management system must achieve an acceptable performance not only at the level of the community
of users (as in classic, monocriterion scheduling) but also at the between-organizations level. Some
globally optimal approaches may be unacceptable because they implicitly favor jobs produced by
one organization, thus reducing the performance experienced by the others.

In this paper, we study the problem of scheduling parallel jobs [3] produced by several organiza-
tions. Each organization owns and controls a cluster that together forms a computational grid. The
global goal is to minimize the makespan [3], the date when all the jobs are finished. However, each
organization is only concerned with the makespan of its own jobs. An organization can always quit
the grid and compute all its jobs on its local cluster. Therefore, a solution that extends the makespan
of an organization in comparison with such a local solution is not feasible, even if it leads to a better
global makespan. Such an organization would prefer to quit the grid, to compute all its jobs locally
and not to accept any other jobs on its cluster. The considered scheduling problem is therefore an
extension of the classic, off-line parallel job scheduling [3] by a series of constraints stating that
no organization’s makespan can be increased.

The main contribution of this paper is the demonstration that several independent organizations
always have an incentive to collaborate in the proposed load-balancing grid system. The proposed
algorithm produces solutions that guarantee that no organization’s makespan is increased, at the
same time having guaranteed approximation ratio (worst-case performance) regarding the globally
optimal solution. Assuming that each cluster has m processors, the proposed algorithm is a 3-
approximation if the last finished job is low (requires at most half of the available processors) and
a 4-approximation in the general case. As simulations show, the proposed algorithms work much
more efficiently both on average and in the worst-case instances.

This paper is organized as follows. Section 2 introduces notations, formally defines the model
and the problem, and presents some motivating examples. Section 3 considers the problem of
scheduling local and foreign jobs on a single multiprocessor with guaranteed performance for
local jobs. Section 4 presents the algorithm for N identical multiprocessor clusters and proves the
approximation ratios. Section 5 shows an algorithm that is used to improve the results of the base
algorithm. Results of simulations are analyzed in Section 6. Related work is discussed in Section 7.
Section 8 summarizes the obtained results and concludes this paper.

2. PRELIMINARIES
2.1. Notation and the model of the grid

By 0={0, ...,0p} we denote the set of independent organizations forming the grid. Each orga-
nization Oy owns a cluster My. By .# we denote the set of all clusters. Each cluster M} has my
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identical processors. For the remainder of this paper, we consider that all the clusters have the same
number, m, of processors.

The set of all the jobs produced by Oy is denoted by .7, with elements {Ji ;}. By #x we denote
the set of jobs executed on Oy’s cluster M. If Ji; € #i, the job is executed locally; otherwise, it
is migrated. Job Ji ; must be executed in parallel on g ; processors of exactly one cluster during
Dk,; time units. It is not possible to divide a job between two or more clusters. We denote by
Pmax = Maxy; p.; the maximum job length. Ji ; is low if it needs no more than half a cluster’s
processors (qk,; < m/2), otherwise it is high.

By Ci,; we denote the completion (finish) time of job Ji ;. For an organization Oy, we compute
the maximum completion time (makespan) as Cmax(Ox) = max;{Cy ; such that Ji ; € #;}. The
global makespan Cpyx is the maximum makespan of organizations, Cpax = maxg Crmax (Ok).

For cluster My, a schedule is a mapping of jobs #; to processors and start times in such a
manner that, at each time, no processor is assigned to more than one job. We define the makespan
Cmax(My) of cluster My as the maximum completion time of jobs _#, assigned to that cluster,
Cmax(My) = max; ;{C;; such that J;; € #,}. At any time ¢, utilization Uy(t) of M is the ratio
of the number of assigned processors to the total number of processors, m. A scheduler is an
application that produces schedules, given the sets of jobs produced by each organization.

2.2. Problem statement

We consider off-line, clairvoyant scheduling with no preemption. Those assumptions are fairly
realistic in most of the existing scheduling systems, which use batches [4] and which require the
user to define the run-time of the jobs. The objective of each organization Oy is to minimize the
date Cpax(Og) at which all the locally produced jobs .# are finished. Organization Oy does not
care about the performance of other organizations or about the actual makespan Cpax (M) on local
cluster My, if the last job to be executed is not owned by Ox. However, Cpax (Ok) takes into account
jobs owned by Oy and executed on non-local clusters, if any.

The multi-organization scheduling problem (MOSP) is the minimization of the makespan of all
the jobs (the moment when the last job finishes) with the additional constraint that no makespan
is increased compared with a preliminary schedule in which all the clusters compute only locally
produced jobs. More formally, let us denote Cfgﬁ;;(Ok) as the makespan of Oy when ¢, the set
of jobs executed by M, is equal to the set of locally produced jobs, i.e. #; = .#r. MOSP can be
defined as

min Cpax such that Vi Cmax(Ox) < CL°€.(Oy) (1

max

By restricting the number of organizations to N = 1, the size of the cluster to m =2 and the jobs
to sequential ones (gx ; = 1), we obtain the classic, NP-hard problem of scheduling sequential jobs
on two processors P2||Cpax [5]. Therefore, MOSP is also NP-hard.

2.3. Motivation
A number of instances motivate organizations to cooperate and accept non-local jobs, even taking

into account the fact that the resulting configuration is not necessary globally optimal. A non-
cooperative solution (without the grid) is that all the organizations compute their jobs on their
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Figure 1. Executing all the jobs locally (a) may lead to N approximation ratio regarding the globally optimal
solution (b). All the jobs were produced by organization Op, the owner of M;.

il " wmi[ B
@ MZE (b)MZi

Figure 2. By matching certain types of jobs, cooperative solution (b) delivers better makespans
for both organizations than a solution scheduling all the jobs locally (a). The light gray jobs were
produced by organization O1, the dark gray ones by O;.
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Figure 3. Globally optimal solution (b) is inadmissible, as it extends the makespan of organization O (the
producer of light gray jobs) in comparison with the local solution (a). The best solution not extending O1’s

makespan (c) is % from the global optimum.

local clusters. However, such a solution can be as far as N times worse than the optimal one (see
Figure 1). Moreover, careful scheduling offers more than simple load balancing of the previous
example. By matching certain types of jobs, bilaterally profitable solutions are also possible (see
Figure 2). Nevertheless, a certain price must be paid in order to produce solutions in which all
the organizations have incentive to participate. Figure 3 presents an instance in which the globally
optimal solution extends the makespan of one of the organizations. Consequently, all the algo-
rithms that meet the constraint have at least % approximation ratio regarding the globally optimal
solution.

3. SCHEDULING ON ONE CLUSTER

Let us first focus on the simple case of scheduling rigid parallel jobs on one cluster consisting
of m identical processors. Note that as in this section there is no reason to distinguish between a
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cluster and an organization, we will simply use Cp,x to denote the makespan and omit the index
of the organization in other notations (e.g. gk, becomes ¢g;). We will use here the classic list
scheduling algorithm, which has an approximation ratio equal to 2 — 1/m. We show that if the jobs
are ordered according to decreasing number of required processors, the resulting schedule achieves
fairly homogeneous utilization. Preliminary results established in this section are used to solve the
general problem of multi-organization scheduling in Section 4.

3.1. List scheduling

List scheduling [6] is a class of scheduling algorithms that work in two phases. In the first phase,
jobs are ordered into a list (using any criterion). In the second phase, the schedule is constructed
by assigning jobs to processors in a greedy manner. Let us assume that at time ¢, m’ processors
are free in the schedule under construction. The scheduler chooses from the list the first job J;
requiring no more than m’ processors, schedules it to be started at 7, and removes it from the list. If
there is no such job, the scheduler advances to the earliest time ' when one of the scheduled jobs
finishes.

Although straightforward, list scheduling of rigid parallel jobs is an approximation algorithm
with guaranteed worst-case performance of 2 — 1/m [7], regardless of the order of jobs in the first
phase. A polynomial time algorithm with better approximation ratio is not known.

3.2. Highest first (HF) job order

The 2 — 1/m approximation ratio of list scheduling does not depend on the particular order of
jobs in the list. Therefore, we may choose a criterion that gives some interesting properties of the
resulting schedule without loosing the approximation ratio.

Let us consider jobs ordered according to the highest first (HF) order, i.e. by non-increasing ¢;.
The following proposition, illustrated in Figure 4, holds:

Proposition 1. All HF schedules have the same structure consisting of two consecutive regions of
high utilization U(t)>%f0r 0 <t <ty and low utilization U (t) < %for tgr <t < Cuax, Where
0 <IHL = Cmax~

I ]

processors

t —>
high utilization FHL low utilization "% time

Figure 4. When jobs are presorted according to number of required processors, the schedule can be divided into
two regions with utilization U (t)>% (uptotyr) and U(t) < % (after that moment).
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Proof. First, note that no high job is scheduled after a period of low utilization. Indeed, as soon as
a high job is completed, the following highest job is scheduled (according to the HF order). Thus,
there is no low utilization period before all the high jobs have been completed. The proof is now by
contradiction. Let us assume that at time ¢ the utilization is low (U (¢) < %) and that at time ' >t

the utilization is high (U (¢ )>%). Let us consider a job J; scheduled at time #’. It is not possible
that J; is a high job because no high job can be scheduled after a period of low utilization, as noted
before. If J; is low (g; < m/2) then it could have been scheduled at time 7, and scheduling it after ¢
contradicts the greedy principle of the list scheduling algorithm. 0

4. MULTI-ORGANIZATION LOAD BALANCING ALGORITHM

In this section we present an algorithm that addresses the MOSP. This algorithm has a guaranteed
approximation ratio regarding the global makespan, at the same time not worsening the local
solutions that are produced by the organizations while computing independently. In this section, we
first present the algorithm. Then, we show some general properties about the resulting schedules.
Finally, we prove approximation ratios.

4.1. Description of the algorithm

The Multi-Organization Load Balancing Algorithm, denoted by MOLBA () (with o > 1), computes
lower bounds of the global makespan, schedules all the jobs on their local cluster, selects all the
organizations whose makespan is larger than (o4 1) times these bounds, and then reschedules some
of their jobs onto the less loaded clusters.

Two lower bounds on the global makespan Cmax can be defined. Let C},, be the global
makespan of an optimal solution. Let us denote by W = py ;qx.; the total surface of the jobs
and by pmax = max pi; the length of the longest job. Firstly, all the jobs must fit into avail-

able processors; hence, Cx,, > W = W /Nm. Secondly, the longest job must be executed; hence,
Crax = Pmax-

max —

MOLBA () starts with scheduling jobs _#; on local cluster M with list scheduling algorithm in
HF order (i.e. non-increasing number of required processors). Local makespans Cf;;;’x(ok) obtained
at this stage of the algorithm are constraints of the MOSP.

Then, the algorithm computes the subset (' of all organizations that have local makespan
Crnax (Op) > oW + Pmax- Parameter o expresses the trade-off between the global efficiency and the
constraints on local makespans (see the proofs in the following sections). Hereafter, we refer to the
algorithm with a particular value of « as MOLBA(«), e.g. MOLBA(2).

Next, jobs belonging to (', which start after 2W, are removed from local clusters, mixed, and
rescheduled on all the clusters. These jobs are scheduled sequentially in a greedy manner. No
migrated job can delay a local job: a job Ji ; is scheduled before the original makespan of the host
cluster M; (t<cfg,§x( O))) only if at least g ; processors are free on M; from time ¢ to time ¢ + py ;.
Such a strategy is similar to the well-known conservative backfilling in first come first serve (FCFS)
[8]. Therefore, a job incoming to one of the clusters that do not belong to ¢’ is scheduled either in
a gap or at the end of the schedule.
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4.2. An example run

Figure 5 presents a typical result of executing MOLBA(2) on an instance with N =5 organizations.
Scheduling all the jobs locally (Figure 5(a)) results in large system makespan Cpax, Which is
determined by the makespan of Oj. O is the only organization whose local makespan is larger
than 2W + Pmax- MOLBA(2) (Figure 5(b)) improves Cpax by rescheduling several of O; jobs
on M3 and Ms. Note that, in the resulting schedule, no makespan is increased. The makespan
meets the theoretical bound of 4 times the lower bound of C};. .. In Section 5 we show that further
improvement is possible.

TO
~N
=

Y~

Y-~

(b)

"l-f

(©)

Figure 5. An example instance with N =5 organizations. Jobs of different organizations are denoted by different
shades of gray. MOLBA(2) (b) improves the system-wide makespan compared with the local scheduling (a). ILBA
(c) (Section 5) improves both the system makespan and the local makespans of O, O, and Oy.
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4.3. General properties

We prove in Sections 4.4 and 4.5 that MOLBA(3) is a 4-approximation of the global makespan
Chax in the general case and that MOLBA(2) is a 3-approximate algorithm when the last completed
task is a low task. We also show that these algorithms do not increase the local makespans of
the organizations (therefore holding the constraint in Equation (1)). We start with a lemma that
characterizes the structure of all the clusters’ schedules.

In the schedule returned by MOLBA (), on each cluster, we denote by ti”” " the first time at which

the utilization is lower than or equal to % Similarly, ti"d is the last time at which the utilization is

larger than O and lower than or equal to % We first prove the following lemma:

Lemma 1. In the schedule returned by MOLBA (), on each cluster, the length of the time interval
between tlsf‘” " and ti"d (denoted by Pyp) is shorter than or equal to pmax.

Proof. Each cluster schedules its local jobs with HF. Then, it may add jobs from other organizations,
also in HF order. Proposition 1 shows that, in a schedule returned by HF, the only zone of low
utilization is at the end of the schedule. Thus, on each cluster, there are at most two zones of low
utilization: possibly one at the end of the schedule of the local jobs and also possibly one at the
end of the schedule.

Let Ji,; be the low job that finishes last on cluster M;. After J ; finishes, utilization is either
high or zero. Thus, by Py, definition, Ji ; cannot finish before ti"d. Jx.i does not start after tzt“” , as
utilization at #;""" is low; hence, there are enough free processors to execute a low job. Thus, the

length of Py, is smaller than or equal to the length of Ji ;, which is not longer than pmax. ]
Lemma 2. After MOLBA (0) finishes, there is at least one cluster with 1" < 2W.

Proof. The proof is by contradiction. Suppose that there exists ¢>0 such that all the clusters have
high utilization from O till 2W + &. Then, the total surface of jobs computed by all the clusters
is greater than 2W - mN - 0.5=W, i.e. greater than the total work available, which leads to a
contradiction. ]

4.4. Approximation ratio for arbitrary jobs

Let us now consider the case where the last completed job can have any height. MOLBA(3) has an
approximation ratio of 4 in the general case.

Proposition 2. MOLBA(3) is a 4-approximate algorithm and all the organizations have incentive
to cooperate.

Proof. Let us prove this proposition by contradiction (see Figure 6 for an illustration). Let C}: .

be the makespan of an optimal schedule, and let us suppose that a job starts after time 3C},, in
the schedule returned by MOLBA(3). This means that this job could not have been started before:
foralli e{l,...,n}, Cnax(M;) > 3C}, . Lemma 1 shows that, on each cluster, the zone where
at most half of the processors are busy is smaller than or equal to pmax < Cji.x. Thus, on each

cluster, the zone where at least half of the processors are busy is larger than or equal to 2C};,. . As
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=Pmax

Figure 6. Low foreign jobs (in dark gray) fill the zone of low utilization at the end of the schedule of local jobs
(in light gray). High foreign jobs are placed at the end of the schedule.

seen previously, Cpr.. > W/nm, where W =) py iqx ;. Thus, the total work done before 3C}%,, in
the zones of high utilization is larger than or equal to nm/2(2W /nm) = W. This is not possible as
the total work that has to be done is equal to W. Thus, no job starts after time 3C}:. ., and no job
is completed after time 4C} . .

As no migrated job can delay a local job, makespans of organizations that were receiving jobs are
not modified. The organizations that were sending jobs have their makespan reduced because of the
global approximation ratio. The schedule of the rest of the organizations is not modified. Thus, the

constraint in Equation (1) is satisfied and all the organizations have incentive to cooperate. ]

There are some special cases in which the presented approximation ratio can be improved. When
all the jobs are high, no two jobs can be scheduled in parallel on one cluster. Thus, the problem
corresponds to scheduling sequential jobs on N processors. Any list scheduling algorithm is, in
this case, 2 — 1/N approximate. It is straightforward to guarantee that all the organizations have
incentive to cooperate. Each job J; is scheduled on its local machine M, unless there is a free
machine M that has already scheduled all its local jobs at the moment when J; would start on M :
in this case J; is scheduled on Mj,.

4.5. Approximation ratio for low jobs

We show in this section that, in the schedule returned by MOLBA(2), if the last completed job is
a low job, then MOLBA(2) is a 3-approximate algorithm.

Proposition 3. The makespan of the schedule returned by MOLBA(2) is a 3-approximation of the
optimal makespan, if the last completed job is low. Moreover, all the organizations have incentive
to cooperate.

Proof. If the last job is low it is started no later than 2W. Indeed, by Lemma 2, there is at least
one cluster whose ti’“" < 2W, and in the final schedule the utilization cannot be high on all the
clusters until a time larger than 2W, as this would mean that the total work is larger than W. As
we use a list algorithm to schedule the migrated jobs, no low job starts after 2W. Therefore, Jk.i
finishes before 2W + Pk,i = 2W + Pmax < 3CHax-

The proof that all the organizations have incentive to cooperate is analogous to the proof of
Proposition 2. ]
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5. ITERATIVE LOAD BALANCING ALGORITHM

MOLBA(3) guarantees that the global makespan Cmay is not higher than 4C;: . . Nevertheless, the
load distribution resulting from running the algorithm can be uneven. For instance, MOLBA (3) does
not modity the schedule of an organization with Cpax (Ox) =4C},, — €. Yet, it is possible that jobs
on M are not yet scheduled while the other clusters are idle. The Iterative load balancing algorithm
(ILBA) presented in this section improves the schedule returned by MOLBA (o) by balancing the
load between clusters.

Note that, as ILBA does not take into account the owner of a job, in this section we will omit

the index of organization, as in Section 3.
5.1. Algorithm description

ILBA starts by sorting clusters by non-decreasing makespans. Suppose that Cpax (M) < Cmax(M3)
< .-+ < Cpax(My). The algorithm, for all k=2, ..., N, reschedules all the jobs _#; executed on
My on {My, ..., Mi}. Jobs # are scheduled sequentially in the order of execution of the original
schedule. Each job J; is allocated to the cluster that has an earliest strip of free processors of width
of at least p; and height of at least g;.

An example of applying ILBA on a schedule returned by MOLBA is presented in Figure 5(c).

ILBA does not delay any job. Therefore, given a schedule produced by MOLBA (), ILBA fulfills
the constraint in Equation (1) and does not worsen the approximation ratio (see Section 5.2 for a
formal proof).

Note that many other load balancing policies are possible (such as redistributing load in pairs
or starting with the most loaded machine). However, by starting with the least loaded clusters and
iteratively adding the more loaded ones, ILBA permits also to reduce the makespans on the less
loaded clusters. Consequently, the resulting load distribution is more equitable.

5.2. Principle of algorithm

ILBA does not delay any job and thus does not increase the makespan of any organization. The
following proposition formally states this result.

Proposition 4. ILBA does not delay any job when compared with the base schedule.

Proof. As ILBA considers clusters sequentially, it is sufficient to show that the proposition holds for
any cluster My (as the jobs from the following clusters do not modify the jobs already scheduled).

Let us assume that jobs are numbered according to non-decreasing start times in the base
schedule.

The proof is by induction on the scheduled jobs. In ILBA, a scheduled job J; cannot be influ-
enced by jobs Jit1, ..., Jy scheduled afterward (or by jobs incoming from different clusters in
the subsequent parts of the algorithm). Note also that at this phase of the algorithm, no new job is
allocated to M. Thus, it is sufficient to show that if jobs Ji, ..., Ji_ are completed no later than
in the original schedule, J; is also not delayed.

The proposition trivially holds for Ji, as the first job will be started at = 0.
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Let us now assume that jobs Ji, ..., Ji_1 are scheduled no later than their start times in the
original schedule. Consequently, Ji, ..., J;—1 finish no later than in the original schedule. Thus, at
Ji’s original start time, the number of free processors is at least the same as in the original schedule.
Hence, J; can be scheduled at its original start time. J; is migrated only if it can be started earlier
than this original start time. Consequently, J; finishes at the latest when it finished in the base
schedule. (]

6. SIMULATIONS

In this section, we carry out the experimental evaluation of the proposed algorithms. We start with
performance measures and the methods used to generate workload. Then, we show the performance
of the considered algorithms.

6.1. Methods

We compare three algorithms:

Local: This algorithm, for each organization, schedules its jobs on its local cluster with a HF list
scheduling algorithm; this solution is used as a reference, non-cooperative solution.

MOLBA: The algorithm presented in Section 4, that o =2;

ILBA: The algorithm presented in Section 5, which iteratively improves the schedule returned by
MOLBA(2), yet it has the same worst-case performance.

We choose to use MOLBA with =2 as a trade-off between performance (better when « is
smaller) and worst-case guarantees (as there are no guarantees for o<2).

Note that MOLBA(2) is an approximation algorithm only when the last job is low. The the-
oretical analysis in Section 4.4 showed that, in the general case, MOLBA(3) should be used. In
our simulations, we use the following meta-algorithm. Firstly, we run MOLBA(2). Then, if in the
resulting schedule any organization had its makespan increased, or the global makespan is greater
than 3 max(pmax, W), the schedule is discarded and MOLBA(3) is run instead. However, during
our simulations, those conditions were never fulfilled. Thus, all the presented results are obtained
with MOLBA(2).

The algorithms are compared with respect to the system-wide makespan that was produced. As
the instances differ, e.g. in the number of jobs or their sizes, for each instance and each algorithm
we compute the ratio of the produced makespan to the lower bounds defined in Section 4.1, i.e.

Cmax(alga 1)
max(W(I), pmax(l))

s(alg, I) =

where s(alg, I) is the algorithm alg score on instance I, Cmax(alg, I) is the makespan of the
schedule produced by algorithm alg on instance I, W () is the average work in this instance, and
Pmax () is the length of the longest job in the instance. Thus, s(alg, I) is an upper bound of the
approximation ratio of al/g on instance /. Low values of s(alg, I') denote better performance.
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We test the algorithms on two sets of randomly generated instances.

e uni instances in which the sizes py ; and the numbers of required processors gy ; of jobs are pro-
duced by two independent, uniform distributions over, respectively, {1, ..., 50} and {1, ..., m}.

e swf instances produced by a realistic workload generator [9]. We adjust the generator as follows.
The maximum required number of processors is smaller than m. The number of generated jobs
is set to n. All the release dates are set to 0.

Each instance consists of n (a parameter of the simulations) jobs. To determine the owner Oy of
each job Jy ;, we use a Zipf distribution. We set the number of elements equal to the total number of
organizations and the exponent equal to 1.4267. This parameter corresponds to that found in [10],
which analyzes real-world data from virtual organizations and their submitted jobs.

Both uni and swf instances are generated with the total number of organizations N € {2, 5, 10,
20}, the total number of jobs n € {10, 50, 100, 500}, and the number of processors in each cluster
m € {32,128, 512}. N is chosen to represent academic grids, where the number of participating
laboratories is often around 10. The number of processors varies between small and large clusters
currently used in grid systems. For instance, clusters in Grid’5000 [11] currently have between 32
and 342 nodes.

For each possible distribution type (uni and swf) and each possible combination of values of n,
N and m, 50 instances are generated. In total, 4800 instances are generated.

6.2. Analysis of results

The average scores of algorithms in function of the total number of jobs n and the number of
organizations N are presented in Figure 7. A number of phenomena can be observed.

6.2.1. The inefficiency of local scheduling

The inefficiency of local scheduling can be observed in uni instances (Figure 7(a)). The average
score of the local algorithm deteriorates quickly as the number of organizations increases. The
trend is even more visible when the smallest instances (n = 10) are omitted. The average score
grows from 1.57 (N =2), through 3.00 (N =5) and 4.93 (N = 10), till 7.35 (N =20). The linear
correlation coefficient between N and the score of local is equal to 0.69 for uni (and 0.38 for the
both data sets combined). This supports our claim that in larger systems the drop in performance
resulting from the lack of cooperation is proportional to the size of the system N.

6.2.2. Improvement by ILBA

The final refinement of schedules, performed by ILBA, considerably improves the results in all
settings. The overall average score for uni instances drops from 1.96 (for MOLBA(2)) to 1.25
(for ILBA), whereas for swf it drops from 1.09 (for MOLBA(2)) to 1.03 (for ILBA). Moreover,
ILBA returned optimal schedules (with score equal to 1) for at least 40% of instances, whereas
MOLBA(2) returned such schedules in 29% of the considered instances. Note that the score of an
optimal schedule can be higher than 1 (as we are comparing the makespan with its lower bound). In
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Figure 7. Average scores s (upper bounds for the approximation ratio) in function of number of jobs

n or the number of organizations N. Data averaged over instances and the number of processors

in each cluster. Error bars denote standard deviation: (a) uni, average over n; (b) uni, average over
N; (c) swf, average over n; and (d) swf, average over N.

this case, even if an algorithm returns the optimal schedule, such a simple analysis will not consider
it as an optimal.

6.2.3. Performance on realistic instances

The performance of all the algorithms is much better on instances created with the realistic workload
generator (swf data set, Figures 7(c) and (d)). Because of the increased diversity of both the sizes
of jobs and the number of required processors, these instances simply schedule better. For example,
in swf data set, ILBA was optimal in all the smallest instances considered (with n = 10), in which
the makespan was determined by the length of the longest job.

6.2.4. Influence of load increase

The lack of cooperation makes the system inefficient under high load, i.e. when the number of jobs
n is large (Figures 7(b) and (d)). For all but uni instances with N =2 and 5, the average score
of local scheduling rises with n. The differences of load between organizations result from the
Zipf distribution. The increased number of jobs makes the load differences more visible. Scores of
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MOLBA(2) and ILBA deteriorate in swf instances but improve in uni instances (after omitting the
smallest instances). In swf instances, the deterioration is directly caused by the increased number
of jobs. In contrast, jobs produced by the uniform distribution are, in general, harder to match and,
thus, to pack efficiently. If the number of such jobs is increased, it is easier to match jobs of different
sizes, and thus the algorithm achieves better packing (note that the resulting approximation ratio is
still higher than for swf instances).

6.2.5. Influence of the number of processors

The number of processors on each node m does not influence the performance of the considered
algorithms. After averaging over all the other variables, p-values of two-tailed, type 3 t-test, for
m =32 and 128 are 0.35, 0.17 and 0.53, for the local, MOLBA(2) and ILBA scores, respectively.
Similarly, for the difference between m = 128 and 512, we have 0.56, 0.62 and 0.35. Consequently,
we do not present results averaged over different values of m.

6.2.6. Worst cases

The worst result for the local algorithm was 12.12, for a uni instance with N =20 organizations
and n = 100 jobs. The makespan is determined by a number of relatively short jobs executed on one
cluster. The worst result of MOLBA(2) was 2.98 for a uni instance with N =20 and n = 50. In this
instance, the makespan is determined by an organization that does not take part in the MOLBA(2)
algorithm, as its local makespan is between 2W and 2W + ppax. The worst result of ILBA is 1.92
(also for N =20 and n = 50), which is significantly lower that the theoretical upper bound of 3. In
this instance, the last finished job is a long, high job, started after a period of low utilization.

6.3. Summary of the results

The results of our simulations show that MOLBA(2) with ILBA is an efficient algorithm that con-
siderably improves the performance in comparison with local scheduling. Even the worst observed
results remain far from the theoretical approximation ratios. At the same time, no organization saw
its makespan increased. We also observed that the workloads generated by the realistic workload
generator were easier to schedule, and thus the improvement of MOLBA (2) with ILBA was reduced
compared to uniform instances.

7. RELATED WORK

In this paper we have studied the incentive for independent parties to collaborate. We have claimed
that, if a proposed, collaborative solution does not deteriorate any participant’s selfish goal, it will
be adopted by all the participants.

Using a reasonable set of assumptions, we have demonstrated that it is always possible to produce
such collaborative solutions. Moreover, we have developed an algorithm that has a worst-case
guarantee on the social goal (the makespan of the system), at the same time respecting selfish goals
of participants.
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In this section we will briefly summarize how the concept of collaboration and the distributed
nature of systems has been understood by and used in other works.

Non-cooperative game theory [12] studies situations in which a set of selfish users (called players)
optimize their own objective functions, which also depend on strategies undertaken by other players.
Moreover, in order to measure the performance of the system as a whole, a social (global) objective
function is often defined. The central notion is the Nash equilibrium [13], a situation in which no
player can improve its own objective function by unilaterally changing his/her strategy.

The ratio between the values of the social objective function in the worst Nash equilibrium and
in the optimal solution is called the price of anarchy [14]. The price of anarchy is interpreted as the
cost of the lack of cooperation. For example, in the context of scheduling, Christodoulou ef al. [15]
measure the price of anarchy when selfish sequential jobs choose one of the available processors:
the goal of each job is to minimize its completion time, whereas the social goal is to minimize the
makespan of the schedule.

A related measure, the price of stability [16,17], compares the socially best Nash equilibrium with
the socially optimal result. Usually, in order to reach such an equilibrium, a centralized protocol
gathers information from and then suggests a strategy to each player. As the proposed solution
is a Nash equilibrium, the players do not have incentive to unilaterally refuse to follow it. For
example, Angel et al. [18] compute the price of stability in the same model as [15], but relaxes the
selfishness of jobs by a factor « and studies the trade-off between « and the approximation ratio of
the global makespan. The price of stability can be interpreted as the cost due to the fact that players
optimize their own objective functions rather than the global objective function. It is possible to
view our problem as a non-cooperative game where the players are the organizations (which have
the possibility to accept the proposed solution or to choose to execute their own jobs locally) and
the social goal is to minimize the global makespan. The collaborative solution proposed by our
algorithm approximates the socially best Nash equilibrium, because it optimizes the social goal
with a guarantee that no player has incentive to deviate from the proposed solution.

In cooperative game theory [12], players still have their selfish goals, but they can communicate
and enforce agreements on their strategies. In the resulting game, coalitions rather than individual
players compete with each other. The payoff of such a game describes how much a set of players
gains by forming a coalition. The players choose which coalitions to form, according to the way
the allocation of gains obtained by the coalition will be divided among the coalition members. In
cooperative games, the goal is often to find division rules with which every player gains most by
joining the grand coalition that gathers all the players. However, cooperative game theory usually
requires transferable payoffs, i.e. that the coalition could divide its gain between the members in an
arbitrary manner. This is certainly not the case in our problem, as we assume that the only payoff
of a player is the completion time of his/her jobs.

Papers proposing distributed resource management or distributed load balancing usually solve
the problem of optimizing a common goal with a decentralized algorithm. Liu et al. [19] show
a fully decentralized algorithm that always converges to a steady state. Rotaru and Nageli [20]
present a similar algorithm with the divisible load job model. Those approaches contrast with our
algorithm. In our approach, a centralized algorithm respects decentralized goals of participants. We
are, however, aware that a load balancing algorithm in large-scale systems must be decentralized.
In [21], a distributed algorithm balances selfish, identical jobs on a network of identical processors.
There are several differences with our work as there is no notion of organization, and agents are
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jobs whose aim is to be on the least loaded machine. Berenbrink et al. [21] focus on the time needed
to converge to a Nash equilibrium and does not consider, like we do, a social goal to optimize (e.g.
the price of anarchy is not computed).

Alternative approaches propose to balance the load by implicit barter trade of CPU power [22]
or by an explicit computational economy [23].

8. CONCLUSION AND PERSPECTIVES

In this work, we have considered the problem of cooperation between selfish participants of a
computational grid. More specifically, we studied a model of the grid in which selfish organizations
minimize the maximum completion time of locally produced jobs. Under some basic assumptions
(off-line, clairvoyant system, idle time of machines is free) we have demonstrated that it is always
possible to respect the selfish goals and, at the same time, to improve the performance of the
whole system. The cooperative solutions have a constant worst-case performance, a significant gain
compared with selfish solutions that can be arbitrarily far from the optimum. Moreover, proposed
algorithms turned out to be efficient during experimental evaluation by simulation.

Our aim was not to find an algorithm for solving the general problem of grid resource management
that has an overwhelming complexity for any kind of mathematical modeling. However, we claim
that the positive results given by this paper prove that cooperation achieved at the algorithmic (as
opposed to, e.g. economic) level is possible. Note that it should be possible to relax some of our
assumptions, e.g. to use on-line scheduling in batches instead of off-line.

In our future work, we would like to, firstly, extend the presented algorithms to heterogeneous
clusters, and, secondly, study the effect of the increased effort of individuals on the global goal,
especially in the case of an on-line system. More specifically, we would like to relax the hard
constraint of ‘not being worse than the local solution’ to an approximation of ‘not being worse than
p times local solution’.
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