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Abstract. The distributed nature of the grid results in the problemobisiuling
parallel jobs produced by several independent organizatitat have partial con-
trol over the system. We consider systems composedidéntical clusters ofn
processors. We show that it is always possible to producéabooative solution
that respects participant’s selfish goals, at the same tinpeoving the global
performance of the system. We propose algorithms with aagiieed worst-case
performance ratio on the global makespan: a 3-approximaigorithm if the last
completed job requires at mast/2 processors, and a 4-approximation algorithm
in the general case.

1 Introduction

The grid computing paradigm [1] introduces new and diffiputiblems in scheduling
and resource management. A grid can be viewed as an agreasdrdre resources
between a number of independent organizations (such asatabies, or universities),
with little, or no, central, administrative control [2],ri@ing them to interact. An orga-
nization is an administrative entity grouping users and potational resources. Orga-
nizations are free to join or to leave the system, if the gapeeenced is lower than the
cost of participation. Therefore, in order to sustain thd,ghe resource management
system must achieve an acceptable performance not onlg &wvél of the community
of users (as in classic, monocriterion scheduling), but afsthe between-organizations
level. Some globally-optimal approaches may be unacclpbatause they implicitly
favor jobs produced by one organization, therefore reduttie performance experi-
enced by the others.

In this paper, we study the problem of scheduling paralles i8] produced by sev-
eralorganizationsEach organization owns and controls a cluster, that tegdtim a
computational grid. The global goal is to minimize the makas[3], the time moment
when all the jobs are finished. However, each organizatiomig concerned with the
makespan of its own jobs. An organization can always quigtictand compute all its
jobs on its local cluster. Therefore, a solution which egtetine makespan of an organi-
zation in comparison with such a local solution is fe@tsible even if it leads to a better
global makespan. Such an organization would prefer to baigtid, to compute all its
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jobs locally and not to accept any other jobs on its clustee donsidered scheduling
problem is therefore an extension of the the classic, grab scheduling [3] by a
series of constraints stating that that no organizatioalkespan can be increased.

The main contribution of the paper is the demonstrationgee¢ral independent or-
ganizations have always interest to collaborate in a lcadrting grid system. We pro-
pose an algorithm producing solutions that guarantee thatrganization’s makespan
is increased, at the same time having guaranteed appraaimratio (worst-case per-
formance) regarding the globally-optimal solution. Assugnthat each cluster has
of processors, the proposed algorithm Bsa@pproximation if the last finished job lisw
(requires at most half of the available processors), atidjaproximation in the general
case.

This paper is organized as follows. Section 2 introducesespatations, formally
defines the model and the problem and presents some magietamples. Section 3
considers a problem of scheduling local and foreign jobs emgle multiprocessor
cluster with guaranteed performance for local jobs. Sadlipresents the algorithms
for n multiprocessor clusters and proves the approximationsaRelated work is dis-
cussed in Section 5. Section 6 discusses the results othtaitkeconcludes the paper.

2 Prdiminaries

2.1 Notation and the Model of the Grid

By O ={0,,...,0,}wedenote the set ofindependent organizations formingritle g
Each organizatio®;, owns a clustei],. Each clusted/;, hasm identical processors.
By M we denote the set of all clusters.

The set of all the jobgroducedby O,, is denoted byZ;,, with elements .J;. ;}. By
Jr we denote the set of jobesxecutedon Oy ’s clusterMy,. If Ji,; € Ji, the job is
executedocally, otherwise it ismigrated Job.J, ; must be executed in parallel @i ;
processors of exactly one cluster durjg; time units. It is not possible to divide a job
between two, or more, clusters. We denotepRy,x = max pi ; the maximum length
of job. Jy ; is low if it needs no more than a half of cluster’s processgrs (< ),
otherwise it ishigh.

By Ci,; we denote the completion (finish) time of jok ;. For an organization
Ok, we may compute the maximum completion time (makespan).as.(Ox) =
maxy ;i {Cr; : Jri € Ix}. The global makespa@i,,x is the maximum makespan
of organizationsCy,,x = maxg Crax (Ok)-

For clusterM}, aschedules a mapping of jobgJ, to processors and start times
in such a way that, at each time, no processor is assigned e than one job. We
can define thenakesparC,,.. (M} ) of clusterM;, as the maximum completion time
of jobs J;, assigned to that clustefimax (M) = max;{Cj; : J;; € Ji}. At any
time ¢, utilization Uy (t) of M}, is the ratio of the number of assigned processors to the
total number of processors. A scheduleiis an application which produces schedules,
given the sets of jobs produced by each organization.
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Fig. 1. Executing all the jobs locally (a) may leadaapproximation ratio regarding the globally-
optimal solution (b). All the jobs were produced by orgatizaO, , the owner ofM/; .

2.2 Problem Statement

We consider off-line, clairvoyant scheduling with no preeion on time-sharing pro-
cessors. Those assumptions are fairly realistic in most@Ekisting scheduling sys-
tems, which use batches [4] and which require the user toaéifim run-time of the
posted jobs. Each organizatiéh, wants to minimize the daté',.x(Oy) at which all
the locally produced job$;, are finished. Organizatiaf;, does not care about the per-
formance of other organizations, nor about the actual npces,,,...(M};) on local
cluster My, if the last job to be executed is not owned ©y. However,C\,,ax(O)
takes into account jobs owned 6% and executed on non-local clusters, if there are
any.

The Multi-Organization Scheduling ProbleifMOSP) is the minimization of the
makespan of all the jobs (the moment when the last job fin)ski#is an additional con-
straint that no makespan is increased compared to a prealigngthedule in which all
the clusters compute only locally produced jobs. More fdlyniet us denote>°c_(Oy,)
as a makespan @b, when 7, the set of jobs executed b\, is equal to the set of
locally produced jobs, i.e7;, = Z,. MOSP can be defined as:

min Cax such that\fk CmaX(Ok) < Crlggx(Ok). (1)
By restricting the number of organizationsiio= 1, the size of the cluster taw = 2
and the jobs to sequential oneg ( = 1), we obtain the classic, NP-hard problem of
scheduling sequential jobs on two proces@ps|Co,q. [5]. Therefore, MOSP is also
NP-hard.

2.3 Moaotivation

A number of instances motivate organizations to cooperadeagcept non-local jobs,
even taking into account the fact that the resulting conéiian is not necessary glob-
ally optimal. A non-cooperative solution (without the grid that all the organizations
compute their jobs on their local clusters. However, sucblation can be as far as
times worse than the optimal one (see Figure 1). Note alsc#naful scheduling offers
more than simple load balancing of the previous example. Bfching certain types
of jobs, bilaterally profitable solutions are also possifslee Figure 2). Nevertheless,
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Fig. 2. By matching certain types of jobs, cooperative solutiond@jvers better makespans for
both organizations than a solution scheduling all the jaloslly (a). The light gray jobs were
produced by organizatiof, , the dark gray ones b@,.
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Fig. 3. Globally-optimal solution (b) is inadmissible, as it extisrthe makespan of organization
O (the producer of light gray jobs) in comparison with the logalution (a). The best solution
not extending);’s makespan (c) i§ from the global optimum.

a certain price must be paid in order to produce solutionshickvall the organiza-

tions have incentive to participate. Figure 3 presents stairce in which the globally-
optimal solution extends the makespan of one of the orgaoim Consequently, all

the algorithms that meet the constraint have at Iéafnproximation ratio regarding the
globally-optimal solution.

3 Scheduling on One Cluster

Let us first focus on the simple case of scheduling rigid pelrgbs on one cluster
consisting ofm identical processors. Note that as in this section thereiseason

to distinguish between a cluster and an organization, wieswilply useC\,.x to de-
note the makespan and omit the index of the organizationhiaratiotations (e.gy ;
becomesgy;). We will use here the classic list scheduling algorithmjakithas an ap-
proximation ratio equal t@ — L. We show that if the jobs are ordered according to
decreasing number of required processors, the resultmegsite achieves fairly homo-
geneous utilization. Preliminary results establishedis $ection will be later used to
solve the general problem of multi-organization schedyiimSection 4.

3.1 List Scheduling

List scheduling [6] is a class of heuristics which work in tploases. In the first phase,
jobs are ordered into a list. In the second phase, the sahedudnstructed by assigning
jobs to processors in a greedy manner. Let us assume thateat, tin’ processors are
free in the schedule under construction. The schedulersgsdfoom the list the first job
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Fig.4. When jobs are presorted according to number of requiredepsars, the schedule can
be divided into two regions with utilizatiot(t) > + (up tot;.) andU(t) < 3 (after that
moment).

J; requiring no more tham' processors, schedules it to be startet] ahd removes it
from the list. If there is no such job, the scheduler advatzése earliest tim¢’ when
one of the scheduled jobs finishes.

Although straightforward, list scheduling of rigid paslljobs is an approximation
algorithm with guaranteed worst case performan@e% [7], no matter the order of
jobs in the first phase. A polynomial time algorithm with leethpproximation ratio is
not known.

3.2 Highest First (HF) Job Order

The2—-L approximation ratio of list scheduling does not depend erptrticular order
of jobs in the list. Therefore, we may choose a criterion Whjives some interesting
properties of the resulting schedule without loosing theragimation ratio.

Let us consider jobs ordered according to the Highest RitB) fule, i.e. by non-
increasing;. The following proposition holds:

Proposition 1. All HF schedules have the same structure consisting of twseutive
regions of high{ € [0,t5.) : U(t) > 3) and low ¢ € [tyr,Cmax : U(t) < 3)
utilization, where) < tg;, < Chax (Figure 4).

Proof: First, note that no high job is scheduled after a period ofdtlization. Indeed,
as soon as a high job is completed, the following highestgattheduled (according to
the HF rule). Thus there is no low utilization period befdnattall the high jobs have
been completed. The proof is now by contradiction. Let usimssthat at time the
utilization is low (U (¢) < 1), and that at time’ > ¢ the utilization is high U/ (¢') > 3).
Let us consider a joly; scheduled at time'. It is not possible that/; is a high job
because no high job can be scheduled after a period of loimaitdn, as noted before.
If J;islow (¢; < ) then it could have been scheduled at timand scheduling it after
t contradicts the greedy principle of the list schedulingaithpm. |



4 Multi-Organization Scheduling

In this section we present an algorithm that address theil@ugianization Scheduling
Problem. This algorithm has a guaranteed approximatién regjarding to the global
makespan, at the same time not worsening the local soluti@isre produced by the
organizations while computing independently.

The algorithm that we propose computes a lower bound of thieegjimakespan and
then moves all the jobs which start after twice this date &ehd of the schedules of
less-loaded clusters. Details follow.

Let us denote byV = > ps ;qx,; the total work in the system, or the tosirface
of the jobs. As all the jobs must fit into available processitrs global makespatiy, .«
is not less than the lower boudd3 = 1.

Let us assume that all the organizations list-scheduleil fbles on their local
machines according to HF order. TMulti-Organization Load Balancing Algorithm
(MOLBA) is the following one. It starts to computeB. All the clusters with local
makespans betwe&L B and2LB + p,.x are ignored (we do not move their local
jobs). For the rest of the clusters, all the jobs that stderdime2L B are moved from
their local clusters to a migration queue. Finally, the jétmsn the migration queue
are list-scheduled onto all available clusters. The jolessaheduled sequentially in a
greedy manner. No migrated job can delay a local job: ajpbis scheduled before
the original makespan of the host clusids (t < CL¢ (0;)) only if at leastgy, ; pro-
cessors are free alf; from timet¢ to timet + p; ;. Such a strategy is similar to the
well-known conservative backfilling in FCFS (First ComesEigerve).

We prove in Sections 4.1 and 4.2 that this algorithm 8s-approximation of the
global makespart,,,.x When the last completed task is a low task, and that is it a
4-approximate algorithm in the general case. We also showtlis algorithm does
not increase the local makespans of the organizationstirerholding the constraint
in Eg. 1). We start with a lemma that characterizes the straodf all the clusters’
schedules.

In the schedule returned by MOLBA, on each cluster, we debptg!®"* the first
moment when the utilization is lower than or equal%toSimiIarIy, tend is the last
moment when the utilization is larger th@nand lower than or equal té. We first
prove the following lemma:

Proposition 2. In the schedule returned by MOLBA, on each cluster, the leafjthe
time interval betweets!e® andts™¢ (denoted by?;,) is shorter than or equal t@,,x.

Proof: Each cluster schedules its local jobs with HF. Then, it mayjats from other
organizations, also in HF order. Proposition 1 shows that,schedule returned by HF,
the only zone of low utilization is at the end of the schedUiteus, on each cluster, there
are at most two zones of low utilization: possibly one at the ef the schedule of the
local jobs, and also possibly one at the end of the schedule.

Let Ji ; be thelowjob that finishes last on clustéf;. After J; ; finishes, utilization
is either high, or zero. Thus, by, definition, J;. ; cannot finish before;™?. .J, ; does
not start aftet$'“", as utilization at5!*"* is low, so there are enough free processors to



execute dow job. Thus, the length of’;, is smaller than or equal to the length£f ;,
which is not longer thap,,,..- O

Proposition 3. After MOLBA finishes, there is at least one cluster whifé&™
2LB.

IN

Proof: The proof is by contradiction. Suppose that there exists0O such that all the
clusters have high utilization until tim2L B + €. Then, the total surface of jobs com-
puted by all the clusters is greater ttah B - mn - 0.5 = W, i.e. greater than the total
work available, which leads to a contradiction. |

4.1 Low Jobs

We show in this section that, in the schedule returned by M@LiBthe last completed
job is alow job, then MOLBA is a3—approximate algorithm.

Proposition 4. The makespan of the schedule returned by MOLBA is a 3-appaticn
of the optimal makespan, if the last completed jolmig. Moreover, all the organiza-
tions have incentive to cooperate.

Proof: The proof uses two well known lower bounds of the optimal nspkeC? ...
Firstly, the longest job (of length,ax) must be completed, 67 .. > pmax. Secondly,
all the jobs must fit onto available processors(8p,, > LB = % The last jobJj ;
finishes atC\,,.«. Recall that this job is a low job. Proposition 3 guarantbées there is
at least one cluster with low utilization before or at ti?& B. Thus, job.J; ; does not
start afte2 LB, since we use a list scheduling algorithm. Her€g,x < 2LB+py, ; <
2LB + Pmax < 3C}ay.
As no migrated job can delay a local job, makespans of org#izs that were
receiving tasks are not modified. The organizations thaewending tasks have their
makespan reduced because of the global approximation Tat@schedule of the rest
of organizations is not modified. Thus, the constraint in&un (1) is satisfied and all
the organizations have incentive to cooperate. |

4.2 General Case

Let us now consider the case where the last completed jobasamamy height. We now
show that MOLBA achieves an approximation ratiodobn the global makespan. We
suppose here that we “cut” the schedule where each orgamzahedule its local jobs

at time3 LB (and not2 LB as in the previous case). We do not move the local tasks
of organizations with local makespans smaller thdinB. For the rest of the clusters,
all the jobs which start after tim&L B before the load balancing procedure are moved
into a queue and then scheduled using the HF list algorithm.

Proposition 5. MOLBA is a4-approximate algorithm and all the organizations have
incentive to cooperate.



Proof: Let us prove this Proposition by contradiction. L@f, .. be the makespan
of an optimal schedule, and let us suppose that a job staestahe3 C}, ... in the
schedule returned by MOLBA. This means that this job coulthave been started
before : for alli € {1,...,n}, Cnaz(M;) > 3C}, .- Proposition 2 shows that, for
each cluster, the zone where at most half of the processetsuay is smaller than or
equal toC?, ...- Thus, on each cluster, the zone where at least half of theepsors are
busy is larger than or equal ®C7,,,. As we have seen it previouslg;:,,, > -,
wherelWWV = > py iqx;- Thus, the total work which is done bef®d€', ... in the zones
of high utilization is larger than or equal t§* (2 %) = W. This is not possible since
the total work which has to be done is equalito Thus, no job starts after tin®C', ...
and no job is completed after tirdeC", ..

The proof that all the organizations have incentive to coafgas analogous to the
proof of Proposition 4. m|

There are some other special cases in which the presenteakapption ratio can
be improved. When there ane= 2 organizations, the original version of the algorithm
(“cutting” the schedules & LB) is 3—approximate. We omit the proof because of
the lack of space. Fat clusters, and when all the jobs doav, the algorithm is also
3—approximate, since this special case is included in thefgpm@sented in Section 4.1.
Finally, when all the tasks are high, no two tasks can be sdbddn parallel on one
cluster. Thus, the problem corresponds to scheduling seiglitasks om processors.
Any list scheduling algorithm is, in this cas®- % approximate. Itis straightforward to
guarantee that all the organizations have incentive toedp. Each task is scheduled
on its local processor, unless there is a free processoaltegtdy scheduled its local
tasks.

5 Redated Work

In this paper we have studied the interest of collaboratetwben independent patrties.
We have claimed that if a proposed, collaborative solutioasdnot deteriorates any
participant’s selfish goal, it will be adopted by all the paEpants.

Using a reasonable set of assumptions, we have demonstratéids always possi-
ble to produce such collaborative solutions. Moreover, axeldeveloped an algorithm
which has a worst-case guarantee on the social goal (thespakef the system), at
the same time respecting selfish goals of participants.

In this section we will briefly summarize how the concept ofamoration and the
distributed nature of systems has been understood by addrusther works.

Non-cooperative game theory studies situations in whiatt afsselfish agents op-
timize their own objective functions, which also depend tnatsgies undertaken by
other agents. The central notion is the Nash equilibrium d&8$ituation in which no
agent can improve its own objective function by unilatgratianging his/her strategy.
It can be useful to define social (global) objective function, which expresses the per-
formance of the system as a whole. The ratio between the yvaluthis function in
the worst Nash equilibrium and in an optimal solution is edlthe Price of Anarchy
(PoA)[9]. This can be interpreted as the cost of no coopamatnd can be high. In the



context of scheduling, [10] measures PoA when selfish sdigli¢wbs choose one of
the available processors. A related measure, Price oflBgaBioS) [11, 12] compares
the socially-best Nash equilibrium with the socially-opél result. Usually, in order to
find such an equilibrium, a centralized protocol gathersrimfation from, and then sug-
gests a strategy to, each participant. Since the proposgtibsois a Nash equilibrium,
the participants do not have incentive to unilaterally sefto follow it. [13] computes
PoS in the same model as [10], but relaxes the selfishnesb®bjpa factor ofxr and
studies the trade-off betweerand the approximation ratio of the global makespan. The
collaborative solution proposed by our algorithm appraades the socially-best Nash
equilibrium, because it optimizes the global goal with argnéee that no participant
has the incentive to deviate from the proposed solution.

Cooperative game theory studies similar situations, bstirags that players can
communicate and form coalitions. The members of a coaliidlit the sum of their
payoffs after the end of the game. Note that this requiresttigapayoffs are transfer-
able, which is not the case in our problem.

Papers proposindistributed resource management or distributed load balancing
usually solve the problem of optimizing a common goal witreaehtralized algorithm.
[14] shows a fully decentralized algorithm that always anges to a steady state. [15]
presents a similar algorithm with the divisible load job rmbd’ hose approaches con-
trast with our algorithm. Although the algorithm is cenizat, it respects the decen-
tralized goals of participants. We are, however, awareahaad balancing algorithm in
large scale systems must be decentralized. In [16] a fuslyiduited algorithm balances
selfishidenticaljobs on a network of identical processors. The aim of eaclisjob be
on the least loaded machine. The work focus on the time nedechverge towards
a Nash equilibrium. Alternative approaches propose torfzalghe load by an implicit
barter trade of CPU power [17], or explicit computationalecmy [18].

6 Conclusion and Per spectives

In this work we have considered the problem of cooperatidwéen selfish partici-

pants of a computational grid. More specifically, we studiedodel of the grid in which

selfish organizations minimize the maximum completion tohlecally-produced jobs.

Under some basic assumptions (off-line, clairvoyant sysidle time of machines is

free) we have demonstrated that it is always possible teertspe selfish goals at the
same time improving the performance of the whole system.cbloperative solutions

have a constant worst case performance, a significant gaipa@d to selfish solutions
that can be arbitrary far from the optimum. We deliberatelyulsed on the analysis of
the worst-case performance in order to avoid the plethoarablems of the experi-

mental methodology in grid systems.

Our aim was not to find an algorithm solving the general pnobdé grid resource
management, which complexity is overwhelming for any kifichathematical model-
ing. However, we claim that the positive results given by théper proves that cooper-
ation achieved at the algorithmic (as opposed to e.g. ecmdenel is possible. Note
that it should be fairly straightforward to relax some of @ssumptions, e.g. to use



on-line scheduling in batches instead of off-line. An ietting direction would also be
to consider this mutiorganization scheduling problem kigherogeneous clusters.

In our future work, we would like to study the effect of theieased effort of indi-

viduals on the global goal. More specifically, we would likerélax the hard constraint
of “not being worse than the local solution” to an approximatf “not being worse
thana times local solution”.
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