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Abstract. We are interested in scheduling tasks from several selfish
agents on a set of parallel identical machines. A coordination mechanism
consists in giving a scheduling policy to each machine. Given these poli-
cies, each agent chooses the machines on which she assigns her tasks,
and her aim is to minimize the average completion times of her tasks.
The aim of the system (social cost) is to minimize the average comple-
tion time of all the tasks. We focus on coordination mechanisms inducing
Nash equilibria, and on the performance of such mechanisms. When the
machines do not know the owners of the tasks, the classical coordina-
tion mecanisms used for single-task agents do not work anymore and we
give necessary conditions to obtain coordination mechanisms that induce
Nash equilibria. When each machine is able to know the owner of each
task it has to schedule, we give coordination mechanisms which always
induce Nash equilibria.

1 Introduction

Among the most fundamental problems in algorithmic game theory are schedul-
ing and load balancing problems. Since the seminal paper by Koutsoupias and
Papadimitriou [16], these problems have been of growing interest [21]. Indeed,
besides their conceptual simplicity, these problems are central in distributed en-
vironments where some machines are shared between selfish users, and where
the users decide on which machines they will assign their tasks. In such envi-
ronments, coordination mechanisms have been introduced by Christodoulou et
al. [7] in order to obtain socially desirable solutions despite the selfishness of
the agents. A coordination mechanism is a set of scheduling policies, one for
each machine. A scheduling mechanism for a machine Mi takes as input a set of
tasks assigned to machine Mi along with their processing times. The output is a
schedule of the tasks on Mi. The aim is to design a coordination mechanism such
that for each instance (set of tasks) there exists a Nash equilibrium (a schedule
where no agent has incentive to change the assignement of her tasks).

When a coordination mechanism always induces Nash equilibria, it is useful
to measure the quality of the Nash equilibria induced, which is usually done
using the price of anarchy [16]. The price of anarchy is defined as the maximal
value, over all the instances, of the ratio between the social cost in the worst
Nash and the social cost in an optimal solution.
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Starting from the seminal paper of Christodoulou et al. [7], coordination
mechanisms have been extensively studied for single tasks agents [3, 6, 4, 9, 11,
13–15]. In these papers, each agent owns a single task, and her aim is to mini-
mize the completion time of her task. The social cost is either the largest com-
pletion time of a task or the average completion time of the tasks. The co-
ordination mechanism studied are often the ones which schedule the tasks in
order of non decreasing lengths (ShortestFirst policy), in order of non increasing
lengths (LongestFirst policy), or in a random order; for identical machines [7,
14], related machines [13], or unrelated machines [3, 4, 9, 11]. These coordination
mechanisms usually induce pure Nash equilibria, and the aim is to measure their
price of anarchy.

In our setting, each agent may own several tasks, and her aim is to minimize
the average completion time of her tasks. We study the existence and the quality
of coordination mechanisms for this extension of this classical game. The social
cost that we consider is the sum of the completion times of all the tasks.

Most of the papers dealing with multi-task selfish agents sharing machines
are interested by designing centralized fair solutions (see [2] for a recent survey).
In these models, the agents cannot choose themself the machines on which their
tasks will be scheduled. Starting from the seminal paper [20], some papers (e.g.
[12, 8, 5]) consider a set of agents owing each one a set of tasks but also a set
of machines. The aim is to design a centralized algorithm which assigns all the
tasks to all the machines in a way which minimizes the overall makespan whilst
ensuring that the cost of each agent is not increased compared to the solution
where each agent schedules her own tasks on her own machines.

There is, up to our knowledge, only one paper which deals with coordination
mechanisms with multi-tasks agents. In this paper, Abed et al. [1] consider that
each agent owns several tasks, each task having a length and a weight. The ma-
chines are unrelated, and each agent aims at minimizing the weighted completion
time of her tasks, whereas the social cost is the sum of agents’ costs. The main
difference to our paper is that the authors do not consider Nash equilibria but a
superclass of Nash equilibria: they consider that a schedule is stable (they call
such a schedule a weak Nash equilibrium) if no agent may decreases her cost by
moving exactly one of her task to a different machine. They show that when the
policies of the machines order the tasks according to their length to weight ratio,
then there exists a weak Nash equilibrium, and that the price of anarchy (with
respect to weak Nash equilibrium) is 4. They extend this policy by introducing
some delays between tasks, and they show that the price of anarchy of this new
coordination mecanism is about 2.6.

We now describe precisely the problem studied and the notions used in this
paper.

Model. We consider a set of K selfish agents {A1, . . . , AK}, each agent Ai

owning a set of ni tasks. When we only consider two agents, these agents will be
called A and B; the set of tasks of agent A will be {a1, a2, . . . , anA

}, and the set
of tasks of agentB will be {b1, b2, . . . , bnB

}. Each task has a unique identification
number and an arbitrary processing time (length). It cannot be preempted. The
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agents share a set of m ≥ 2 identical parallel machines {M1, . . . ,Mm}. Each
machine Mi has a public policy, which is an algorithm which returns a schedule
(onMi) of the tasks assigned toMi. This policy may introduce idle times between
the tasks. However, since we consider a totally decentralized setting, the policy of
Mi depends only on the tasks assigned to Mi: it cannot be a function of the tasks
assigned to the other machines. A set of policies, one for each machine, is called a
coordination mechanism. We consider two models. In the first one, the machines
cannot distinguish the tasks of one agent from the tasks of another agent: a
machine is only aware of the length and identification number of the tasks it has
to schedule. In the second one, the machines know the owner of each task.

Knowing the policies of the machines, the set of the tasks of the other agents
and the strategies of the other agents, each agent chooses, for each of her tasks,
on which machine it will be scheduled. The strategy of each agent is thus an
assignment to a machine of each of her tasks. The aim of each agent is to minimize
the average completion time of her tasks. This is equivalent to minimize the sum
of completion times of her tasks: in the sequel the cost of each agent is thus the
sum of the completion times of her tasks. A schedule is a (pure) Nash equilibrium
if no agent can decrease the sum of completion times of her tasks by changing her
assignment. In this paper, we focus on coordination mechanisms which always
induce pure Nash equilibria (i.e., coordination mechanism such that, for each
instance, there exists at least one pure Nash equilibrium). A game always has a
mixed Nash equilibrium [19], but pure Nash equilibria are more natural and are
the only possible solutions in some settings.

Our Contribution. In Section 2, we consider that the machines do not know the
owners of the tasks. We show that if all the machines use the same deterministic
policy then this policy necessarily have to introduce some idle times between the
tasks in order to induce Nash equilibria. Moreover the price of anarchy of such
a coordination mechanism is at least 2. In Section 3, we show that there exists
coordination mechanisms which induce Nash equilibria when the machines are
able to know the owner of each task. In particular, we introduce a simple and fair
coordination mechanism which has a bounded price of anarchy if the number of
agents is small. We conclude this paper in Section 4.

2 Properties of Coordination Mechanisms in which the

Machines Do Not know the Owners of their Tasks

We consider in this section that the machines are not able to detect the owner
of the tasks they have to schedule. We will focus on coordination mechanisms
with deterministic identical policies. Given two tasks i and j, we note i ≺ j if
and only if task i is scheduled before task j when a machine has only these two
tasks to schedule.

Proposition 1. If all the machines have the same deterministic policy, and if
this policy does not introduce idle times between the tasks, then the coordination
mechanism does not always induce a pure Nash equilibrium.
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(a) CA = 3 and CB = 1 (b) CA = 2 and CB = 2 (c) CA = 3 and CB = 1

Fig. 1. Instance with no pure Nash equilibrium when all the machines have the same
deterministic policy without idle times. CA (resp. CB) is the cost of agent A (resp. B).

Proof. We provide a instance without pure Nash equilibrium. This instance, de-
picted in Figure 1, consists in two machines and two agents A and B. Agent A
has two tasks a1 and a2, each of length 1, while B has one task b1 of length 1.
We consider tasks a1, a2, and b1 such that a1 ≺ b1 and b1 ≺ a2. Note that given
three tasks i, j, k, and any deterministic policy, there always exists a permuta-
tion of the tasks such that i ≺ j and j ≺ k. The configuration which consists of
three tasks on the same machine is not a Nash equilibrium since b1 would have
incentive to move on the idle machine. The other configurations are represented
in Figure 1 and are also not Nash equilibria: in Figure 1(a) Agent A can decrease
her cost by assigning task a1 to M1; in Figure 1(b) Agent B has incentive to
move her task; in Figure 1(c) Agent A has incentive to exchange the assignment
of her two tasks a1 and a2. ✷

Note that the classical policies LongestFirst and ShortestFirst have this prop-
erty, and thus they do not always induce pure Nash equilibria (contrary to the
case where each agent has only one task [14]). Moreover, the move of only two
tasks is needed to show this result. Abed et al. [1] show that when multi-tasks
agents are able to move only one task to improve their cost, then the Shortest-
First policy is stable (for each instance there exist a schedule where the agents
cannot improve their costs by moving at most one of their tasks). If the agents
are able to move at most two tasks to compute their best response, then Propo-
sition 1 shows that there exists instances without stable schedules.

Note also that this result does not depend on the social cost considered, and
is thus valid for any social cost.

Proposition 2. Consider a coordination mechanism in which all the machines
have the same deterministic policy which is not based on identification numbers1.
If this coordination mechanism always induces a pure Nash equilibrium, then its
price of anarchy is larger than or equal to 2.

Proof. Let us consider the following instance, with two machines and two agents:
Agent A owns two tasks a1 and a2, and Agent B owns one task b1. We consider
that these three tasks are all of length one, and are such that a1 ≺ b1 and b1 ≺ a2.
Let i1 (resp. i2) be the length of the idle time before the first (resp. second) task

1 The schedule is constructed by considering only the lengths of the tasks to schedule.
Identification numbers are used thereafter to break the ties only, i.e. to assign each
task to a slot of its length in the constructed schedule.
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when a machine schedules two tasks of length 1. Let i3 be the length of the idle
time before the first task when a machine schedules one task of length 1. We
proceed by cases analysis. There are four possible schedules. We show that if one
of these schedules is a Nash equilibrium then the price of anarchy is at least 2.
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(a) not a Nash eq. (b) not a Nash eq. (c) Nash eq. when i3 ≥ i1 + i2 + 1

Fig. 2. Different configurations where both machines have the same deterministic pol-
icy having idle times.

– Schedule 1: Tasks a1 and b1 are on the same machine (w.l.o.g. on M1); task
a2 is alone on M2. Figure 2(a) shows this configuration. The completion
time of b1 is i1 + i2 + 2. If this task would jump on M2, then its completion
time would be i1 + 1: this task has incentive to change machine (because
i1 + i2 + 2 > i1 + 1). Thus, this schedule is not a Nash equilibrium.

– Schedule 2: Tasks b1 and a2 are on the same machine (w.l.o.g. on M2);
task a1 is alone (on M1). This configuration is depicted in Figure 2(b). The
completion time of all the tasks of Agent A is i1 + i2 + i3 + 3. If Agent A

moves task a2 on M1 and a1 on M2, then the sum of completion times of
her tasks will be i1 + i3 +2. Since i1 + i2 + i3 +3 > i1 + i3 +2, Agent A has
incentive to move her tasks, and this schedule is thus not a Nash equilibrium.

– Schedule 3: Tasks a1 and a2 are on the same machine (w.l.o.g. on M1); task
b1 is alone (on M2). Figure 2(c) shows this configuration. Let us focus on
Agent A. The completion time of the tasks of Agent A is 2i1 + i2 +3 in this
schedule. If Agent A would place task a1 on M2 and task a2 on M1, then the
sum of completion times of her tasks would be i3+ i1+2. Thus this schedule
is a Nash equilibrium only if 2i1 + i2 +3 ≤ i1 + i3 +2, i.e. if i3 ≥ i1 + i2 +1.
Thus i3 ≥ 1 is a necessary condition for schedule 3 to be a Nash equilibrium.
Let us thus consider any policy where i3 ≥ 1, and let us consider an instance
which consists of only one task of length 1. The completion time of this task
is at least 2, whereas the optimal completion time would be 1. Therefore
the price of anarchy of a coordination mechanism using such a policy is at
least 2.

– Schedule 4: The three tasks are on the same machine (w.l.o.g. on M1). Let us
denote this schedule by S. Let us consider that S is a Nash equilibrium, and
that the price of anarchy of the coordination mechanism is smaller than 2.
This implies that i3 < 1, otherwise an instance with only one task of length
1 would have a sum of completion times larger than 2, whereas the optimum
is 1. Thus task b1 has to be scheduled first in S, otherwise its completion
time would be at least 2 and this task would decrease its completion time by
jumping on the idle machine: S would not be a Nash equilibrium. Tasks a1
and a2 are thus on second and third positions. Since S is a Nash equilibrium,
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Agent A has no incentive to move a2 on M2. By moving a2, this agent would
let a1 and b1 on one machine (a1 is scheduled first since a1 ≺ b1), and a2

alone on the other machine. Let us denote by C
(j)
i the completion time of

the ith task when there are j tasks of length 1 on a machine. Thus we have:

C
(3)
2 + C

(3)
3 ≤ C

(1)
1 + C

(2)
1 (1)

We saw that i3 < 1, so C
(1)
1 < 2. Moreover, since C

(3)
2 ≥ 2, we get: C

(3)
3 <

C
(2)
1 . We now show that with these hypothesis on the policies, there is an

instance in which there is no Nash equilibrium.
Let us consider the following instance: three tasks of length 1: a′1, a

′
2 (be-

longing to Agent A), and b′1 (belonging to Agent B), such that, when they
are together on one machine a′1 is scheduled first. The schedule where the
three tasks are together is not a Nash equilibrium, since b′1 has a comple-
tion time larger than or equal to 2, whereas it would get a completion time
smaller than 2 by going on the other machine. The schedule where b′1 is
alone on a machine is also not a Nash equilibrium. Indeed, in this schedule

the sum of completion times of a′1 and a′2 is C
(2)
1 + C

(2)
2 ≥ 2C

(2)
1 > 2C

(3)
3 ,

whereas by going with b′1, tasks a
′
1 and a′2 would have a sum of completion

times smaller than 2C
(3)
3 : Agent A has incentive to move her tasks. The last

possible configuration is when b′1 is with one task of A, the other task of A
being on the other machine. In this case the sum of the completion times

of the tasks of A is larger than or equal to C
(1)
1 + C

(2)
1 ≥ C

(3)
2 + C

(3)
3 by

Eq. 1. By going with b′1, the sum of completion times of A’s tasks would be

at most C
(3)
1 +C

(3)
3 < C

(3)
2 +C

(3)
3 : these tasks again have incentive to move.

Therefore there is no Nash equilibrium in this instance, if we assume that
the price of anarchy of the coordination mechanism is smaller than 2. ✷

We studied the case where the owners of the tasks are not known by the
machines: the results are rather negative since we gave strong necessary condi-
tions to get coordination mechanisms which always induce Nash equilibria. Let
us now show that the results are more positive if the machines are able to know
the owners of the tasks.

3 Coordination Mechanisms in which the Machines

Know the Owners of their Tasks

If the identification numbers (IDs) of the owners of the tasks are used only
to break the ties between the tasks of the same length, then we can extend
Proposition 1: in this case, if all the machines have the same deterministic policy,
and if this policy does not introduce idle times between the tasks, then the
coordination mechanism does not always induce a pure Nash equilibrium2. Thus

2 The proof is the same as the one of Proposition 1, except that the three considered
tasks i, j and k are not of length 1 but of length 1−ε, 1 and 1+ε for a small value of
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the coordination mechanism which considers the tasks with the ShortestFirst
policy and breaks the ties with the IDs of the agents does not always induce
Nash equilibria. Since the IDs of the agents should not be considered only to
break the ties, let us now consider coordination mechanisms which make a more
intensive use of these IDs.

Let us first introduce a simple coordination mechanism, called PrioSPT:
each machine schedules the tasks of the same agent together, considering the
agents by increasing order of their ID. In other words, each machine schedules
the tasks of Agent A1, and then the tasks of Agent A2, and so forth. The tasks
of a same agent are scheduled with the ShortestFirst policy. This coordination
mechanism induces a Nash equilibrium, since each agent Ai has assigned her
tasks in order to minimize her cost given the tasks of higher priority agents, and
the tasks of lower priority agents will be scheduled after the tasks of Ai and thus
will not change the cost of Ai. Note that this coordination mechanism induces
Nash equilibria which can be reached in a polynomial time. Indeed, it has been
shown [18, 17] that the SPT list algorithm3 is optimal for the minimization of
the sum of the completion times, even if some machines are not available at time
0. Each agent will thus use this polynomial time algorithm to schedule her tasks,
given the schedule obtained with the tasks of the higher priority agents.

However, this coordination has two main drawbacks: it is unfair (the lower
is the ID of an agent, the higher is her priority), and its price of anarchy is
unbounded: consider for example an instance where Agent A1 has m very large
tasks, and Agent A2 has a lot of tiny tasks. Let us now introduce a new coordi-
nation mechanism which is fair with the agents and which has a bounded price
of anarchy. This coordination mechanism, that we call EqualPrioSPT, works
if the number of agents is known and smaller than or equal to the number of
machines, which is realistic in many situations, like the one studies in [12], where
a few organizations (universities, associations, etc.) share a set of machines.

The idea of EqualPrioSPT is the following one: for each agent Ai, there
are ⌊m

K ⌋ (or ⌊m
K ⌋+1) machines on which the tasks of Ai are scheduled first (from

the smallest one to the largest one). On these machines, once the tasks of Ai

have been scheduled, the tasks of A1+(i mod K) are scheduled, from the smallest
one to the largest one, and then the tasks of A1+((i+1) mod K), etc. The latest
tasks to be scheduled are the tasks of Ai−1 (or AK if i = 1).

More formally, to each agent Ai ∈ {A1, . . . , AK}, we associate a priority list
Li = (A1+(i mod K), A1+((i+1) mod K), . . . , A1+((i+K−2) mod K)) (e.g. the prior-
ity list of A3 is (A4, A5, A6, A1, A2) when there are 6 agents). Let q and r be the
two positive integers such that m = qK+r. For 0 ≤ i ≤ K−1, machine Miq+1 to
machine M(i+1)q schedule the tasks of agent Ai+1 first (using the ShortestFirst
policy). If r 6= 0, then for 1 ≤ i ≤ r machine MKq+i schedules the tasks of agent

ε. For any deterministic policy, there always exists a permutation of the tasks such
that i ≺ j and j ≺ k. Tasks i and k are the ones of Agent A, and task j is the one
of Agent B.

3 The SPT list algorithm considers the tasks in non-decreasing order of their lengths,
and assigns each task to a machine, as soon as a machine is available (idle).
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Ai first (using the ShortestFirst policy). Let Mj be one of the machines which
schedule first the tasks of Ai. Once Mj has scheduled the tasks of agent Ai, it
schedules the tasks of the other agents in the order of the priority list Li. The
tasks belonging to a same agent are scheduled with the ShortestFirst policy.

Proposition 3. EqualPrioSPT induces a pure Nash equilibrium, and this
equilibrium can be reached in O(nK), where n =

∑K
i=1 ni is the number of tasks.

Proof. We give a constructive proof: we provide a polynomial time algorithm
which takes as input an instance of the game (m machines and a set of tasks
belonging to K agents), and which returns a Nash equilibrium of this instance.
In this algorithm, we say that an agent is fixed or not (once an agent is fixed, her
tasks won’t be moved anymore). We will also say that each agent owns, at each
step of the algorithm, a set of machines. This algorithm is the following one:

– No agent is fixed. For each agent Aj ∈ {A1, . . . , AK}, the machines owned
by Aj are the ones on which Aj has the highest priority. Each agent Aj

schedules her tasks using the SPT list algorithm on the machines she owns.
– For i from 1 to K:

• For each agent Aj ∈ {A1, . . . , AK}, let D
j
i be the smallest date at

which a machine is idle among the machines owned by Aj . Let Di =

minj∈{1,...,K}{D
j
i }. Let Axi

be an agent such that Dj
i = Di.

• Agent Axi
is now fixed (and will remain fixed in the sequel).

• Let Ayi
be the first agent, among the agents which are not fixed, in the

priority list Lxi
. Add to the set of machines owned by Ayi

the machines
previously owned by Axi

. Remove from the schedule all the tasks of
Ayi

which are started after time Di, and schedule them again using the
SPT list algorithm on the machines that Ayi

currently owns (on these
machines, the tasks starting before Di are not moved - note that it
includes all the tasks of the agents other than Ayi

).

At each step (iteration) one agent is fixed (her tasks won’t move anymore)
and the only tasks which are moved are the one of a single agent Ayi

: the SPT
list algorithm used to schedule them takes time O(nyi

) ⊂ O(n) (once the tasks
have been sorted for each agent - which takes time O(n logn)). There are K

steps so this algorithm runs in O(nK). Let us now prove the following property:
at the end of each iteration i of this algorithm, the agents which are fixed do not
have incentive to move their tasks. The proof is by induction on i.

– This is true when i = 1: all the tasks of the only fixed agent, Ax1
, start at the

latest at time Di, whereas the first idle time on a machine is Di. Moreover,
Ax1

used the SPT list algorithm to schedule her tasks on the machines she
owns: this minimizes her sum of completion times.

– Let i > 1. Let us now consider that the property is true for each iteration
j < i, and let us show that it is also true for iteration i. Agent Axi

, which
has been fixed at iteration i, has not incentive to move her tasks since all her
tasks starts at the latest at time Di, whereas the first idle time on a machine
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is Di. Before this date, all the machines which are not owned by Axi
schedule

tasks which have a higher priority than Axi
(otherwise by construction, some

tasks ofAxi
would have been scheduled instead of the tasks of a lower priority

agent). Furthermore, the tasks of Axi
have been scheduled with the SPT list

algorithm: this minimizes the cost of Axi
. Likewise, each agent Axj

fixed
at a given iteration j < i has not incentive to move her tasks. Indeed, by
induction, she had no incentive to move her tasks at the time at which she
has been fixed, Dj , and, by construction, the schedule of the tasks scheduled
before time Dj does not change after this time.

We have proved that the agents which are fixed do not have incentive to move
their tasks once they are fixed. Since at the end of the execution of the algo-
rithm all the agents are fixed, no agent has incentive to move her tasks, and the
schedule obtained is thus a Nash equilibrium. ✷

Let us now show that, contrarily to the coordination mechanism PrioSPT,
the price of anarchy of EqualPrioSPT is bounded.

Lemma 1. Let q and m be two positive integers such that q < m. The sum of
the completion times of a set of tasks scheduled with the SPT list algorithm on
q machines is smaller than or equal to m

q times the sum of completion times of
the same tasks scheduled with the SPT list algorithm on m machines.

Proof. An OPT∑ schedule is a schedule in which the sum of completion times
of the tasks is minimized. A schedule obtained by executing the SPT list algo-
rithm (we will call such a schedule a SPT schedule) is thus an OPT∑ schedule.
Conway et al. [10] show that an OPT∑ schedule of x tasks on m machines can
be described as follows. W.l.o.g., we assume that ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓx, where
ℓi is the length of task i. We define the following sets: π1 = {ℓ1, ℓ2, . . . , ℓm},

π2 = {ℓm+1, ℓm+2, . . . , ℓ2m}, . . . , πk = {ℓ(k−1)m, . . . , ℓx}, where k = ⌈ x

m
⌉.

The set πi is called the ith rank of the tasks. A OPT∑ schedule is a schedule
obtained by scheduling the tasks rank by rank, in the order πk, πk−1, . . . , π1: the
tasks of πk are scheduled first, each one on a different machine, and the tasks of
πk−1 are scheduled, also each one on a different machine, and so forth.

By this way, a task in πi will be followed by i− 1 tasks on its machine, and
thus it will be counted i times in the sum of the completion times of the tasks:
this sum is

∑x
j=1 Cj =

∑k
i=1

∑

j∈πi
iℓj.

Let us assume without loss of generality that the number of tasks x is divisible
by the number of machines m. If it is not the case, then we can add dummy
tasks of length 0. If there are m machines, then task ℓi will be in the set π⌈ i

m
⌉

and thus it will be counted ⌈ i
m⌉ times in the sum of the completion times.

Let ri be the rank of task ℓi in a SPT schedule for q machines. For 1 ≤ i ≤ x,
we have ri = ⌈ i

q ⌉, and thus r1 ≤ r2 ≤ · · · ≤ rx.
We will focus on the tasks of rank j in the SPT schedule on m machines. In

other words, we will focus on set πj = {ℓ(j−1)m+1, . . . , ℓjm}. We will prove that

jm
∑

i=(j−1)m+1

riℓi ≤
m

q

jm
∑

i=(j−1)m+1

jℓi (2)
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By definition, we have rjm = ⌈ jm
q ⌉. We can notice that if rjm = jm

q , then

Equation (2) holds. Now, we assume that jm = q(rjm− 1)+α where q > α > 1.
First, there are α tasks of this rank in πj . So, we have

jm
∑

i=jm+1−α

riℓi = rjm

jm
∑

i=jm+1−α

ℓi =

(

jm

q
+

q − α

q

) jm
∑

i=jm+1−α

ℓi (3)

Second, there are m− α tasks of rank at most rjm − 1.

jm−α
∑

i=(j−1)m+1

riℓi ≤ (rjm − 1)

jm−α
∑

i=(j−1)m+1

ℓi =

(

jm− α

q

) jm−α
∑

i=(j−1)m+1

ℓi (4)

Third, we will find an upper bound of the following value X =
∑jm

i=jm+1−α(q −

α)ℓi −
∑jm−α

i=(j−1)m+1 αℓi. Since ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓx, we get α(q − α)ℓjm+1−α ≥

(q − α)
∑jm

i=jm+1−α ℓi and
∑jm−α

i=(j−1)m+1 αℓi ≥ (m− α)αℓjm+1−α.

By computation, we obtain X ≤ α(q −m)ℓjm+1−α. Since q < m, we get X < 0.
From Equations (3) and (4), we obtain

jm
∑

i=(j−1)m+1

riℓi ≤





m

q

jm
∑

i=(j−1)m+1

jℓi



 (5)

Thus we have:
∑k

j=1

∑

i∈πj
jℓi ≤

m
q

∑k
j=1

∑

i∈πj
riℓi. Hence the sum of comple-

tion times of the tasks scheduled on q machines is at most m
q times larger than

the sum of completion times of these tasks scheduled on m machines. ✷

Proposition 4. The price of anarchy of EqualPrioSPT is at most m
⌊m/K⌋ .

This bound is asymptotically tight.

Proof. The proof is split into two parts. The first part gives an upper bound on
the price of anarchy by finding a relationship between the sum of the completion
times in a schedule induced by the EqualPrioSPT coordination mechanism
and the sum of the completion times in an optimal schedule, obtained by using
the SPT list algorithm. The second part provides a lower bound on the price of
anarchy by giving an example. Let q and r be two integers such that m = qK+r.

First, we consider the schedule obtained when the tasks of each agentAi (with
i ∈ {1, . . . ,K}), are scheduled using the SPT list algorithm on the machines
where Ai has the highest priority (there are q or q + 1 such machines). Let us
denote this schedule by S. In S, the cost of each agent is larger than or equal
to her cost in a Nash equilibrium (otherwise an agent would schedule her tasks
with the SPT list algorithm on the machines where she has the highest priority
and she would decreases her cost). Let us now show that the cost of the sum
of completion times in S is at most m

⌊m/K⌋OPT , where OPT is the optimal
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sum of completion times. The sum of the completion times of a set of tasks
scheduled with the SPT list algorithm on q machines is smaller than or equal to
m
q times the sum of completion times of the same tasks scheduled with the SPT

list algorithm on m machines (Lemma 1). The SPT list algorithm minimizes the
sum of completion times. Thus, the cost of Agent Ai in S is smaller than or equal
to m

q times its cost in any solution (including the optimal solution): the sum of
the completion times in S is thus smaller than or equal to m

q OPT . Therefore,

the price of anarchy of EqualPrioSPT is at most m
⌊m/K⌋ because q = ⌊m

K ⌋.

Let us now prove the lower bound by providing a particular instance : there
are K agents and m = K(2K + 4) machines. Thus q = 2K + 4. Agent A1 has
qmα tasks of length 1 and q tasks of length mα where α is an arbitrary integer
larger than 1. For 2 ≤ i ≤ K, Agent Ai has q tasks of length equal to mα. By
computation we get that the price of anarchy is at least αm

(α+1)q , which for large

values of α tends towards to m
q . ✷

4 Conclusion and Future Work

We studied the existence of coordination mechanism for multi-tasks agents. Clas-
sical deterministic policies do not always induce pure Nash equilibria in this
context. In order to get Nash equilibria, if the machines are not able to identify
the owners of the tasks, then we have either to use non deterministic policies
(but such policies may be not easy to use in practice); or different policies on the
machines (but this may also not be very practical since it may not be easy to
add a machine to the system whilst ensuring that the coordination mechanism
still induce Nash equilibria); or we should use policies which introduce idle times
between the tasks (in this case the price of anarchy is at least 2).

Thus, knowing the owner of each task in the case of multi-tasks agents is a
very useful information. In this case there exists coordination mechanisms induc-
ing Nash equilibria. In particular, we have introduced a very simple coordination
mechanism which may be used when the number of agents is known and small
compared to the number of machines : this mechanism is fair since all the agents
are treated equitably, and its price of anarchy is about K (this corresponds to
the best we may have for K = 2 agents in the case of deterministic identical
policies when the owner of the tasks are not known). Note that Lemma 1, intro-
duced to show this result, can also be useful in other contexts: it indeed allows
to bound the deterioration of the sum of completion times of a set of tasks when
the number of machines to schedule these tasks decreases.

This work is a first step towards the study of coordination mechanism with
agents owning several tasks. The main remaining open problem consists in de-
termining whether there exists a coordination mechanism which always induce
Nash equilibria with multi-tasks agents when the machines do not know the
owners of the tasks.
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