
Optimizing egalitarian performance
in the side-effects model of colocation
for data center resource management

Fanny Pascual1 and Krzysztof Rzadca2

1 Sorbonne Universités, UPMC, LIP6, CNRS, UMR 7606, Paris, France
Email: fanny.pascual@lip6.fr

2 Institute of Informatics, University of Warsaw, Poland
Email: krz@mimuw.edu.pl

Abstract. In data centers, up to dozens of tasks are colocated on a single physical
machine. Machines are used more efficiently, but tasks’ performance deteriorates,
as colocated tasks compete for shared resources. As tasks are heterogeneous, the
resulting performance dependencies are complex. In our previous work [18] we
proposed a new combinatorial optimization model that uses two parameters of a
task — its size and its type — to characterize how a task influences the perfor-
mance of other tasks allocated to the same machine.
In this paper, we study the egalitarian optimization goal: maximizing the worst-
off performance. This problem generalizes the classic makespan minimization on
multiple processors (P||Cmax). We prove that polynomially-solvable variants of
P||Cmax are NP-hard and hard to approximate when the number of types is not
constant. For a constant number of types, we propose a PTAS, a fast approxima-
tion algorithm, and a series of heuristics. We simulate the algorithms on instances
derived from a trace of one of Google clusters. Algorithms aware of jobs’ types
lead to better performance compared to algorithms solving P||Cmax.
The notion of type enables us to model degeneration of performance caused by
colocation using standard combinatorial optimization methods. Types add a layer
of additional complexity. However, our results — approximation algorithms and
good average-case performance — show that types can be handled efficiently.

Keywords: cloud computing; scheduling; heterogeneity; co-tenancy; complexity

1 Introduction

The back-bone of cloud computing, the modern data center redefines how industry and
academia use computers. Resource management in data centers significantly differs
from scheduling jobs on a typical HPC supercomputer. First, the workload is much
more varied [22]: data centers act as a physical infrastructure providing virtual ma-
chines, or higher-level services, such as memory-cached databases or network-intensive
servers; in contrast, there are relatively few HPC-like computationally-intensive batch
jobs (later, we will use a generic term task for all these categories). Consequently, a task
usually does not saturate the resources of a single node [12]. Tasks’ loads vastly differ:

in a published trace [22], tasks’ average CPU loads span more than 4 orders of mag-
nitude. In contrast to HPC scheduling in which jobs rarely share a node, heterogeneity
in both the type and the amount of needed resources makes it reasonable to allocate
multiple tasks to the same physical machine.

Tasks colocated on a machine compete for shared hardware. Despite significant ad-
vances in both OS-level fairness and VM hypervisors, virtualization is not transparent:
multiple studies show [12–14, 21, 27] that the performance of colocated tasks drops.
Suspects include difficulties in sharing the CPU cache or the memory bandwidth. The
resource manager should thus colocate tasks that are compatible, i.e., that use differ-
ent kinds of resources — hence, it should optimize tasks’ performance. This, however,
requires a performance model.

Our side-effects model [18] bridges the gap between colocation in datacenters and
the theoretical scheduling, bulk of which has been developed for non-shared machines.

Rather than trying to predict tasks’ performance from OS-level metrics, we abstract
by characterizing a task by two characteristics: type (e.g.: a database, or a computationally-
intensive job) and load relative to other tasks of the same type (e.g.: number of requests
per second). The total load of a machine is a vector: its i-th dimension is the sum of
loads of tasks of the i-th type located on this machine. Each type additionally defines
a performance function mapping this vector of loads to a type-relevant performance
metric. As datacenters execute multiple instances of tasks such function can be inferred
by a monitoring module [13, 21, 27] matching task’s reported performance (such as the
95th percentile response time) with observed or reported loads.

In this paper, we consider optimization of the worst-off performance (analogous to
makespan in classic multiprocessor scheduling problem, P||Cmax [8]). We use a linear
performance function: on each machine, the influence a type t ′ has on type t perfor-
mance is a product of the load of type t ′ and a coefficient αt ′,t . The coefficient αt ′,t
describes how compatible t ′ load is with t performance (the coefficient is similar to in-
terference/affinity metrics proposed in [13, 21]). Low values (0≤ αt ′,t < 1) correspond
with compatible types (e.g.: colocating a memory-intensive and a CPU-intensive task):
it is preferable to colocate a task t with tasks of the other type t ′, rather than with other
tasks of its own type t. High values (αt ′′,t > 1) denote types competing for resources.

The contribution of this paper is as follows. (1) We prove that the notion of type
adds complexity, as makespan minimization with unit tasks P|pi = 1|Cmax (a polyno-
mially solvable variant of P||Cmax) becomes NP-hard and hard to approximate when
the number of types T is not constant (Section 3). We then show how to cope with
that added complexity. We propose (2) a PTAS for a constant T and a constant α (Sec-
tion 4.1); and (3) a fast greedy approximation algorithm (Section 4.2). (4) We also pro-
pose natural greedy heuristics (Section 5) (in the accompanying technical report [19] we
show they are approximations for T = 2). (5) We also test our algorithm by simulation
on a trace derived from one of Google clusters (Section 6).

2 Side-Effects of Colocating Tasks: A Model

We study a min-max (egalitarian) performance criteria for our side-effects performance
model (introduced in [18], where we studied a utilitarian objective, min-sum). We con-

sider a system that allocates n tasks J = {1, . . . ,n} to m identical machines M =
{M1, . . . ,Mm}. Each task i has a known size pi ∈ N (i.e., clairvoyance, a common as-
sumption in scheduling; the sizes can be estimated by previous instances or users’ es-
timates). The size corresponds to the load the task imposes on a machine: the request
rate for a web server; or the cpu load for a cpu-intensive computation. We take other
assumptions standard in scheduling theory: all tasks are known (off-line) and ready
to be scheduled (released at time 0). We take these assumptions to derive results on
the basic model before tackling more complex ones. We denote by pmax = max pi the
largest task and by W the total load, W = ∑ pi. We assume that the tasks are indexed by
non-increasing sizes: p1 ≥ p2 ≥ ·· · ≥ pn.

A partition (an allocation) is an assignment of each of the n tasks to one of the
m machines. A partition separates the tasks into at most m subsets: each subset corre-
sponds to the tasks allocated on the same machine. Given a partition P, we denote by
MP,i ∈M the machine on which task i is allocated. Due to the similarities with P||Cmax,
we sometimes use the term “schedule” (and the symbol σ) for an allocation (and even
the term of length for the size of a task). In this case, only the allocation is meaningful
(not the order of the tasks on the machines).

The main contribution of this paper lies in analyzing side-effects of colocating tasks.
The impact of task i on the performance of another task j is a function of task’s size pi
and task’s type ti. Types generalize tasks’ impact on the performance and may have dif-
ferent granularities: for instance, “a webserver” and “a database”; or “a read-intensive
MySQL database”; or, as in [13], “an instance of Blast” . We assume that the type ti
is known (which again corresponds to the clairvoyance assumption in classic schedul-
ing; typically a data center runs many instances of the same task, so task’s type can be
derived from the past). Let T = {1, . . . ,T} be a set of T different types of tasks. Each
task i has type ti ∈ T . For each type t ∈ T , we denote by J(t) the tasks which are of
type t; and by p(t)i the size of the i-th largest task of type t (ties are broken arbitrarily).

We express performance of a task i by a cost function ci: to simplify presenta-
tion of our results, we prefer to express our problems as minimization of costs, rather
than maximization of performance (for a single type, our cost is synonymous with the
makespan). Note that the cost is unrelated to monetary cost (the amount of money that
a job pays to the machine) — we do not consider monetary costs in this paper. Task’s i
cost ci depends on to the total load of tasks j colocated on the same machine MP,i, but
different types have different impacts:ci =∑ j on machine MP,i

p j.αt j ,ti ,The cost function
also takes into account the task i itself, as well as other tasks of the same type. A co-
efficient αt,t ′ ∈ R≥0 defined for each pair of types (t, t ′) ∈ T 2, measures the impact of
the tasks of type t on the cost of the tasks of type t ′ (allocated on the same machine).
If αt,t ′ = 0 then a task of type t has no impact on the cost of a task of type t ′; the
higher the αt,t ′ , the larger the impact. Coefficients are not necessarily symmetric, i.e., it
is possible that αt,t ′ 6= αt ′,t . The coefficients αt,t ′ can be estimated by monitoring tasks’
performance in function of their colocation and their sizes (a data center runs many
instances of similar services [13,21,27]). We consider the linear cost function as it gen-
eralizes, by adding coefficients αt,t ′ , the fundamental scheduling problem P||Cmax [8]
(if ∀(t, t ′) ∈ T 2 : αt,t ′ = 1, our problem reduces to P||Cmax). Assuming linearity is a
common approach when constructing models in operational research or statistics (e.g.

linear regressions). Likewise, in selfish load balancing games [15], it is assumed that
the cost of each task is the total load of the machine (but their model does not consider
types). We assume that the impact the type has on itself is normalized with regards to
tasks’ sizes, i.e., αt,t = 1 (although some of our results, notably the PTAS, do not need
this assumption).

We denote by MSE (MINMAXCOST WITH SIDE EFFECTS) the problem of finding
a partition P∗ minimizing the maximum cost C(P) = maxi ci, with ci defined by the lin-
ear cost function. The partition P∗ minimizes the worst performance a task experiences
in the system, thus corresponds to the egalitarian fairness.

3 Complexity and hardness of MSE for T not fixed

MSE is NP-hard as it generalizes an NP-hard problem P||Cmax when there is only
one type. Our main result is that a polynomially-solvable variant of mupltiprocessor
scheduling (P|pi = 1|Cmax) becomes NP-hard when tasks are of different types. Thus
types add another level of complexity onto an already NP-complete P||Cmax.

Proposition 1. The decision version of MSE is NP-complete, even if all the tasks have
unit size, and even if m = 2.

Proof. (Sketch) Reduction from PARTITION [7]. Given a set S = {ai} of n positive
integers summing to 2B, we build an instance of MSE with n tasks, each of size 1
and each of a different type. For a task i, we set its coefficients ∀ j : αi, j = ai. Partition
of S into two sets each with sum B exists if and only if there exists an allocation P
with maximal cost B: cost of each task j allocated to a machine k is equal to c j =

∑i:MP,i=k αi, j = ∑i∈Sk
ai.

Proposition 2. MSE is strongly NP-hard, even if all tasks have unit size. Moreover,
there is no polynomial time r-approximate algorithm for MSE, for any number r > 1,
unless P = NP.

Proof. Let r > 1. We show that if there is a r-approximate algorithm for MSE, the
algorithm solves NP-complete PARTITION INTO CLIQUES, PIC [7]. In PIC, given a
graph G = (V,E) and a positive integer K ≤ |V |, can the vertices of G be partitioned
into k ≤ K disjoint sets V1,V2, . . . ,Vk such that, for 1 ≤ i ≤ k, the subgraph induced by
Vi is a complete graph? We assume that V are labeled from 1 to |V |.

Given an instance of PIC, we create K instances of MSE. Let i ∈ {1, . . . ,K}. The
i-th instance of MSE is as follows: the number of machines is m = i; there are n = |V |
tasks, each of a different type (types are labeled from 1 to |V |). All the tasks are of size
1. For each type i, αi,i = 1. For each pair of types (i, j), i 6= j: αi, j = 0 if {i, j} ∈ E and
αi, j = r if {i, j} /∈ E.

We claim that a solution of a MSE instance costs either 1 or at least r+1. We also
claim that the answer for the instance of PIC is “yes” if and only if the optimal cost of
one of these MSE instances is 1. Therefore, an r-approximate algorithm for MSE will
find a solution of cost 1 if it exists (when there is a solution of cost 1, an r-approximate
algorithm has to return a solution of cost at most r, which is thus necessarily the optimal

solution since all the other solutions have a cost of at least r+1). Since K ≤ |V |, if we
assume that our r-approximate algorithm runs in polynomial time, then by using it K
times we can solve in polynomial time PIC, which is an NP-complete problem. This
leads to a contradiction, unless P = NP.

We show that the cost of a solution of each of the MSE instances is either 1, or at
least r + 1. If, on all the machines, for each pair (i, j) of tasks on the same machine
we have αi, j = 0, then the maximum cost of a task is 1 (its own size, 1, times αi,i =
1). Otherwise, there is a machine with two tasks of types i and j with αi, j = r. The
maximum cost is thus at least the cost of task i, which is at least 1×αi,i+1×αi, j = 1+r.

We show that the solution for the instance of PIC is “yes” if and only if there is
a solution of cost 1 for (at least) one of the |V | instances of MSE. Assume first that
there is a solution for PIC: the vertices of G can be partitioned into k ≤ K disjoint
sets V1,V2, . . . ,Vk such that, for 1 ≤ i ≤ k, the subgraph induced by Vi is a complete
graph. We take the k-th MSE instance. For each i ∈ {1, . . . ,k}, we assign to machine
Mi the tasks corresponding to the vertices of Vi. Since all the tasks on the same machine
correspond to a clique in G, their coefficients αi, j are all 0 (i 6= j). The only cost of a
task i is its own size times αi,i, that is 1. Thus, the cost of the optimal solution of the
k-th instance of MSE is 1.

Likewise, assume that there is a solution of cost 1 for (at least) one of the |V | in-
stances of MSE (wlog, for the k-th instance). Then there is a “yes” solution for PARTI-
TION INTO CLIQUES: since the maximum cost for the instance of MSE is 1, it means
that all the values αi, j between tasks on the same machines are 0 (for i 6= j) and thus
that corresponding vertices form a clique in G.

4 Approximation for fixed number of types

The inapproximability proof of the previous section means that we can develop constant-
factor approximations only for MSE with a constant number of types (and constant
coefficients). We show in this section two approximation algorithms. First, a PTAS run-
ning in time O(nT (γk)2

), and thus mostly of theoretical interest. Then we introduce a
fast greedy approximation algorithm.

4.1 A PTAS

Our PTAS (Algorithm 1) has a similar structure to the PTAS for P||Cmax [9]: the two
main differences are the treatment of short tasks (which we pack into containers, and not
simply greedy schedule) and the sizing of long tasks. Our PTAS works even if αi,i 6= 1,
and αi, j 6= α j,i. The algorithm uses parameters: C, the requested maximum cost; k, an

integer; and γ = T αmax

(
2+ 1/(minαi,i)

)
(we assume that T and αi, j are constants).

Given C, the algorithm either returns a schedule of cost at most C(1+ 1/k), or proves
that a schedule of cost at most C does not exist.

The algorithm starts by constructing an instance I′ which will form a lower bound
for C of the original instance I. The algorithm partitions tasks into two sets: long tasks
of size at least C/(γk); and short tasks. Long tasks are rounded down to the near-
est multiple of C/(γk)2. Short tasks of a single type are “glued” into container tasks

Algorithm 1: A PTAS for MSE with constant T and α

1 J′ = /0;
2 for j ∈ J, p j ≥C/(γk) do // round down long tasks
3 p j′ = p j− (p j mod C/(γk)2) ;
4 J′ = J′ ∪{ j′} ;
5 for t ∈ T do // glue short tasks to containers
6 W (t)

s = ∑ j∈J(t) ,p j<C/(γk)
p j ; // load of small tasks of type t ;

7 while W (t)
s > 0 do

8 p j′′ = min(C/(γk),W (t)
s) ;

9 J′ = J′ ∪{ j′′} ; // j′′ is a new container ;

10 W (t)
s =W (t)

s − p j′′ ;
11 for t ∈ T do remove from J′ m containers of type t ;
12 σ

′∗ = partition of J′ by solving (by dynamic programming)

OPT (n
′(1)
1 , . . . ,n

′(1)
(γk)2

, . . . ,n
′(T)
1 , . . . ,n

′(T)
(γk)2

) = 1+min
s(1)1 ,...,s(T)

(γk)2
∈C

OPT (n
′(1)
1 − s(1)1 , . . . ,n

′(T)
(γk)2
− s(T)

(γk)2
);

13 if σ
′∗ requires more than m machines then return /0;

14 σ = σ
′∗ ;

15 for k=1 to m do // add removed containers
16 for k=1 to T do σ [k] = σ [k]∪{C/(γk)};
17 for k=1 to m do // replace containers by small tasks
18 for t ∈ T do
19 i = number of type t containers in σ [k] ;
20 replace i containers by tasks of total load W , iC/(γk)≤W ≤ (i+1)C/(γk);
21 replace in σ rounded long tasks with original long tasks ;

of sizes C/(γk), except the last container task which might be shorter (of size W (t)
s

mod (C/(γk)), where W (t)
s is the load of short tasks of type t, W (t)

s =∑ j∈J(t),p j<C/(γk) p j).
Then, the algorithm reduces the load in container tasks by removing m containers (the
shortest one and m− 1 others) of each type. (Note that if the total load of short tasks
of type t is smaller than mC/(γk), there are less than m containers, and they are all
removed in this step; later, when reconstructing schedule, the algorithm adds the same
number of containers that were removed. We omit this detail from Algorithm 1 to make
the code more readable). The resulting instance I′ has at most as many tasks and at most
as high overall load as the original instance I (the number of tasks and the load does not
change only if all the tasks are long and their sizes are multiples of C/(γk)2).

The algorithm then schedules the lower-bound instance I′ using dynamic program-
ming. For a given configuration n

′(1)
1 , . . . ,n

′(1)
(γk)2 , . . . ,n

′(T)
1 , . . . ,n

′(T)
(γk)2 , where n

′(t)
i is the

number of tasks in I′ of type t and size iC/(γk)2, OPT denotes the minimal num-
ber of machines needed to schedule the configuration with cost smaller than C. To
find OPT , the dynamic programming approach checks all possible configurations C of
task sizes for a single machine s(1)1 , . . . ,s(T)

(γk)2 (where s(t)i denotes the number of tasks)

that result in cost smaller than C, i.e.: s(1)1 , . . . ,s(T)
(γk)2 ∈ C ⇔ ∀t such that∑i s(t)i > 0 :

∑t ′∑
(γk)2

i=1 αt ′,ts
(t ′)
i iC/(γk)2 ≤C. If OPT is larger than m, the algorithm ends. Otherwise,

the returned schedule σ
′∗ forms a scaffold to build a schedule σ for the original instance

I. First, the algorithm adds a container for each type on each machine (this container was
removed before the dynamic programming). Then, the algorithm replaces containers by
actual short tasks. Assume that σ

′∗ scheduled i−1 containers of type t on machine m;

the previous step added at most one container. The algorithm replaces i containers of a
total load iC/(γk) by scheduling unscheduled short tasks of type t with a total load of
at least iC/(γk) and at most (i+ 1)C/(γk) (which is always possible as a short task is
shorter than C/(γk)). Finally, the algorithm replaces long tasks that were rounded down
by the original long tasks.

Proposition 3. The PTAS returns a solution to MSE if and only if there is a solution
of MSE of cost at most C. Moreover, if such a solution of cost C exists, the cost of the
solution returned by the PTAS is at most C(1+1/k).

Proofs omitted due to space constraints are in the accompanying technical report [19].

Proposition 4. The PTAS runs in time O(nT (γk)2
).

4.2 A Greedy list-scheduling approximation

FILLGREEDY is a greedy 2T m
m−T -approximate algorithm for MSE with constant number

of types. FILLGREEDY groups tasks by clusters. All the tasks of the same type are in
the same cluster. Two tasks of type i and j are in the same cluster iff their types are
compatible (αi, j ≤ 1 and α j,i ≤ 1). While minimizing the number of clusters is NP-hard
(by an immediate reduction from PARTITION INTO CLIQUES), any heuristics can be
used, as the approximation ratio does not depend on the number of clusters.

Clusters are processed one by one. Each cluster is allocated to at least one, dedi-
cated machine. (We assume that m, the number of machines, is smaller than or equal to
the number of clusters K; K ≤ T , and in a data center T should be much smaller than
m). The algorithm puts tasks from a cluster on a machine until machine load reaches
Lmax = max{2L,L+ pmax} (where L = (∑ pi)/(m−T) is the average load), then opens
the next machine. In practice, rather than fixing the maximum machine load to Lmax,
we do a dichotomic search over [1,Lmax] to find the smallest possible threshold lead-
ing to a feasible schedule. The complexity of FILLGREEDY with dichotomic search is
O(T 2n log(Lmax)).

Proposition 5. Algorithm FILLGREEDY is a 2T m
m−T -approximate algorithm for MSE.

Proof. We first show that the allocation is feasible, i.e. the algorithm uses at most m
machines. Let mused be the number of machines to which at least one task is allocated.
Among these mused machines, at most K have load smaller than L. Indeed, for each
cluster the algorithm allocates tasks to a machine beyond L (as Lmax ≥ L+ pmax), unless
there are no remaining tasks. Thus, for each cluster, only the load of the last opened
machine can be smaller than L. Thus, the load allocated on these mused machines is
at least (mused −K)L = (mused −K) W

m−T . Since the total load is W , we have (mused −
K) W

m−T ≤W . Thus mused−K
m−T ≤ 1, and so mused −K ≤ m− T . Since K ≤ T , we have

mused ≤ m. Thus, the allocation returned by FILLGREEDY is feasible.
We now show that the cost is 2Km

m−T -approximate. We consider an instance I of MSE.
Let O be an optimal solution of I for MSE, and let OPT be the maximum cost of a
task in O . Since, for each type i, αi,i = 1, we have OPT ≥ pmax. Let Lmax(O) be the
maximum load of a machine in O . Let us consider that this load is achieved on machine

i. We have Lmax(O) ≥ W
m (by the surface argument). Since there are at most T types

on machine i, there is at least one type which has a load of at least Lmax(O)
T on machine

i. The cost of a task of this type on machine i is thus at least Lmax(O)
T , and therefore

OPT ≥ Lmax(O)
T ≥ W

T m .
Let S be the solution returned by FILLGREEDY for instance I. Let C(S) be the

maximum cost of a task in S . Let Lmax(S) be the maximum load of a machine in S .
Since two tasks i and j are scheduled on the same machine only if they belong to the
same cluster, i.e. only if αti,t j ≤ 1, the cost of each task is at most equal to Lmax(S), and
thus C(S) ≤ Lmax(S). Moreover, by construction, we have Lmax(S) ≤ max{2L,L+
pmax}. We consider the two following cases:
– case 1: max{L, pmax}= pmax. In this case, C(S)≤ Lmax ≤ L+ pmax =

W
m−T + pmax =(T m

m−T

) W
T m + pmax. Since OPT ≥ pmax and OPT ≥ W

T m , we have C(S) ≤ (T m
m−T +

1)OPT < 2T m
m−T OPT .

– case 2: max{L, pmax}= L. In this case, C(S)≤ Lmax ≤ 2L = 2W
m−T ≤ 2

(T m
m−T

) W
T m ≤

2T m
m−T OPT because OPT ≥ W

T m .

5 Heuristics

We propose a few other algorithms for MSE. These algorithms are fast approximations
when T = 2 (see [19]). They all use as a subprocedure an algorithm A for P||Cmax,
such as LPT (used in our experiments). A uses task’s size pi as task’s length.

SCHEDMIXED uses A on all tasks and all machines. Let σ be the schedule con-
structed by A on m machines with tasks J. SCHEDMIXED(A) returns the partition P
of the tasks equal to allocation in σ (tasks on Mi in P are the tasks on Mi in σ).

SCHEDJUXTAPOSE uses A on all machines for each type separately and then joins
the schedules. Let σt be the schedule obtained by applying A on tasks J(t) of type t
on m machines. SCHEDJUXTAPOSE merges schedules reversing the order of machines
for every other type, i.e.: tasks on machine Mi are tasks allocated to Mi in σ2k+1 and to
Mm−i+1 in σ2k (when A = LPT and with a small number of tasks, the machines with
smallest indices have the highest load).

BESTSCHEDULE(A) returns the partition with the lowest cost among the results of
SCHEDJUXTAPOSE(A) and SCHEDMIXED(A).

GREEDYDEDICATED(B) separates types into K clusters (as in Section 4.2). Clus-
ters do not share machines. The algorithm runs a subprocedure B (SCHEDMIXED,
SCHEDJUXTAPOSE or BESTSCHEDULE) to put tasks of k-th cluster onto mk machines.
GREEDYDEDICATED returns the allocation with the minimal cost over all possibilities
of assigning [mk] to clusters (by exhaustive search over [mk] : ∑k∈K mk = m).

The complexities of SCHEDMIXED, SCHEDJUXTAPOSE and BESTSCHEDULE are
the same as A ; GREEDYDEDICATED, because of the exhaustive search, is exponential
in T times the complexity of A .

Let CA be the complexity of Algorithm A . Algorithm SCHEDMIXED is in O(CA);
SCHEDJUXTAPOSE and BESTSCHEDULE are in O(TCA); GREEDYDEDICATED is in
O(KmKCA).

6 Experiments

We used the Google Cluster Trace [22], the standard dataset for datacenter/cloud re-
source management research, as an input data. The trace is certainly not ideal for our
needs as it shows the usage of raw resources (CPU, memory, network, disk), and not the
load of applications. However, to our best knowledge, there are no publicly-available
traces describing loads and performance of applications. Due to space constraints we
describe the details of conversion in the accompanying technical report [19].

We generate a random sample of 10.000 task records. Each task record corresponds
to a task in our model. To generate loads and types, we use data on the (normalized)
mean CPU utilization and the assigned memory. Task’s type is determined by the ratio
of the the CPU to the memory usage. We generate the coefficients α in four different
ways: compatible: smaller than 1; incompatible: between 1 and 2; clashing: at least 2;
mixed: 2 incompatible clusters. There are T ∈ {2,3,4} types. Instances have two sizes:
in small ones, the there are n ∈ {10,20,50} tasks and m ∈ {2,3,5,10} machines; In
large ones, there are n ∈ {200,500,1000} tasks and m ∈ {20,50,100} machines. For
each combination we generate 30 instances; after discarding some unfeasible combina-
tions (e.g., mixed, T = 2), we have 6390 instances.

We tested the following algorithms: FILLGREEDY (f ill in plots); SCHEDMIXED
(mix); SCHEDJUXTAPOSE (jux); BESTSCHEDULE (best); GREEDYDEDICATED with
either SCHEDJUXTAPOSE (d− jux), SCHEDMIXED (d−mix) or BESTSCHEDULE (d−
best). We omit some algorithms on some instances if they are clearly sub-optimal:
GREEDYDEDICATED on compatible instances; and SCHEDJUXTAPOSE on all but com-
patible instances. On incompatible and clashing instances, all variants of GREEDYDED-
ICATED result in the same allocation—we denote the algorithm by ded in this case.

We compared the maximum cost returned by the algorithms to the lower bound and
computed the relative performance. We used the following lower bounds. (1) pmax, the
maximum size of the task (as we assume αt,t = 1, the cost on the machine on which the
longest task is allocated is at least pmax). (2) For incompatible and clashing instances,
the average load of a machine, W/m. (3) For compatible instances, a solution of a
LP that optimizes the fraction of type t’s load to be allocated to machine k. (4) For
mixed instances, the same LP solved for each cluster on m machines (this lower bound
effectively assumes mK available machines).

Figure 1 presents the normalized cost (scores on clashing and incompatible in-
stances are exactly the same). We had two kinds of problems with the lower bound
(details in [19]), both resulting in underestimation of the optimal solution and thus
overestimation of the cost of our algorithms. First, the LP solver we used (python-scipy)
often failed on large compatible instances: on 6% of T = 3 and 70% of T = 4 instances.
Second, the LP lower bound underestimates the optimal cost of mixed instances. In
such problematic instances, pmax was often used, which resulted in a lower bound that
might significantly underestimate the cost of the optimum. To reduce the effect of such
outliers, we discuss medians, rather than means, in the sequel.

Overall, all algorithms have similar performance and the performance is close to
the lower bound except in mixed instances. On average, GREEDYDEDICATED, SCHED-
MIXED and SCHEDJUX produce schedules with lower costs than FILL GREEDY (note
that SCHEDMIXED and SCHEDJUX are used directly for compatible instances, and as

m
ax

co
st

(n
or

m
al

iz
ed

by
L

B
)

fill mix jux best

1.0

1.5

2.0

2.5

(a) small compatible

fill d-mix d-jux d-best mix
1

2

4

(b) small mixed

fill ded mix

1.0

1.5

2.0

2.5

(c) small incompatible

fill mix jux best
1
2

4

6

8

(d) large compatible

fill d-mix d-jux d-best mix
1

2

4

(e) large mixed

fill ded mix

1.0

1.5

2.0

2.5

(f) large incompatible

Fig. 1. The maximum cost of the solutions returned by various heuristics normalized by the lower
bound. All instances. In boxplots the middle line represents the median, the box spans between
the 25th and the 75th percentile, the whiskers span between the 5th and the 95th percentile, and
the asterisks show all the remaining points (outliers).

sub-procedures for GREEDYDEDICATED for the mixed instances); and BESTSCHED-
ULE optimizes even further. All the results below are statistically-significant (two sided
paired t-test, p-values smaller than 0.0001).

Incompatible coefficients isolate the difference between FILL GREEDY, GREEDYDED-
ICATED, and SCHEDMIXED (as all clusters have a single type, neither FILL GREEDY
nor GREEDYDEDICATED allocate different types onto a single machine). Results clearly
show that sharing machines (SCHEDMIXED) leads to higher costs. GREEDYDEDI-
CATED produces allocations with the lowest cost: its median costs are 1.02 for large
instances and from 1.12 for small instances.

Compatible coefficients isolate the difference between FILL GREEDY, SCHED-
MIXED and SCHEDJUX. On the average, SCHEDMIXED produces schedules with a
lower cost than SCHEDJUX (medians are 1.06 for small instances and 1.18 for large).
However, BESTSCHEDULE, choosing for each instance the best out of SCHEDMIXED
and SCHEDJUX has even lower costs (1.01 for both small and large), demonstrating the
need to occasionally use SCHEDJUX.

Finally, mixed coefficients test both aspects; however, the scores of all algorithms
are higher due to an imprecise lower bound. GREEDYDEDICATED using BESTSCHED-
ULE dominates other algorithms with medians 1.46 for small instances and 1.22 for
large ones. While the numerical values are higher, we still clearly see the advantage of
using type-aware algorithms, as SCHEDMIXED (used without GREEDYDEDICATED)
has a significantly higher median score (1.77 for small instances, 1.91 for large).

Due to space constraints, we do not present results in function of the number of
tasks or the number of types. However, we have not found any strong dependencies
between these variables and the results of our algorithm (apart from slightly — up to
1.18 — higher medians for 500 and 1000-task instances for compatible coefficients,
caused by the LP problems discussed above).

Our results clearly show that using P||Cmax algorithms without regarding types
(SCHEDMIXED) is dominated by approaches considering types: using dedicated ma-
chines for α > 1 or, in some α < 1 instances, merging schedules of different types.

7 Related Work

We introduced the side-effects performance model [18], where we studied a utilitarian
(min-sum) objective. We proved that the problem is NP-hard, and we showed a domi-
nance property (for each type, there is an order of the machines such that the tasks are
assigned by decreasing sizes to the machines). This allows us to give an exact polyno-
mial time algorithm when there is a single type. For the general case, we proposed two
algorithms, which are exponential in one data of the problem (number of types, and
either the number of machines or the number of admissible sizes of the tasks).

Alternative models of data center resource management. A recent survey is [20].
Many colocation performance models are too complex for combinatorial results [11,
16, 17]. Schedulers rely on heuristic approaches with no formal performance guaran-
tees [3,4,10,26]. In bin-packing approaches (e.g., [23,25]), tasks are modeled as items
to be packed into bins (machines) of known capacity [5]. To model heterogeneity, bin
packing is extended to vector packing: item’s size is a vector with dimensions cor-
responding to requirements on individual resources (CPU, memory, disk or network
bandwidth) [24]. Alternatively, if tasks have unit-size requirements, simpler represen-
tations can be used, such as maximum weighted matching [1]. Bin packing approaches
assume that machines’ capacities are crisp and that, as long as machines are not over-
loaded, any allocation is equally good for tasks. In our model, machines’ capacities are
not crisp—instead, tasks’ performance gradually decreases with increased load.

Statistical approaches. Bobroff et al. [2] uses statistics of the past CPU load of tasks
(CDF, autocorrelation, periodograms) to predict the load in the “next” time period; then
they use bin packing to calculate a partition minimizing the number of used bins subject
to a constraint on the probability of overloading servers. Di et al. [6] analyze resource
sharing for streams of tasks to be processed by virtual machines. Sequential and parallel
task streams are considered in two scenarios. When there are sufficient resources to run
all tasks, optimality conditions are formulated. When the resources are insufficient, fair
scheduling policies are proposed.

Analysis of effects of colocation. Studies showing performance degeneration when
colocating data center tasks include [12, 14, 27]. [21] analyze the performance of colo-
cated CPU-intensive benchmarks; and [13] measures performance of colocated HPC
applications. Our αt,t ′ coefficients are similar to their interference/affinity metrics. Ad-
ditionally [13] shows a greedy allocation heuristics, but they don’t study its worst-case
performance nor the complexity of the problem.

8 Conclusion

We considered a problem of optimally allocating tasks to machines in the side-effects
performance model. Performance of a task depends on the load of other tasks colocated
on the same machine. We use a linear performance function: the influence of tasks of
type t ′ is their total load times a coefficient αt ′,t , describing how compatible is t ′ with
performance of t. We minimize the maximal cost. We prove that this NP-hard problem
is hard to approximate if there are many types. However, handling a limited number of
types is feasible: we show a PTAS and a fast approximation algorithm, as well as a series
of heuristics (we prove their approximation ratios for two types in the accompanying

technical report [19]). We simulate allocations resulting from algorithms on instances
derived from one of Google clusters. Our simulations show that algorithms taking into
account types lead to significantly lower costs than non-type algorithms.

Our results show a possible way to adapt to data centers the large body of work in
scheduling, which development has been often inspired by advances in HPC platforms.
We deliberately chose to study a fundamental problem, a minimal extension to P||Cmax.
We envision that results for more realistic variants of data center resource management
problem, taking into account release dates, non-clairvoyance or on-line, can be taken
into account similarly as they are considered in classic scheduling.

We are also working on validating our model by a systems study. We are developing
an extension for kubernetes that collects and correlates performance metrics reported
by containers to derive the size/coefficient performance model.
Acknowledgements We thank Pawel Janus for his help in processing the Google clus-
ter data. This research has been partly supported by a Google Faculty Research Award,
a Polish National Science Center grant Sonata (UMO-2012/07/D/ST6/ 02440), and a
Polonium grant (joint programme of the French Ministry of Foreign Affairs, the Min-
istry of Science and Higher Education and the Polish Ministry of Science and Higher
Education).

References

1. Beaumont, O., Eyraud-Dubois, L., Thraves Caro, C., Rejeb, H.: Heterogeneous resource
allocation under degree constraints. IEEE TPDS 24(5) (2013)

2. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing
SLA violations. In: IM, Proc. IEEE (2007)

3. Bu, X., Rao, J., Xu, C.z.: Interference and locality-aware task scheduling for mapreduce
applications in virtual clusters. In: HPDC, Proc. ACM (2013)

4. Chiang, R.C., Huang, H.H.: Tracon: interference-aware scheduling for data-intensive appli-
cations in virtualized environments. In: SC Proc. ACM (2011)

5. Coffman Jr, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: A
survey. In: Approximation algorithms for NP-hard problems. PWS (1996)

6. Di, S., Kondo, D., Wang, C.: Optimization of composite cloud service processing with virtual
machines. ToC (2015)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness (1979)

8. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAP 17(2) (1969)
9. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling prob-

lems theoretical and practical results. JACM 34(1), 144–162 (1987)
10. Jersak, L.C., Ferreto, T.: Performance-aware server consolidation with adjustable interfer-

ence levels. In: SAC Proc. (2016)
11. Jin, X., Zhang, F., Wang, L., Hu, S., Zhou, B., Liu, Z.: Joint optimization of operational cost

and performance interference in cloud data centers. ToCC (2015)
12. Kambadur, M., Moseley, T., Hank, R., Kim, M.A.: Measuring interference between live dat-

acenter applications. In: SC, Proc. IEEE (2012)
13. Kim, S., Hwang, E., Yoo, T.K., Kim, J.S., Hwang, S., Choi, Y.R.: Platform and co-runner

affinities for many-task applications in distributed computing platforms. In: CCGrid Proc.
IEEE CS (2015)

14. Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analysis of performance
interference effects in virtual environments. In: ISPASS, Proc. IEEE (2007)

15. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: STACS Proc. Springer (1999)
16. Kundu, S., Rangaswami, R., Dutta, K., Zhao, M.: Application performance modeling in a

virtualized environment. In: HPCA. IEEE (2010)
17. Kundu, S., Rangaswami, R., Gulati, A., Zhao, M., Dutta, K.: Modeling virtualized applica-

tions using machine learning techniques. In: SIGPLAN Not. vol. 47. ACM (2012)
18. Pascual, F., Rzadca, K.: Partition with side effects. In: HiPC 2015, Procs. (2015)
19. Pascual, F., Rzadca, K.: Optimizing egalitarian performance in the side-effects model of

colocation for data center resource management. CoRR abs/1610.07339v2 (2017), http:
//arxiv.org/abs/1610.07339

20. Pietri, I., Sakellariou, R.: Mapping virtual machines onto physical machines in cloud com-
puting: A survey. CSUR 49(3) (2016)

21. Podzimek, A., Bulej, L., Chen, L.Y., Binder, W., Tuma, P.: Analyzing the impact of cpu
pinning and partial cpu loads on performance and energy efficiency. In: CCGrid Proc. (2015)

22. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and dynam-
icity of clouds at scale: Google trace analysis. In: SoCC, Proc. ACM (2012)

23. Song, W., Xiao, Z., Chen, Q., Luo, H.: Adaptive resource provisioning for the cloud using
online bin packing. IEEE ToC 63(11) (2014)

24. Stillwell, M., Vivien, F., Casanova, H.: Virtual machine resource allocation for service host-
ing on heterogeneous distributed platforms. In: IPDPS Procs. IEEE (2012)

25. Tang, X., Li, Y., Ren, R., Cai, W.: On first fit bin packing for online cloud server allocation.
In: IPDPS Proc. (2016)

26. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale
cluster management at Google with Borg. In: EuroSys Proc. ACM (2015)

27. Xu, Y., Musgrave, Z., Noble, B., Bailey, M.: Bobtail: Avoiding long tails in the cloud. In:
NSDI, Proc. (2013)

