
Approximation Algorithms
for Scheduling with Reservations

Florian Diedrich1,?,??, Klaus Jansen1,??,
Fanny Pascual2, and Denis Trystram2,? ? ?

1 Institut für Informatik, Christian-Albrechts-Universität zu Kiel,
Olshausenstr. 40, 24098 Kiel, Germany
{fdi,kj}@informatik.uni-kiel.de

2 LIG – Grenoble University, 51 avenue Jean Kuntzmann,
38330 Montbonnot Saint-Martin, France

{fanny.pascual,denis.trystram}@imag.fr

Abstract. We study the problem of scheduling n independent jobs on
a system of m identical parallel machines in the presence of reservations.
This constraint is practically important; for various reasons, some ma-
chines are not available during specified time intervals. The objective is
to minimize the makespan. This problem is inapproximable in the general
case unless P = NP which motivates the study of suitable restrictions. We
use an approach based on algorithms for multiple subset sum problems;
our technique yields a polynomial time approximation scheme (PTAS)
which is best possible in the sense that the problem does not admit an
FPTAS unless P = NP. The PTAS presented here is the first one for the
problem under consideration; so far, not even for special cases approxi-
mation schemes have been proposed. We also derive a low cost algorithm
with a constant approximation ratio and discuss additional FPTASes for
special cases and complexity results.

1 Introduction

In parallel machine scheduling, an important issue is a scenario where
time intervals of machine unavailability must be taken into account. This
phenomenon occurs due to periods of regular maintenance or because
high-priority jobs are present. Here we obtain deterministic models cap-
turing realistic industrial settings and scheduling problems in parallel

? Research supported in part by a grant “DAAD Doktorandenstipendium” of the
German Academic Exchange Service. Part of this work was done while visiting the
LIG, Grenoble University.

?? Supported in part by EU research project AEOLUS, “Algorithmic Principles for
Building Efficient Overlay Computers”, EU contract number 015964, and in part by
DFG priority program 1126, “Algorithmics of Large and Complex Networks”.

? ? ? Part of this work was supported by the “CoreGRID” Network of Excellence.

2 F. Diedrich, K. Jansen, F. Pascual, D. Trystram

computing. We study non-preemptive scheduling of sequential jobs on a
system of identical parallel machines; however, these may be unavailable
for certain periods of time which are known beforehand. This setting is
also called the non-resumable case [17,19,20]. The objective is to minimize
the makespan Cmax, which is the maximum of the completion times of all
jobs. As discussed below, quite restricted special cases of the model con-
sidered here have been studied. On the algorithmic side, only list schedul-
ing algorithms (or similar approaches) and exact exponential algorithms
have been analyzed and experimentally evaluated, respectively.

Contributions. We take a novel approach by using algorithms for
multiple subset sum problems to govern the scheduling of jobs on identi-
cal parallel machines with reservations. We obtain a dual approximation
algorithm [8], more precisely a PTAS, for the case of an arbitrary number
m of machines. We show that our problem does not admit an FPTAS
unless P = NP and present additional complexity results. For m ∈ {1, 2}
with one reservation we obtain FPTASes; we also discuss how fast greedy
algorithms can be obtained from our approach.

This article is organized as follows. Sect. 2 defines the problem and
discusses the inapproximability of the general case. In Sect. 3 we present a
PTAS for a suitably restricted problem as well as FPTASes for m ∈ {1, 2}
with one reservation. Finally we sketch how to obtain a fast approxima-
tion algorithm for our general problem. In Sect. 3.3 our approximation
algorithms are complemented by suitable hardness results. Finally we
summarize the results and conclude in Sect. 4.

Related problems and previous results. Lee [16] and Lee et
al. [18] studied identical parallel machines which may have different start-
ing times; here, the LPT policy (where tasks are greedily scheduled from
the largest task to the smallest task) was analyzed. Lee [17] studied the
case where at most one reservation per machine is permitted while one
machine is continuously available and obtained suitable approximation
ratios for low-complexity list scheduling algorithms. Liao et al. [20] pre-
sented an experimental study of an exact algorithm for m = 2 within the
same scenario. Hwang et al. [9] studied the LPT policy for the case where
at most one interval of unavailability per machine is permitted. They
proved a tight bound of 1 + dm/(m − λ)e/2 where at most λ ∈ [m − 1]
machines are permitted to be unavailable simultaneously. The reader can
find in [19], Chapt. 22, problem definitions and a survey about previ-
ous results. In [23], Scharbrodt et al. present approximation schemes and
inapproximability results for a setting where the reservations also con-
tribute to the makespan. So far, the model under consideration has not

Approximation Algorithms for Scheduling with Reservations 3

been approached with approximation schemes, not even for the special
cases which have already been studied [9,17,20].

The approach taken in our work is based on multiple subset sum prob-
lems. These are special cases of knapsack problems, which belong to the
oldest problems in combinatorial optimization and theoretical computer
science. Hence, we benefit from the fact that they are relatively well un-
derstood. For the classical problem (KP) with one knapsack, besides the
result by Ibarra & Kim [10], Lawler presented a sophisticated FPTAS [15]
which was later improved by Kellerer & Pferschy [13]; see also the text-
books by Martello & Toth [21] and Kellerer et al. [14] for surveys. The case
where the item profits equal their weights is called the subset sum prob-
lem and denoted as SSP. The problem with multiple knapsacks (MKP) is
a natural generalization of KP; the case with multiple knapsacks where
the item profits equal their weights is called the multiple subset sum prob-
lem (MSSP). Various special cases and extensions of these problems have
been studied [1,2,3,4,5,11,12], finally yielding PTASes and FPTASes for
the cases upon which our approach is based [2,4,12].

2 Problem Definition and Preliminaries

Now we formally define our problem. Let m ∈ N∗ denote the number
of machines. An instance I consists of n jobs characterized by process-
ing times p1, . . . , pn, and r reservations R1, . . . , Rr. For each k ∈ [r],
Rk = (ik, sk, tk) indicates unavailability of machine ik in the time inter-
val [sk, tk), where sk, tk ∈ N, ik ∈ [m] and sk < tk. We suppose that for
reservations on the same machine there is no overlap; for two reserva-
tions Rk, Rk′ such that ik = ik′ holds, we have [sk, tk) ∩ [sk′ , tk′) = ∅. For
each i ∈ [m] let R′

i := {Rk ∈ I|ik = i} denote the set of reservations
for machine i. Finally, for each i ∈ [m] suppose that R′

i is sorted increas-
ingly with respect to the starting times of the reservations; more precisely,
R′

i = {(i, si1, ti1), . . . , (i, siri , tiri)} such that si1 < · · · < siri where we set
ri := |R′

i|. These assumptions are established algorithmically in O(r log r)
time by sorting {R1, . . . , Rr} lexicographically with respect to the first
two components of its elements and partitioning it into R′

1, . . . , R
′
m and

finally merging adjacent reservations in R′
i for each i ∈ [m] \ {1}. In the

sequel we use P (I) :=
∑n

j=1 pj to denote the total processing time of an
instance I and for each S ⊆ [n] we write P (S) :=

∑
j∈S pj for the total

processing time of S. A schedule is a function σ : [n] → [m]× [0,∞) that
maps each job to its executing machine and starting time; if σ is clear
from the context it may be dropped from notation. Our goal is to compute

4 F. Diedrich, K. Jansen, F. Pascual, D. Trystram

a non-preemptive schedule of the tasks such that no task is scheduled on
a machine that is unavailable, and on each machine at most one task runs
at a given time; the objective is to minimize the makespan Cmax. Using
the 3-field notation, we denote our problem by Pm|nr-a|Cmax and show
its inapproximability for m ≥ 2.

Lemma 1. No polynomial time algorithm for Pm|nr-a|Cmax with m ≥ 2
has a constant approximation ratio unless P = NP.

Proof. Let c ∈ N∗; for an instance I of Partition, which is NP-complete [7],
given by I = {a1, . . . , an} such that

∑
i∈I ai = 2A, we define an instance

I ′ of Pm|nr-a|Cmax by setting pi := ai for each i ∈ [n], R1 := (1, A, A+c),
R2 := (2, A, A + c) and Rk := (k, 0, A + c) for k ∈ [m] \ {1, 2}. Then I is
a yes-instance of Partition if and only if I ′ has an optimal makespan of
C∗

max = A. However, any suboptimal schedule of I ′ for a yes-instance I of
Partition has a makespan Cmax > c; by choosing c large, any suboptimal
solution can be arbitrarily bad. ut

The inapproximability of the general case is due to the permission
of intervals in which no machine is available. Hence it is reasonable to
suppose that at each time step there is an available machine. This is not
sufficient since we can prove in this case the same inapproximability result
by considering, for example, the following instance: there is, for a given
period p, a set of reservations which alternate on two machines in a such
a way that there are no two reservations at the same time and the period
between two consecutive reservations is smaller than the length of any
task of the instance. In this case, no task can be put during time period p
and we get the same inapproximability result as if we had on each of these
machines a big reservation of length p. Hence we suppose that at least
one machine is always available. If we consider that reservations are jobs
with high priority which are already scheduled, then, since the machines
are identical, the reservations can be put on the machines in such a way
that w.l.o.g. the first machine is always available, hence ik 6= 1 for each
reservation Rk. This can be done by distributing the reservations one
by one and always putting a reservation on the machine with maximum
index i ∈ [m] among the available machines.

We use Pm, 1up|nr-a|Cmax to denote this restricted problem; 1up
means that at least one machine is always available. This problem is NP-
hard even for m = 2, which can be seen by following the lines of the proof
of Lemma 1 using one reservation R1 := (2, A, A+1) and arguing that I ′

has an optimal makespan C∗
max = A if and only if I is a yes-instance of

Partition.

Approximation Algorithms for Scheduling with Reservations 5

3 Approximation Algorithms and Complexity Results

We present approximation algorithms and complexity results. In Sub-
sect. 3.1 we obtain approximation schemes; in Subsect. 3.2 we discuss
fast greedy algorithms that are based on the same idea. We close the
section with complexity results in Subsect. 3.3.

3.1 Polynomial Time Approximation Schemes

We explain the MSSP approach for m ≥ 2 to obtain a PTAS for our
problem. Later we discuss the cases m ∈ {1, 2}, which admit FPTASes
for the case where one reservation is permitted. Our idea is based on
obtaining a complementary representation for the periods of availability
in order to reduce the problem to MSSP which admits a PTAS [2,4]; we
derive a dual approximation algorithm [8] by using binary search on the
makespan where a PTAS for MSSP serves as a relaxed decision procedure,
as illustrated with a Gantt chart in Fig. 1. In Sect. 2 we argued how to
obtain sorted sets R′

i of reservations for each i ∈ [m] \ {1}. We use the
algorithm in Fig. 2 to obtain sets of inclusionwise maximal availability
intervals Ai for each i ∈ [m], each containing elements (i, s, t) indicating
that machine i is available in [s, t) where s ∈ N and t ∈ N∪ {∞}. Due to
space restrictions a detailed discussion of Fig. 2 is omitted.

The running time of the algorithm in Fig. 2 is linear in m, r and in-
dependent from n; at most 2r intervals of availability are generated. For
a fixed i ∈ [m], we use the initial sorting of R′

i to obtain that the inter-
vals of availability for machine i are sorted with respect to their starting
times. More important is the following subroutine that uses A1, . . . , Am

m1

m2

m3

A1

A2 R2 A3 R3 A4 R5

A5 R1 A6 R4 A7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

target makespan t = 14

time

Fig. 1: Sketch illustrating the approach of the algorithm in Fig. 4. The
grey zones R1, . . . , R5 are the reservations. If the target makespan is 14,
we try to fill all the jobs in knapsacks of sizes corresponding to A1, . . . , A7;
zones A1 and A7 end at time 14

6 F. Diedrich, K. Jansen, F. Pascual, D. Trystram

1. Set A1 := {(1, 0,∞)} and for each i ∈ [m] \ {1} set Ai := ∅.
2. For each i ∈ [m] \ {1} execute Steps 2.1–2.3.

2.1. If ri = 0, set Ai := Ai ∪{(i, 0,∞)} and proceed with the next iteration of the
loop in started in Step 2.

2.2. Set t := 0.
2.3. For each r ∈ [ri] execute Steps 2.3.1–2.3.2.

2.3.1 If sir = 0 then proceed with the next iteration of the loop started in
Step 2.1, otherwise set Ai := Ai ∪ {(i, t, sir)} and t := tir.

2.3.2 If r = ri then set Ai := Ai ∪ {(i, t,∞)}.

Fig. 2: Algorithm GenAvail

to generate the finite intervals of availability for a fixed finite planning
horizon [0, t) where t ∈ N.

1. For each i ∈ [m] execute Steps 1.1–1.2.
1.1. Set A′

i(t) = {(i, s′, t′) ∈ Ai|s′ < t)} and ai := |A′
i(t)|.

1.2. If ai > 0 set tiai := min{tiai , t}.

Fig. 3: Algorithm GenAvailFinite

Step 1.1 in Fig. 3 removes all intervals of availability that begin out-
side of [0, t) while Step 1.2, if necessary, truncates the last interval on a
machine to fit exactly into the planning horizon. The running time of the
algorithm in Fig. 3 is independent from n and linear in m, r. We denote
A(t) := ∪m

i=1A
′
i(t) and will use the at most 2r intervals stored in A(t)

as knapsacks in which we like to pack the jobs in [n]. To this end, we
use a PTAS for MSSP and for each job j ∈ [n] define an item j with
weight pj to obtain an instance of MSSP. The algorithm is described in
Fig. 4, where MSSPPTAS is a PTAS for MSSP where the capacities of
the knapsacks may be different [2,4]. We suppose that MSSPPTAS does
not only select a desired S ⊆ [n] but also stores the feasible assignment
to the knapsacks as a byproduct.

Theorem 1. The algorithm in Fig. 4 is a PTAS for Pm, 1up|nr-a|Cmax.

Proof. Since the first machine is available at each time step t ∈ [0,∞), the
sum of processing times P (I) is an upper bound for the optimal makespan
C∗

max; hence in Step 2, the lower bound LB and the upper bound UB are
initialized to have the following properties.

Approximation Algorithms for Scheduling with Reservations 7

1. Use the algorithm in Fig. 2 to generate Ai for each i ∈ [m].
2. Set LB := 0 and UB := P (I).
3. While UB − LB > 1 repeat Steps 3.1–3.3.

3.1 Set t := b(UB − LB)/2c. Use the algorithm in Fig. 3 to generate A(t), the set
of availability intervals for fixed planning horizon [0, t).

3.2 Use MSSPPTAS with accuracy ε/m to select a set of jobs S ⊆ [n] such that

P (S) ≥ (1− ε/m)max{P (S′)|S′ ⊆ [n],

S′ permits a feasible packing into the intervals in A(t)}.

3.3 If P (S) < (1− ε/m)P (I) then set LB := t else store S and set UB := t.
4. Schedule the jobs in the last stored set S into the interval [0,UB) as indicated by

the solution generated by MSSPPTAS when S was returned; schedule the jobs in
[n] \S in the interval [UB ,∞) on the first machine without unnecessary idle time.

Fig. 4: Algorithm MultiSubsetSumScheduler

1. LB < C∗
max.

2. There is a set S ⊆ [n] such that the jobs in S permit a feasible schedule
into the time horizon [0,UB) and P (S) ≥ (1− ε/m)P (I).

The second property follows from the fact that, since C∗
max ≤ UB , all jobs

can be scheduled in [0,UB) and thus it is impossible that the algorithm
MSSPPTAS returns a set S ⊆ [n] such that P (S) < (1− ε/m)P (I) holds;
both properties are invariant under the update of LB and UB in Step 3.3.
The number of iterations of the binary search in Step 3 is bounded by
log P (I) ≤ log(npmax) = log n+log pmax which is polynomially bounded in
the encoding length of I. On termination of the binary search in Step 3,
LB + 1 = UB holds, hence UB ≤ C∗

max since LB < C∗
max is satisfied.

This means that the set S selected in Step 4 can be scheduled in [0,UB)
and satisfies P (S) ≥ (1 − ε/m)P (I); hence P ([n] \ S) ≤ εP (I)/m holds.
Furthermore the jobs in [n] \ S can be scheduled on the first machine in
[UB ,∞) since the first machine is available. We have P (I)/m ≤ C∗

max; in
total, the makespan of the schedule generated by the algorithm in Fig. 4
is bounded by UB + εP (I)/m ≤ C∗

max + εC∗
max = (1 + ε)C∗

max and we
obtain the desired approximation ratio. ut

However, since the running time of MSSPPTAS may grow exponen-
tially in 1/ε, the running time of the algorithm in Fig. 4 may also grow
exponentially in m. Furthermore, it is known that MSSP does not admit
an FPTAS even for the special case of two knapsacks of equal capacity,
unless P = NP holds, as discussed in [14], Subsect. 10.4. Hence it is impos-
sible for the approach used above to yield an FPTAS for our scheduling

8 F. Diedrich, K. Jansen, F. Pascual, D. Trystram

problem by replacing MSSPPTAS with a better algorithm, which is not
surprising in the light of Corollary 1 in Subsect. 3.3.

For m = 1 the situation is different. Lee [17] remarked that 1|nr-a|Cmax

is strongly NP-hard via reduction from 3-Partition, and the inapproxima-
bility can be seen by generalizing a suitable construction. If there is only
one reservation, an FPTAS can be obtained since in [12,14] an FPTAS
for SSP is available. This case corresponds to a simple knapsack problem;
if all the tasks can be scheduled before the reservation then we get an
optimal solution; otherwise we use the FPTAS for SSP to schedule as
much as possible load before the reservation.

Now we sketch m = 2 with one reservation R1 = (2, s, t); for this case,
an FPTAS can be obtained. Due to space constraints we omit the precise
algorithmic details. The FPTAS is based on dynamic programming which
yields an optimal algorithm with a pseudopolynomial runtime bound.
This dynamic programming algorithm can be used to build an FPTAS
by a suitable discretization of the state space; we obtain the following
result.

Theorem 2. The problem P2, 1up|nr-a|Cmax with one reservation ad-
mits an FPTAS.

3.2 Greedy Algorithms

In [5], a greedy 2-approximation algorithm for MSSP with running time
O(n2) is briefly mentioned; the subject is also discussed in [14], Sub-
sect. 10.4.1, with a slightly different approach yielding the same runtime
bound. By using this algorithm instead of MSSPPTAS and changing the
bound 1 − ε/m to 1/2 in Step 3 of the algorithm in Fig. 4 we obtain
an approximation algorithm with ratio 1 + m/2 for Pm, 1up|nr-a|Cmax

by following the lines of the proof of Theorem 1. On the other hand,
scheduling all jobs on the first machine here yields an m-approximation
algorithm; hence the algorithm sketched above yields a better bound than
this approach only if m > 2 holds.

In [17], Lee studied the case where at most one reservation per ma-
chine is permitted and one machine is always available; a tight approx-
imation ratio of (m + 1)/2 for LPT is proved. For our generalization
Pm, 1up|nr-a|Cmax we obtain the same asymptotic behaviour in m with
our greedy approach. Comparing our result here with the tight bound
1 + dm/(m− λ)e/2 for LPT [9] where λ ∈ [m− 1] is the maximum num-
ber of machines which are permitted to be unavailable at the same time,
we basically get the same ratio for our case λ = m−1. In total, we obtain

Approximation Algorithms for Scheduling with Reservations 9

similar approximation ratios for more general problems, which comes at
the cost of increased computational effort, however.

3.3 Complexity Results

We present an inapproximability result which shows that the PTAS for
Pm, 1up|nr-a|Cmax is close to best possible; hence Pm, 1up|nr-a|Cmax is
substantially harder than Pm||Cmax which permits an FPTAS [22].

Theorem 3. The problem Pm, 1up|nr-a|Cmax is strongly NP-hard for
m ≥ 2.

Proof. We reduce from the strongly NP-complete problem 3-Partition [7];
see Fig. 5 for a sketch of the construction.

– Given: Index set S = [3n], ai ∈ N∗ for each i ∈ S and B ∈ N∗ such
that B/4 < ai < B/2 for each i ∈ S and

∑3n
i=1 = nB holds.

– Question: Is there a partition of the set S into S1, . . . , Sn such that∑
i∈Sj

ai = B holds for each j ∈ [n]?

Given an instance I of 3-Partition we define an instance I ′ of the problem
Pm, 1up|nr-a|Cmax for m ≥ 2. We set pi := ai for each i ∈ [3n] (small
jobs), p3n+1 := n(B + 1) (dummy job) and define suitable reservations
Ri := (2, i(B+1)−1, i(B+1)), i ∈ [n], Rn+i := (2+i, 0, n(B+1)) for each
i ∈ [m−2]. I ′ can be generated from I in time polynomial in the length of
I and has an optimal makespan of C∗

max = n(B+1) if and only if I is a yes-
instance of 3-Partition by putting the small jobs according to the existing
partition S1, . . . , Sn in the intervals [0, B), . . . , [(n−1)(B+1), n(B+1)−1)
on machine 2 and putting the dummy job on machine 1; conversely in a
schedule with makespan n(B+1) the dummy job must be put on machine
1 and hence the small jobs run on machine 2 which indicates the partition
of S into S1, . . . , Sn since no more than 3 small jobs can fit into an interval
of length B. In total, Pm, 1up|nr-a|Cmax is strongly NP-hard. ut

Since the objective values of feasible schedules for Pm, 1up|nr-a|Cmax

are integral and C∗
max ≤ P (I), the next result immediately follows from [6].

Corollary 1. Pm, 1up|nr-a|Cmax does not admit an FPTAS for m ≥ 2
unless P = NP.

It is a natural question whether the problem becomes easier if the
number of reservations per machine is restricted to one. Surprisingly, this
is not the case, which can be shown by adaptation of a construction
from [1]. The following result implies that Pm, 1up|nr-a|Cmax with at
most one reservation per machine for m ≥ 3 is strongly NP-hard.

10 F. Diedrich, K. Jansen, F. Pascual, D. Trystram

m1

m2

m3

R1 R2 Rn

Rn+1

. . .B B

(a) Structure of reservations

m1

m2

m3

R1 R2 Rn

Rn+1

. . .=̂I1 =̂I1

J3n+1 (dummy job)

(b) Optimal solution of I ′

Fig. 5: Sketch illustrating the proof of Theorem 3

Theorem 4. Pm, 1up|nr-a|Cmax does not admit an FPTAS, even if there
is at most one reservation per machine, for m ≥ 3 unless P = NP.

Proof. We use a reduction from the following problem, Equal Cardinality
Partition or ECP for short, which is NP-complete [7]; see Fig. 6 for a
sketch of the construction.

– Given: Finite list I = (a1, . . . , an) of even cardinality with ai ∈ N∗ for
each i ∈ [n], A ∈ N∗ such that

∑n
i=1 ai = 2A holds.

– Question: Is there a partition of the list I into lists I1 and I2 such
that |I1| = n/2 = |I2| and

∑
i∈I1

ai = A =
∑

i∈I2
ai holds?

Given an instance I of ECP we define an instance I ′ of Pm, 1up|nr-a|Cmax

for m ≥ 3 as follows. We set pi := 2A + ai for each i ∈ [n] (small jobs),
pn+1 := 2A(n + 1) (dummy job) and Rk := (k,A(n + 1), 2A(n + 1))
for k ∈ {2, 3} and Rk := (k, 0, 2A(n + 1)) for each k ∈ [m] \ {1, 2, 3}.
I ′ is generated from I in running time polynomial in the length of I.
Furthermore I ′ has an optimal makespan of C∗

max = 2A(n + 1) if and
only if I is a yes-instance by executing the small jobs according to the
partition I1 and I2 on machines 2 and 3 and putting the dummy job on
machine 1; conversely in a schedule with makespan 2A(n+1) the dummy
job is put on machine 1 and hence the small jobs run on machines 2 and
3 which indicates the partition of I into I1 and I2 since no more than n/2
jobs fit into an availability interval of length A(n + 1). Let I be a yes-
instance of ECP and consider a suboptimal schedule of I ′; the makespan
of a suboptimal schedule of I ′ must be at least 2A(n + 1) + A since every
job in I ′ has a processing time larger than A and is scheduled either on
machine i ∈ [m] \ {1} or on machine 1 together with the dummy job,
unless the dummy job is scheduled on a machine other than the first one.
Given an FPTAS for Pm, 1up|nr-a|Cmax, choose ε ∈ (0, 1) such that

1 + ε <
2A(n + 1) + A

2A(n + 1)
=

2n + 3
2n + 2

Approximation Algorithms for Scheduling with Reservations 11

m1

m2

m3

m4

R1

R2

R3

A(n + 1)

A(n + 1)

(a) Structure of reservations

m1

m2

m3

m4

R1

R2

R3

=̂I1

=̂I2

Jn+1 (dummy job)

(b) Optimal solution of I ′

Fig. 6: Sketch illustrating the proof of Theorem 4

holds, which is equivalent to ε < 1/(2n+2); consequently ε can be chosen
in such a way that 1/ε is polynomially bounded in n and hence polyno-
mially bounded in the encoding length of I. Then, the FPTAS generates
a schedule with makespan Cmax such that

Cmax ≤ (1 + ε)C∗
max <

2A(n + 1) + A

2A(n + 1)
2A(n + 1) = 2A(n + 1) + A

holds. Hence I ′ is solved to optimality in polynomial time and I is iden-
tified as a yes-instance of ECP, which is impossible unless P = NP. ut

4 Conclusion

We studied scheduling on a constant number of identical parallel ma-
chines with reservations and have shown that a sensible restriction to
Pm, 1up|nr-a|Cmax is necessary to obtain a bounded approximation ratio.
On the algorithmic side we have taken an approach that is based on using
approximation algorithms for SSP and MSSP. We obtained FPTASes for
1|nr-a|Cmax and P2, 1up|nr-a|Cmax with one reservation, respectively. For
the case of arbitrary constant m our approach yields a PTAS and we have
shown that no FPTAS exists unless P = NP holds, even if the number of
reservations per machine is restricted to one.

Acknowledgements. The authors thank Erik Saule and Ulrich M.
Schwarz for many fruitful discussions.

References

1. A. Caprara, H. Kellerer, and U. Pferschy. The multiple subset sum problem.
Technical report, Technische Universität Graz, 1998.

12 F. Diedrich, K. Jansen, F. Pascual, D. Trystram

2. A. Caprara, H. Kellerer, and U. Pferschy. A PTAS for the multiple subset sum
problem with different knapsack capacities. Inf. Process. Lett., 73(3-4):111–118,
2000.

3. A. Caprara, H. Kellerer, and U. Pferschy. A 3/4-approximation algorithm for
multiple subset sum. J. Heuristics, 9(2):99–111, 2003.

4. C. Chekuri and S. Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM J. Comput., 35(3):713–728, 2005.

5. M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi. Approxi-
mation algorithms for the multiple knapsack problem with assignment restrictions.
J. Comb. Optim., 4(2):171–186, 2000.

6. M. R. Garey and D. S. Johnson. “strong” NP-completeness results: Motivation,
examples, and implications. J. ACM, 25(3):499–508, 1978.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

8. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. J. ACM, 34(1):144–162,
1987.

9. H.-C. Hwang, K. Lee, and S. Y. Chang. The effect of machine availability on the
worst-case performance of LPT. Disc. App. Math., 148(1):49–61, 2005.

10. O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. J. ACM, 22(4):463–468, 1975.

11. H. Kellerer. A polynomial time approximation scheme for the multiple knapsack
problem. In D. S. Hochbaum, K. Jansen, J. D. P. Rolim, and A. Sinclair, editors,
RANDOM-APPROX, volume 1671 of Lecture Notes in Computer Science, pages
51–62. Springer, 1999.

12. H. Kellerer, R. Mansini, U. Pferschy, and M. G. Speranza. An efficient fully poly-
nomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci.,
66(2):349–370, 2003.

13. H. Kellerer and U. Pferschy. A new fully polynomial time approximation scheme
for the knapsack problem. J. Comb. Optim., 3(1):59–71, 1999.

14. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
15. E. L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper.

Res., 4(4):339–356, 1979.
16. C.-Y. Lee. Parallel machines scheduling with non-simultaneous machine available

time. Disc. App. Math., 30:53–61, 1991.
17. C.-Y. Lee. Machine scheduling with an availability constraint. J. Global Optimiza-

tion, Special Issue on Optimization of Scheduling Applications, 9:363–384, 1996.
18. C.-Y. Lee, Y. He, and G. Tang. A note on “parallel machine scheduling with

non-simultaneous machine available time”. Disc. App. Math., 100(1-2):133–135,
2000.

19. J. Y.-T. Leung, editor. Handbook of Scheduling. Chapman & Hall, 2004.
20. C.-J. Liao, D.-L. Shyur, and C.-H. Lin. Makespan minimization for two parallel

machines with an availability constraint. European J. of Operational Research,
160:445–456, 2003.

21. S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. Wiley, 1990.

22. S. Sahni. Algorithms for scheduling independent tasks. J. ACM, 23(1):116–127,
1976.

23. M. Scharbrodt, A. Steger, and H. Weisser. Approximability of scheduling with
fixed jobs. J. Scheduling, 2:267–284, 1999.

