
Single approximation for
Multiobjective Max TSP

MCDM, June 16th 2011

Cristina Bazgan1, Laurent Gourvès1, Jérôme Monnot1,
Fanny Pascual2

1 : LAMSADE, University of Paris Dauphine, France
2 : LIP6, University Pierre et Marie Curie, France

Outline

• Introduction :

– the Multiobjective Max TSP

– our approach

• Results for the Biobjective Max TSP

– lower bounds

– a generic algorithm

– analysis of one case

• Dealing with many objectives

• Conclusion and further research

2

Max Traveling Salesman Problem

• Data: an undirected complete graph G=(V,E)

with nonnegative weights on the edges. Let n=|V|.

• Return: an hamiltonian cycle of maximum weight (sum
of its edges’ weights)

NP-hard problem

3

v2

v1

v4
v5

v3

2
3 1

1

96

4

10

9

8

Max Traveling Salesman Problem

• Data: an undirected complete graph G=(V,E)

with nonnegative weights on the edges. Let n=|V|.

• Return: an hamiltonian cycle of maximum weight (sum
of its edges’ weights)

NP-hard problem

3

v2

v1

v4
v5

v3

2
3 1

1

96

4

10

9

8

The Biobjective Max TSP

• Each edge has two weights : a and b.

4

v2

v3
v1

a(v1,v2) = weight of the objective a
on edge {v1,v2}.
a(T) = weight of objective a on the
set of edges T.

v2

v1

v4
v5

v3

Triangle inequality :
(v1,v2,v3)V3, a(v1,v2) + a(v2,v3)  a(v1,v3)

2,8

8,1

6,8

4,2

The Biobjective Max TSP

• Each edge has two weights : a and b.

4

v2

v3
v1

a(v1,v2) = weight of the objective a
on edge {v1,v2}.
a(T) = weight of objective a on the
set of edges T.

v2

v1

v4
v5

v3

Triangle inequality :
(v1,v2,v3)V3, a(v1,v2) + a(v2,v3)  a(v1,v3)

2,8

8,1

6,8

4,2

The Biobjective Max TSP

• Each edge has two weights : a and b.

4

v2

v3
v1

a(v1,v2) = weight of the objective a
on edge {v1,v2}.
a(T) = weight of objective a on the
set of edges T.

v2

v1

v4
v5

v3

Triangle inequality :
(v1,v2,v3)V3, a(v1,v2) + a(v2,v3)  a(v1,v3)

2,8

8,1

6,8

4,2

The Biobjective Max TSP

• Each edge has two weights : a and b.

• Aim : output a good cycle for both objectives.

• 3 cases :

0/1/2 objectives fulfill the triangle inequality 4

v2

v3
v1

a(v1,v2) = weight of the objective a
on edge {v1,v2}.
a(T) = weight of objective a on the
set of edges T.

v2

v1

v4
v5

v3

Triangle inequality :
(v1,v2,v3)V3, a(v1,v2) + a(v2,v3)  a(v1,v3)

2,8

8,1

6,8

4,2

Approximation of the Max TSP

One objective: an algorithm is r-approximate (r1) iff

Cost (solution returned)  r x Cost(optimal solution)

5

COPTO COPT3

2

Approximation of the Max TSP

One objective: an algorithm is r-approximate (r1) iff

Cost (solution returned)  r x Cost(optimal solution)

Best approximation ratio for the monobjective Max TSP:

- without the triangle inequality: 61/83  0.73
[Chen et al, Inf. Process. Letters, 1995]

- with the triangle inequality: 7/8 = 0.875
[Kowalik and Mucha, Theoretical Computer Science, 2009]

5

COPTO COPT3

2

Approximation of the Max TSP

Biobjective problem :

6

r-approximate algo =
algo r-approximate
on each objective.a

b COPT(b)

COPT(a)

(0,0)

Approximation of the Max TSP

Biobjective problem :

6

r-approximate algo =
algo r-approximate
on each objective.a

b COPT(b)

COPT(a) x
ideal point

(0,0)

Approximation of the Max TSP

Biobjective problem :

6

r-approximate algo =
algo r-approximate
on each objective.a

b COPT(b)

COPT(a) x
ideal point

3

2 COPT(b)

3

2 COPT(a)

(0,0)

Approximation of the Max TSP

Biobjective problem :

What is maximum value of r such that there exists an

r-approximate algorithm for the Max TSP? 6

r-approximate algo =
algo r-approximate
on each objective.a

b COPT(b)

COPT(a) x
ideal point

3

2 COPT(b)

3

2 COPT(a)

(0,0)

Multiobj. Max TSP: state of the art

• Efficient set approach:

– Randomized (1/k - )-approx. algo. for k objectives
[Bläser et al. ESA’2008] ; improved to (2/3 - )
[Manthey, STACS’2009]

– Deterministic (1/2k - )-approx. algo. for k
objectives [Manthey, TAMC’2011]

7

Multiobj. Max TSP: state of the art

• Efficient set approach:

– Randomized (1/k - )-approx. algo. for k objectives
[Bläser et al. ESA’2008] ; improved to (2/3 - )
[Manthey, STACS’2009]

– Deterministic (1/2k - )-approx. algo. for k
objectives [Manthey, TAMC’2011]

• Ideal point approach (for k=2): [Manthey, STACS’2009]

– There is no (1/3 + )-approximate algorithm

– If there is a r-approx algo for the Max TSP  a
r/3-approximate algo for the biobjective Max TSP
(i.e. 0.25-approx algo.; 0.29-approx algo. with 2
triangular inequalities).

7

Outline

• Introduction :

– the Multiobjective Max TSP

– our approach

• Results for the Biobjective Max TSP

– lower bounds

– a generic algorithm

– analysis of one case

• Dealing with many objectives

• Conclusion and further research

8

Lower bounds

• No objective fulfill the triangle inequality:
There is no (+)-approximate algorithm [Manthey,
STACS’2009]

9

3

1

Lower bounds

• No objective fulfill the triangle inequality:
There is no (+)-approximate algorithm [Manthey,
STACS’2009]

• Both objectives fulfills the triangle inequality:

– No (+)-approximate algorithm (n=4)

9

3

1

2

1

v3

1,0
v1

v4

v2

1,0

0,1 0,11,1
1,1

Lower bounds

• No objective fulfill the triangle inequality:
There is no (+)-approximate algorithm [Manthey,
STACS’2009]

• Both objectives fulfills the triangle inequality:

– No (+)-approximate algorithm (n=4)

9

3

1

2

1

v3

1,0
v1

v4

v2

1,0

0,1 0,11,1
1,1

3 possible cycles :

1,0

1,0

0,1 0,11,1
1,1

1,0

1,0

0,1 0,11,1
1,1

1,0

1,0

0,1 0,11,1
1,1

Cost=(2,2) Cost=(2,4) Cost=(4,2)

Lower bounds

• No objective fulfill the triangle inequality:
There is no (+)-approximate algorithm [Manthey,
STACS’2009]

• Both objectives fulfills the triangle inequality:

– No (+)-approximate algorithm (n=4)

– No (+)-approximate algorithm (n large) 9

3

1

2

1

4

3

v3

1,0
v1

v4

v2

1,0

0,1 0,11,1
1,1

3 possible cycles :

1,0

1,0

0,1 0,11,1
1,1

1,0

1,0

0,1 0,11,1
1,1

1,0

1,0

0,1 0,11,1
1,1

Cost=(2,2) Cost=(2,4) Cost=(4,2)

A generic algorithm

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

2) For each cycle Ci: remove the edge in CiMa which has
the minimum weight for objective a.

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

2) For each cycle Ci: remove the edge in CiMa which has
the minimum weight for objective a.

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

2) For each cycle Ci: remove the edge in CiMa which has
the minimum weight for objective a.

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

2) We obtain a partial tour

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

2) For each cycle Ci: remove the edge in CiMa which has
the minimum weight for objective a.

3) Add edges in order to obtain an hamiltonian cycle.

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

2) We obtain a partial tour

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

2) For each cycle Ci: remove the edge in CiMa which has
the minimum weight for objective a.

3) Add edges in order to obtain an hamiltonian cycle.

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

2) We obtain a partial tour

10

A generic algorithm

1) Build a maximum weight matching, Ma, for objective a.
Do the same for objective b: Mb .

2) For each cycle Ci: remove the edge in CiMa which has
the minimum weight for objective a.

3) Add edges in order to obtain an hamiltonian cycle.

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

2) We obtain a partial tour

3) We return this cycle.

10

Performance of this algorithm

We show that

Exemple: =1/2 in the general case.
(Proof: we remove the edge with min value on a on each cycle

 loss  a(Ma)/2)

11

a(cycle obtained)   a(Ma)

b(cycle obtained)   b(Mb)

Performance of this algorithm

We show that

Exemple: =1/2 in the general case.
(Proof: we remove the edge with min value on a on each cycle

 loss  a(Ma)/2)

Property: If

then the algorithm is (/2)-approximate.

Exemple: This algorithm is ¼-approximate.

11

a(cycle obtained)   a(Ma)

b(cycle obtained)   b(Mb)

a(cycle obtained)   a(Ma)
b(cycle obtained)   b(Mb) ,

Performance of this algorithm

We show that

Exemple: =1/2 in the general case.
(Proof: we remove the edge with min value on a on each cycle

 loss  a(Ma)/2)

Property: If

then the algorithm is (/2)-approximate.

Exemple: This algorithm is ¼-approximate.

Property: This algorithm is –approximate in
the general case.

11

a(cycle obtained)   a(Ma)

b(cycle obtained)   b(Mb)

a(cycle obtained)   a(Ma)
b(cycle obtained)   b(Mb) ,

27.0
14

221




Property: This algorithm is 3/8–approximate.

Proof: We show that a(output)  3/4 a(Ma) (same for b).

12

With the triangular inequality on a

Property: This algorithm is 3/8–approximate.

Proof: We show that a(output)  3/4 a(Ma) (same for b).

If at the end of Step (1):

• There is no cycle: a(output)  a(Ma)

12

With the triangular inequality on a

Property: This algorithm is 3/8–approximate.

Proof: We show that a(output)  3/4 a(Ma) (same for b).

If at the end of Step (1):

• There is no cycle: a(output)  a(Ma)

• There is one cycle and no path:

- with n vertices: a(output)  a(Ma)

- with (n-1) vertices:

12

With the triangular inequality on a

x

Property: This algorithm is 3/8–approximate.

Proof: We show that a(output)  3/4 a(Ma) (same for b).

If at the end of Step (1):

• There is no cycle: a(output)  a(Ma)

• There is one cycle and no path:

- with n vertices: a(output)  a(Ma)

- with (n-1) vertices:

12

With the triangular inequality on a

x

u

v

With the triangular inequality on a

Property: This algorithm is 3/8–approximate.

Proof: We show that a(output)  3/4 a(Ma) (same for b).

If at the end of Step (1):

• There is no cycle: a(output)  a(Ma)

• There is one cycle and no path:

- with n vertices: a(output)  a(Ma)

- with (n-1) vertices:

a(output)  a(Ma)
12

x

u

v

• There are several cycles and no path:

13

- Remove the edge with
smallest weight on b.

• There are several cycles and no path:

13

- Remove the edge with
smallest weight on b.

• There are several cycles and no path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.

y

x

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.

y

x

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)

y

x

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)

y

x

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)
Repeat this process until there is no more cycle.

y

x

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)
Repeat this process until there is no more cycle.

x y

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)
Repeat this process until there is no more cycle.

x y

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)
Repeat this process until there is no more cycle.

x y

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)
Repeat this process until there is no more cycle.

x y

e1

e2

• There are several cycles and no path:

• There is at least one cycle and one path:

13

- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by {x,e2} or {y,e2} (take the one which

has the best value on a)
Repeat this process until there is no more cycle.

 The cost of the output is  3/4 a(Ma) and  3/4 b(Mb)

x y

e1

e2

Outline

• Introduction :

– the Multiobjective Max TSP

– our approach

• Results for the Biobjective Max TSP

– lower bounds

– a generic algorithm

– analysis of one case

• Dealing with many objectives

• Conclusion and further research

14

Dealing with many objectives

If no objective fulfills the triangle inequality, there is no

approximate algorithm:

15

1,0,0
0,1,0

0,0,1
x

Dealing with many objectives

If no objective fulfills the triangle inequality, there is no

approximate algorithm:

Property: If all the objectives fulfill the triangle

inequality, then each cycle is n/2-approximate, and

there is no (n/2+)-approximate algorithm.

15

1,0,0
0,1,0

0,0,1
x

Let T be any cycle.
Let T* be the optimal cycle for objective i,
and let {x,y} be its best edge : i(x,y) i(T*)/n.
Using the triangular inequality: i(T)  2 i(T*)/n.

x

y

Conclusion and further research

• Approximation of the ideal point for the BiObjective
Max TSP in 3 cases:

– General case: 0.27  r  1/3

– One triangular inequality: 3/8  r  3/4

– Two triangular inequalities: 5/12  r  3/4

• Many objectives : best approximation is n/2 (with
triangular inequality)

• Intermediate cases: k-objective Max TSP?

• Multiobjective asymmetric Max TSP?

• Experimentations

17

