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Max Traveling Salesman Problem

• Data: an undirected complete graph G=(V,E) 

with nonnegative weights on the edges. Let n=|V|.

• Return: an hamiltonian cycle of maximum weight (sum
of its edges’ weights)

NP-hard problem
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The Biobjective Max TSP

• Each edge has two weights : a and b.
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a(v1,v2) = weight of the objective a
on edge {v1,v2}.
a(T) = weight of objective a on the 
set of edges T.
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The Biobjective Max TSP

• Each edge has two weights : a and b.

• Aim : output a good cycle for both objectives.

• 3 cases : 

0/1/2 objectives fulfill the triangle inequality 4
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Approximation of the Max TSP

One objective: an algorithm is r-approximate (r1) iff

Cost (solution returned)  r x Cost(optimal solution)
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Approximation of the Max TSP

One objective: an algorithm is r-approximate (r1) iff

Cost (solution returned)  r x Cost(optimal solution)

Best approximation ratio for the monobjective Max TSP:

- without the triangle inequality: 61/83  0.73
[Chen et al, Inf. Process. Letters, 1995]

- with the triangle inequality: 7/8 = 0.875
[Kowalik and Mucha, Theoretical Computer Science, 2009]
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Biobjective problem :
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Approximation of the Max TSP

Biobjective problem :

What is maximum value of r such that there exists an 

r-approximate algorithm for the Max TSP? 6

r-approximate algo = 
algo r-approximate
on each objective.a

b COPT(b)

COPT(a) x
ideal point
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Multiobj. Max TSP: state of the art

• Efficient set approach: 

– Randomized (1/k - )-approx. algo. for k objectives 
[Bläser et al. ESA’2008] ; improved to (2/3 - ) 
[Manthey, STACS’2009] 

– Deterministic (1/2k - )-approx. algo. for k 
objectives [Manthey, TAMC’2011]
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Multiobj. Max TSP: state of the art

• Efficient set approach: 

– Randomized (1/k - )-approx. algo. for k objectives 
[Bläser et al. ESA’2008] ; improved to (2/3 - ) 
[Manthey, STACS’2009] 

– Deterministic (1/2k - )-approx. algo. for k 
objectives [Manthey, TAMC’2011]

• Ideal point approach (for k=2): [Manthey, STACS’2009]

– There is no (1/3 + )-approximate algorithm

– If there is a r-approx algo for the Max TSP  a 
r/3-approximate algo for the biobjective Max TSP 
(i.e. 0.25-approx algo.; 0.29-approx algo. with 2 
triangular inequalities).
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Lower bounds

• No objective fulfill the triangle inequality: 
There is no (  +)-approximate algorithm [Manthey, 
STACS’2009]
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Lower bounds

• No objective fulfill the triangle inequality: 
There is no (  +)-approximate algorithm [Manthey, 
STACS’2009]

• Both objectives fulfills the triangle inequality:

– No (  +)-approximate algorithm (n=4)

– No (  +)-approximate algorithm (n large) 9
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A generic algorithm

1) Build a maximum weight matching, Ma, for objective a. 
Do the same for objective b: Mb . 

2) For each cycle Ci: remove the edge in CiMa which has 
the minimum weight for objective a.

3) Add edges in order to obtain an hamiltonian cycle.

1) We may obtain : a set of 
cycles of even length; 
paths of length 1; one 
path of even length.

2) We obtain a partial tour

3) We return this cycle.
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Performance of this algorithm

We show that

Exemple: =1/2 in the general case.
(Proof: we remove the edge with min value on a on each cycle 

 loss  a(Ma)/2)
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Performance of this algorithm

We show that

Exemple: =1/2 in the general case.
(Proof: we remove the edge with min value on a on each cycle 

 loss  a(Ma)/2)

Property: If 

then the algorithm is (/2)-approximate.

Exemple: This algorithm is ¼-approximate.

Property: This algorithm is –approximate in 
the general case.
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b(cycle obtained)   b(Mb)

a(cycle obtained)   a(Ma)
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Property: This algorithm is 3/8–approximate.

Proof: We show that a(output)  3/4 a(Ma) (same for b).
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With the triangular inequality on a

Property: This algorithm is 3/8–approximate.

Proof: We show that a(output)  3/4 a(Ma) (same for b).

If at the end of Step (1): 

• There is no cycle: a(output)  a(Ma) 

• There is one cycle and no path: 

- with n vertices: a(output)  a(Ma) 

- with (n-1) vertices: 

a(output)  a(Ma)
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• There are several cycles and no path:

• There is at least one cycle and one path: 
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- Remove the edge with
smallest weight on b.
 the cost of the output is
 3/4 b(Mb) .
- Go to the next case.

For cycle C1 : - delete the edge with smallest value on a.
- replace it by  {x,e2} or {y,e2} (take the one which

has the best value on a)
Repeat this process until there is no more cycle. 

 The cost of the output is  3/4 a(Ma)  and   3/4 b(Mb) 
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Dealing with many objectives

If no objective fulfills the triangle inequality, there is no

approximate algorithm:

Property: If all the objectives fulfill the triangle

inequality, then each cycle is n/2-approximate, and

there is no (n/2+)-approximate algorithm.
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Let T be any cycle.
Let T* be the optimal cycle for objective i, 
and let {x,y} be its best edge : i(x,y) i(T*)/n.
Using the triangular inequality: i(T)  2 i(T*)/n.
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Conclusion and further research

• Approximation of the ideal point for the BiObjective
Max TSP in 3 cases: 

– General case: 0.27  r  1/3

– One triangular inequality: 3/8  r  3/4

– Two triangular inequalities: 5/12  r  3/4

• Many objectives : best approximation is n/2 (with
triangular inequality)

• Intermediate cases: k-objective Max TSP?

• Multiobjective asymmetric Max TSP?

• Experimentations

17


