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with nonnegative weights on the edges. Let n=|V/|.

» Return: an hamiltonian cycle of maximum weight (sum
of its edges’ weights)

NP-hard problem
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The Biobjective Max TSP

« Each edge has two weights : aand b.

Vs a(vq,v,) = weight of the objective a

28 on edge {vy,v,}.
a(T) = weight of objective a on the

V3 set of edges T.

Triangle inequality :
V(v1.v2.v3)eV3, a(vy,vp) + a(va,vs) 2 a(vy,vs)
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« Aim : output a good cycle for both objectives.
» 3 cases:
0/1/2 objectives fulfill the triangle inequality 4




Approximation of the Max TSP

One objective: an algorithm is r-approximate (r<1) iff
Cost (solution returned) > r x Cost(optimal solution)
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One objective: an algorithm is r-approximate (r<1) iff
Cost (solution returned) > r x Cost(optimal solution)

i
2 C
5 Copt OPT

Best approximation ratio for the monobjective Max TSP:

- without the triangle inequality: 61/83 = 0.73
[Chen et al, Inf. Process. Letters, 1995]

- with the triangle inequality: 7/8 = 0.875
[Kowalik and Mucha, Theoretical Computer Science, 2009]



Approximation of the Max TSP
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Approximation of the Max TSP

Biobjective problem :
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What is maximum value of r such that there exists an
r-approximate algorithm for the Max TSP? 6



Multiobj. Max TSP: state of the art

+ Efficient set approach:

- Randomized (1/k - €)-approx. algo. for k objectives
[Bldser et al. ESA'2008] ; improved to (2/3 - ¢)
[Manthey, STACS2009]

- Deterministic (1/2k - €)-approx. algo. for k
objectives [Manthey, TAMC'2011]



Multiobj. Max TSP: state of the art

+ Efficient set approach:

- Randomized (1/k - €)-approx. algo. for k objectives
[Bldser et al. ESA'2008] ; improved to (2/3 - ¢)
[Manthey, STACS2009]

- Deterministic (1/2k - €)-approx. algo. for k
objectives [Manthey, TAMC'2011]

» Tdeal point approach (for k=2): [Manthey, STACS'2009]
- There is no (1/3 + ¢)-approximate algorithm

- If there is a r-approx algo for the Max TSP = a
r/3-approximate algo for the biobjective Max TSP
(i.e. 0.25-approx algo.; 0.29-approx algo. with 2
triangular inequalities).
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Lower bounds

* No objective fulfill the triangle inequality:

There is no (2 +¢)-approximate algorithm [Manthey,
STACS2009]

Both objectives fulfills the triangle inequality:
- No (i+¢)-approximate algorithm (n=4)

1,0 y 3 possible cycles :
. 1,0 1,0 1,0
0,1 0,1 0,1 0,10, 0,1
\Y
3 1,0 1.0 1.0
Cost=(2,2) Cost=(2,4) Cost=(4,2)

- No (3+¢)-approximate algorithm (n large) o
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A generic algorithm

1) Build a maximum weight matching, M, for objective a.
Do the same for objective b: M, .

2) For each cycle C;: remove the edge in C;M_ which has
the minimum weight for objective a.

3) Add edges in order to obtain an hamiltonian cycle.

1) We may obtain : a set of
cycles of even length;
paths of length 1; one
path of even length.

2) We obtain a partial tour
3) We return this cycle.
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Performance of this algorithm

a(cycle obtained) > a a(M,)

We show ’rhcn‘{ b(cycle obtained) 2 o b(M,)

Exemple: a=1/2 in the general case.

(Proof: we remove the edge with min value on a on each cycle
= loss <a(M,)/2)
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We show ’rhcn‘{ b(cycle obtained) 2 o b(M,)

Exemple: a=1/2 in the general case.

(Proof: we remove the edge with min value on a on each cycle
= loss <a(M,)/2)

Property: If a(cycle obtained) > a a(M,)
b(cycle obtained) > a b(M,) ,

then the algorithm is (a/2)-approximate.

Exemple: This algorithm is #-approximate.
1+ 2\/7

Property: This algorithm is
the general case.

~0.27 -approximate in
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With the triangular inequality on a
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Dealing with many objectives

If no objective fulfills the triangle inequality, there is no

approximate algorithm: 06
01,0 g
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Property: If all the objectives fulfill the triangle
inequality, then each cycle is n/2-approximate, and
there is no (n/2+¢)-approximate algorithm.

Let T be any cycle.

Let T* be the optimal cycle for objective i,

and let {x,y} be its best edge : i(x,y)= i(T*)/n.
Using the triangular inequality: i(T) > 2 i(T*)/n.
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Conclusion and further research

+ Approximation of the ideal point for the BiObjective
Max TSP in 3 cases:

- General case: 0.27 < r<1/3
- One triangular inequality: 3/8 < r< 3/4
- Two triangular inequalities: 5/12 < r < 3/4

 Many objectives : best approximation is n/2 (with
triangular inequality)

+ Intermediate cases: k-objective Max TSP?
* Multiobjective asymmetric Max TSP?
- Experimentations
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