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Abstract. We consider the traffic grooming problem in passive WDM
star networks. Traffic grooming is concerned with the development of
techniques for combining low speed traffic components onto high speed
channels in order to minimize network cost. We first prove that the traf-
fic grooming problem in star networks is NP-hard for a more restricted
case than the one considered in [2]. Then, we propose a polynomial time
algorithm for the special case where there are two wavelengths per fiber
using matching techniques. Furthermore, we propose two reductions of
our problem to two combinatorial optimization problems, the constrained
multiset multicover problem [3], and the demand matching problem [4] al-
lowing us to obtain a polynomial time Hyc (resp. 2 + %) approximation
algorithm for the minimization (resp. maximization) version of the prob-
lem, where C is the capacity of each wavelength.
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1 Introduction

Recently, in order to utilize bandwidth more effectively, new models appeared
allowing several independent traffic streams to share the bandwidth of a light-
path. It is in general impossible to setup lightpaths between every pair of edge
routers and thus it is natural to consider that traffic is electronically switched
(groomed) onto new lightpaths toward the destination node. The introduction of
electronic switching increases the degree of connectivity among the edge routers
while at the same time it may reduce significantly wavelength requirements for
a given traffic demand. The drawback of this approach is that the introduction
of expensive active components (optical transceivers and electronic switches)
may increase the cost of the network. These observations motivated R. Dutta
and G.N. Rouskas [2] to study the traffic grooming problem that we consider in
this paper in order to find a tradeoff between the cost of the network and its
performance.

We focus on star networks composed by a set of transmitters, a set of receivers
and a hub, and the goal is to minimize the total amount of electronic switching.
This cost function measures exactly the amount of electronic switching inside
the network (but it only indirectly captures the transceiver cost). Our interest
to star networks besides their simplicity, which allows us to provide the first
approximation algorithms with performance guarantee for this variant of the
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traffic grooming problem, is also motivated by their use in the interconnection
of LANs or MANs with a wide area backbone.

Problem definition

We consider a network in the form of a star with NV 4+ 1 nodes. There is a single
hub node which is connected to every other node by a physical link. All the
nodes, except the hub, are divided into two groups V7 and V5: the nodes in V}
are the transmitters and the nodes in V5 are the receivers. The hub is numbered
0 and the N other nodes are numbered from 1 to N in some arbitrary order.
Each physical link consists of a fiber, and each fiber can carry W wavelengths.
Each wavelength has a capacity C, expressed in units of some arbitrary rate.
We represent a traffic pattern by a demand matrix T' = [t;;], where integer ¢;;
denotes the number of traffic streams (each unit demand) from node 7 € V; to
node j € V5. We do not allow the traffic demands to be greater than the capacity
of a lightpath, i.e. for all (¢,7),0 < t;; < C.

The hub has both optical and electronic switching capabilities: it let some
lightpaths pass through transparently, while it may terminate some others. Traf-
fic on terminated lightpaths is electronically switched (groomed) onto a new
lightpath towards the destination node. A traffic demand (or request) ¢;; must
have its own wavelength from 4 to the hub and from the hub to j to be optically
routed, whereas it can share a wavelength with some other traffic demands if it
is electronically switched. The goal we consider in this paper is to minimize the
total amount of electronic switching at the hub. This problem is often called the
traffic grooming problem.

R. Dutta and G.N. Rouskas considered in [2] the traffic grooming problem in
several network topologies, including a star network. However there are differ-
ences between their problem and ours: in [2], each node of the network, including
the hub, can be a transmitter and a receiver, and traffic demands between two
nodes are allowed to be greater than the capacity of a wavelength (i.e. it is pos-
sible that t;; > C for some ¢, ). To distinguish the two problems, we will call
their problem the traffic grooming problem in an active star, and our problem
the traffic grooming problem in a passive star (see Section 4 for an integer linear
programming formulation of the problem). Once we know which traffic demands
are optically routed, the wavelength assignment problem is easy in the case of a
passive star network.

There are in fact two versions of the traffic grooming problem: either we
want to minimize the total amount of electronic switching at the hub (this is
the minimization version), or we want to maximize the total amount of traffic
which is optically routed (this is the mazimization version). These two versions
are equivalent (i.e. an optimal solution for one is also an optimal solution for
the other one) because the optimal solution of the maximization problem is
equal to the sum of all the traffic demands, minus the optimal solution of the
minimization problem.

Our results are as follows. First, we show in Section 2 that the traffic groom-
ing problem in a passive star is NP-Complete, in both the minimization and the



maximization versions of the problem. Then we show in Section 3 that these
problems are polynomially solvable if there are only two wavelengths per fiber
(W = 2): we give an algorithm which gives an optimal solution. In Section 4, we
show that we cannot deduce a constant approximation guarantee of the maxi-
mization (resp. minimization) version from a constant approximation guarantee
of the minimization (resp. maximization) version of the problem, and we give
two approximation algorithms. The first one concerns the minimization ver-
sion: we transform our problem in a constrained multiset multicover problem
[3], and we get an approximation guarantee of Hac. The second approximation
algorithm concerns the maximization version: we transform our problem in a
demand matching problem in a bipartite graph [4], and we obtain an approxi-
mation guarantee of (2 + %) We conclude the paper in Section 5.

2 Hardness results

Let us show in this section that the decision version of the grooming problem in
a passive star is NP-Complete.

In order to do this proof, we were inspired by the proof of R. Dutta and G.N.
Rouskas in [2]: in this paper they showed that their traffic grooming problem
is NP-complete. They reduced the decision version of the Knapsack problem to
their problem. We do the same reduction, replacing traffic demands ¢;; greater
than C by several traffic demands of the same weight from 4, or to j. They also
used traffic demands to the hub (or from the hub). We replace these traffic de-
mands by traffic demands to some new nodes (or from some new nodes) and we
force these traffic demands to be switched electronically at the hub.

We reduce the decision version of the Knapsack problem [1] to our grooming
problem: let Q € Z1, is there a solution of our grooming problem in which the
amount of optically routed traffic is greater or equal to )7 An instance of the
Knapsack problem is given by a finite set U of cardinality n, for each element
u; € U a weight w; € Z1, and a value v; € ZT,Vi € {1,2,...,n}, a target weight
B € Z*, and a target value K € ZT. The problem asks whether there exists a bi-
nary vector X = {1, s, ..., 2, } such that ., z;w; < B, and Y zv; > K.
Given such an instance, we construct a star network using the following trans-
formation: W = n, C = maz;(w; +v;) +1, Q = K + Y1, (C — w; — v;) and
the traffic matrix is represented on the Figure 1. In this figure the nodes are the
nodes of the star network (the hub is not represented), and the links represent
the traffic demands. Traffic demands equal to 0 are not represented, and the
value on the link from a node a to a node b is ¢, 3. Nodes from n + 1 to n + 10
represent each one a node of the network, but nodes iy, jo, ka, la, Ma, Po and gq
represent each one several nodes:

For the nodes 74, a ranges from 1 to n (i.e. i, represents the nodes 41,12, ..., in);
for the nodes j,, a ranges from 1 to L("C__zicj;
| Zhep(e=5) |,

for the nodes k,, a ranges from 1 to
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Fig. 1. Illustration of the traffic matrix. Transmitters are on the left and receivers on
the right.

Lemma 1 Let a be a transmitter and b o receiver. It is not possible to have a
lightpath from a to b, if (a,b) # (n+ 1,i4) or (a,b) # (n +2,iq) .

Proof: Let us show that each traffic demand different from 0 between each
couple (a,b) of nodes in V1 x V2 ((a,b) # (n+ 1,iq) and (n + 2,44)), cannot be
optically routed. In order to show that it is not possible to route ¢, optically,



we will see that either the sum of the traffic streams from a, or the sum of the
traffic streams to b, is equal to nC, and that ¢, is smaller than C.

— Vz € Va,tp19, cannot be optically routed. Indeed:
Zz Ve tn+9,z = Z tn+9,r + tn+9,n+10 + E tn+9,i
EVa B 8 B B
= [PEEERE (O — 1) + (nC — Yy wy) mod (C — 1)
+ ZZ:l Wi
=nC
and tnyo,ra < C, tnto,ntio < C, tny9,ia < C.
— Vz € Vs,t;, » cannot be optically routed. Indeed:
Y wcts tiae = 28 tinsip T 228 tiaps T+ tiantr
=n(C-1)+ |z25](C =1)+n mod (C —1)
=nC
and i ig < C, tinps < C, tjontr <C.
— Vz € Vs, t,43, cannot be optically routed. Indeed:
ZweVQ tnt3,z = E,B tnt3,is + Zg tnt3,q5 T tnt3n8
C—n((n—2)C mod (C—1
= n((n—2)C mod (C —1)) + | 2¢=ln=2)C0 mod (C1) | (¢ 1)
+ (nC —n((n — 2)C mod (C —1))) mod (C —1)
=nC
and tpy3,, < C, tni3,qa < C, tni3nts < C.
— Vx € V1,t,.1, cannot be optically routed. Indeed:
EmeVl toke = tnt1,k, T+ 25 tig ke + tnts,ka
=(C-1)+ 22 (€ - 1) + (nC = (C = 1)) mod (C —1)
=nC
and i1k, < C, tlﬁ,ka <C, s ke < C.
— Vz € Vi,t,n44 cannot be optically routed. Indeed:
Zm€V1 tar:,n+4 = E,@ tm,g,n+4 + tn+6,n+4 + tn+1,n+4

_ nC—((Zk:l(wkC'__B;)) mod (0—1))(0_ 1)+ (|nC — ((22:1 (wg—

B)) mod (C—-1))]) mod (C-1)+(>"}_; (wx—B)) mod (C—1)
=nC
and tnti,nta < C, tmﬁ,n+4 < C, tnyr6,ntra < C. O

Lemma 2 Let o € {1,...,n}. Traffic demands tny1:, and tpiyo,, connot be
optically routed simultaneously.

Proof: The node i, receives from the hub a total traffic equal to: tp49,4, +
Y ptisia T tntsi. = wi, + L%J(C - 1)+ ((n-2)C) mod (C -1) =
(n—-2)C+w;, >(n—-2)C

Since W = n, there is at most one wavelength left to have a lightpath to the
node . O

Lemma 3 Let a € {1,...,n}. It is possible to have a lightpath from n +1 to i,,
or fromn + 2 to iq.



Proof:

— Let us show that it is possible to have a lightpath from n + 1 to i4:
(Zme‘,hw#n_i_l tri, =M —2)C+w;, +(C—-wy, —vi,) =n—-1)C—v;, <
n—1
and, since Ji, € {1,...,n},B > w;, (otherwise the instance of the Knap-
sack problem would be trivial) and C = maz;_(v;, + w;_,) + 1, we have
> eeVaatin tntie = 2p—y (wp — B) < (n —1)C. So there is enough band-
width to have a lightpath from n + 1 to i,.

— Let us show that it is possible to have a lightpath from n + 2 to i,:
> eviasmia toin = (1 —2)C +w;, + (€ —w;,) = (n—1)C < (n— 1C
and > v, o tnt2,e = 0 < (n —1)C. So there is enough bandwidth to
have a lightpath from n + 2 to i,. m|

Since tpy1,4, and tpio,, (@ € {1,...,n}) are the only traffic demands which
can be optically routed (Lemma 1) and since, for each a € {1,...,n} it is possible
to have a lightpath from n + 1 to i4, or from n + 2 to 44, (Lemma 3) but not
both (Lemma 2), we need only to consider solutions in which there is a lightpath
from exactly one of the nodes n + 1, n + 2, to each node i, to determine the
satisfiability of the instance.

Let X denote a candidate solution of the Knapsack instance. Consider the
solution of the grooming problem in which X (respectively, X) represents the
indicator vector of the lightpaths formed from node n + 1 (resp., n + 2). Nodes
iq are numbered from 1 to n: let a € {1,...,n}, we have i, = a. Applying the

transformation to the satisfiability criteria of Knapsack, we obtain:

E?:l z;w; < B
& Vin1 #i(C = tnar,i) < 351 (C = tngai) = (bngna + g i ks)
e Y (Titny1,i) + (bngi,npa + Z@ tnyihs) < (0 — Y z)C

This inequality means that the amount of electronically routed traffic de-
mands (the left hand side of the inequality) has to be smaller than or equal to
the capacity of a link, C, times the number of links available (i.e. n minus the
number of traffic demands which are electronically routed).

Yz > K
S 3 (bt — tng2,) = Q — >y tnt2y
n J—
& Y (@itny1,i + Titnga,i) >

This inequality means that the total amount of optically routed traffic has
to be greater than or equal to Q.

Therefore, a vector X either satisfies both the Knapsack and the grooming
instance, or fails to satisfy both. Hence, the grooming instance is satisfiable if
and only if the Knapsack instance is.



Theorem 1 The decision versions of the minimization and the maximization
versions of the grooming problem in a passive star are NP-Complete.

Proof: We already proved that the decision version of the minimization version
of the grooming problem in a passive star is NP-Complete. Since we can easily
switch from a version to the other one (OPT 4, = (Zz’EVl eV tij) — OPTpin),
the decision version of the maximization version of the grooming problem in a
passive star is also NP-Complete. |

3 Polynomial time algorithm for W=2

Let us show that the grooming problem in a passive star is polynomially solvable
when the number of wavelengths on each fiber, W, is equal to 2. We will give a
polynomial time algorithm which gives an optimal solution of this problem.

First of all, let us remark that in each row (or column) of T" where there is
at least three values different from 0, we can at most route one traffic demand
optically, because each lightpath which is not electronically switched at the hub
needs a wavelength for him only, and we have only two wavelengths per fiber.
On the contrary, when there is in a row (or column) only two values different
from 0, it may be possible to route optically both. We transform the matrix T in
a matrix 7" in which it is possible to route optically at most one traffic demand
for each row, and one traffic demand for each column: if a row of T has two
and only two values t;; and t;; different from 0, we create two rows i1 and 12
in T' such that t}; ; = t;;, t;, ; = tij and the other values in these rows are 0.
Similarly, if a column of T" has two and only two values t;; and ¢;; different from
0, we create two columns j1 and j2 in 7" such that t; ;; = ti;, t; j = tw; and
the other values in these columns are 0. In this way, there is at most one request
per row and one request per column which can be optically routed.

Let us now transform our traffic matrix T” in another matrix M = [m;;], in
which we will look for a maximum weighted matching. In order to do that, we
will apply the following rule: if a traffic demand tgj cannot be optically routed
(ie. D opzitiy > Cor 3oty > C) then m;; = —oo. Otherwise, m;; = t;;.
Since there is in M at most one request per row and one request per column
which can be optically routed, and since a traffic demand m;; is different from
—oo if and only if it is allowed to be optically routed, the result of a maximum
weighted matching in the bipartite graph whose adjacent matrix is M, is an
optimal result for the traffic grooming problem whose traffic matrix is 7T'.

Theorem 2 The minimization and the mazimization versions of the traffic
grooming problem in a passive star are polynomially solvable if the number of
wavelengths per fiber is equal to two.

Proof: The optimal solution of the minimization version and the optimal solu-
tion of the maximization version are the same, and the algorithm above solves



polynomially these problems. |

4 Approximation algorithms

Theorem 3 It is not possible to deduce a constant approzimation guarantee for
the mazimization (resp. minimization) version of the traffic grooming problem
in a passive star network from a constant approximation algorithm for the min-
imization (resp. mazimization) version.

Proof: Let OPT,,,, be the cost of an optimal solution of the maximization
version (i.e. the maximum amount of traffic which can be optically routed) and
OPT,,in, the cost of an optimal solution of the minimization version (i.e. the
minimum amount of traffic which is electronically switched at the hub in a fea-
sible solution). Let S be a solution of the traffic grooming problem in a passive
star. Let denote ¢pa,(S) the cost of the maximization version (i.e. ¢pmqz(S) is
the amount of traffic which is optically routed in the solution S) and ¢;in(S)
the cost of the minimization version (i.e. ¢yin(S) is the amount of traffic which
is electronically switched at the hub in the solution S).

Let £; and €5 be two real numbers such that 0 < gy < 1 and 0 < g5. Let
us show that it is not possible to deduce a (1 — &;)-approximation guarantee
for the maximization version from a (1 + &3)-approximation algorithm for the
minimization version: Consider an instance I of the problem, where we can
at most route only one traffic stream optically (OPTy.; = 1 and OPT i, =
(Xiews.jevs tij) —1). Consider a solution S of I where all the traffic demands are

electronically switched at the hub (cmaes(S) = 0 and cmin(S) = X v, jevs tis)-

r cmin(S) _ Eievl,jew tij
If > icvi jev, tij is large enough, we have gp=> = Creviev, i)—1 <1l+e

but there is no €; < 1 such that 8"#’722 = % is greater than or equal to 1 — &;.

Let us show that it is possible to have an instance such that 3, v, oy, tij
is as big as we wish and where we can at most route one traffic stream opti-
cally: consider the instance where we have 2W transmitters, 2 receivers, and
the traffic matrix [¢;;] is such that t;; = 1; Vi € {2,3,...,2W}, ;1 = 0; and
Vi € {1,...,2W}, t;» = £. The only traffic demand which can be optically
routed is 1,1 because the second receiver receives W traffic streams, and each
traffic demand is different from C'.

Similarly, let us show that it is not possible to deduce a (1+&3)-approximation
guarantee for the minimization version from a (1 — &1)-approximation algo-
rithm for the maximization version: Consider an instance I of the problem,
where all the traffic demands can be optically routed (OPT 4z = Zievl evs ti
and OPT,,;, = 0). It is trivial that such an instance exists. Consider a so-
lution S of I where all the traffic streams, except two, are optically routed

(cmaz(S) = (EieV1,jeV2 ti;) — 2 and cmin(S) = 2). If Ez’eVl,jeVz t;; is large

; . tij)—2 .
(c),y;m(fi _ Glievy.jew, tis) > 1 —¢; but there is no ey > 0

enough, we have —
i€V1,jEVD tij



such that g’;;;,is 3 = 2 is smaller than or equal to 1 + &». m|

4.1 Approximation algorithm for the minimization version

Let us give an integer programming formulation of the minimization version of
the traffic grooming problem in a passive star. Let denote z;; € {0,1} a variable
which indicates whether the traffic demand ¢;; is optically routed (z;; = 0) or
electronically switched at the hub (z;; = 1). The objective is to:

Minimize E ;L'ijtij (1)
i€V1,jEV,

We have two types of constraints:
constraints on the frequencies:

Vi€V1,Z.’L'ijZ|V2|—W (2)
JEV2
Vi€ Ve, Y wiy > Vi| - W (3)
i€y
constraints on the traffic:
VieVi, Y (1—i;)(C—ty) SWC = >t (4)
jEVa JEVR
Vi€Ve, Y (1—2y4)(C—ty) SWC =ty ()
IS % A%

Inequalities (2) (resp.(3)) mean that at most W traffic demands per transmitter
(resp. receiver) can be optically routed, because we need one wavelength for each
traffic demand optically routed. Inequalities (4) and (5) mean that the unused
space (C' — t;;) left when t;; is optically routed, has to be smaller than the free
space available (i.e. the total amount of bandwidth minus the total amount of
traffic demands). It is also equivalent to say that the amount of electronically
routed traffic demands has to be smaller than the capacity of a link, C, times
the number of links available (i.e. W minus the number of traffic demands which
are optically routed).

Constrains (4) and (5) are equivalent to:

Vie Vi, Y wi;(C —tyy) = C(|Va| - W) (6)
JEV,
Vi€ Vo, Y wi(C —ty) > C(IVi| = W) (7)

i€y



Note that the constraints on the traffic imply the constraints on the frequencies:
if we divide by C' the constraints on the frequencies we have:

. ti;
VieVi, Y miy( —?J)Z|V2|—W (8)
JEV2
. tis
Vi€V, Y (1= 5) 2 M -W 9)
i€Vy

Since t;; < C, these last inequalities imply the constraints on the frequencies (2)
and (3).

So we can formulate our problem in the following way:

Minimize Z .Z‘ijtij (10)
i€V1,jEV,
subject to:

Vie Vi, Y 2ii(C —tiy) > C(|Va| = W) (11)

JjEV2
Vi€ Vo, Y 2(C —ty) > C(IVi| = W) (12)

i€V
VieVi,j € Va,ay; 6{0,1} (13)

Theorem 4 There exists a polynomial time Hoc-approzimation algorithm for
the minimization version of the traffic grooming problem in a passive star.

Proof: We will transform the minimization version of the traffic grooming prob-
lem in a passive star into a constrained multiset multicover problem. Given a
universal set I, a collection of subsets of i/, T' = {S1, S2, ..., Sk }, and a cost func-
tion ¢: T — Q1 the set cover problem asks for a minimum cost sub-collection
C € T that covers all the elements of U (i.e. Ugee S = U). The multiset multi-
cover is a natural generalization of the set cover problem: in this problem each
element e occurs in a multiset S with arbitrary multiplicity denoted m(S,e),
and each element e has an integer coverage requirement r., which specifies how
many times e has to be covered. In the constrained multiset multicover prob-
lem, each subset S € T is chosen at most once. Thus the integer program is:
Minimize )¢ ¢(S)zg subject to > m(S,e)xs > r. and x5 € {0,1}.

Let us show the transformation of the traffic grooming problem into the con-
strained multiset multicover problem. This transformation comes directly from
the integer programming formulation of the problem: for each request from the
transmitter ¢ € Vi, denoted by e;, to the receiver j € V3, denoted by r;, we
create the subset S;; which contains (C' — t;;) times e; and (C' — t;;) times r;.
The cost of this subset is ¢(S;;) = ¢;;. The covering requirement of each element
e € Vi is re = C(|Va| — W), and the covering requirement of each element e € V5



is re = O([Vi| = W).

S. Rajagopalan and V. Vazirani give in [3] a greedy approximation algorithm
for the constrained multiset multicover problem. This algorithm consists in it-
eratively picking the most cost-effective set from T and removing this set from
T. The cost-effectiveness of a set S is the average cost at which it covers new
elements, i.e. the cost of S divided by the number of its elements which are not
yet covered. They proved that this algorithm has an approximation guarantee
of Hy, the k-th harmonic number (i.e. Hy =1+ 3 + ... + 1), where k is the size
of the largest multiset in the given instance. In our case, the size of a multiset
Sij is 2C — 2t;;, which is smaller than 2C. So we obtain a solution of the traffic
grooming problem which has an approximation guarantee of Haoc < log(2C) +1.
O

4.2 Approximation algorithm for the maximization version

The maximization version of the traffic grooming problem in a passive star is
the following one:

Maximize Z Yijtij (14)
1€V1,jEVR
subject to:

ViEVl, Zyij(C—tz-j) < CW — Ztij (15)

JjEV2 JEV2
Vi€ Ve, Y uii(C —tyj) SCW = 3ty (16)

i€V i€V
VieVi,je€Va,y; €{0,1} (17)

Here y;; indicates whether ¢;; is optically routed (y;; = 1) or electronically
switched at the hub (y;; = 0). This integer programming formulation of the
problem is obtained by replacing z;; in the integer programming formulation of
the minimization version by 1 — y;;.

Theorem 5 There exists a polynomial time (2 + %)—approwimation algorithm
for the mazximization version of the traffic grooming problem in a passive star.

Proof: Let us now transform this problem into a demand matching problem [4].
The demand matching problem is the following one: take a graph G = (V, E) and
let each node v € V' have an integral capacity, denoted by b, . Let each edge e =
(u,v) € E have an integral demand, denoted by d.. In addition, associated with
each edge e € F is a profit, denoted by p.. A demand matching is a subset M C E
such that 3, c5(,)nnr de < by for each node v. Here 6(v) denotes the set of edges
of G incident to v. The demand matching problem is to find a demand matching



which maximizes }_ 5 pe. Thus the integer program is: Maximize . 5 5=z
subject to: Vv € V, 3" 5(,) Te < by and Ve € E, z. € {0,d.}.

B. Shepherd and A. Vetta showed in [4] that a randomized algorithm provides
a factor (2 + %)—approximation guarantee for the demand matching problem in
bipartite graphs.

Let us show the transformation of the traffic grooming problem in a passive
star into the demand matching problem: Ve € (Vi X V3), Ze = ye(C —t.) , pe =
te, de = C —te. Yo € V1, by = CW =37y tyj and Yo € Vo, by = CW —
Eievl tiv-

Since there is a factor (2+§)—appr0ximation algorithm for the demand match-
ing problem, there is also a factor (2+ %)—approximation algorithm for the traffic
grooming problem in a passive star. O

Conclusion

We showed in this paper that the traffic grooming problem in a passive star
is NP-Complete, in both the minimization and the maximization versions of
the problem. We showed that these problems are polynomially solvable if there
are two wavelengths per fiber: we gave an algorithm which gives an optimal
solution. We showed that we cannot deduce a constant approximation guarantee
of the maximization (resp. minimization) version from a constant approximation
guarantee of the minimization (resp. maximization) version of the problem. We
gave two approximation algorithms and we obtained an approximation guarantee
of Hac for the minimization version and an approximation guarantee of (2+%) for
the maximization version. Since the solutions returned by these algorithms are
all solutions of the maximization version as well as solutions of the minimization
version of the problem, it would be interesting to program these algorithms and
compare their results.
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