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Laurent Gourvès1, Jérôme Monnot1, Fanny Pascual2, and Daniel Vanderpooten1
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Abstract. This article deals with a bi-objective matching problem. The input is a com-
plete graph and two values on each edge (a weight and a length) which satisfy the triangle
inequality. It is unlikely that every instance admits a matching with maximum weight
and maximum length at the same time. Therefore, we look for a compromise solution, i.e.
a matching that simultaneously approximates the best weight and the best length. For
which approximation ratio ρ can we guarantee that any instance admits a ρ-approximate
matching? We propose a general method which relies on the existence of an approximate
matching in any graph of small size. An algorithm for computing a 1/3-approximate
matching in any instance is provided. The algorithm uses an analytical result stating
that every instance on at most 6 nodes must admit a 1/2-approximate matching. We
extend our analysis with a computer-aided approach for larger graphs, indicating that
the general method may produce a 2/5-approximate matching. We conjecture that a
1/2-approximate matching exists in any bi-objective instance satisfying the triangle in-
equality.
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1 Introduction

For many optimization problems, there is a need to deal with several aspects of a solution,
at the same time. In multi-objective optimization, a problem has a set of feasible solutions S
and k > 1 objective functions fi : S → IR, i ∈ {1, . . . , k}. For each fi, it is also specified if
the function should be minimized or maximized. Suppose every fi should be maximized and
let opti denote maxs∈S fi(s), for all i ∈ {1, . . . , k}. For a given instance of a multi-objective
problem, the ideal point (opt1, . . . , optk) is the image of a (not necessarily feasible) solution
reaching optimality on all objective functions, at the same time.

In practice, it is unlikely that the ideal point is the image of a feasible solution. We thus need
to resort to approximation. A feasible solution s is said to be a ρ-approximation of the ideal
point (or, in short, a ρ-approximate solution), for ρ ∈ (0, 1], if fi(s) ≥ ρ opti, i ∈ {1, . . . , k}.

The existence of a feasible ρ-approximate solution is not guaranteed for every possible ratio
ρ ∈ (0, 1]. Therefore, it is challenging to identify, for a given problem, the best approximation
factor under which the existence of a feasible ρ-approximate solution is always guaranteed. It
is also relevant to have a constructive approach: what is the largest ratio ρ ∈ (0, 1] such that a
feasible ρ-approximation of the ideal point can be computed in polynomial time?

In this article, we focus on matching problems, which are central in combinatorial optimiza-
tion problems. In particular, we deal with a bi-objective matching problem. The set of feasible
solutions is every subset of pairwise non-adjacent edges. Each edge e has a non-negative weight
w(e) and a non-negative length ℓ(e), where both objectives satisfy the triangle inequality.
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After a short review of the literature related to our problem (section 2), we give in section
3 a formal definition of the model, together with a motivation for restricting ourselves to
two objectives satisfying the triangle inequality. Section 4 is devoted to the computational
complexity of the bi-objective matching problem on complete graphs. In section 5 we give an
approximation algorithm. The result is a general method which, combined with a technical
lemma, provides an approximation algorithm with performance guarantee 1/3.

In section 6 we reuse the general method but we substitute the technical lemma with com-
putational results, to give an insight about possible improvements of the previous performance
guarantee of 1/3. Some upper bounds are given in section 7. We end this article with concluding
remarks.

2 Related work

This article falls in the field of multi-objective combinatorial optimization (see [1] Chapter 8 in
particular). A prominent solution concept in multi-objective optimization is the Pareto set P
(a.k.a. Pareto curve [2]). For every feasible solution s, P contains a feasible solution s∗ such
that the image of s∗ weakly dominates1 the image of s. However, the notion of Pareto set is
sometimes problematic since, for some instances, P must contain a number of solutions that
is not polynomial in the input size. Therefore, no algorithm can compute P in polynomial
time. Another issue comes from computational complexity because the multi-objective version
of many polynomial single-objective problems is NP-hard (this is for example the case for the
minimum cost spanning tree problem [3] and for the minimum assignment problem [4]). We can
remedy to these difficulties with the help of approximation. If the maximization is retained for
every fi, then we say that s′ is a ρ-approximation of s, with ρ ∈ (0, 1], when fi(s

′) ≥ ρ fi(s) for
all i ∈ {1, . . . , k}. An approximate Pareto set Pρ contains a ρ-approximation for every feasible
solution.

Interestingly, the notion of approximate Pareto set helps to circumvent the two aforemen-
tioned difficulties. For a constant number of objectives, Papadimitriou and Yannakakis [2] have
shown that for every ρ ∈ (0, 1], there always exists an approximate Pareto set Pρ such that |Pρ|
is polynomial in both the input size and (1− ρ)−1. Moreover, for the multi-objective version of
some paradigmatic problems in combinatorial optimization (e.g. minimum cost spanning tree),
Pρ can be computed in polynomial time.

Usually, no explicit upper bound on |Pρ| is given. However, we can be interested in fixing the
size of an approximate Pareto set and try to provide the best performance guarantee. Because
Pρ may contain an overwhelming number of solutions, limiting its size is useful (in a decision
process for example). When the size of an approximate Pareto set is upper bounded, we cannot
guarantee that every approximation factor can be achieved. Intuitively, the larger the size of
the approximation set, the more accurate it can be. In fact, it is not difficult to see that a
ρ-approximation of the ideal point is just a ρ-approximate Pareto set of size 1. Therefore, we
interchangeably talk about ρ-approximation of the ideal point and ρ-approximate Pareto set
(with a single solution).

Approximation of the ideal point has been done for the multi-objective versions of many
well-studied optimization problems. In [5–7], the authors study scheduling problems with two
classical objective functions (e.g. makespan, sum of completion times, etc). They show the
existence (and computation) of schedules that are approximately optimal for the objective
functions, at the same time.

1 For k objectives functions to be maximized, s∗ weakly dominates s when fi(s
∗) ≥ fi(s) for all

i ∈ {1, . . . , k}.
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A 1/3-approximation of the ideal point exists for the bi-objective maximum spanning tree
problem [8]. In the same article, the authors give an approximation of two other multi-objective
problems: max sat and cut-complement. In [9], the 1/3-approximation presented in [8] has been
generalized to a bi-objective problem on simple matroids.

A bi-objective version of max cut is studied in [10]: there always exists a 1/2-approximation
of the ideal point whereas a 0.439-approximation can be computed in polynomial time. These
results were recently generalized to the maximization of two sub-modular, symmetric and non-
negative functions2 [11].

The ideal point approach has also been used on the bi-objective version of the traveling
salesman problem [12–14]. For the maximization version of the problem, the best ratios for
the approximation of the ideal point come from [14]: 5/12− ε if the two objectives satisfy the

triangle inequality, 3/8− ε if only one objective satisfies the triangle inequality, and 1+2
√
2

14 − ε
without the triangle inequality.

Actually, the bi-objective maximum matching (where the triangle inequality is satisfied) has
already been studied in [11]. This article provides a general approximation method for a class
of biobjective problems. An application of the general method to the bi-objective maximum
matching yields a 1/6-approximation of the ideal point. In addition, the problem is shown NP-
hard when the instance is a collection of complete graphs in which the triangle inequality is
satisfied [11]. The case of a complete graph was left open. In the present article, we improve
on the approximation result since a 1/3-approximation is provided (Corollary 1). Moreover the
complexity of the problem (previously left open) is shown on complete graphs (Theorem 1).

It is noteworthy that bi-objective versions of the assignment problem (i.e. matchings in
bipartite graphs) have been studied previously. Exact methods for the minimization version
can be found in [15] and [16].

To conclude, let us mention a popular approach in multi-objective combinatorial optimiza-
tion. It consists in turning all but one objective functions in budget constraints. Given a vector
(B2, B3, . . . , Bk) ∈ R

k−1, a solution s ∈ S is said to be optimal if it optimizes f1(s) under the
budget constraints fj(s) ≥ Bj (or fj(s) ≤ Bj), j = 2, . . . , k. To mention a few examples, this
method is used for some multi-objective network-design problems [17] or shortest path [18].
The matching problem, and generalizations to matroids and independence systems are studied
in [19, 20].

3 Model

Let G = (V,E) be a complete graph. Each edge e ∈ E has a non-negative weight w(e) and a non-
negative length ℓ(e). We assume that both w and ℓ satisfy the triangle inequality3. The weight
and length of a set of edges M ⊂ E are defined as w(M) =

∑

e∈M w(e) and ℓ(M) =
∑

e∈M ℓ(e),
respectively. Both w(M) and ℓ(M) should be maximized. Since it is unlikely that a matching
reaches optimality for both objectives, our aim is to find a single matching which constitutes
the best approximation of the ideal point.

Note that we have to restrict to a bi-objective matching where the two edge values fulfill
the triangle inequality, otherwise there is not always a single matching which constitutes an
ε-approximate Pareto set with any given positive ratio ε:

– If the triangle inequality does not hold then at least 3 solutions are required to constitute
an approximate Pareto set for any given positive ratio ε. See the instance on Figure 1 which

2 This bi-objective problem generalizes max cut.
3 For every triple of edges a, b and c forming a triangle, we have that w(a) + w(b) ≥ w(c) and
ℓ(a) + ℓ(b) ≥ ℓ(c).
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contains 3 matchings with values (1 + ε, 0), (0, 1 + ε) and (ε, ε), respectively. No solution
is an ε-approximation of any other one, so the three solutions are required to provide an
ε-approximate Pareto set.

– If only one objective fulfills the triangle inequality, then at least 2 solutions are required to
constitute an ε-approximate Pareto set with any given positive ratio ε: consider a triangle
with values (0, 1), (1, 0), and (1, 0) (see Figure 2).

– If we consider 3 objectives which all fulfill the triangle inequality, then at least 3 solutions
are required to constitute an ε-approximate Pareto set with any given positive ratio ε:
consider a triangle with values (0, 1, 1), (1, 0, 1), and (1, 1, 0) (see Figure 3).

(0, 1
+
ε)

(ε, ε)

(1
+
ε,
0)

Fig. 1. At least 3 solutions are
required if the edge valuations do
not fulfill the triangle inequality.

(0,1)

(1,0)(1,0)

Fig. 2. At least 2 solutions are
required if one edge valuation
does not fulfill the triangle in-
equality.

(0,1,1)

(1,1,0)(1,0,1)

Fig. 3. At least 3 solutions are
required with 3 edge valuations
fulfilling the triangle inequality.

4 Complexity

We first investigate the complexity of the decision version of the biobjective maximum matching
problem. This corresponds to the problem RestrictedMaxMatching defined as follows. Let
(x1, x2) ∈ N

2, does there exist a matching M such that the weight of M is at least x1, and the
length of M is at least x2?

Theorem 1. RestrictedMaxMatching is NP-complete, even in a graph in which both ob-
jectives fulfill the triangle inequality.

Proof. We will show that Partition polynomially reduces to RestrictedMaxMatching.
We recall the Partition problem: an instance of Partition is a set E = {e1, . . . , en} of n
elements, and a cost function c : E → N such that

∑

e∈E c(e) = 2B and 0 < c(e) < B. The
question is: is there a subset E′ ⊆ E such that

∑

e∈E′ c(e) =
∑

e∈E\E′ c(e) = B?
The corresponding instance of RestrictedMaxMatching is as follows: we fix x1 = x2 =
(4n+1)B, and we consider a complete graphG composed of 4n vertices : n vertices {a1, . . . , an},
n vertices {b1, . . . , bn}, n vertices {c1, . . . , cn}, and n vertices {d1, . . . , dn}. For each i ∈ {1, . . . , n},
the cost of edge (ai, bi) is equal to (2B + c(ei), 2B), and the cost of edge (bi, ci) is equal to
(2B, 2B + c(ei)). All the other edges have a cost equal to (2B, 2B). This graph satisfies the
triangle inequality since on each objective the cost of each edge is at least 2B and at most 3B.

Let us show that there is a feasible solution of RestrictedMaxMatching on this instance
if and only if (E, c) is a yes instance of Partition. If (E, c) is a yes instance of Partition

(i.e. there is a subset E′ ⊆ E such that
∑

e∈E′ c(e) =
∑

e∈E\E′ c(e) = B), then there is a
solution M of the corresponding instance of the RestrictedMaxMatching problem: for
each i ∈ {1, . . . , n}, if ei ∈ E \ E′ then the edges (ai, bi) and (ci, di) are in M , and else, if
ei ∈ E′ then the edges (bi, ci) and (ai, di) are in M (no other edge is in M). Since

∑

e∈E′ c(e) =
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∑

e∈E\E′ c(e) = B, the weight of M is then x1 = 2n(2B) + B = (4n+ 1)B, and the length of

M is x2 = 2n(2B) +B = (4n+ 1)B.
Conversely, let us now show that if there is a feasible solution M of RestrictedMax-

Matching then (E, c) is a yes instance of Partition. We assume that M is a perfect match-
ing, and is thus made of 2n edges; it is possible because the graph is complete, it contains
an even number of nodes and any matching can be completed to become perfect without de-
creasing its value because all the edges have positive values for each objective. The weight of
M is |M |2B +

∑

(ai,bi)∈M c(ei). Since the weight of M is at least x1 = (4n + 1)B, we have
∑

(ai,bi)∈M c(ei) ≥ B. Let E1 = {ei ∈ E|(ai, bi) ∈ M}. We have:
∑

ei∈E1
c(ei) ≥ B. Likewise,

the length ofM is |M |2B+
∑

(bi,ci)∈M c(ei). Since the length ofM is at least x2 = (4n+1)B, we

have
∑

(bi,ci)∈M c(ei) ≥ B. Let E2 = {ei ∈ E|(bi, ci) ∈ M}. We have:
∑

ei∈E2
c(ei) ≥ B. Note

that for each i ∈ {1, . . . , n}, at most one edge in {(ai, bi), (bi, ci)} belongs to M , since M is a
matching. Thus E1∩E2 = ∅. Since

∑

e∈E c(e) = 2B, we have
∑

ei∈E1
c(ei) =

∑

ei∈E2
c(ei) = B,

which is a solution to the (E, c) instance of Partition. ⊓⊔

5 Approximation

This section provides a general method, described in Theorem 2, which, combined with some
results for small graphs, described in Lemma 2, provides an approximation algorithm with
performance guarantee 1/3.

Theorem 2. Let k be a fixed integer satisfying k ≥ 2. Let ρ be a real satisfying 0 < ρ ≤ 1.
Suppose that for every q ≤ 2k and every complete graph Kq of q nodes, there always exists a
matching Fq satisfying w(Fq) ≥ ρw(M q

w) and ℓ(Fq) ≥ ρℓ(M q
ℓ ), where M q

w (resp. M q
ℓ ) denote

a maximum weight (resp. length) matching of Kq. Then, there exists a single matching which
constitutes a ρk−1

k
-approximate Pareto set for the biobjective Maximum Matching problem.

Proof. Let k ≥ 2. Build two maximum matchings of Kn with respect to w and ℓ respectively.
Denote them by Mw and Mℓ. We can suppose wlog that both Mw and Mℓ are maximal with
respect to the inclusion and then |Mw| = |Mℓ|. The subgraph G′ = (V,Mw ∪Mℓ) is made of p
connected components denoted by Ci for i ∈ {1, . . . , p}. One Ci may be one isolated node but
every other connected component contains at least one edge. Each Ci is a cycle of even size or a
path. Note that there is at most one path with at least two edges in Mw∪Mℓ (because the graph
is complete and we can assume that Mw are Mℓ are of maximum size) and this path contains
an even number of edges. Each path containing a single edge must be in Mw ∩ Mℓ (because
Mw and Mℓ are of maximum size: at least one endpoint of each edge should be adjacent to one
edge of Mℓ – and this is the same thing for Mw).

Consider a connected component Ci with at least two edges and denote by ni its number
of vertices. Thus Ci contains ni edges if Ci is a cycle and ni − 1 if Ci is a path.

– If ni ≤ 2k, then by hypothesis, there exists in Kni
(the subgraph induced by the vertices

of Ci) a matching Fni
such that:

w(Fni
) ≥ ρw(Mni

w ) ≥ ρw(Ci ∩Mw) and ℓ(Fni
) ≥ ρℓ(Mni

ℓ ) ≥ ρℓ(Ci ∩Mℓ) (1)

since Mni

w (resp. Mni

ℓ ) is an optimum weight (resp. length) matching of Kni
.

– Now, suppose that ni ≥ 2k+1. The edges of Ci∩Mw are labeled with numbers in {1, . . . , k}
as follows. If Ci is a cycle, then it is explored from an arbitrarily chosen vertex that we
denote v0. If Ci is a path, then it is explored from an endpoint denoted by v0. During the
exploration, the first edge of Ci ∩Mw is labeled 1, the second edge of Ci ∩Mw is labeled 2,
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1

1

2

2

3

3

v0

Fig. 4. The labels of the edges when ni = 12 and k = 3. Bold edges belong to Mw and dashed edges
belong to Mℓ.

. . . , the k + 1 edge of Ci ∩Mw is labeled 1, and so on. Formally, the j-th edge of Ci ∩Mw

is labeled j − ⌊ j−1
k

⌋k. See Figure 4 for an illustration for a cycle of length 12 and k = 3.
For j ∈ {1, . . . , k}, Lj(Ci ∩ Mw) are the edges of Ci ∩ Mw with label j. Assume that jw
is the index such that the matching of label jw is the lightest, i.e., w(Ljw (Ci ∩ Mw)) =
minj=1,...,k{w(Lj(Ci ∩Mw))}. Thus, we deduce that

w(Ci ∩Mw \ Ljw(Ci ∩Mw)) ≥
k − 1

k
w(Ci ∩Mw) (2)

Moreover, since Ljw (Ci ∩Mℓ) = ∅ (the edges which have been labelled belong to Ci ∩Mw

and in a connected component Ci with at least two edges (Ci ∩Mw) ∩ (Ci ∩Mℓ) = ∅), we
have:

ℓ(Ci ∩Mℓ \ Ljw(Ci ∩Mℓ)) = ℓ(Ci ∩Mℓ) (3)

Observe that if Ci is a cycle, then all the paths in Ci \ Ljw(Ci ∩ Mw) except one have a
length 2(k−1)+1 = 2k−1 and the last path P i

0 (containing v0) has a length at most equal
to 2(2(k − 1)) + 1 = 4k − 3. See Figure 5 for an illustration of the worst case with ni = 10
and k = 3; here edge e corresponds to matching L3(Ci ∩Mw).

1

12

2

3e
v0v0

Fig. 5. On the left, the labels of the edges of Ci when ni = 10 and k = 3 (Bold edges belong to Mw

and dashed edges belong to Mℓ). On the right, the path P0 when the edges with label 3 for matching
L3(Ci ∩Mw) have been deleted.

Let us focus on the path P i
0 when Ci is a cycle and assume that the length of this path is

at least 2k (actually, it is at least 2k + 1 because P i
0 is of odd length). This path contains
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at most 4k − 3 edges and by construction the two end edges are in Mℓ. We label the edges
of P i

0 ∩Mℓ with numbers in {1, . . . , k} as previously starting from an end edge with label
1. See Figure 6 for an illustration with ni = 10 and k = 3;

1

1

2

2

3

Fig. 6. The labels of the edges of P i

0 ∩ Mℓ when ni = 10 and k = 3 (Bold edges belong to Mw and
dashed edges belong to Mℓ) for the example described in Figure 5.

Using a similar approach, Lj(P
i
0 ∩Mℓ) denotes the set of edges of P i

0 ∩Mℓ with label j for
j ∈ {1, . . . , k}. Assume that jℓ is the index such that the matching of label jℓ is the lightest,
i.e., ℓ(Ljℓ(P

i
0 ∩Mℓ)) = minj=1,...,k{ℓ(Lj(P

i
0 ∩Mℓ))}. Thus, we obtain:

ℓ(P i
0 ∩Mℓ \ Ljℓ(P

i
0 ∩Mℓ)) ≥

k − 1

k
ℓ(P i

0 ∩Mℓ) (4)

w(P i
0 ∩Mw \ Ljℓ(P

i
0 ∩Mℓ)) = w(P i

0 ∩Mw) (5)

If Ci is a path, then all the paths in Ci \ Ljw(Ci ∩Mw) contain at most 2k − 1 edges. In
this case, we set P i

0 = ∅.

In conclusion, we have the following property: each path P of Ci \ (Ljw(Ci∩Mw)∪Ljℓ(P
i
0 ∩

Mℓ)) is contained in a complete subgraph Kq′ where q
′ ≤ 2k (in particular, it is the case of

P i
0 when Ci is a cycle with length at most 2k − 1). By hypothesis there is a matching Fq′

of Kq′ such that:

w(Fq′ ) ≥ ρw(M q′

w ) ≥ ρw(P ∩Mw) and ℓ(Fq′) ≥ ρℓ(M q′

ℓ ) ≥ ρℓ(P ∩Mℓ) (6)

since M q′

w (resp. M q′

ℓ ) is optimal for w (resp. ℓ). The union of these matchings Fq′ , denoted
by F i, is a matching of G induced by the vertices of Ci. Moreover, using Inequalities (2),
(3), (4), (5), and (6) we get:

w(F i) ≥ ρw(Ci \ (Ljw (Ci ∩Mw) ∪ Ljℓ(P
i
0 ∩Mℓ)) ∩Mw) ≥ ρ

k − 1

k
w(Ci ∩Mw) (7)

ℓ(F i) ≥ ρℓ(Ci \ (Ljw(Ci ∩Mw) ∪ Ljℓ(P
i
0 ∩Mℓ)) ∩Mw) ≥ ρ

k − 1

k
ℓ(Ci ∩Mℓ) (8)

By summing up previous inequalities (1), or (7), or (8) according to the case and by adding
the connected components made of a single edge, we get a matching F such that w(F ) ≥
ρk−1

k

∑

iw(Ci ∩Mw) = ρk−1
k

w(Mw) and ℓ(F ) ≥ ρk−1
k

∑

i ℓ(Ci ∩Mℓ) = ρk−1
k

ℓ(Mℓ). ⊓⊔

We show now the existence of 1
2 -approximations for graphs of small size. For this purpose,

the following simple result will be useful.
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Lemma 1. Let G = (V,E) be a weighted complete graph with |V | ≥ 4 and weight function h
satisfying the triangle inequality. For any four vertices i, j, k, l, at least one of the following two
inequalities holds :

h(i, k) + h(j, l) ≥
1

2
(h(i, j) + h(k, l))

h(i, l) + h(j, k) ≥
1

2
(h(i, j) + h(k, l))

Proof. Using the triangle inequality, we have h(i, k)+ h(j, k) ≥ h(i, j), h(i, l)+ h(j, l) ≥ h(i, j),
h(i, k) + h(i, l) ≥ h(k, l), and h(j, k) + h(j, l) ≥ h(k, l). Summing up these inequalities we get
h(i, k) + h(j, l) + h(i, l) + h(j, k) ≥ h(i, j) + h(k, l). The result follows. ⊓⊔

Lemma 2. For complete graphs with at most 6 vertices, with values on edges w and ℓ satisfying
the triangle inequality, there exists a single matching M such that w(M) ≥ 1

2w(Mw) and
ℓ(M) ≥ 1

2ℓ(Mℓ), where Mw and Mℓ are optimal matchings for the weight and the length,
respectively.

Proof. Let n ∈ {3, 4, 5} since the case n = 2 is trivial. Build two optimal matchings on Kn with
respect to w and ℓ denoted respectively by Mw and Mℓ. We assume wlog that the subgraph G′

induced byMw∪Mℓ is connected since otherwise we deal with connected components separately.
Thus, the different cases are depicted in Figure 7.

1

2

3 1

2 3

4 1

2

3

4

5 1

2

3

4

5

6

Fig. 7. The four cases n = 3, 4, 5, 6. Bold edges belong to Mw and dashed edges belong to Mℓ.

Let us show now that for each of these cases, there exists a matching M satisfying w(M) ≥
1
2w(Mw) and ℓ(M) ≥ 1

2ℓ(Mℓ).

– Case n = 3. G′ is a path. We have Mw = {(1, 2)} and Mℓ = {(2, 3)}. If ℓ(1, 2) ≥ ℓ(2, 3)/2
then M = {(1, 2)}. If w(2, 3) ≥ w(1, 2)/2 then M = {(1, 2)}. Otherwise, M = {(1, 3)}
since, by the triangle inequality on ℓ and w, ℓ(1, 2) < ℓ(2, 3)/2 and w(2, 3) < w(1, 2)/2 give
ℓ(1, 3) ≥ ℓ(2, 3)/2 and w(1, 3) ≥ w(1, 2)/2, respectively.

– Case n = 4. G′ is a cycle. We have Mw = {(1, 2), (3, 4)} and Mℓ = {(1, 4), (2, 3)}. Using
Lemma 1 for w, at least one of the following two inequalities holds :

w(1, 4) + w(2, 3) ≥
1

2
(w(1, 2) + w(3, 4)) (9)

w(1, 3) + w(2, 4) ≥
1

2
(w(1, 2) + w(3, 4)) (10)
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Using Lemma 1 for ℓ, at least one of the following two inequalities holds :

ℓ(1, 2) + ℓ(3, 4) ≥
1

2
(ℓ(1, 4) + ℓ(2, 3)) (11)

ℓ(1, 3) + ℓ(2, 4) ≥
1

2
(ℓ(1, 4) + ℓ(2, 3)) (12)

If (9) holds then M = {(1, 4), (2, 3)}. If (11) holds then M = {(1, 2), (3, 4)}. Finally, if nei-
ther (9) nor (11) hold then both (10) and (12) must be true and we haveM = {(1, 3), (2, 4)}.

– Case n = 5. G′ is a path. We have Mw = {(1, 2), (3, 4)} and Mℓ = {(2, 3), (4, 5)}.
If w(1, 2)+w(4, 5) ≥ 1

2 (w(1, 2)+w(3, 4)) and ℓ(1, 2)+ ℓ(4, 5) ≥ 1
2 (ℓ(2, 3)+ ℓ(4, 5)), we have

M = {(1, 2), (4, 5)}. Otherwise, we have:

• either w(1, 2)+w(4, 5) < 1
2 (w(1, 2)+w(3, 4)). This implies w(3, 4) ≥ 1

2 (w(1, 2)+w(3, 4))
and w(3, 5) ≥ 1

2 (w(1, 2) + w(3, 4)), since otherwise the converse inequalities, summed
up with the initial inequality, would lead respectively to w(1, 2) + w(4, 5) + w(3, 4) <
w(1, 2) + w(3, 4) and w(1, 2) + w(4, 5) + w(3, 5) < w(1, 2) + w(3, 4) which are clearly
wrong, using the triangle inequality in the second case. Moreover, using Lemma 1 for ℓ,
we have either ℓ(2, 5) + ℓ(3, 4) ≥ 1

2 (ℓ(2, 3) + ℓ(4, 5)), in which case M = {(2, 5), (3, 4)},
or ℓ(2, 4) + ℓ(3, 5) ≥ 1

2 (ℓ(2, 3) + ℓ(4, 5)), in which case M = {(2, 4), (3, 5)}.
• or ℓ(1, 2) + ℓ(4, 5) < 1

2 (ℓ(2, 3) + ℓ(4, 5)). This implies ℓ(2, 3) ≥ 1
2 (ℓ(2, 3) + ℓ(4, 5)) and

ℓ(1, 3) ≥ 1
2 (ℓ(2, 3)+ ℓ(4, 5)), since otherwise the converse inequalities, summed up with

the initial inequality, would lead respectively to ℓ(1, 2)+ℓ(4, 5)+ℓ(2, 3)< ℓ(2, 3)+ℓ(4, 5)
and ℓ(1, 2) + ℓ(4, 5) + ℓ(1, 3) < ℓ(2, 3) + ℓ(4, 5), which are clearly wrong, using the
triangle inequality in the second case. Moreover, using Lemma 1 for w, we have ei-
ther w(1, 4) + w(2, 3) ≥ 1

2 (w(1, 2) + w(3, 4), in which case M = {(1, 4), (2, 3)}, or
w(1, 3) + w(2, 4) ≥ 1

2 (w(1, 2) + w(3, 4), in which case M = {(1, 3), (2, 4)}.

– Case n = 6.G′ is a cycle. We haveMw = {(1, 2), (3, 4), (5, 6)} andMℓ = {(1, 6), (2, 3), (4, 5)}.
Consider the three following matchingsM1 = {(1, 2), (3, 6), (4, 5)},M2 = {(1, 6), (2, 5), (3, 4)},
and M3 = {(1, 4), (2, 3), (5, 6)}. We first show that there exists i ∈ {1, 2, 3} such that
ℓ(Mi) ≥

1
2ℓ(Mℓ). By contradiction, assuming that ℓ(Mi) <

1
2ℓ(Mℓ) for all i ∈ {1, 2, 3}, we

multiply by 2 each inequality and sum them up, which gives 2ℓ(1, 6) + (ℓ(1, 2) + ℓ(2, 5) +
ℓ(5, 6))+2ℓ(2, 3)+(ℓ(1, 2)+ ℓ(1, 4)+ ℓ(3, 4))+2ℓ(4, 5)+(ℓ(3, 4)+ ℓ(3, 6)+ ℓ(5, 6))+ ℓ(1, 4)+
ℓ(2, 5)+ ℓ(3, 6) < 3ℓ(1, 6)+3ℓ(2, 3)+3ℓ(4, 5). Applying the triangle inequality to each term
between brackets gives values respectively larger than or equal to ℓ(1, 6), ℓ(2, 3), and ℓ(4, 5),
contradicting the inequality.
In the following, we assume wlog, after possibly renumbering the vertices, that ℓ(M1) ≥
1
2ℓ(Mℓ). If w(M1) ≥

1
2w(Mw) then M = M1. If w(M1) <

1
2w(Mw) then, by Lemma 1, we

get w(M4) ≥
1
2w(Mw) where M4 = {(1, 2), (3, 5), (4, 6)}. If ℓ(M4) ≥

1
2ℓ(Mℓ) then M = M4.

Thus, we assume ℓ(M4) <
1
2ℓ(Mℓ).

Consider now the two additional matchingsM5 = {(1, 5), (2, 6), (3, 4)} andM6 = {(1, 3), (2, 4), (5, 6)}.
We show that the four following conditions hold.

there exists i ∈ {4, 5, 6} such that ℓ(Mi) ≥
1

2
ℓ(Mℓ) (13)

there exists i ∈ {2, 3, 4} such that ℓ(Mi) ≥
1

2
ℓ(Mℓ) (14)
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there exists i ∈ {2, 4, 6} such that ℓ(Mi) ≥
1

2
ℓ(Mℓ) (15)

there exists i ∈ {3, 4, 5} such that ℓ(Mi) ≥
1

2
ℓ(Mℓ) (16)

Regarding (13), the real condition is: there exists i ∈ {4, 5, 6, w} such that ℓ(Mi) ≥
1
2ℓ(Mℓ).

Obviously, if i = w then M = Mw, and therefore we can assume (13), provided that the real
condition is true. Assume by contradiction that ℓ(Mi) <

1
2ℓ(Mℓ) for all i ∈ {4, 5, 6, w}. Then,

adding up these four inequalities, we obtain (ℓ(1, 2)+ ℓ(2, 6))+ (ℓ(1, 5)+ ℓ(5, 6))+(ℓ(1, 2)+
ℓ(1, 3))+(ℓ(2, 4)+ℓ(3, 4))+(ℓ(3, 4)+ℓ(3, 5))+(ℓ(4, 6)+ℓ(5, 6)) < 2ℓ(1, 6)+2ℓ(2, 3)+2ℓ(4, 5).
Applying the triangle inequality to each term between brackets leads to contradict the
inequality.
Regarding (14), we proceed again by contradiction, assuming that ℓ(Mi) < 1

2ℓ(Mℓ) for
all i ∈ {2, 3, 4}. Multiplying by two the inequality for i = 4 and adding the two other
inequalities, we obtain ℓ(1, 6) + (ℓ(1, 4) + ℓ(4, 6)) + ℓ(2, 3) + (ℓ(2, 5) + ℓ(3, 5)) + (ℓ(3, 4) +
ℓ(3, 5)) + (ℓ(4, 6) + ℓ(5, 6)) + 2ℓ(1, 2) < 2ℓ(1, 6) + 2ℓ(2, 3) + 2ℓ(4, 5). Applying the triangle
inequality to each term between brackets leads to contradict the inequality.
Conditions (15) and (16) are established similarly (each time multiplying by 2 the inequal-
ity for i = 4).

Since ℓ(M4) < 1
2ℓ(Mℓ), by (13) we have either ℓ(M5) ≥ 1

2ℓ(Mℓ) or ℓ(M6) ≥ 1
2ℓ(Mℓ). We

conclude the proof by examining these two cases:

• Consider the case ℓ(M5) ≥
1
2ℓ(Mℓ). If w(M5) ≥

1
2w(Mw) then M = M5. Otherwise, if

w(M5) < 1
2w(Mw) then by Lemma 1, we get w(M2) ≥ 1

2w(Mw). If ℓ(M2) ≥ 1
2ℓ(Mℓ)

then M = M2. If ℓ(M2) <
1
2ℓ(Mℓ) then, by (14) and (15) we get respectively ℓ(M3) ≥

1
2ℓ(Mℓ) and ℓ(M6) ≥

1
2ℓ(Mℓ). If w(M3) ≥

1
2w(Mw) then M = M3. If w(M3) <

1
2w(Mw)

then, by Lemma 1, we have w(M6) ≥
1
2w(Mw) and thus M = M6.

• Consider finally the case ℓ(M6) ≥ 1
2ℓ(Mℓ). If w(M6) ≥ 1

2w(Mw) then M = M6.
Otherwise, if w(M6) < 1

2w(Mw) then by Lemma 1, we get w(M3) ≥ 1
2w(Mw). If

ℓ(M3) ≥
1
2ℓ(Mℓ) then M = M3. If ℓ(M3) <

1
2ℓ(Mℓ) then, by (14) and (16) we get re-

spectively ℓ(M2) ≥
1
2ℓ(Mℓ) and ℓ(M5) ≥

1
2 ℓ(Mℓ). If w(M2) ≥

1
2w(Mw) then M = M2.

If w(M2) <
1
2w(Mw) then, by Lemma 1, we have w(M5) ≥

1
2w(Mw) and thus M = M5.

⊓⊔

Corollary 1. We can build in polynomial time a single matching which constitutes a 1/3-
approximate Pareto set for the biobjective Maximum Matching problem satisfying the triangle
inequality on each objective.

Proof. By using Theorem 2 with ρ = 1/2, k = 3 and Lemma 2 the result follows. ⊓⊔

6 A computer-aided approach

Lemma 2 establishes the existence of 1/2-approximate matchings for complete graphs with at
most n = 6 nodes. It seems difficult to establish a general result, and our proofs become more
and more tedious as n grows. In order to test the existence of a single 1/2-approximate matching
for larger values of n, we propose a mixed 0-1 linear programming formulation. Actually, this
formulation provides, for any value of n, the best possible approximation ratio ρ∗.

To introduce this formulation, we need to consider, for a given n:
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– the set Mn of all maximal (perfect or nearly perfect) matchings which can be defined on a
complete graph of size n. Note that the number of such maximal matchings is n!! when n
is odd and (n− 1)!! when n is even4.

– the set I∆
n of all possible instances corresponding to a complete valued graph G = (V,E)

with |V | = n where each edge e ∈ E has two values w(e) and ℓ(e) which satisfy the triangle
inequality. We assume wlog that 0 ≤ w(e) ≤ 1 and 0 ≤ ℓ(e) ≤ 1 for each edge e ∈ E.
Moreover, we impose thatMw andMℓ, which are optimal matchings for w and ℓ respectively,
are such that w(Mw) = ℓ(Mℓ) = 1. If these conditions are not met, then compute w(Mw)
and ℓ(Mℓ), and for each edge e, replace w(e) by w(e)/w(Mw) and ℓ(e) by ℓ(e)/ℓ(Mℓ). This
transformation has no incidence on the approximation guarantee because it is a ratio. We
also assume the worst case situation where the subgraph induced by Mw ∪Mℓ is connected
since otherwise we deal with connected components separately. Therefore, Mw∪Mℓ is either
a cycle or a path which alternates edges of Mw and Mℓ and covers all vertices (see Figure
7 for the cases n = 3, 4, 5, 6).

Our formulation aims at identifying an instance I ∈ I∆
n minimizing a variable ρ such that

for all matchings M ∈ Mn we have w(M) ≤ ρ or ℓ(M) ≤ ρ. Let ρ∗n be the optimal value for
variable ρ. Therefore, for any ρ < ρ∗n, for any instance I ∈ I∆

n , there exists M ∈ Mn such
that w(M) > ρ and ℓ(M) > ρ. Moreover, ρ∗n, corresponding to a feasible solution, is such that
w(M) ≤ ρ∗n or ℓ(M) ≤ ρ∗n for all matchings M ∈ Mn. It follows that ρ∗n is the largest value
such that, for any instance I ∈ I∆

n , there exists M ∈ Mn such that w(M) ≥ ρ∗n and ℓ(M) ≥ ρ∗n
(with at least one equality).

The mixed 0-1 linear program corresponding to the previous formulation is given by:

(Pn)















































































min ρ

s.t.

wij ≤ wik + wkj and ℓij ≤ ℓik + ℓkj , ∀(i, j, k) ∈ V 3 (17)
∑

e∈Mw
we = 1 and

∑

e∈Mℓ
ℓe = 1 (18)

∑

e∈M we ≤ 1 and
∑

e∈M ℓe ≤ 1 ∀M ∈ Mn (19)
∑

e∈M we ≤ ρ+ zM , ∀M ∈ Mn (20)
∑

e∈M ℓe ≤ ρ+ 1− zM , ∀M ∈ Mn (21)

0 ≤ wij ≤ 1 and 0 ≤ ℓij ≤ 1, ∀(i, j) ∈ E, i < j (22)

zM ∈ {0, 1}, ∀M ∈ Mn (23)

0 ≤ ρ ≤ 1 (24)

where continuous decision variables wij and ℓij , defined in (22), represent an instance sat-
isfying the triangle inequality through constraint (17), and 0-1 variables, defined in (23), are
used to model the disjunctive constraints w(M) ≤ ρ or ℓ(M) ≤ ρ imposed by (20) and (21),
whereas constraints (18) - (19) define matchings Mw and Mℓ as optimal matchings.

Owing to the quickly growing cardinality of Mn, we were able to solve (Pn) for n up to 10,
using CPLEX 12.6. The results are reported in Table 1. It is worth noting that these values
coincide, up to the last (15th) computed decimal digit, with simple fractions larger than or
equal to 1/2 (see last row of Table 1).

4 The double factorial r!! is the factorial r! restricted to numbers of the same parity as r, e.g. 5!! = 5∗3∗1
and 8!! = 8 ∗ 6 ∗ 4 ∗ 2.
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n 3 4 5 6 7 8 9 10

ρ∗n 0.5 0.5 0.5 0.5556 0.5714 0.5 0.5714 0.6
1/2 1/2 1/2 5/9 4/7 1/2 4/7 3/5

Table 1. The ratios obtained with the computational approach for 3 ≤ n ≤ 10.

These computational results cannot be considered as totally valid owing to the limited pre-
cision of the computations. They suggest, however, the existence of 1/2-approximate matchings
for complete graphs satisfying the triangle inequality, up to 10 nodes. Admitting this and using
again Theorem 2, this improves the result of Corollary 1 about the approximation ratio from
1/3 to 2/5. More generally, these results tend to confirm that the best approximation could be
1/2.

7 Some upper bounds

In this section, we describe instances which give upper bounds on the ratio ρ such that a
ρ-approximate matching is guaranteed to exist. In particular, we show that there is no (12 + ε)-
approximate algorithm, for all ε > 0, and that there is is no (23 + ε)-approximate solution if we
restrict ourselves to large graphs.

Let us define a family of instances containing n = 4k nodes for any positive integer k (see
Figure 8 for an illustration with k = 2), such that each instance does not admit any (12 + ε)-
approximate matching, for all ε > 0. The nodes are denoted by {1, . . . , 2k}∪ {1′, . . . , 2k′}. The
graph is complete and the edges are partitioned as follows :

– Ew = {{i, i′}|i ∈ {1, . . . , 2k} and i′ ∈ {1′, . . . , 2k′}}. Each edge of Ew has value (1/2k, 1/4k).
– El = {{i, i+ 1}|i ∈ {1, . . . , 2k} and i is odd}. Each edge of El has value (0, 1/2k).
– El′ = {{i′, i′ + 1}|i′ ∈ {1′, . . . , 2k′} and i′ is odd}. Each edge of El′ has value (0, 1/2k).
– E0 the set containing the remaining edges. Each edge of E0 has value (0, 1/4k).

We can take the 2k edges (i, i′) and have a matching of maximal weight. We can take the
2k edges with value (0, 1/2k) and have a matching with maximal length. The maximal weight
and length are both equal to 1. It is not difficult to see that the triangle inequality is satisfied
on both coordinates.

A Pareto optimal matching consists in picking x ≤ k edges of value (0, 1/2k) in El, x edges
of value (0, 1/2k) in El′ and 2(k−x) edges of value (1/2k, 1/4k) in Ew. The resulting matching
has weight k−x

k
and length k+x

2k . If k/3 is integral, then x = k/3 gives min{k−x
k

, k+x
2k } = 2/3;

we have an upper bound of 2/3. If k/3 is not integral, then taking x = 0 when k < 3 and
x = ⌈k/3⌉ when k ≥ 3 allows us to maximize min{k−x

k
, k+x

2k }. This gives an upper bound of
max{1/2, 2/3− 1/k}.

We get the upper bounds (UB) provided in table 2 when the number of nodes n is equal to
4k.

k 1 2 3 4 5 6 7

n 4 8 12 16 20 24 28

UB 1/2 1/2 2/3 1/2 1/2 2/3 11/21

Table 2. Upper bounds on the best approximation ratio for a tradeoff when n = 4k.
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1 2 3 4

4′3′2′1′

(0, 1

4
)

(0, 1

8
)

( 1
4
, 1

8
)

Fig. 8. An 8-node instance where no (1/2 + ǫ)-approximate matching exists. Dotted edges have value
(0, 1

8
), bold edges have value (0, 1

4
) and dashed edges have value ( 1

4
, 1

8
).

8 Concluding remarks

In this article we were interested in determining, and computing, an approximate tradeoff for
the bi-objective matching problem. We focused on the case where each objective satisfies the
triangle inequality. We proposed a general method which, combined with results stating the
existence of a good tradeoff in graphs of small size, implies the existence and computation of a
good tradeoff in a graph of any size. For the existence of a good tradeoff in graphs of small size,
we followed two approaches. The first one is analytical but it is limited to graphs containing at
most 6 nodes. We believe that such an analysis can be conducted for slightly larger graphs. The
second approach is a computer-aided determination of an approximation ratio ρ∗n, such that any
complete graph on n nodes must admit a ρ∗n-approximate matching. The values manipulated
in the computational approach have a limited precision so we cannot pretend that the given
ratios hold in any case. However, they provide an insight in what ρ∗n should be equal to.

More generally, we conjecture that a 1/2-approximate matching exists in any bi-objective
instance. We followed a constructive path but an interesting future direction is to consider this
question, but only under an existential approach.

Our last observation deals with how ρ∗n depends on the number of nodes n. From the results
given in sections 6 and 7, we observe that ρ∗n is surprisingly non-monotone with n.
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