

Cooperation in multiorganization matching

Laurent Gourvès^{1,2}, Jérôme Monnot^{1,2}, and Fanny Pascual³

1. CNRS, UMR 7024, F-75775 Paris, France
2. Université de Paris-Dauphine, LAMSADE, F-75775 Paris, France
3. LIP6, Université Pierre et Marie Curie - Paris 6, 104 avenue
du Président Kennedy, 75016 Paris, France
{laurent.gourves, monnot}@lamsade.dauphine.fr, fanny.pascual@lip6.fr

Abstract. We study a problem involving a set of organizations. Each organization has its own pool of clients who either supply or demand one unit of an indivisible product. Knowing the profit induced by each buyer-seller pair, an organization's task is to conduct such transactions within its database of clients in order to maximize the amount of the transactions. Inter-organizations transactions are allowed: in this situation, two clients from distinct organizations can trade and their organizations share the induced profit. Since maximizing the overall profit leads to unacceptable situations where an organization can be penalized, we study the problem of maximizing the overall profit such that no organization gets less than it can obtain on its own. Complexity results, an approximation algorithm and a matching inapproximation bound are given.

Keywords: Assignment problem; Cooperation; Complexity; Approximation

1 Introduction

We are given a two-sided assignment market (B, S, A) defined by a set of buyers B , a disjoint set of sellers S , and a nonnegative matrix $A = (a_{ij})_{(i,j) \in B \times S}$ where a_{ij} represents a profit if the pair $(i, j) \in B \times S$ trade. In this market products come in indivisible units, and each participant either supplies or demands exactly one unit. The units do need not be alike and the same unit may have different values for different participants.

We study a problem involving a set of organizations $\{O_1, \dots, O_q\}$ which forms a partition of the market. A buyer (resp. seller) is a client of exactly one organization. It is assumed that for every transaction (i, j) , organizations of i and j make a profit a_{ij} , i.e. a commission. The seller's organization receives $p_s a_{ij}$ while the buyer's organization gets $p_b a_{ij}$, where p_s and p_b are fixed numbers between 0 and 1 and such that $p_b + p_s = 1$. We assume without loss of generality that $0 \leq p_b \leq p_s \leq 1$.

In this model, buyers and sellers do not make pairs by themselves, but these pairs are formed by their organizations. Each organization acts as a selfish agent who only knows its list of clients and only cares about its profit. Thus, each organization O_i shall maximize the weight of a matching on G induced by the vertices

of O_i (this task can be done in polynomial time). However the global profit can be better if transactions between clients of distinct organizations are allowed. This leads to a situation of cooperation where the agents accept to disclose their lists of clients by reporting them to a *trusted entity*. This trusted entity can conduct transactions between a buyer and a seller from distinct organizations, and of course, it can also do it for two clients of the same organization. The trusted entity shall maximize the collective profits. However, maximizing the collective profits by returning a maximum weight matching may lead to unacceptable situations: each organization is selfish so it does not want to cooperate if its profit is worse than it could obtain on its own. The optimization problem faced by the trusted entity is then to maximize the collective profit so that no organization is penalized.

1.1 The multiorganization assignment problem

The market is modelled with a weighted bipartite graph $G = (B, S; E; w)$ and q sets (or organizations) O_1, \dots, O_q forming a partition of $B \cup S$. Every buyer (resp. seller) is represented by a vertex in B (resp. S), $E \subseteq B \times S$ is the edge set representing pairs and $w : E \rightarrow \mathbb{R}_+$ is a nonnegative weight function. The subgraph of G induced by O_i is denoted by G_i . We have $G_i = (B_i, S_i; E_i, w)$ where $B_i = B \cap O_i$ and $S_i = S \cap O_i$. A set $M \subseteq E$ is an *assignment* (or a *matching*) iff each vertex in $(B, S; M, w)$ has degree at most one. The weight of an assignment M (i.e. the sum of the weights of its edges) is denoted by $w(M)$, and the profit of organization O_i in M is denoted by $w_i(M)$ and defined as

$$w_i(M) = \sum_{\{[b,s] \in M : (b,s) \in B_i \times S\}} p_b w([b,s]) + \sum_{\{[b,s] \in M : (b,s) \in B \times S_i\}} p_s w([b,s])$$

where p_s and p_b are two nonnegative rational numbers such that $p_s + p_b = 1$ and $0 \leq p_b \leq p_s \leq 1$.

We say that an edge whose endpoints are in the same organization (resp. in distinct organizations) is *internal* (resp. *shared*). The maximum weight matching of G reduced to its internal edges is denoted by \tilde{M} . Let \tilde{M}_i be the restriction of \tilde{M} to G_i . The *multiorganization assignment problem* (MOA for short) is to find a maximum weight matching M of G such that $w_i(M) \geq w_i(\tilde{M})$ for all $i \in \{1, \dots, q\}$. As a notation, M^* denotes a maximum weight matching of G whereas M_{cont}^* is an optimum for MOA.

1.2 Applications

We give here two applications where MOA arises.

The “agencies problem”. Each organization has its own pool of sellers (S) and buyers (B) who either supply or demand one unit of an indivisible product. Consider for example that organizations are real estate agencies. Each organization receives a commission on each transaction it deals, and its goal is to

maximize its profit. Therefore each organization accepts the assignment given by a trusted entity if and only if its profit is at most equal to the profit it would have had without sharing its file with the other organizations. The overall aim is then to find an assignment which maximizes the total amount of transactions done, while guaranteeing that no organization decreases its profit by sharing its file.

A scheduling example. Each organization (which can be a university, laboratory, etc.) owns unit tasks (given by its users), and several (possibly different) machines. During some given time slots, the machines are available to schedule the tasks of the users. Each user gives her preferences for a given machine and a given time slot. These preferences are represented by integers (a_{ij}) between 0 (a task cannot be scheduled on this machine at this time), and a given upper bound. The goal of each organization is to maximize the average satisfaction of its users, represented by the sum of the satisfactions of its users divided by the number of users, in the returned assignment. Therefore an organization will accept a multiorganization assignment if and only if the average satisfaction of its users is at least as high as when the organization accepts only the tasks from its users. Here, an unmatched user's satisfaction is 0. This corresponds to MOA when S is the set of users, B the set of couples (time slot, machine), $p_s = 1$ and $p_b = 0$.

1.3 Related work

The multi-organization assignment problem is a variant of the old assignment problem (see [11] for a recent survey). Besides its combinatorial structure, MOA involves self-interested agents whose cooperation can lead to significant improvements but a solution is feasible only if it does not arm any local utility.

Non cooperative game theory studies situations involving several players whose selfish actions affect each others [10]. In Tucker's prisoner's dilemma, two players can either cooperate (C), i.e. stay loyal to the other prisoner, or defect (D), i.e. agree to testify against the other.

	C	D
C	3, 3	0, 4
D	4, 0	1, 1

the prisoner's dilemma

A social optimum is reached if both play C but the situation where both prisoners defect is the only stable situation (a Nash equilibrium). In fact, the game designer of the prisoner's dilemma filled the payoff matrix in way that any prisoner has incentive to defect. MOA models the opposite situation where the game designer tries to fill the payoff matrix such that each organization's (weakly) dominant strategy is to cooperate, i.e. disclose her list of clients and follow the trusted entity. The game designer has to compute a Nash equilibrium (a stable matching) that optimizes the social welfare (total profit).

The maximum weight matching M^* is sometimes unstable because the organizations are selfish. Then, one has to consider a different optimum M_{cont}^* which is the maximum weight Nash equilibrium (no organization can increase its profit by using its own maximum weight matching instead of the solution

returned by the trusted entity). Interestingly, a theoretical measure of this loss of profit due to the selfishness of the organizations exists. Known as the *price of stability* (PoS) [1], it is defined as the (worst case) ratio between the most socially valuable state and the worth of the best Nash equilibrium. For MOA, $\text{PoS} = w(M_{\text{cont}}^*)/w(M^*)$.

MOA is also related to cooperative game theory [10]. A central issue in this field is to allocate the worth of a coalition to its members. Shapley and Shubik associate to any two-sided assignment market (B, S, A) a cooperative game with transferable utility (the assignment game) and show that its core is nonempty, and has a lattice structure [12].

MOA is close in spirit to other works which study, at an algorithmic level, how to make organizations cooperate. In [9], the authors study a scheduling problem involving several organizations. Each of them has a set of jobs to be completed as early as possible and its own set of processors. A selfish schedule is such that the processors only execute jobs of their owner. The authors propose an algorithm which returns schedules with good makespans and in which the organizations cooperate without being penalized. In [6, 5], the authors study the selfish distributed replication problem. This problem involves several nodes of a network whose task is to fetch electronic contents (objects) located at distant servers. Instead of taking an object from its server at each request, the nodes can save time by making a local copy. An intermediate strategy is to get an object from another node which is closer than the server. The optimization problem is to fill the (bounded) memory of each node in order to minimize the overall expected response time. Since an optimum solution can be unacceptable to selfish nodes (e.g. a node's memory is filled with objects that it rarely requests), the authors of [5] propose equilibrium placement strategies where no one is penalized.

1.4 Contribution

We investigate the computational complexity of MOA in Section 2. In particular, we show that the problem is strongly **NP**-hard if the number of organizations is not fixed. It is weakly **NP**-hard for two organizations. A possible proof of strong **NP**-hardness for a fixed number of organizations is discussed and some pseudo-polynomial and polynomial cases are given as well. We provide an approximation algorithm with performance guarantee p_b and a matching proof of inapproximation in Section 3. We also show in this section that the price of stability of MOA is p_b . Section 4 is devoted to generalizations of MOA and also generalizations of the results of this article. We conclude in Section 5.

Our results apply for *any* values of p_s and p_b such that $0 \leq p_b \leq p_s \leq 1$ and $p_b + p_s = 1$. Some proofs are put in an Appendix due to space limitation.

2 Complexity results

We prove that MOA is strongly **NP**-hard in the general case, even if the weights are polynomially bounded. We also show that the restriction of MOA to 2 orga-

nizations is weakly **NP**-hard. Next we show pseudopolynomial and polynomial cases.

2.1 Computationaly hard cases

Given a positive profit P and an instance of MOA, the decision version asks whether the instance admits a matching M such that $\forall_{i \in \{1, \dots, q\}} w_i(M) \geq w(\tilde{M}_i)$ and $w(M) \geq P$.

Theorem 1. *The decision version of MOA is strongly **NP**-complete.*

We make a reduction from 3-PARTITION which is strongly **NP**-complete (problem [SP15] in [3]).

Theorem 2. *The decision version of MOA is **NP**-complete, even if there are 2 organizations and the underlying graph is of maximum degree 2.*

Proof. Let p_s and p_b be two reals such that $1 \geq p_s \geq p_b \geq 0$ and $p_s + p_b = 1$. The reduction is done from PARTITION: given a set $\{a_1, \dots, a_n\}$ of n integers such that $\sum_{i=1}^n a_i = 2W$, decide whether $J \subset \{1, \dots, n\}$ such that $\sum_{j \in J} a_j = W$ exists. PARTITION is known to be **NP**-complete (problem [SP12] in [3]).

From I , instance of PARTITION, we build I' , instance of MOA by the following way:

- we are given 2 organizations O_1 and O_2
- O_1 has $n+1$ sellers and $n+1$ buyers respectively denoted by $s_{1,i}$ and $b_{1,i}$ for $i = 1, \dots, n+1$
- O_2 has also $n+1$ buyers and $n+1$ sellers respectively denoted by $b_{2,i}$ and $s_{2,i}$ for $i = 1, \dots, n+1$
- The edge set of the underlying graph is given by $\{[b_{1,i}, s_{1,i}], [s_{1,i}, b_{2,i}], [b_{1,i}, s_{2,i}]: i = 1, \dots, n\} \cup \{[s_{1,n+1}, b_{2,n+1}], [b_{2,n+1}, s_{2,n+1}], [s_{2,n+1}, b_{1,n+1}]\}$

The weight are defined by:

- $w([b_{1,i}, s_{1,i}]) = 6a_i$ and $w([b_{2,i}, s_{1,i}]) = w([s_{2,i}, b_{1,i}]) = 3a_i$ for $i = 1, \dots, n$
- $w([b_{2,n+1}, s_{2,n+1}]) = 6W$ and $w([s_{1,n+1}, b_{2,n+1}]) = w([b_{1,n+1}, s_{2,n+1}]) = 3W + 1$

The underlying graph is made of a collection of $n+1$ disjoint paths of length 3. Figure 1 gives an illustration of this construction.

Organization O_1 can make a profit $w_1(\tilde{M}) = (p_s + p_b) \sum_{i=1}^n 6a_i = 12W$ if it works alone. The local profit of organization O_2 is $w_2(\tilde{M}) = (p_s + p_b)6W = 6W$. Thus, globally, the weight of this matching is $18W$.

We affirm that I' admits a feasible assignment \hat{M} such that $w(\hat{M}) \geq 18W + 2$ if and only if I admits a set $J \subseteq \{1, \dots, n\}$ with $\sum_{j \in J} a_j = W$.

Let J be a subset of $\{1, \dots, n\}$ such that $\sum_{j \in J} a_j = W$ (and then, $\sum_{j \notin J} a_j = W$). We build the assignment \hat{M} as follows: $\hat{M} = \{[b_{2,j}, s_{1,j}], [s_{2,j}, b_{1,j}]: j \in J\} \cup \{[s_{1,n+1}, b_{2,n+1}], [b_{2,n+1}, s_{2,n+1}], [s_{2,n+1}, b_{1,n+1}]\}$

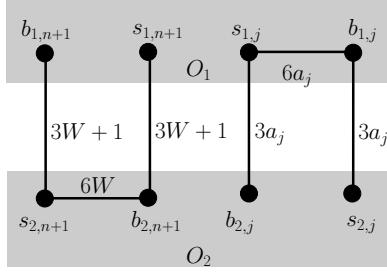


Fig. 1. The construction of I' .

$$J\} \cup \{[b_{1,j}, s_{1,j}] : j \notin J\} \cup \{[s_{1,n+1}, b_{2,n+1}], [b_{1,n+1}, s_{2,n+1}]\}$$

Clearly, the cost of \hat{M} is given by $w(\hat{M}) = 18W + 2$. Now, let us verify that \hat{M} is a feasible solution. The local profit of organization O_1 is $(p_s + p_b) \sum_{j \notin J} 6a_j + (p_s + p_b) \sum_{j \in J} 3a_j + (p_s + p_b)(3W + 1) = 12W + 1 \geq w_1(\tilde{M})$ whereas the profit of organization O_2 becomes $(p_s + p_b) \sum_{j \in J} 3a_j + (p_s + p_b)(3W + 1) = 6W + 1 \geq w_2(\tilde{M})$.

Conversely, let \hat{M} be a feasible assignment such that $w(\hat{M}) \geq 18W + 2$. Observe that the following property which can be easily proved.

Property 1. Any feasible solution of MOA can be supposed maximal with respect to the inclusion.

Now, remark that \hat{M} necessarily contains the edges $[s_{1,n+1}, b_{2,n+1}]$ and $[b_{1,n+1}, s_{2,n+1}]$ since on the one hand, the weight of any maximal matching on the graph induced by all vertices except $\{s_{1,n+1}, s_{2,n+1}, b_{1,n+1}, b_{2,n+1}\}$ is $12W$, and on the other hand $w([b_{2,n+1}, s_{2,n+1}]) = 6W$. Thus, \hat{M} must contain some edges $[b_{2,j}, s_{1,j}]$ or $[b_{1,j}, s_{2,j}]$ in order to compensate the loss of edge $[b_{2,n+1}, s_{2,n+1}]$. Let $J = \{j \leq n : [b_{2,j}, s_{1,j}] \in \hat{M}\}$. By property 1, \hat{M} is completely described by $\hat{M} = \{[b_{2,j}, s_{1,j}], [b_{1,j}, s_{2,j}] : j \in J\} \cup \{[b_{1,j}, s_{1,j}] : j \notin J\} \cup \{[s_{1,n+1}, b_{2,n+1}], [b_{1,n+1}, s_{2,n+1}]\}$.

The profit of organization O_2 is $(p_s + p_b) \sum_{j \in J} 3a_j + (p_s + p_b)(3W + 1) = 3 \sum_{j \in J} a_j + 3W + 1$. Since that profit is at least $w_2(\tilde{M}) = 6W$, we deduce that $\sum_{j \in J} a_j \geq W - \frac{1}{3}$. Finally, $\sum_{j \in J} a_j$ must be an integer, so $\sum_{j \in J} a_j \geq W$. On the other hand, the profit of organization O_1 is given by $(p_s + p_b) \sum_{j \notin J} 6a_j + (p_s + p_b) \sum_{j \in J} 3a_j + (p_s + p_b)(3W + 1) = 6 \sum_{j=1}^n a_j - 3 \sum_{j \in J} a_j + 3W + 1$. This quantity must be at least $w_1(\tilde{M}) = 6 \sum_{j=1}^n a_j$. Since $\sum_{j \in J} a_j$ is an integer, we obtain $\sum_{j \in J} a_j \leq W$. In conclusion, $\sum_{j \in J} a_j = W$ which means that $\{a_1, \dots, a_n\}$ can be partitioned into two sets of weight W . \square

Is MOA strongly **NP**-complete for two organizations? We were not able to answer but we can relate the question to another one stated more than 25 years

ago and still open: Is the *exact weighted perfect matching* problem in bipartite graphs strongly **NP**-complete?

Given a graph whose edges have an integer weight and given a bound W , EXACTPM is to decide whether the graph contains a perfect matching M of total weight exactly W [2, 4, 7, 8]. Papadimitriou and Yannakakis [8] prove that EXACTPM is (weakly) **NP**-complete in bipartite graphs. Barahona and Pulleyblank [2] propose a pseudopolynomial algorithm in the case of planar graphs and Karzanov [4] gives a polynomial algorithm when the graph is either complete or complete bipartite and the weights are restricted to 0 or 1. Mulmuley, Vazirani and Vazirani [7] show that EXACTPM has a randomized pseudo-polynomial-time algorithm. However, the deterministic complexity of this problem remains unsettled, even for bipartite graphs. (Papadimitriou and Yannakakis conjectured that it is strongly **NP**-complete [8]).

EXACTPM is an auto-reducible problem, that is find a perfect matching of weight W is polynomially equivalent to decide whether such a matching exists.

Here, we prove that there is a Turing reduction from MOA when there are 2 organizations to EXACTPM. Thus, we conclude that if MOA with 2 organizations is strongly **NP**-complete then EXACTPM is also strongly **NP**-complete in bipartite graphs. Notice that this result also holds when there is a constant number of organizations.

Proposition 1. *If EXACTPM is polynomial in bipartite graphs when weights are polynomially bounded, then MOA with 2 organizations and weights polynomially bounded is polynomial for every values of p_s, p_b such that $1 \geq p_s \geq p_b \geq 0$ and $p_s + p_b = 1$.*

We can similarly show:

Proposition 2. *MOA with a constant number of organizations can be solved within pseudopolynomial time when the underlying graph has a maximum degree 2.*

2.2 Polynomial cases

MOA is trivially polynomial when there is a unique organization or when the underlying graph is of maximum degree 1. Furthermore an exhaustive search can efficiently solve the problem if the underlying graph $G = (V, E)$ contains $\mathcal{O}(\log |E|)$ shared edges. Let MOA_{0,1} be the subcase where $w([i, j]) \in \{0, 1\}$ for all $(i, j) \in B \times S$. We prove that an optimum to MOA_{0,1} is a maximum cardinality assignment of the underlying graph though a maximum cardinality assignment is not necessarily a solution of MOA_{0,1}.

Theorem 3. *MOA_{0,1} is polynomial.*

Sketch of proof. The proof is based on the following algorithm. Start with \tilde{M} , increase its size with augmenting alternating paths while it is possible and denote by \hat{M} the resulting matching. We mainly prove that improving a matching via

an augmenting alternating path is monotone, i.e. the profit of any organization cannot decrease. At the beginning of the algorithm, the current matching \tilde{M} is a feasible solution of the problem. The resulting matching \hat{M} is also feasible by the monotonicity. Finally \hat{M} is optimal (maximum cardinality) since no more augmenting alternating path exists. \square

3 Approximation

Recall that p_s and p_b are any values such that $0 \leq p_b \leq p_s \leq 1$ and $p_s + p_b = 1$. We start by the following property (proof in Appendix).

Property 2. $w_i(M^*) \geq p_b w(\tilde{M}_i)$, and this bound is asymptotically tight.

Let us consider algorithm APPROX given below.

Algorithm APPROX

- Construct the graph $G' = (V', E')$ from $G = (V, E)$ as follows: $V' = V$, and $E' = E$, except that the weights of the edges are modified: for each edge $[u, v]$ such that u belongs to organization O_i and v belongs to organization O_j , $w'([u, v]) = w([u, v])$ if u and v belong to the same organization ($i = j$), and otherwise $w'([u, v]) = p_b w([u, v])$.
- Return a maximum weight matching of G' .

Theorem 4. APPROX is a p_b -approximate algorithm for MOA, and this bound is asymptotically tight.

Proof. Let p_s, p_b be 2 numbers such that $1 \geq p_s \geq p_b \geq 0$ and $p_s + p_b = 1$. Let M be a matching returned by algorithm APPROX on graph G . We first show that the profit of each organization O_i in M is at least $w(M_i)$, and thus that M is a solution of MOA.

Let $M^{int(i)}$ be the set of edges of M whose both endpoints belong to O_i , and let $M^{ext(i)}$ be the set of edges of M whose exactly one endpoint belongs to O_i . Since M is a maximum weight matching of G' , $w'(M^{int(i)}) + w'(M^{ext(i)}) \geq w(\tilde{M}_i)$, otherwise we could have a matching with a larger weight by replacing the edges of $(M^{int(i)} \cup M^{ext(i)})$ in M by the edges of \tilde{M}_i . Thus the profit of O_i is at least $w(M^{int(i)}) + p_b w(M^{ext(i)}) = w'(M^{int(i)}) + w'(M^{ext(i)}) \geq w(\tilde{M}_i)$.

Let us now show that APPROX is p_b -approximate. The edges of G' are the same that the ones of G , except that the weight of some of them has been multiplied by $p_b < 1$. Thus M , which is a maximum weight matching of G' , has a weight $w(M) \geq p_b w(M^*) \geq p_b w(M_{cont}^*)$.

Let us show that this bound is asymptotically tight, by considering the following instance. Here, we assumed $p_b > 0$. Recall that $p_b \leq 1/2$ since $1 \geq p_s \geq p_b \geq 0$. Let $\varepsilon > 0$ such that $\varepsilon < 1/p_b - 1$. There are two organizations, organization O_1 , which owns two vertices b_1 and s_1 , linked by an edge

of weight 1, and organization O_2 , which owns two vertices b_2 and s_2 , linked by an edge of weight 1. There are two shared edges, between b_1 and s_2 , and between b_2 and s_1 : both edges have weight $\frac{1}{p_b} - \varepsilon$. Algorithm APPROX returns the matching $M = \{[b_1, s_1], [b_2, s_2]\}$ with weight 2 in G' because the weight of $\{[b_1, s_2], [b_2, s_1]\}$ in G' is $2(1 - p_b\varepsilon) < 2$. The optimal solution would have been $M_{cont}^* = \{[b_1, s_2], [b_2, s_1]\}$. The ratio between the weights of these two solutions is $\frac{w(M)}{w(M_{cont}^*)} = \frac{2}{2/p_b - 2\varepsilon}$, which tends towards p_b when ε tends towards 0. \square

Theorem 4 implies that the price of stability of MOA defined as $w(M_{cont}^*)/w(M^*)$ is at least p_b . In fact, we are able to prove that $\text{PoS} = p_b$.

Proposition 3. *The price of stability is p_b .*

We can prove that Theorem 4 is best possible if $\mathbf{P} \neq \mathbf{NP}$, i.e. we cannot obtain a $(p_b + \varepsilon)$ -approximation for all $\varepsilon > 0$. Actually, we prove a slightly stronger result.

Theorem 5. *For any polynomial P , it is \mathbf{NP} -hard to obtain a $(p_b + \frac{1}{\mathcal{O}(2^{P(n)})})$ -approximation for MOA where n is the number of vertices, even if there are exactly 3 organizations.*

Proof. We describe a gap reduction. We start with an instance of PARTITION given by a set of n integers $\{a_1, \dots, a_n\}$ such that $\sum_{i=1}^n a_i = 2W$. For any real $t > 1$, we construct an instance I_t of MOA as follows:

- we are given 3 organizations O_1 , O_2 and O_3 .
- O_1 has $n+1$ buyers and $n+1$ sellers respectively denoted by $b_{1,i}$ and $s_{1,i}$ for $i = 1, \dots, n+1$.
- O_2 has 2 buyers denoted by $b_{2,1}, b_{2,n+1}$ and $n+1$ sellers denoted by $s_{2,i}$ for $i = 1, \dots, n+1$.
- O_3 has one seller $s_{3,1}$.
- The edge set of the underlying graph is $\{[s_{1,i}, b_{1,i}], [b_{1,i}, s_{2,i}] : i = 1, \dots, n\} \cup \{[s_{1,n+1}, b_{2,1}], [b_{1,n+1}, s_{2,n+1}], [s_{2,n+1}, b_{2,n+1}], [b_{2,n+1}, s_{3,1}]\}$

The weights are given by:

- $w([s_{1,i}, b_{1,i}]) = w([b_{1,i}, s_{2,i}]) = a_i$ for $i = 1, \dots, n$.
- $w([s_{1,n+1}, b_{2,1}]) = p_s W$, $w([b_{1,n+1}, s_{2,n+1}]) = p_s W$, $w([s_{2,n+1}, b_{2,n+1}]) = t p_b W + 2 p_s W$, and $w([b_{2,n+1}, s_{3,1}]) = t W$.

An illustration of this construction is given in Figure 2.

If $t = \mathcal{O}(2^{P(|V|)})$ where $|V| = 3n+6$ is the order of the underlying graph, then it is not difficult to see that the above construction is given within polynomial time.

The profits the organizations can make on their own are respectively $w_1(\tilde{M}) = (p_s + p_b) \sum_{i=1}^n a_i = 2W$, $w_2(\tilde{M}) = (p_s + p_b)(t p_b W + 2 p_s W) = t p_b W + 2 p_s W$ and $w_3(\tilde{M}) = 0$.

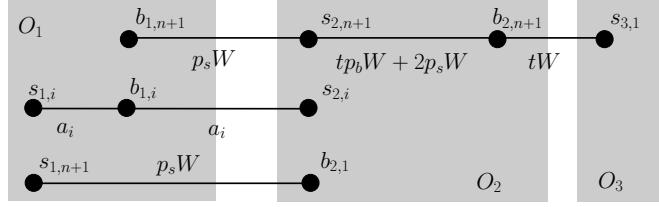


Fig. 2. The instance I_t resulting from the above reduction

We prove that there are only two distinct values for the optimal value of MOA, that are $OPT(I_t) = tp_b W + 3p_s W + 2W$ or $OPT(I_t) = tW + 2p_s W + 2W$ and $OPT(I_t) = tW + 2p_s W + 2W$ if and only if $\{a_1, \dots, a_n\}$ admits a partition.

Observe that $tW + 2p_s W + 2W > tp_b W + 3p_s W + 2W$ if and only if $t > 1$ since $p_b = 1 - p_s$ and $p_s > 0$. Let M_{cont}^* be an optimal solution of MOA (with value $OPT(I_t)$). Let us consider two cases:

Case $[s_{2,n+1}, b_{2,n+1}] \in M_{cont}^*$. An optimal solution can be described by

$$\{[s_{1,i}, b_{1,i}] : i = 1, \dots, n\} \cup \{[s_{1,n+1}, b_{2,1}], [s_{2,n+1}, b_{2,n+1}]\}.$$

Actually, $[s_{1,n+1}, b_{2,1}] \in M_{cont}^*$ because M_{cont}^* is maximal by Property 1 (cf page 6). Moreover, the weight of any maximal matching on the graph induced by $\{s_{1,i}, b_{1,i}, s_{2,i} : i = 1, \dots, n\}$ has the same value $2W$. In this case, we get $OPT(I_t) = tp_b W + 3p_s W + 2W$.

Case $[s_{2,n+1}, b_{2,n+1}] \notin M_{cont}^*$. Edges $\{[b_{1,n+1}, s_{2,n+1}], [b_{2,n+1}, s_{3,1}], [s_{1,n+1}, b_{2,1}]\}$ belong to M_{cont}^* by Property 1. The contribution of these 3 edges to the profit of O_2 is $p_s w([b_{1,n+1}, s_{2,n+1}]) + p_b w([b_{2,n+1}, s_{3,1}]) + p_b w([s_{1,n+1}, b_{2,1}]) = tp_b W + p_s W < tp_b W + 2p_s W = w([s_{2,n+1}, b_{2,n+1}])$ since $p_s > 0$. Hence, a subset of shared edges between O_1 and O_2 must belong to M_{cont}^* . Let $J^* = \{j \leq n : [b_{1,j}, s_{2,j}] \in M_{cont}^*\}$ be this subset. Then, M_{cont}^* is entirely described by $\{[b_{1,n+1}, s_{2,n+1}], [b_{2,n+1}, s_{3,1}], [s_{1,n+1}, b_{2,1}]\} \cup \{[b_{1,j}, s_{2,j}] : j \in J^*\} \cup \{[s_{1,j}, b_{1,j}] : j \notin J^*\}$.

To be feasible, M_{cont}^* must satisfy $w_1(M_{cont}^*) \geq w(\tilde{M}_1)$, i.e. $\sum_{j \notin J^*} a_j + p_b \sum_{j \in J^*} a_j + (p_s + p_b)p_s W \geq \sum_{j=1}^n a_j$ from which we deduce $W \geq \sum_{j \in J^*} a_j$ because $p_b = 1 - p_s$ and $p_s > 0$. M^* must also satisfy $w_2(M_{cont}^*) \geq w(\tilde{M}_2)$, i.e. $p_s \sum_{j \in J^*} a_j + (p_s + p_b)p_s W + tp_b W \geq tp_b W + 2p_s W$, which is equivalent to $\sum_{j \in J^*} a_j \geq W$. Then, we obtain $\sum_{j \in J^*} a_j = \sum_{j \notin J^*} a_j = W$. On the one hand $OPT(I_t) = tW + 2p_s W + 2W$ and on the other hand $\{a_1, \dots, a_n\}$ has a partition given by J^* .

Conversely, if $\{a_1, \dots, a_n\}$ admits a partition then it is not difficult to prove that $OPT(I_t) = tW + 2p_s W + 2W$.

Now, assume that there is a $(p_b + \frac{1}{c2^{P(|V|)}})$ -approximation of MOA given within polynomial time for some $c > 0$. Consider $t_0 = 5c2^{P(|V|)}$ and let $apx(I_{t_0})$ denote the value of the approximate solution on instance I_{t_0} .

- $\{a_1, \dots, a_n\}$ does not admit a partition. One has $OPT(I_{t_0}) = 5c2^{P(|V|)}p_bW + 3p_sW + 2W$ and then $apx(I_{t_0}) \leq 5c2^{P(|V|)}p_bW + 3p_sW + 2W$.
- $\{a_1, \dots, a_n\}$ admits a partition. We have $OPT(I_{t_0}) = 5c2^{P(|V|)}W + 2p_sW + 2W$. Since $apx(I_{t_0}) \geq (p_b + \frac{1}{c2^{P(|V|)}})OPT(I_{t_0})$ by hypothesis and $p_s \leq 1$, we deduce $apx(I_{t_0}) > 5W + 5c2^{P(|V|)}p_bW \geq 5c2^{P(|V|)}p_bW + 3p_sW + 2W$.

In conclusion, apx allows us to distinguish within polynomial time whether $\{a_1, \dots, a_n\}$ has a partition or not, which is impossible if $\mathbf{P} \neq \mathbf{NP}$. \square

4 Generalizations

Relaxation of the selfishness of the organizations. Suppose that each organization O_i accepts a proposed global matching if its own profit is at least $w(\tilde{M}_i)/x$ where $x \geq 1$ is fixed. This means that each organization accepts to divide by x the profit it would have without sharing its file with the other organizations. The problem, denoted by $MOA(x)$ is then to find a maximum weight matching M such that $w_i(M) \geq w(\tilde{M}_i)/x$ for all $i \in \{1, \dots, q\}$. Let $M_{cont(x)}^*$ denote such a maximum weight matching.

If $x = 1$, an organization does not accept to reduce its profit, and this problem is the one stated in the Introduction. If $x \geq 1/p_b$, the organizations accept to divide their profits by $1/p_b$. Property 2 page 8 shows that in a maximum weight matching M^* , the profit of organization O_i is at least $p_b w(\tilde{M}_i)$. Thus $M_{cont(x)}^* = M^*$. Our aim is now to solve $MOA(x)$ for $1 \leq x < 1/p_b$. With a slight modification of the proof of Theorem 1, we can show that this problem is strongly \mathbf{NP} -hard for each value x smaller than $1/p_b$, when there are at least three organizations. One can also extend APPROX to a slightly modified algorithm¹ APPROX(x) and prove that it is $(x p_b)$ -approximate algorithm for $MOA(x)$ and this bound is tight. In addition, the price of stability is $x p_b$ for this generalization.

General graphs. One can extend MOA to general graphs when $ps = p_b = 1/2$. In this case, the distinction between buyers and sellers is lost. For example, the problem has the following application: Numerous web sites offer to conduct home exchanges during holidays. The concept is simple, instead of booking expensive hotel rooms, pairs of families agree to swap their houses for a vacation. We model the situation with a graph $G = (V, E)$ whose vertices are candidates for house exchange. The vertex set is partitioned into q sets/organizations $O_1 \dots O_q$. Vertices within an organization are its clients. Every edge $[a, b] \in E$ has a weight $w([a, b])$ representing the satisfaction of candidates a and b if they swap. Pairs are formed by the organizations which only care about the satisfaction of their clients. In case of a mixed-organizations exchange $[a, b]$, it is assumed that the satisfaction of both participants is $w([a, b])/2$. The problem is to maximize the collective satisfaction while no organization is penalized.

Theorems 3 to 5 and Proposition 3 (where p_b is replaced by $1/2$) hold for general graphs since the proofs do not use the fact that G is bipartite.

¹ The weight of shared edges is multiplied by $x p_b$ instead of p_b .

5 Conclusion

We studied cooperation, at an algorithmic level, between organizations. We showed that the price of stability is p_b , and we studied the complexity of MOA. We presented polynomial cases, and showed that the problem is NP-hard in the general case. We also gave an approximation algorithm, matching the inapproximation bound when there are at least 3 organizations. There remains some open problems: is it possible to have an algorithm with a better approximation ratio when there are two organizations? Is this problem strongly NP-hard in this case (we notice that this problem is related to the open Exact Perfect Matching problem)? When we consider that each organization accepts a solution if it does not reduce its profit by a factor larger than x , is it possible to get an algorithm with an approximation ratio better than $x p_b$? An interesting direction would also be to study fairness issues in this problem. For example, among all the solutions of the same quality, return the one which maximizes the minimum $w_i(M_{cont}) - \tilde{M}_i$, that is the minimum increase of profit of the organizations.

References

1. E. Anshelevich, A. Dasgupta, J. M. Kleinberg, É. Tardos, T. Wexler and T. Roughgarden. *The Price of Stability for Network Design with Fair Cost Allocation*. In Proc. of FOCS 2004, pp. 295-304, 2004.
2. F. Barahona and W.R. Pulleyblank. *Exact arborescences, matchings, and cycles*, in Discrete Appl. Math. vol. 16, pp. 91-99, 1987.
3. M. R. Garey and D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*, W. H. Freeman and Company, New York, 1979.
4. A.V. Karzanov. *Maximum matching of given weight in complete and complete bipartite graphs*, In Cybernetics, vol. 23, pp. 8-13, 1987 (translation from Kibernetika, vol. 1, pp. 711, 1987).
5. N. Laouraris, O. Telelis, V. Zissimopoulos and I. Stavrakakis. *Distributed Selfish Replication*, IEEE Trans. Parallel Distrib. Syst., vol 17(12), pp. 1401-1413, 2006.
6. A. Leff, L. Wolf, and P. S. Yu. *Efficient LRU-based buffering in a LAN remote caching architecture*, IEEE Trans. Parallel Distrib. Syst., vol. 7(2), pp. 191-206, 1996.
7. K. Mulmuley, U. Vazirani and V.V. Vazirani. *Matching is as easy as matrix inversion*, In Combinatorica, vol. 7, pp. 105-113, 1987.
8. C.H. Papadimitriou and M. Yannakakis. *The complexity of restricted spanning tree problems*, In J. ACM, vol. 29, pp. 285-309, 1982.
9. F. Pascual, K. Rzadca and D. Trystram. *Cooperation in Multi-organization Scheduling*, In Proc. of Euro-Par 07, LNCS 4641, pp. 224-233, 2007.
10. M. Osborne and A. Rubinstein. *A Course in Game Theory*, MIT Press, 1994.
11. D. W. Pentico. *Assignment problems: A golden anniversary survey*. EJOR, vol. 176, pp. 774-793, 2007.
12. L.S. Shapley and M. Shubik. *The assignment game I: The core*, International Journal of Game Theory, vol. 1, pp. 111-130, 1972.

Appendix

Theorem 1 For any values of p_b , p_s such that $1 \geq p_s \geq p_b \geq 0$ and $p_s + p_b = 1$, the decision version of MOA is strongly **NP**-complete.

Proof. Let p_s and p_b be two numbers such that $1 \geq p_s \geq p_b \geq 0$ and $p_s + p_b = 1$. Given a positive profit P and an instance of MOA, the decision version asks whether the instance admits a matching M such that $\forall_{i \in \{1, \dots, q\}} w_i(M) \geq w(\tilde{M}_i)$ and $w(M) \geq P$.

Given a bound W , a set $A = \{a_1, \dots, a_{3m}\}$ of $3m$ positive integers such that $\sum_{i=1}^{3m} a_i = mW$ and $\forall i = 1, \dots, 3m, \frac{W}{4} < a_i < \frac{W}{2}$, the 3-PARTITION problem is to decide whether A can be partitioned into m subsets A_1, A_2, \dots, A_m such that the sum of the numbers in each subset is equal (thus $\sum_{a_j \in A_i} a_j = W$ and $|A_i| = 3$ for all $i \in \{1, \dots, m\}$). The 3-PARTITION problem is strongly **NP**-complete (problem [SP15] in [3]).

Given an instance I of the 3-PARTITION problem, we build a corresponding instance I' of MOA as follows (see Figure 3 for an illustration):

- we are given $m + 1$ organizations O_1, \dots, O_{m+1} , i.e. $q = m + 1$
- O_{m+1} has $3m$ buyers and m sellers respectively denoted by $b_{m+1,1}$ to $b_{m+1,3m}$ and $s_{m+1,1}$ to $s_{m+1,m}$
- for $i = 1, \dots, m$:
 - O_i has 3 sellers denoted by $s_{i,1}, s_{i,2}, s_{i,3}$ and one buyer b_i
 - $w([b_i, s_{i,1}]) = w([b_i, s_{m+1,i}]) = W$
- for $i, j \in \{1, \dots, m\} \times \{1, \dots, 3m\}$:
 - $w([b_{m+1,j}, s_{i,1}]) = w([b_{m+1,j}, s_{i,2}]) = w([b_{m+1,j}, s_{i,3}]) = a_j$

We have $w_i(\tilde{M}) = (p_s + p_b)W = W$ for $i = 1, \dots, m$ and $w_{m+1}(\tilde{M}) = 0$. We claim that I' admits a feasible assignment M such that $w(M) \geq 2mW$ if and only if A admits a partition into m subsets A_1, A_2, \dots, A_m such that $\sum_{a_j \in A_i} a_j = W$ and $|A_i| = 3$ for all $i \in \{1, \dots, m\}$.

Let $\hat{A} = \langle A_1, A_2, \dots, A_m \rangle$ be a YES solution to instance I of 3-PARTITION. We build a corresponding matching \hat{M} , solution to instance I' of MOA as follows: $\hat{M} = \emptyset$ at the beginning and for each triple a_x, a_y, a_z of A_i , we add edges $[b_{m+1,x}, s_{i,1}], [b_{m+1,y}, s_{i,2}]$ and $[b_{m+1,z}, s_{i,3}]$ to \hat{M} . We also add edge $[b_i, s_{m+1,i}]$ to \hat{M} for all $i \in \{1, \dots, m\}$.

We remark that \hat{M} is a feasible assignment. Indeed, organization O_i ($i = 1, \dots, m$) has 4 shared edges in \hat{M} , that is $[b_i, s_{m+1,i}]$ with weight W , $[b_{m+1,x}, s_{i,1}]$ with weight a_x , $[b_{m+1,y}, s_{i,2}]$ with weight a_y and $[b_{m+1,z}, s_{i,3}]$ with weight a_z .

Since \hat{A} is a YES solution to I , we know that $a_x + a_y + a_z = W$. Hence, $w_i(\hat{M}) = (p_s + p_b)W = w_i(\tilde{M})$ for $i = 1, \dots, m$. We also have $w_{m+1}(\hat{M}) = (p_s + p_b)mW$ since O_{m+1} has m shared edges of weight W adjacent to its sellers and $3m$ other shared edges of total weight $\sum_{j=1}^{3m} a_j = mW$ adjacent to its buyers. This is greater than $w_{m+1}(\tilde{M})$. Thus, \hat{M} is a YES solution to instance I' of the

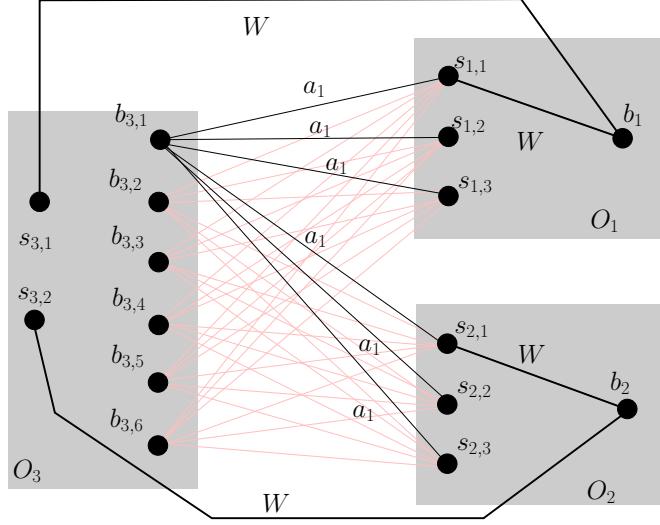


Fig. 3. Bipartite graph obtained by the transformation of an instance $A = \{a_1, \dots, a_6\}$ of the 3-PARTITION problem where $W = \frac{1}{2} \sum_{j=1}^6 a_j$. There is an edge with weight a_j between $b_{3,j}$ and $s_{x,y}$ for all couple $x, y \in \{1, 2\} \times \{1, 2, 3\}$. These edges are shaded in the picture except those with weight a_1 .

decision version of MOA because the total profit made by the organizations is $2mW$.

Conversely, let \hat{M} be a YES solution to instance I' of the decision version of MOA with $P = 2mW$. By definition we have $w(\hat{M}) \geq 2mW$, $w_i(\hat{M}) \geq W$ for $i = 1, \dots, m$ and $w_{m+1}(\hat{M}) \geq 0$. Observe that $\hat{M} \cap \{[b_i, s_{i,1}] \mid i = 1, \dots, m\} = \emptyset$. Indeed, if k edges in $\{[b_i, s_{i,1}] \mid i = 1, \dots, m\}$ belong to \hat{M} then the total profit would be strictly less than $2mW$ since $w(\hat{M}) \leq kW + (m - k)W + \sum_{i=1}^{3m} a_i - k \min\{a_i : i = 1, \dots, 3m\} < (2m - \frac{k}{4})W$. Furthermore, \hat{M} must be perfect since otherwise $w(\hat{M}) < 2mW$.

We build a partition $\hat{A} = \langle A_1, A_2, \dots, A_m \rangle$, solution to instance I of 3-PARTITION corresponding to \hat{M} as follows: for $i = 1$ to m , put in A_i the weight of the (shared) edges incident to $s_{i,1}$, $s_{i,2}$ and $s_{i,3}$. One can observe that \hat{A} is a feasible 3-partition of A . Take an organization O_i ($i = 1, \dots, m$), 4 shared edges are incident to its nodes in \hat{M} . The one incident to b_i has weight W . The total weight of the three others must be at least W since $w_i(\hat{M}) = (p_s + p_b)W$. Hence, each A_i is assigned 3 values whose sum is at least W but if this sum exceeds W for at least one organization, we would have $\sum_{j=1}^{3m} a_j > Wm$ which is a contradiction. As a consequence, each A_i is assigned 3 values whose sum is exactly W . \square

Theorem 3 $\text{MOA}_{0,1}$ is polynomial.

Proof. Let M be an assignment on an unweighted bipartite graph $G = (B, S; E)$. Recall that a path in G is *alternating* with respect to M if it alternates edges of M and edges of $E \setminus M$. Furthermore, an alternating path π is *augmenting* if no edge of M is incident to its extremal nodes. The word “augmenting” means that $(M \setminus \pi) \cup (\pi \setminus M)$ is a matching of size $|M| + 1$. It is well known that M is of maximum size on G if G does not admit any augmenting alternating path with respect to M .

Let I be an instance of $\text{MOA}_{0,1}$ defined upon G . Let \hat{M} be an optimal matching built as follows. Start with the feasible matching \tilde{M} and increase its size with augmenting alternating paths while it is possible.

Let \hat{M}^j be the matching produced at step j . We suppose that t steps are needed to reach \hat{M} . Hence, $\hat{M}^0 = \tilde{M}$ and $\hat{M}^t = \hat{M}$. We mainly prove

$$w_i(\hat{M}^{j+1}) \geq w_i(\hat{M}^j), \forall i \in \{1, \dots, q\} \quad (1)$$

for all $j \in \{0, \dots, t-1\}$. This inequality states that the use of an augmenting alternating path cannot deteriorate the profit of any organization.

Given $v \in V$ and a matching M , let $c(v, M)$ be the *contribution* of v to the profit of its organization in M :

$$c(v, M) = \begin{cases} p_s & \text{if } v \in S \text{ and an edge of } M \text{ is incident to } v \\ p_b & \text{if } v \in B \text{ and an edge of } M \text{ is incident to } v \\ 0 & \text{otherwise} \end{cases}$$

Let V' be the vertices of π' , the augmenting alternating path such that $\hat{M}^{j+1} = (\hat{M}^j \setminus \pi') \cup (\pi' \setminus \hat{M}^j)$. We deduce that

$$w_i(\hat{M}^{j+1}) - w_i(\hat{M}^j) = \sum_{v \in V'} c(v, \hat{M}^{j+1}) - c(v, \hat{M}^j) \quad (2)$$

for all $i \in \{1, \dots, q\}$. One can observe that $c(v, \hat{M}^j) = c(v, \hat{M}^{j+1})$ if $v \in V'$ and v is not an extremal node of π' . Indeed, a buyer $b \in V'$ matched with a seller $s \in V'$ in \hat{M}^j is still matched in \hat{M}^{j+1} but with another seller. Similarly, a seller $s \in V'$ matched with a buyer $b \in V'$ in \hat{M}^j is still matched in \hat{M}^{j+1} but with another buyer. If $v \in S \cap V'$ (resp. $v \in B \cap V'$) and v is an extremal node of π' then $c(v, \hat{M}^j) = 0$ and $c(v, \hat{M}^{j+1}) = p_s$ (resp. $c(v, \hat{M}^j) = 0$ and $c(v, \hat{M}^{j+1}) = p_b$). Hence,

$$c(v, \hat{M}^{j+1}) - c(v, \hat{M}^j) \geq 0 \quad (3)$$

for all $v \in V$ because $p_s \geq p_b \geq 0$. Using (2) and (3) we obtain $w_i(\hat{M}^{j+1}) - w_i(\hat{M}^j) \geq 0$ for all $i \in \{1, \dots, q\}$. \hat{M} is a feasible assignment because $w_i(\hat{M}^t) \geq w_i(\hat{M}^{t-1}) \geq \dots \geq w_i(\hat{M}^0) = w(\tilde{M}_i)$ for all $i \in \{1, \dots, q\}$. In addition, $w(\hat{M}) = w(M^*)$ because the algorithm stops when no augmenting alternating path exists. In conclusion, \hat{M} is optimal because $w(M^*) \geq w(M_{\text{cont}}^*)$. \square

Proposition 1 *If EXACTPM is polynomial in bipartite graphs when weights are polynomially bounded, then MOA with 2 organizations is polynomial, for every values of p_b, p_s such that $1 \geq p_s \geq p_b \geq 0$ and $p_s + p_b = 1$.*

Proof. Let p_b, p_s be two rational numbers such that $1 \geq p_s \geq p_b \geq 0$ and $p_s + p_b = 1$, and let $I = (G, w)$ be an instance of MOA with 2 organizations where $G = (V, E)$. Wlog., assume that $w(e), p_s w(e)$ and $p_b w(e)$ are integers for every edges $e \in E$ (otherwise, multiplying each weight by the denominator of p_b if $p_b \neq 0$, we obtain an equivalent instance). Moreover, assume that $\forall e \in E, w(e) \leq P(|V|)$ for some polynomial P . Let $R = w(M^*)$ be the value of a maximum matching of G . Consider the bipartite graph $G' = (V', E')$ built from G by adding dummy vertices and weights 0 in a such way that any matching of G can be completed into a perfect matching of G' with same value. Formally, we add a copy of $K_{|S|, |B|}$ and each new B -vertex (resp., S -vertex) is completely linked to the S -vertices (resp., B -vertices) of G . Then, each shared edge $e = [u, v] \in E$ is replaced by a path of length 3 $[u, u_e], [u_e, v_e], [v_e, v]$ where u_e, v_e are new vertices. Remark that either $\{[u, u_e], [v_e, v]\}$ or $\{[u_e, v_e]\}$ is included in any perfect matching of G' . Consider the weights w' given by: $w'(e) = (R+1)^3 w(e)$ if e is internal to organization O_1 and $w'(e) = (R+1)^2 w(e)$ if e is internal to organization O_2 . Moreover, if $e = [u, v] \in E$ is a shared edge, then $w'([u, u_e]) = (R+1)p_s w([u, v])$ if $u \in S \cap O_1$ and $w'([u, u_e]) = (R+1)p_b w([u, v])$ otherwise (ie., $u \in B \cap O_1$). Also, $w'([v, v_e]) = p_s w([u, v])$ if $u \in S \cap O_2$ and $w'([v, v_e]) = p_b w([u, v])$ otherwise. Finally, all the remaining edges of G' are a weight 0. It is clear that G' is construct within polynomial time and w' remains polynomially bounded.

For any matching M , we denote by M_1 (resp., M_2) the restriction of M to organization O_1 (resp., O_2) and by M_{shared} the set of shared edges of M . Denote by W_1 (resp., W_2) the contribution of the shared edges of M for organization O_1 (resp., O_2). Obviously, we get $w(M_{\text{shared}}) = W_1 + W_2$ since $p_s + p_b = 1$.

We claim that the weight of M is $w(M) = w(M_1) + w(M_{\text{shared}}) + w(M_2)$ if and only if there exists a matching of I' of weight $W = (R+1)^3 w(M_1) + (R+1)^2 w(M_2) + (R+1)W_1 + W_2$. Moreover, M is a feasible solution of MOA iff $w(M_i) + W_i \geq w_i(\tilde{M})$ for $i = 1, 2$.

One direction is trivial. So, let M' be a matching of I' with value $w'(M') = W = (R+1)^3 A + (R+1)^2 B + (R+1)C + D$. By the choice of R , we must get $w_1(M') = A$, $w_2(M') = B$ and $w(M'_{\text{shared}}) = C + D$, where C (resp., D) is constituted by the contribution of the shared edges of M' for organization O_1 (resp., O_2). The profit of M' for organization O_1 is $A + C$ and $B + D$ for organization O_2 .

In conclusion by applying at most R^4 times the polynomial algorithm for EXACTPM, we find an optimal solution of MOA. By an exhaustive search, we try all values of A, B, C, D at most equal to R such that $A + C \geq w_1(\tilde{M})$ and $B + D \geq w_2(\tilde{M})$. □

Proposition 2 MOA with a constant number of organizations can be solved within pseudopolynomial time when the underlying graph has a maximum 2.

Proof. Here, we deal with 2 organizations, but the result can be extended to any constant number of organizations. The proof is based on Proposition 1, and use the pseudopolynomiality result of [2] for EXACTPM in planar graphs. However, the construction of G' is slightly different because when one add a

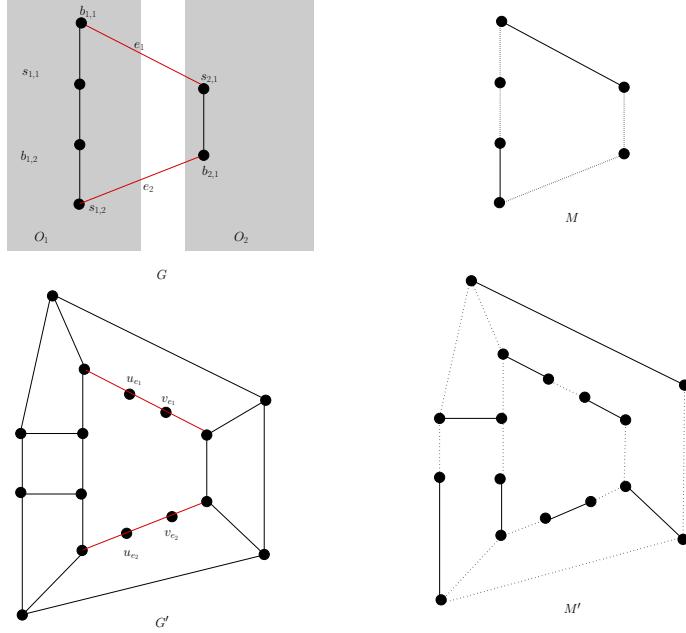


Fig. 4. Construction of G' and perfect matching M' from G and matching M .

copy of $K_{|S|,|B|}$ the resulting graph may be not planar. So, let $I = (G, w)$ be an instance of MOA with 2 organizations where $G = (V, E)$ is a bipartite graph of maximum degree 2. Wlog., assume that G is 2-regular, that is a collection of disjoint even cycles (by adding dummy vertices and edges of weight 0). Then, for each cycle C of G , we add a copy C' of C and we link each vertex of C to its copy in C' . Finally, as it is done in Proposition 1, each shared edge $e = [u, v]$ of a cycle C in G is replaced by a path of length 3 $[u, u_e], [u_e, v_e], [v_e, v]$ where u_e, v_e are new vertices. The weights are defined similarly to the one given in Proposition 1. Figure 4 gives an illustration of this construction.

Obviously, G' is planar. Moreover, any matching M can be converted into a perfect matching M' of G' . Thus, by applying the argument given in Proposition 1, the result follows. \square

Property 2. $w_i(M^*) \geq p_b w(\tilde{M}_i)$, and this bound is asymptotically tight.

Proof. Let C_i be the set of edges of M^* whose at least one endpoint belongs to organization O_i . We have $w(C_i) \geq w(\tilde{M}_i)$, otherwise we could obtain a matching of weight larger than $w(M^*)$ by replacing the edges of C_i by the ones of \tilde{M}_i . The profit of O_i is $w_i(M^*) \geq p_b w(C_i)$, and thus $w_i(M^*) \geq p_b w(\tilde{M}_i)$.

Let ε be a small positive number. Let us now show that the above bound is tight, by considering the following instance : two organizations O_1 and O_2 , such that there are in O_1 two nodes $b_{1,1}$ and $s_{1,1}$ linked by an edge of weight $1 - \varepsilon$, and there is in O_2 one node $s_{2,1}$ linked to $b_{1,1}$ by an edge of weight 1. We have:

$w(\tilde{M}_1) = 1 - \varepsilon$, $M^* = \{[b_{1,1}, s_{2,1}]\}$, and $\frac{w_1(M^*)}{w(M_i)} = \frac{p_b}{1-\varepsilon}$, which tends towards p_b when ε tends towards 0. \square

Proposition 3. *The price of stability is p_b .*

Proof. It follows from Theorem 4 that $w(M_{cont}^*)/w(M^*) \geq p_b$ since APPROX returns a matching M such that $w(M_{cont}^*) \geq w(M) \geq p_b w(M^*)$.

Let us now show that this bound is tight. There are two organizations: organization O_1 , which owns two vertices b_1 and s_1 , linked by an edge of weight W_1 , and organization O_2 , which owns one vertex s_2 , linked to b_1 by a link of weight W_2 . Suppose that $W_1 = \varepsilon$ such that $0 < \varepsilon < 1$ and $W_2 = 1$ when $p_b = 0$. The ratio $\frac{w(M_{cont}^*)}{w(M^*)} = \varepsilon$, tends towards $0 = p_b$ when ε tends towards 0. Suppose that $W_1 = 1$ and $W_2 = 1/p_b - \varepsilon$ such that $0 < \varepsilon < 1/p_b - 1$ when $p_b > 0$. The ratio $\frac{w(M_{cont}^*)}{w(M^*)} = \frac{p_b}{1-\varepsilon p_b}$, tends towards p_b when ε tends towards 0. \square