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Abstract. We study a problem involving a set of organizations. Each
organization has its own pool of clients who either supply or demand one
unit of an indivisible product. Knowing the profit induced by each buyer-
seller pair, an organization’s task is to conduct such transactions within
its database of clients in order to maximize the amount of the trans-
actions. Inter-organizations transactions are allowed: in this situation,
two clients from distinct organizations can trade and their organizations
share the induced profit. Since maximizing the overall profit leads to un-
acceptable situations where an organization can be penalized, we study
the problem of maximizing the overall profit such that no organization
gets less than it can obtain on its own. Complexity results, an approxi-
mation algorithm and a matching inapproximation bound are given.

Keywords: Assignment problem; Cooperation; Complexity; Approxi-
mation

1 Introduction

We are given a two-sided assignment market (B, S, A) defined by a set of buyers
B, a disjoint set of sellers S, and a nonnegative matrix A = (a;;)(; j)epxs Where
a;; represents a profit if the pair (i,7) € B x S trade. In this market products
come in indivisible units, and each participant either supplies or demands exactly
one unit. The units do need not be alike and the same unit may have different
values for different participants.

We study a problem involving a set of organizations {Oq,...,0O4} which
forms a partition of the market. A buyer (resp. seller) is a client of exactly one
organization. It is assumed that for every transaction (i, j), organizations of i and
j make a profit a;;, i.e. a commission. The seller’s organization receives p; a;;
while the buyer’s organization gets p, a;j, where p, and p;, are fixed numbers
between 0 and 1 and such that p, +ps = 1. We assume without loss of generality
that 0 <p, <p, < 1.

In this model, buyers and sellers do not make pairs by themselves, but these
pairs are formed by their organizations. Each organization acts as a selfish agent
who only knows its list of clients and only cares about its profit. Thus, each orga-
nization O; shall maximize the weight of a matching on G induced by the vertices
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of O; (this task can be done in polynomial time). However the global profit can
be better if transactions between clients of distinct organizations are allowed.
This leads to a situation of cooperation where the agents accept to disclose their
lists of clients by reporting them to a trusted entity. This trusted entity can con-
duct transactions between a buyer and a seller from distinct organizations, and
of course, it can also do it for two clients of the same organization. The trusted
entity shall maximize the collective profits. However, maximizing the collective
profits by returning a maximum weight matching may lead to unacceptable sit-
uations: each organization is selfish so it does not want to cooperate if its profit
is worse than it could obtain on its own. The optimization problem faced by the
trusted entity is then to maximize the collective profit so that no organization
is penalized.

1.1 The multiorganization assignment problem

The market is modelled with a weighted bipartite graph G = (B, S; E; w) and
q sets (or organizations) Oy,..., O, forming a partition of B U S. Every buyer
(resp. seller) is represented by a vertex in B (resp. S), E C B x S is the edge
set representing pairs and w : E — R, is a nonnegative weight function. The
subgraph of G induced by O; is denoted by G;. We have G; = (B;, S;; E;, w)
where B, = BN O; and S; = SNO;. A set M C E is an assignment (or a
matching) iff each vertex in (B,.S; M, w) has degree at most one. The weight of
an assignment M (i.e. the sum of the weights of its edges) is denoted by w(M),
and the profit of organization O; in M is denoted by w; (M) and defined as

wi(M) = > pow([b, s]) + > ps w([b, s])

{[b,s]eM: (b,s)eB; xS} {[b,s]eM: (b,s)EBXS;}

where ps and p; are two nonnegative rational numbers such that ps+p, = 1 and
0<p,<ps <1l

We say that an edge whose endpoints are in the same organization (resp. in
distinct organizations) is internal (resp. shared). The maximum weight matching
of G reduced to its internal edges is denoted by M. Let M; be the restriction
of M to G;. The multiorganization assignment problem (moA for short) is to
find a maximum weight matching M of G such that w;(M) > w;(M) for all
i € {l,...,q}. As a notation, M* denotes a maximum weight matching of G

whereas M} ., is an optimum for MOA.

1.2 Applications

We give here two applications where MOA arises.

The “agencies problem”. Each organization has its own pool of sellers ()
and buyers (B) who either supply or demand one unit of an indivisible product.
Consider for example that organizations are real estate agencies. Each orga-
nization receives a commission on each transaction it deals, and its goal is to
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maximize its profit. Therefore each organization accepts the assignment given
by a trusted entity if and only if its profit is at most equal to the profit it would
have had without sharing its file with the other organizations. The overall aim
is then to find an assignment which maximizes the total amount of transactions
done, while guaranting that no organization decreases its profit by sharing its
file.

A scheduling example. Each organization (which can be a university, labora-
tory, etc.) owns unit tasks (given by its users), and several (possibly different)
machines. During some given time slots, the machines are available to schedule
the tasks of the users. Each user gives her preferences for a given machine and
a given time slot. These preferences are represented by integers (a;;) between 0
(a task cannot be scheduled on this machine at this time), and a given upper
bound. The goal of each organization is to maximize the average satisfaction
of its users, represented by the sum of the satisfactions of its users divided by
the number of users, in the returned assignment. Therefore an organization will
accept a multiorganization assignment if and only if the average satisfaction of
its users is at least as high as when the organization accepts only the tasks from
its users. Here, an unmatched user’s satisfaction is 0. This corresponds to MOA
when S is the set of users, B the set of couples (time slot, machine), p; = 1 and
py = 0.

1.3 Related work

The multi-organization assignment problem is a variant of the old assignment
problem (see [11] for a recent survey). Besides its combinatorial structure, MOA
involves self-interested agents whose cooperation can lead to significant improve-
ments but a solution is feasible only if it does not arm any local utility.

Non cooperative game theory studies situations involv- C D

ing several players whose selfish actions affect each oth- C| 3,3 0,4
ers [10]. In Tucker’s prisoner’s dilemma, two players can ~ D| 4,0 L1
either cooperate (C), i.e. stay loyal to the other prisoner, the prisoner’s dilemma

or defect (D), i.e. agree to testify against the other.

A social optimum is reached if both play C but the situation where both prisoners
defect is the only stable situation (a Nash equilibrium). In fact, the game designer
of the prisoner’s dilemma filled the payoff matrix in way that any prisoner has
incentive to defect. MOA models the opposite situation where the game designer
tries to fill the payoff matrix such that each organization’s (weakly) dominant
strategy is to cooperate, i.e. disclose her list of clients and follow the trusted
entity. The game designer has to compute a Nash equilibrium (a stable matching)
that optimizes the social welfare (total profit).

The maximum weight matching M* is sometimes unstable because the or-
ganizations are selfish. Then, one has to consider a different optimum M/,
which is the maximum weight Nash equilibrium (no organization can increase
its profit by using its own maximum weight matching instead of the solution
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returned by the trusted entity). Interestingly, a theoretical measure of this loss
of profit due to the selfishness of the organizations exists. Known as the price
of stability (PoS) [1], it is defined as the (worst case) ratio between the most
socially valuable state and the worth of the best Nash equilibrium. For MOA,
PoS= w(Mp,,,,)/w(M*).

cont

MOA is also related to cooperative game theory [10]. A central issue in this
field is to allocate the worth of a coalition to its members. Shapley and Shubik
associate to any two-sided assignment market (B, S, A) a cooperative game with
transferable utility (the assignment game) and show that its core is nonempty,
and has a lattice structure [12].

MOA is close in spirit to other works which study, at an algorithmic level,
how to make organizations cooperate. In [9], the authors study a scheduling
problem involving several organizations. Each of them has a set of jobs to be
completed as early as possible and its own set of processors. A selfish schedule is
such that the processors only execute jobs of their owner. The authors propose
an algorithm which returns schedules with good makespans and in which the
organizations cooperate without being penalyzed. In [6,5], the authors study
the selfish distributed replication problem. This problem involves several nodes
of a network whose task is to fetch electronic contents (objects) located at distant
servers. Instead of taking an object from its server at each request, the nodes can
save time by making a local copy. An intermediate strategy is to get an object
from another node which is closer than the server. The optimization problem is to
fill the (bounded) memory of each node in order to minimize the overall expected
response time. Since an optimum solution can be unacceptable to selfish nodes
(e.g. a node’s memory is filled with objects that it rarely requests), the authors
of [5] propose equilibrium placement strategies where no one is penalyzed.

1.4 Contribution

We investigate the computational complexity of MOA in Section 2. In particular,
we show that the problem is strongly NP-hard if the number of organizations
if not fixed. It is weakly NP-hard for two organizations. A possible proof of
strong NP-hardness for a fixed number of organizations is discussed and some
pseudo-polynomial and polynomial cases are given as well. We provide an ap-
proximation algorithm with performance guarantee p;, and a matching proof of
inapproximation in Section 3. We also show in this section that the price of
stability of MOA is pp. Section 4 is devoted to generalizations of MOA and also
generalizations of the results of this article. We conclude in Section 5.

Our results apply for any values of ps and p, such that 0 < p, < ps <1 and
Py + ps = 1. Some proofs are put in an Appendix due to space limitation.

2 Complexity results

We prove that MOA is strongly NP-hard in the general case, even if the weights
are polynomially bounded. We also show that the restriction of MOA to 2 orga-



Cooperation in multiorganization matching 5

nizations is weakly NP-hard. Next we show pseudopolynomial and polynomial
cases.

2.1 Computationaly hard cases

Given a positive profit P and an instance of MOA, the decision version asks

whether the instance admits a matching M such that Ve 4 wi(M) > w(M;)
and w(M) > P.

.....

Theorem 1. The decision version of MOA is strongly NP -complete.

We make a reduction from 3-PARTITION which is strongly INP-complete
(problem [SP15] in [3]).

Theorem 2. The decision version of MOA is NP-complete, even if there are 2
organizations and the underlying graph is of mazximum degree 2.

Proof. Let ps and p, be two reals such that 1 > ps > p, > 0 and ps+pp = 1. The
reduction is done from PARTITION: given a set {ay,...,an} of n integers such
that 2" a; = 2W, decide whether J C {1,...,n} such that >, ,a; = W
exists. PARTITION is known to be NP-complete (problem [SP12] in [3]).

From I, instance of PARTITION, we build I’, instance of MOA by the following
way:

e we are given 2 organizations O and Os

e O; has n+ 1 sellers and n + 1 buyers respectively denoted by s;,; and by ;
fori=1,....,n+1

e Oj has also n + 1 buyers and n + 1 sellers respectively denoted by b2 ; and
spifori=1,...,n+1

e The edge set of the underlying graph is given by {[b1,i, s1,:], [$1,i, D2,i], [01,, S2.4]
i=1,...,n} U{[s1,n41,b2,n+1]s [b2,n+1, 52,n41], [S2,n41, b1,n41]}

The weight are defined by:

[ ) w([bl,i, 8171']) = 6@1' and ’w([bg)i, 8171']) = ’w([Sg)i, b17i]) = 3ai fOl“ 1= 1, oo
o w([bont1,52m41]) = 6W and w([s1nt1,b2mt1]) = w(b1,nt1,52m41]) =
3W+1

The underlying graph is made of a collection of n+ 1 disjoint paths of length
3. Figure 1 gives an illustration of this construction.

Organization O; can make a profit wi (M) = (ps + pp) S, 6a; = 12W if it
works alone. The local profit of organization Oy is wa (M) = (ps + pp)6W = 61V.

Thus, globally, the weight of this matching is 18W.

We affirm that I’ admits a feasible assignment M such that w(M) > 18W+2
if and only if I admits a set J C {1,...,n} with > . ;a; =W.

Let J be a subset of {1, ... ,n}A such that ngJ aj =W (and then, 3. ;a; =
W). We build the assignment M as follows: M = {[ba;, s1,;],[s2,5,b1,;] : J €
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b1 1 S1,n+1 51,5 by

0,

W +1 |3SW+1

6V
S2.n+1 b2,n+1 b2,j 82,5

0,

Fig. 1. The construction of I'.

JYUA{[b1j,515] 15 & I} U{[s1.n41,02.n41], 1041, S2,n41]}

Clearly, the cost of M is given by w(M) = 18W+2. Now, let us verify that M
is a feasible solution. The local profit of organization Oy is (ps + ps) Zj¢J 6a; +

(ps + 1) D ey 3a;+ (ps + o) BW + 1) = 12W + 1 > w1 (M) whereas the profit
of organization O becomes (ps +pb) 3¢ 5 3a; + (ps +pp) BW +1) = 6W +1 >

Conversely, let M be a feasible assignment such that w(M ) > 18W + 2.
Observe that the following property which can be easily proved.

Property 1. Any feasible solution of MOA can be supposed maximal with respect
to the inclusion.

Now, remark that M necessarily contains the edges [s1 n+1,b2,n+1] and [b1 41, S2.n+1]
since on the one hand, the weight of any maximal matching on the graph
induced by all vertices except {s1,n+1,52,n+1,01,n+1,02n+1} is 12W, and on
the other hand w([ban i1, 52.m41]) = 6W. Thus, M must contain some edges
[b2,,81,5] or [b1,4, 82,;] in order to compensate the loss of edge [b2,5,+1, $2.n+1]. Let
J={j <n:l[bay, 1] € M}. By property 1, M is completely described by M =
{[b2.5,51,4]5 [b1,j, 82,5] + 5 € JYU{[b1j,815] : 5 & JIU{[S1,n+1,02.n+1]; D141, S2.n41] }-

The profit of organization Oz is (ps +pv) D e 3(?' + (ps + pp)BW + 1) =
32 jes aj +3W + 1. Since that profit is at least wo(M) = 6W, we deduce that
diesaj = W —%. Finally, >_jesaj must be an integer, so » . ; a; > W. On the
other hand, the profit of organization O; is given by (ps + pp) ng 5 6a; + (ps +
Do) Y e s 30+ (Pstpp) BWH1) =637 a;—33 "¢ y a;+3W+1. This quantity
must be at least wy (M) = 62?:1 aj. Since ). ;ya; is an integer, we obtain
EjeJ a; < W. In conclusion, Eje] a; = W which means that {a1,...,a,} can
be partitioned into two sets of weight W. 0

Is MoA strongly NP-complete for two organizations? We were not able to
answer but we can relate the question to another one stated more than 25 years
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ago and still open: Is the exact weighted perfect matching problem in bipartite
graphs strongly NP-complete?

Given a graph whose edges have an integer weight and given a bound W,
ExAcTPM is to decide whether the graph contains a perfect matching M of
total weight exactly W [2,4,7,8]. Papadimitriou and Yannakakis [8] prove that
ExacTPM is (weakly) NP-complete in bipartite graphs. Barahona and Pulley-
blank [2] propose a pseudopolynomial algorithm in the case of planar graphs and
Karzanov [4] gives a polynomial algorithm when the graph is either complete or
complete bipartite and the weights are restricted to 0 or 1. Mulmuley, Vazirani
and Vazirani [7] show that EXACTPM has a randomized pseudo-polynomial-
time algorithm. However, the deterministic complexity of this problem remains
unsettled, even for bipartite graphs. (Papadimitriou and Yannakakis conjectured
that it is strongly NP-complete [8]).

ExacTPM is an auto-reducible problem, that is find a perfect matching of
weight W is polynomially equivalent to decide whether such a matching exists.

Here, we prove that there is a Turing reduction from MOA when there are
2 organizations to EXACTPM. Thus, we conclude that if MOA with 2 organi-
zations is strongly NP-complete then EXACTPM is also strongly NP-complete
in bipartite graphs. Notice that this result also holds when there is a constant
number of organizations.

Proposition 1. If EXACTPM is polynomial in bipartite graphs when weights
are polynomially bounded, then MOA with 2 organizations and weights polynomi-
ally bounded is polynomial for every values of ps,pp such that 1 > ps > py, > 0
and ps +pp = 1.

We can similarly show:

Proposition 2. MOA with a constant number of organizations can be solved
within pseudopolynomial time when the underlying graph has a maximum degree
2.

2.2 Polynomial cases

MOA is trivially polynomial when there is a unique organization or when the
underlying graph is of maximum degree 1. Furthermore an exhaustive search
can efficiently solve the problem if the underlying graph G = (V, E) contains
O(log|E|) shared edges. Let MOAg 1 be the subcase where w([¢, j]) € {0,1} for
all (7, 7) € B xS. We prove that an optimum to MOAg 1 is a maximum cardinality
assignment of the underlying graph though a maximum cardinality assignment
is not necessarily a solution of MOAg ;.

Theorem 3. MOAg,1 s polynomial.

Sketch of proof. The proof is based on the following algorithm. Start with M,
increase its size with augmenting alternating paths while it is possible and denote
by M the resulting matching. We mainly prove that improving a matching via
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an augmenting alternating path is monotone, i.e. the profit of any organization
cannot decrease. At the beginning of the algorithm, the current matching M is
a feasible solution of the problem. The resulting matching M is also feasible by
the monotonicity. Finally M is optimal (maximum cardinality) since no more
augmenting alternating path exists. O

3 Approximation

Recall that ps and p; are any values such that 0 < p, < ps <1 and ps +pp = 1.
We start by the following property (proof in Appendix).

Property 2. w;(M*) > ppw(M;), and this bound is asymptotically tight.

Let us consider algorithm APPROX given below.

Algorithm APPROX
— Construct the graph G’ = (V', E’) from G = (V, E) as follows: V' =V, and
E' = E, except that the weights of the edges are modified: for each edge [u,v]
such that u belongs to organization O; and v belongs to organization Oj,
w'([u,v]) = w([u,v]) if w and v belong to the same organization (i = j), and
otherwise w'([u, v]) = py w([u, v]).
— Return a maximum weight matching of G’.

Theorem 4. APPROX is a py-approzimate algorithm for MOA, and this bound
is asympotically tight.

Proof. Let ps,pp be 2 numbers such that 1 > p, > p, > 0 and ps + pp, = 1. Let
M be a matching returned by algorithm APPROX on graph G. We first show
that the profit of each organization O; in M is at least w(M;), and thus that M
is a solution of MOA.

Let M™% be the set of edges of M whose both endpoints belong to O;,
and let M) be the set of edges of M whose exactly one endpoint belongs to
O;. Since M is a maximum weight matching of G’, w’ (M) 4w/ (Me*H?)) >
w(Mi), otherwise we could have a matching with a larger weight by replacing
the edges of (M) U Me**(®) in M by the edges of M;. Thus the profit of O;

is at least w(M ™) 4 p, w(MetD) = o/ (M) 4w/ (MeHD)) > w(M;).

Let us now show that APPROX is pp-approximate. The edges of G’ are the
same that the ones of G, except that the weight of some of them has been
multiplied by p, < 1. Thus M, which is a maximum weight matching of G’ has
a Welght ’U}(M) Z Po ’U}(M*) Z Pb w(M:ont)'

Let us show that this bound is asymptotically tight, by considering the fol-
lowing instance. Here, we assumed p, > 0. Recall that p, < 1/2 since 1 >
ps > pp > 0. Let ¢ > 0 such that ¢ < 1/p, — 1. There are two organiza-
tions, organization O, which owns two vertices b; and sj, linked by an edge
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of weight 1, and organization Oz, which owns two vertices by and so, linked
by an edge of weight 1. There are two shared edges, between b; and sz, and
between by and s;: both edges have weight p—lb — e. Algorithm APPROX returns
the matching M ={[by, s1], [b2, s2]} with weight 2 in G’ because the weight of
{[b1, 2], [b2, 51]} in G’ is 2(1 — ppe) < 2. The optimal solution would have been
Mz = {[b1, s2], [b2, s1]}. The ratio between the weights of these two solutions
. w (M)

is which tends towards p, when € tends towards 0. O

_ 2
w(MZ,,,)  2/pp—2e’

Theorem 4 implies that the price of stability of MOA defined as w(M% )/ w(M*)
is at least py. In fact, we are able to prove that PoS= py.

Proposition 3. The price of stability is pp.

We can prove that Theorem 4 is best possible if P#NP, i.e. we cannot
obtain a (py + ¢)-approximation for all ¢ > 0. Actually, we prove a slightly
stronger result.

Theorem 5. For any polynomial P, it is NP-hard to obtain a (py + m)-

approzimation for MOA where n is the number of vertices, even if there are
exactly 3 organizations.

Proof. We describe a gap reduction. We start with an instance of PARTITION
given by a set of n integers {a1,...,a,} such that >_"" ; a; = 2W. For any real
t > 1, we construct an instance I; of MOA as follows:

e we are given 3 organizations O, O2 and Os.

O; has n + 1 buyers and n + 1 sellers respectively denoted by b, ; and s1;
fori=1,...,n+1.

O3 has 2 buyers denoted by by 1, b2 41 and n + 1 sellers denoted by s, ; for
i=1,...,n+1.

O3 has one seller s3 ;.

The edge set of the underlying graph is {[s1,b14], [b1,i, 824 i =1,...,n}U
{[81,n+1, bz,l]} U {[bl,n+1, 52,n+1], [52,n+17 b2,n+1]7 [bz,nﬂ, 53,1]}

The weights are given by:

[ ] w([su, blz]) = w([bl_,i, 5271']) = a; fOI‘ 7, = 1, ceey N
o w([s1,n41,b21]) = PsW, w([bins1,82,n11]) = psW, w([s2,n41,b2n11]) =
tpeW + 2psW, and w([b2,n+1, S3,1]) = tW.

An illustration of this construction is given in Figure 2.

Ift = O(2F (VD) where |V| = 3n4-6 is the order of the underlying graph, then
it is not difficult to see that the above construction is given within polynomial
time.

The profits the organizations can make on their own are respectively w; (]\Zf ) =
(ps +pb) Yoiy @i = 2W, wa(M) = (ps +pp) (tpeW + 2ps W) = tpy W + 2p, W and
w3 (M) =0.
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o) b1,n+1 S2,n+1 b2,n+1 831
@ @ @ @
psW toyW + 2p W tW
51 by S92,
a; a;
S1n+1 psW bs1
[ - o 0; O;

Fig. 2. The instance I; resulting from the above reduction

We prove that there are only two distinct values for the optimal value of
MOA, that are OPT (I;) = tpy W + 3psW + 2W or OPT (1) = tW + 2p W +2W
and OPT(I;) = tW + 2p,W + 2W if and only if {aq,...,a,} admits a partition.

Observe that tW + 2p;W 4 2W > tp,W + 3psW + 2W if and only if ¢ > 1
since p, = 1 — ps and ps > 0. Let M, be an optimal solution of MOA (with
value OPT(I;)). Let us consider two cases:

Case [s2,n+1,b2,n+1] € MJ,;- An optimal solution can be described by

cont*
{Is1,i,014] i =1,...,n} U{[s1,n41,b2,1], [52,n41, b2,n+1]}-

Actually, [s1n+1,b21] € MY, , because M7, ., is maximal by Property 1 (cf
page 6). Moreover, the weight of any maximal matching on the graph induced
by {s1,i,b1,i,82; : ¢ = 1,...,n} has the same value 2W. In this case, we get

OPT(I;) = tpyW + 3p,W + 2.

Case [s2141,b2,n+1] & My Edges {[b1,n+1, 52,n+1]; [b2,n41, 83,1), 81,041, b2,1]}
belong to M ., by Property 1. The contribution of these 3 edges to the profit of
Oz is psw([b1,n+1,52,n+1)) + Pow([b2,n+41,53.1]) + Pow([S1,n41,b2,1]) = tW +
psW < tppW + 2psW = w([S2,n+1,b2n+1]) since ps > 0. Hence, a subset
of shared edges between O; and Oy must belong to My .. Let J* = {j <
n ¢ [b1,j,82,] € MY, } be this subset. Then, M} ,, is entirely described by
{01,415 82,0115 [b2,n+1, 83,1], [S1,n41, 02,11 U{[b1,5, 82,5] 1 5 € T FU{[s1,5,b1,5,] :
JgJ )

To be feasible, M, . must satisfy wi (M%) > w(M;), ie. D0t

Dy Zje]* a; + (ps + po)psW > Z?:l a; from which we deduce W > Zje]* a;
because p, = 1 — py and p, > 0. M* must also satisfy wa (M%) > w(My),
ie. ps Zjeﬁ a; + (ps + po)psW + tpeW > tppy W + 2p, W, which is equivalent to
> jes-a; = W. Then, we obtain 3, ;.. a; =>4 ;- a; = W. On the one hand
OPT(I;) = tW +2psW +2W and on the other hand {ay,...,a,} has a partition
given by J*.

Conversely, if {a1,...,a,} admits a partition then it is not difficult to prove
that OPT(I,) = tW + 2p,W + 2WW.

Now, assume that there is a (pp+ W)—approximation of MOA given within

polynomial time for some ¢ > 0. Consider ¢y = 5¢2”(VD) and let apz(I;,) denote
the value of the approximate solution on instance Iy,.
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e {ay,...,a,} does not admit a partition. One has OPT(I,) = 5c2F (VD p, W+
3psW 4 2W and then apz(I;,) < 5¢27WVDp, W + 3p, W + 2W.

e {ai,...,a,} admits a partition. We have OPT(I;,) = 527 WVDW 4+ 2p, W +
2W. Since apx(Iy,) > (po + vy JOPT(It,) by hypothesis and ps < 1, we
deduce apz(I;,) > 5W + 527 WVDp, W > 5c2PUVDp, W 4 3p, W + 2W.

In conclusion, apx allows us to distinguish within polynomial time whether
{ai,...,a,} has a partition or not, which is impossible if P# NP. O

4 Generalizations

Relaxation of the selfishness of the organizations. Suppose that each
organization O; accepts a proposed global matching if its own profit is at least
w(M;)/x where z > 1 is fixed. This means that each organization accepts to
divide by z the profit it would have without sharing its file with the other
organizations. The problem, denoted by MOA(x) is then to find a maximum
weight matching M such that w;(M) > w(M;)/z for all i € {1,...,q}. Let
Mc*ont(w) denote such a maximum weight matching.

If x = 1, an organization does not accept to reduce its profit, and this problem
is the one stated in the Introduction. If = > 1/p,, the organizations accept
to divide their profits by 1/py. Property 2 page 8 shows that in a maximum
weight matching M*, the profit of organization O; is at least pw(M;). Thus
M,y = M. Our aim is now to solve MOA(z) for 1 <z < 1/p,. With a slight
modification of the proof of Theorem 1, we can show that this problem is strongly
NP-hard for each value z smaller than 1/p,, when there are at least three
organizations. One can also extend APPROX to a slightly modified algorithm?!
APPROX(x) and prove that it is (x pp)-approximate algorithm for MOA(x) and

this bound is tight. In addition, the price of stability is  p, for this generalization.

General graphs. One can extend MOA to general graphs when ps = p, = 1/2.
In this case, the distinction between buyers and sellers is lost. For example, the
problem has the following application: Numerous web sites offer to conduct home
exchanges during holidays. The concept is simple, instead of booking expensive
hotel rooms, pairs of families agree to swap their houses for a vacation. We
model the situation with a graph G = (V, E') whose vertices are candidates for
house exchange. The vertex set is partitioned into g sets/organizations O; ... O,.
Vertices within an organization are its clients. Every edge [a,b] € E has a weight
w([a, b]) representing the satisfaction of candidates a and b if they swap. Pairs
are formed by the organizations which only care about the satisfaction of their
clients. In case of a mixed-organizations exchange [a,b], it is assumed that the
satisfaction of both participants is w([a,b])/2. The problem is to maximize the
collective satisfaction while no organization is penalized.

Theorems 3 to 5 and Proposition 3 (where py is replaced by 1/2) hold for
general graphs since the proofs do not use the fact that G is bipartite.

! The weight of shared edges is multiplied by xp, instead of p,.



12 L. Gourves, J. Monnot, F. Pascual

5 Conclusion

We studied cooperation, at an algorithmic level, between organizations. We
showed that the price of stability is py, and we studied the complexity of MOA.
We presented polynomial cases, and showed that the problem is NP-hard in the
general case. We also gave an approximation algorithm, matching the inapproxi-
mation bound when there are at least 3 organizations. There remains some open
problems: is it possible to have an algorithm with a better approximation ratio
when there are two organizations? Is this problem strongly NP-hard in this case
(we notice that this problem is related to the open Exact Perfect Matching prob-
lem)? When we consider that each organization accepts a solution if it does not
reduce its profit by a factor larger than x, is it possible to get an algorithm with
an approximation ratio better than z p,? An interesting direction would also be
to study fairness issues in this problem. For example, among all the solutions of
the same quality, return the one which maximizes the minimum w;(Meont) — Mi,
that is the minimum increase of profit of the organizations.
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Appendix

Theorem 1 For any values of py, ps such that 1 > ps > py, > 0 and ps+pp = 1,
the decision version of MOA is strongly NP-complete.

Proof. Let ps and p; be two numbers such that 1 > p, > p, > 0 and ps+pp = 1.
Given a positive profit P and an instance of MOA, the decision version asks

whether the instance admits a matching M such that Ve 4 wi(M) > w(M;)

.....

and w(M) > P.

Given a bound W, a set A = {az,...,asn} of 3m positive integers such that
S a; = mW and Vi = 1,...,3m, W < a; < W the 3-PARTITION problem
is to decide whether A can be partitioned into m subsets A, As, ..., A, such

that the sum of the numbers in each subset is equal (thus Zaje 4, @j = W and
|A;] = 3 for all i € {1,...,m}). The 3-PARTITION problem is strongly NP-
complete (problem [SP15] in [3]).

Given an instance I of the 3-PARTITION problem, we build a corresponding
instance I’ of MOA as follows (see Figure 3 for an illustration):

— we are given m + 1 organizations O, ...,0Op41, ie. g =m+ 1
— Op1 has 3m buyers and m sellers respectively denoted by by, 41,1 t0 byyy1,3m
and Sy,41,1 tO Spy1,m
fori=1,...,m:
e O; has 3 sellers denoted by s; 1, si 2, ;3 and one buyer b;
o w([bi, sia]) = w(lbi, smy1a]) =W
fori,j € {1,...,m} x{1,...,3m}:
o W([bm1,5,5i,1]) = Wbt 8i2]) = W([bms1: si3]) = a;

We have w;(M) = (ps + pp)W = W for i = 1,...,m and wy,+1(M) = 0.
We claim that I’ admits a feasible assignment M such that w(M) > 2mW if
and only if A admits a partition into m subsets Ay, As, ..., A, such that
>asea; 0 =W and [Ai| =3 forallic {1,....,m}.

Let A = (A1, As, ..., Ap) be a YES solution to instance I of 3-PARTITION.
We build a corresponding matching M , solution to instance I’ of MOA as follows:
M = 0 at the beginning and for each triple a,, ay, a. of A;, we add edges
[berl,z, Si,1]7 [berl,ya Si72] and [berl,z, Siﬁg] to M We also add edge [bl, Serl,i]
to M for all i € {1,...,m}.

We remark that M is a feasible assignment. Indeed, organization O; (i =
1,...,m) has 4 shared edges in M, that is [biy Sm+1,:] with weight W, [byt1 4, Si1]
with weight ag, [Dm+1,y, Si.2] with weight a, and [by,+1,2, $i,3] with weight a..

Since A is a YES solution to I, we know that a, + ay + a, = W. Hence,
wi(M) = (ps + po)W = wi(M) for i = 1,...,m. We also have w1 (M) =
(ps + pp)mW since O,, 11 has m shared edges of weight W adjacent to its sellers
and 3m other shared edges of total weight Z?:l a; = mW adjacent to its buyers.

This is greater than w,, 11 (M). Thus, M is a YES solution to instance I’ of the
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Fig. 3. Bipartite graph obtained by the transformation of an instance A = {a1,...,a¢}
of the 3-PARTITION problem where W = % Z?:l aj. There is an edge with weight a;
between b3 ; and s, for all couple z,y € {1,2} x {1,2,3}. These edges are shaded in
the picture except those with weight a;.

decision version of MOA because the total profit made by the organizations is
2mW.

Conversely, let M be a YES solution to instance I’ of the decision version
of MOA with P = 2mW. By definition we have w(M) > 2mW, w;(M) > W for
i=1,...,m and wy,1(M) > 0. Observe that M N {[b;, s;1] |i=1,...,m} = 0.
Indeed, if k edges in {[b;,s;1] | i = 1,...,m} belong to M then the total profit
would be strictly less than 2mW since w(M) < kW + (m — k)W + 322" a; —
kmin{a; :i=1,...,3m} < (2m — £)W. Furthermore, M must be perfect since
otherwise w(M) < 2mW.

We build a partition A = (A1, As, ..., Ap), solution to instance I of 3-
PARTITION corresponding to M as follows: for i = 1 to m, put in A; the weight
of the (shared) edges incident to s;1, $;2 and s;3. One can observe that A s
a feasible 3-partition of A. Take an organization O; (i = 1,...,m), 4 shared
edges are incident to its nodes in M. The one incident to b; has weight W. The
total weight of the three others must be at least W since w;(M) = (ps + py)W.
Hence, each A; is assigned 3 values whose sum is at least W but if this sum
exceeds W for at least one organization, we would have Zj’:l aj > Wm which
is a contradiction. As a consequence, each A; is assigned 3 values whose sum is
exactly W. O

Theorem 3 MOAg,1 is polynomial.
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Proof. Let M be an assignment on an unweighted bipartite graph G = (B, S; E).
Recall that a path in G is alternating with respect to M if it alternates edges
of M and edges of E'\ M. Furthermore, an alternating path 7 is augmenting if
no edge of M is incident to its extremal nodes. The word “augmenting” means
that (M \ 7) U (7 \ M) is a matching of size |M|+ 1. It is well known that M
is of maximum size on G if G does not admit any augmenting alternating path
with respect to M.

Let I be an instance of MOAg; defined upon G Let M be an optimal matching
built as follows. Start with the feasible matching M and increase its size with
augmenting alternating paths while it is possible.

Let M7 be the matching produced at step j. We suppose that ¢ steps are
needed to reach M. Hence, MO = M and M* = M. We mainly prove

wi(MjJrl) Zwi(Mj)v Vi e {17'--761} (1)

for all j € {0,...,t — 1}. This inequality states that the use of an augmenting
alternating path cannot deteriorate the profit of any organization.

Given v € V and a matching M, let ¢(v, M) be the contribution of v to the
profit of its organization in M:

ps if v € S and an edge of M is incident to v
c(v, M) =< py if v € B and an edge of M is incident to v
0 otherwise

Let V' be the vertices of 7/, the augmenting alternating path such that M+ =
(M3 \ 7")U (7' \ M7). We deduce that

wi(Mj“) — wi(Mj) = Z c(v,MjH) - C(’U,Mj) (2)
veV’

for all i € {1,...,¢}. One can observe that ¢(v, M7) = ¢(v, M/t1) if v € V’
and v is not an extremal node of 7. Indeed, a buyer b € V' matched with a
seller s € V' in M7 is still matched in M7*! but with another seller. Similarly,
a seller s € V'’ matched with a buyer b € V' in M7 is still matched in M7+
but with another buyer. If v € SNV’ (resp. v € BNV’) and v is an extremal
node of 7’ then c(v, M7) = 0 and ¢(v, M7t = p, (resp. c¢(v, M?) = 0 and
(v, M7t1) = py). Hence,

(v, M7FY) — ¢(v, M) > 0

w
~

(
for all v € V because ps > p, > 0. Using (2) and (3) we obtain w; (Mj“)
wl(MJ) >0forallie{l,...,q} M is a feasible assignment because wl(Mt)
wi (M) > > w;(M©) = w(M;) for all i € {1,...,q}. In addition, w(M) =

w(M*) because the algorithm stops when no augmenting alternating path exists.
In conclusion, M is optimal because w(M*) > w(MzZ,,,). O

>

Proposition 1 If EXACTPM is polynomial in bipartite graphs when weights are
polynomially bounded, then MOA with 2 organizations is polynomial, for every
values of py, ps such that 1> ps > py > 0 and ps +pp = 1.
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Proof. Let py, ps be two rational numbers such that 1 > ps > pp > 0 and ps+pp =
1, and let I = (G,w) be an instance of MOA with 2 organizations where G =
(V, E). Wlog., assume that w(e), psw(e) and ppw(e) are integers for every edges
e € E (otherwise, multiplying each weight by the denominator of py if p, # 0, we
obtain an equivalent instance). Moreover, assume that Ve € E, w(e) < P(|V])
for some polynomial P. Let R = w(M™*) be the value of a maximum matching of
G. Consider the bipartite graph G’ = (V', E’) built from G by adding dummy
vertices and weights 0 in a such way that any matching of G' can be completed
into a perfect matching of G’ with same value. Formally, we add a copy of K| g|,|p
and each new B-vertex (resp., S-vertex) is completely linked to the S-vertices
(resp., B-vertices) of G. Then, each shared edge e = [u,v] € E is replaced by
a path of length 3 [u, u.], [te, ve], [Ve, v] Where ue,ve are new vertices. Remark
that either {[u,ue], [ve,v]} or {[ue,ve]} is included in any perfect matching of
G'. Consider the weights w’ given by: w'(e) = (R + 1)3w(e) if e is internal to
organization O; and w’(e) = (R + 1)?w(e) if e is internal to organization O,.
Moreover, if e = [u,v] € E is a shared edge, then w'([u, u.]) = (R+ 1)psw([u, v])
if w e SNO; and W' ([u,ue]) = (R + 1)ppw([u, v]) otherwise (ie., v € BN O1).
Also, w'([v,ve]) = psw([u,v]) if u € SNO2 and W' ([v, ve]) = pyw([u, v]) otherwise.
Finally, all the remaining edges of G’ are a weight 0. It is clear that G’ is construct
within polynomial time and w’ remains polynomially bounded.

For any matching M, we denote by M; (resp., M) the restriction of M to
organization Op (resp., O2) and by Mgpareq the set of shared edges of M. Denote
by Wi (resp., Wa) the contribution of the shared edges of M for organization
O1 (resp., O2). Obviously, we get w(Mgpared) = Wi + Wa since ps + pp = 1.

We claim that the weight of M is w(M) = w(M1) + w(Mspared) + w(Mz)
if and only if there exists a matching of I’ of weight W = (R + 1)3w(M;) +
(R+1)%w(Mz) + (R +1)W; + Wa. Moreover, M is a feasible solution of MOA iff
w(M;) + W; > w;(M) for i = 1,2.

One direction is trivial. So, let M’ be a matching of I’ with value w’'(M’) =
W = (R+1)3A+ (R+1)?B + (R+1)C + D. By the choice of R, we must
get wi(M') = A, wo(M') = B and w(M],,,..) = C + D, where C (resp., D)
is constituted by the contribution of the shared edges of M’ for organization
O1 (resp., O32). The profit of M’ for organization O; is A+ C and B + D for
organization Oa.

In conclusion by applying at most R* times the polynomial algorithm for
ExacTPM, we find an optimal solution of MOA. By an exhaustive search, we
try all values of A, B,C, D at most equal to R such that A+ C > w, (M) and
B+ D > wy(M).

O

Proposition 2 MOA with a constant number of organizations can be solved
within pseudopolynomial time when the underlying graph has a mazimum 2.

Proof. Here, we deal with 2 organizations, but the result can be extended to
any constant number of organizations. The proof is based on Proposition 1,
and use the pseudopolynomiality result of [2] for EXACTPM in planar graphs.
However, the construction of G’ is slightly different because when one add a
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Oy 0,

o

Fig. 4. Construction of G’ and perfect matching M’ from G and matching M.

copy of K|gp| the resulting graph may be not planar. So, let I = (G,w) be
an instance of MOA with 2 organizations where G = (V, F) is a bipartite graph
of maximum degree 2. Wlog., assume that G is 2-regular, that is a collection of
disjoint even cycles (by adding dummy vertices and edges of weight 0). Then,
for each cycle C' of G, we add a copy C’ of C' and we link each vertex of C' to
its copy in C”. Finally, as it is done in Proposition 1, each shared edge e = [u, v]
of a cycle C in G is replaced by a path of length 3 [u, u.], [te, V], [Ve, v] Where
Ue, Ve are new vertices. The weights are defined similarly to the one given in
Proposition 1. Figure 4 gives an illustration of this construction.

Obviously, G’ is planar. Moreover, any matching M can be converted into a
perfect matching M’ of G’. Thus, by applying the argument given in Proposition
1, the result follows. O

Property 2. w;(M*) > pyw(M;), and this bound is asymptotically tight.

Proof. Let C; be the set of edges of M* whose at least one endpoint belongs to
organization O;. We have w(C;) > w(M;), otherwise we could obtain a matching
of weight larger than w(M*) by replacing the edges of C; by the ones of M;. The
profit of O; is w;(M™*) > pyw(C;), and thus w;(M™*) > py w(Ml)

Let € be a small positive number. Let us now show that the above bound is
tight, by considering the following instance : two organizations O; and Os, such
that there are in O; two nodes by,; and s;; linked by an edge of weight 1 — ¢,

and there is in Oy one node s5 1 linked to by 1 by an edge of weight 1. We have:
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w(M;) =1—¢, M* = {[b11,52.1]}, and 1’;1((1\1\;[[)) = 2=, which tends towards py,

when ¢ tends towards 0. g
Proposition 3. The price of stability is pp.

Proof. Tt follows from Theorem 4 that w(Mz, ,)/w(M*) > p, since APPROX
returns a matching M such that w(MZ, ;) > w(M) > pyw(M*).

Let us now show that this bound is tight. There are two organizations: orga-
nization Oy, which owns two vertices b; and s1, linked by an edge of weight W7,
and organization Og, which owns one vertex sq, linked to b; by a link of weight

Ws. Suppose that W7 = € such that 0 < e < 1 and W5 = 1 when p, = 0. The

ratio % = ¢, tends towards 0 = p; when ¢ tends towards 0. Suppose that
W1 =1and Wy = 1/p, — e such that 0 < e < 1/p, — 1 when p, > 0. The ratio
wMZn) _ _pe

tends towards p, when ¢ tends towards 0. O

w(M*) — 1—epy’



