Université Paris 7 IF241

Eléments de correction du TD11

1 Intersection de langages

Construire l'automate de chaque langage puis faire celui de l'intersection dont les états sont des couples de ceux de deux premiers (cf méthode du cours).

Note : pour l'union on peut soit appliquer une méthode similaire à celle de l'intersection, soit comme pour les automates de Thomson (auquel cas il y a des ϵ -transitions). Enfin pour le complémentaire, il suffit d'intervertir les terminaux et les non-terminaux de l'automate complété.

2 Miroirs et palindromes

1. Deux solutions, calculer un automate pour R puis celui du miroir et appliquer le lemme d'Arden pour retrouver une expression. Autrement :

$$\tilde{R} = (ab + aba)^* = (\tilde{ab} + a\tilde{b}a)^* = (ba + aba)^*$$

- 2. Par récurrence (très simple)
- **3.** Il fallait lire : si $u \in R$ alors soit $u\tilde{u}$, soit $ua\tilde{u}$ est dans R. On va considérer trois cas. Si $u = \epsilon$ alors $u\tilde{u} = \epsilon$ donc la propriété est vérifiée.

Si $u = (ab)^{x_0}(aba)^{y_0} \cdots (ab)^{x_n}(aba)^{y_n}$ (le dernier facteur est aba) alors

$$u\tilde{u} = (ab)^{x_0} (aba)^{y_0} \cdots (ab)^{x_n} (aba)^{y_n} (aba)^{y_n} (ba)^{x_n} \cdots (aba)^{y_0} (ba)^{x_0}$$

tous les exposants sont non nuls (sauf eventuellement x_0). Alors on applique le résultat de la question 2 et remarquant que tout $(ba)^x$ est précédé de $(aba)^y$, avec y > 0, on transforme donc les facteurs pour n'obtenir que des ab et des aba donc le mot est dans R.

Si $u = (ab)^{x_0} (aba)^{y_0} \cdots (ab)^{x_n}$ (le dernier facteur est ab) alors on montre de la même façon que $ua\tilde{u}$ est dans R.

- **4.** Tout mot de R est dans $\frac{R}{2}$ (car $u\tilde{u}$ est dans R...)
- **5.** le mot b est dans $\frac{R}{2}$ (car aba est dans R), mais pas dans R, donc l'inclusion est stricte.

3 Déterminisé du miroir du déterminisé du miroir (troisième)

Rien de dur, mais faire attention