TD4: Des lemmes et des étoiles

1 Rappels

1.1 Le lemme de l'étoile

Soit L un langage infini sur l'alphabet $X: \forall n \in \mathbb{N}, \exists w \in L$ tel que $|w| \geq n$. Si L est reconnaissable alors on $a: \exists N_L \in \mathbb{N}$ tel que :

$$\forall w \in L, \forall v \in X^* \text{ tels que } w = uvu' \text{ et } |v| > N_L$$

$$\exists \alpha, v' \neq \epsilon, \beta \in X^x * \text{ tels que } v = \alpha v' \beta \text{ et } \forall n \in \mathbb{N}, u \alpha v'^n \beta u' \in L$$

1.2 Un exemple d'utilisation

On veut montrer que $L = \{|u|_a = |u|_b\}$ sur $X = \{a, b\}$ n'est pas reconnaissable.

Supposons donc que L soit reconnaissable. Alors il existe un automate déterministe \mathcal{A} reconnaissant L. Notons n le nombre d'états de \mathcal{A} et considérons le mot $w = a^n b^n$.

Comme $|w|_a = |w|_b$, $w \in L$. Par conséquent, w est reconnu par \mathcal{A} . Le facteur $v = a^n$ de w a une longueur supérieure ou égale à n et on peut écrire w = uvu' (avec $u = \epsilon$ et $u' = b^n$); appliquons donc le lemme de l'étoile à ce facteur v. Le lemme implique $\exists v_1, v_2 \neq \epsilon, v_3$ tels que $a^n = v_1 v_2 v_3$ et $\forall i, w_i = uv_1 v_2^i v_3 u' \in L$.

En notant $k = |v_2|$, w_i s'écrit $w_i = a^{n+k(i-1)}b^n$. Comme k > 0, pour i > 1 ce mot contient plus de a que de b, et n'est donc pas dans L. La contradiction implique que L n'est pas reconnaissable.

2 Exercices

Les langages suivants sont-ils reconnaissables (justifier la réponse):

- 1. $L = \{a^p b^q | p \ge q \text{ et } q > 2001\}$
- **2.** $L = \{a^p b^q | p \ge q \text{ et } q \le 2001\}$
- **3.** $L = \{a^p b^q | p > q\}$
- **4.** $L = \{a^p b^q | p \neq q\}$
- 5. $L = \{|u|_a + 2|u|_b < 3|u|_c\}$ sur l'alphabet $\{a, b, c\}$
- **6.** $L = \{|u|_a = 2^|u|_b\}$
- 7. $L = \{www|w \in \{a,b\}^*\}$
- 8. $L = \{a^{2^n}\}$