;i‘ Distributed and Parallel Databases, 11, 239-268, 2002
uwer Academic Publishers. Manufactured in The Netherlands.
‘ © 2002 K1 Academic Publishers. Manuf: d in The Netherland:

Dictatorial Transaction Processing:
Atomic Commitment Without Veto Right™

MAHA ABDALLAH Maha.Abdallah@prism.uvsq.fr
Laboratoire PRiSM, Université de Versailles, 45, avenue des Etats-Unis, 78035 Versailles, France

RACHID GUERRAOUI Rachid.Guerraoui @epfl.ch
Département de Systémes de Communication, Ecole Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland

PHILIPPE PUCHERAL Philippe.Pucheral @prism.uvsq.fr
Laboratoire PRiSM, Université de Versailles, 45, avenue des Etats-Unis, 78035 Versailles, France

Recommended by: M. Tamer Ozsu

Abstract. The current standard in governing distributed transaction termination is the so-called Two-Phase
Commit protocol (2PC). The first phase of 2PC is a voting phase, where the participants in the transaction are
given an ultimate right to abort that transaction. Giving up that veto right from all participants reduces the overhead
of the atomic commitment protocol but also imposes some restrictions on the concurrency control and recovery
protocols employed by the participants in the transaction.

This paper gives, for the first time, a precise abstract specification of the Dictatorial Atomic Commitment
(DAC) problem, resulting from removing veto rights from the traditional Azomic Commitment (AC) problem. We
characterize transactional systems that are compatible with that specification in terms of necessary and sufficient
conditions on concurrency control and recovery protocols, and discuss the practical impacts of those conditions.
From this study, we capitalize on existing protocols that solve the DAC problem, and propose a new protocol
that broadens the applicability of dictatorial transaction processing in order to meet the requirements of today’s
distributed environments. We point out interesting performance tradeoffs, and describe the implementation of our
protocol in the context of current transactional standards, initially designed with 2PC in mind.

Keywords: distributed transactions, atomic commitment protocols, dictatorial transaction processing, two-phase
commit, one-phase commit, concurrency control, recovery, CORBA, OTS

1. Introduction

In a distributed transactional system, all sites accessed by a transaction (called transaction
participants) must coordinate their actions so that they either unanimously commit or unan-
imously abort that transaction. This is achieved through an Afomic Commitment Protocol
(ACP) launched at the end of the transaction. The best known of these protocols is the Two-
Phase Commit (2PC) protocol [10]. Although widely used and de facto standard [18, 24],
2PC has two major drawbacks:

*This work has been partially funded by the CEC under the OpenDREAMS Esprit project n°20843.

240 ABDALLAH, GUERRAOUI AND PUCHERAL

e It is considered as quite inefficient in terms of both time delay and message complexity.
This is mainly due to the number of communication steps and forced log writes needed
in order to commit a transaction even in the absence of failures. This not only makes
2PC inadequate to today’s highly reliable distributed platforms, but also is particularly
unacceptable in advanced and critical applications, such as Supervision and Control
Systems’ applications (SCS)' [1] having strong requirements in terms of performance.

e It forces participants in a transaction to externalize a local prepared state. The conse-
quence of this is threefold. First, it violates site autonomy, precluding the integration of
legacy systems [20] in distributed transactions. Second, building a local prepared state can
be very costly on data servers hosted by lightweight intelligent devices with very limited
resources, such as palmtops, cellular phones, or even smart cards [7]. Third, it leads to
the abort of a transaction after it has been successfully processed if any of its participants
is unreachable during the voting phase. The impact of this behavior is exacerbated in
environments supporting mobile or disconnected computing [7].

As its name indicates, 2PC (and its variations) is made out of two phases. In the first phase,
called the voting phase, the participants are given an ultimate right to abort the transaction
(i.e., the veto right), and in the second phase, called the decision phase, the participants
need to agree on the same decision (commit or abort). Whereas the decision phase is indeed
necessary to ensure transaction atomicity (otherwise the participants might disagree on the
transaction’s outcome), one might wonder whether the voting phase can (sometimes) be
eliminated. This would drastically reduce the cost of commitment (two communication
steps together with their associated forced log writes would be gained), and participants
would not need to externalize a local prepared state anymore. Roughly speaking, to commit
a transaction, a coordinator would simply need to force-write the decision and send one
message to the participants.

The idea of One-Phase Commit (1PC) is not new: it was informally discussed by Gray
in [10, 11] as well as by Stonebraker in [23]. More recently, several 1PC variations have
been suggested in the literature, such as Early Prepare (EP) [21, 22], Coordinator Log
(CL) [21, 22] and Implicit Yes-Vote (IYV) [3, 4] protocols. Despite their efficiency, 1PC
protocols have been completely ignored in the implementation of distributed transactional
systems. We believe that the reason for this is due to some (strong) assumptions made by
1PC protocol designers about the underlying transactional systems without any statement
on the necessity of those assumptions. This gives the impression, from a practical point of
view, that 1PC is just an exotic concept with unrealistic underlying assumptions and, from
the theoretical point of view, that 1PC does not make any sense as it contradicts proven lower
bounds on the cost of solving the atomic commitment problem in distributed systems [9].

Our primary goal in this paper is to better identify the assumptions under which 1PC can
be used. To our knowledge, none of the papers that were devoted to 1PC either defines the
abstract properties of the problem that is solved or gives a precise description of the impact
of eliminating the voting phase on transaction processing.

We first point out the fact that removing the veto right from atomic commitment comes
down to define an agreement problem that is different from the traditional atomic com-
mitment problem solved by a 2PC [5]. We then give an algorithm that solves the resulting

DICTATORIAL TRANSACTION PROCESSING 241

problem, which we call the Dictatorial Atomic Commitment (DAC) problem. A crucial
feature of this algorithm is that it can be seen as the basic building block around which
all existing 1PC variations are designed. The lack of the veto right explains why 1PC is
actually more efficient than any of the well-known optimized variations of 2PC, such as
Presumed Commit (PrC) and Presumed Abort (PrA) [17].

We next give three conditions that are necessary and sufficient to ensure the correctness of
transactional systems with no participant veto right: on-line serializability, cascadelessness
and on-line resiliency. These conditions are strictly stronger than the usual correctness met-
rics for transactional systems, namely serializability, recoverability and resiliency, respec-
tively [13]. Unlike on-line serializability and cascadelessness, on-line resiliency is however
rarely realistic in practice. We discuss techniques employed by existing 1PC protocols to
circumvent the need for this condition by considering non-classical atomic commitment
schemes that allow participants to delegate part of their transactional responsibilities to the
coordinator of the protocol, and we use these schemes to better explain some differences
and similarities between Early Prepare, Coordinator Log and Implicit-Yes Vote protocols.
We stress the fact that although the existing techniques eliminate the need for on-line re-
siliency, they come at an additional cost that compromise their use in real systems. We then
study an adaptation of those techniques and propose a new protocol, named Coordinator
Logical Log (CLL), which capitalizes on all existing 1PC variations while alleviating their
drawbacks, making 1PC indeed realistic and useful in practice.

We finalize our work by showing the way Coordinator Logical Log can be integrated
into well-known transactional standards, namely OMG’s Object Transaction Service (OTS)
[18], on top of a CORBA architecture [19].2

The remainder of the paper is organized as follows. In Section 2, we describe the dis-
tributed transaction model we follow throughout the paper. Section 3 defines the atomic
commitment problem and briefly recalls the principle of two-phase commit together with
its well-known optimizations. In Section 4, we give a precise specification of the abstract
problem resulting from removing veto rights from atomic commitment, describe a basic
1PC protocol that solves this problem, prove its correctness, and identify the basic as-
sumptions underlying it. Section 5 and Section 6 make an in-depth analysis of the impact
of removing veto rights from atomic commitment on concurrency control and recovery
protocols, respectively. Section 6 extends the results on recovery to compare existing 1PC
variations, point out their practical limitations, and describe our CLL protocol and its asso-
ciated recovery algorithm. In the same section, we compare the performances of CLL with
other existing 1PC protocols. Section 7 studies the implementation of CLL in the context
of OMG’s OTS. Finally, Section 8 summarizes the main contributions of the paper and
discusses some interesting extensions to this work.

2. Distributed transaction model

We consider a distributed system composed of a finite set of sites completely connected
through a set of communication channels. Each site has a local memory and executes one or
more processes. For the sake of simplicity, we assume only one process per site. Processes
(sites) communicate with each other by exchanging messages.

242 ABDALLAH, GUERRAOUI AND PUCHERAL

At any given time, a process may be operational or down. While operational, a process is
assumed to follow exactly the actions specified by the algorithm it is running. Operational
processes may go down due to crash failures.

We consider a crash-recovery failure model in the sense that a process can be down (crash)
and later become operational again. When it does so, we say that the process recovers, in
which case it executes a specific recovery protocol. A process that is down stops all its
activities, including sending messages to other processes, until it recovers. Each process has
access to a stable storage (i.e., that sustains crash failures) in which it maintains information
necessary for the recovery protocol. During recovery, a process restores its local state using
the information it wrote on stable storage.

Although processes may crash, we assume that communication is reliable in the following
sense: if a process P; sends a message to a process Py, then unless one of them crashes after
the message is sent, the message is eventually received by P;.3

A distributed transaction (henceforth called a “transaction”) accesses shared objects re-
siding at multiple sites. For each transaction, the set of processes that perform updates on
its behalf are called transaction participants. The portion of a transaction executed at one
participant is called a transaction branch. In the following, we assume that each participant
ensures the well-known ACID (Atomicity, Consistency, Isolation, Durability) [8] properties
of every transaction branch it executes. We also assume that for every transaction, there is
one specific participant, called the transaction coordinator, which manages the transaction
processing and termination.* The coordinator forwards every transaction operation to the
participant hosting the object involved by the operation. If a participant succeeds in pro-
cessing an operation, the participant replies by sending back an acknowledgment message;
otherwise, the participant aborts the transaction and sends back a negative acknowledgment.
To conclude a transaction, the coordinator triggers an Aromic Commitment Protocol (ACP)
whose role is to ensure a consistent termination of the transaction at all participants.

3. Atomic commitment: Background

In this section, we recall some background about the atomic commitment problem, and
discuss the basic 2PC protocol together with its optimized variations.

3.1. The atomic commitment problem

The Atomic Commitment (AC) problem is an agreement problem that is concerned with
bringing all participants in a transaction to agree on a unique outcome (commit or abort)
for that transaction. This problem was formally defined in [5]. Each participant has exactly
one of two votes: yes or no, and can reach exactly one of two decisions: commit or abort,
such that the following properties are satisfied:

AC-Agreement: No two participants reach different decisions.

AC-Validity: commit is decided only if all participants vote yes, and if all participants vote
yes and no failures occur, then all participants must decide commit.

AC-Integrity: No participant can reverse its decision after it has reached one.

DICTATORIAL TRANSACTION PROCESSING 243

The vote of a participant reflects its ability to commit its transaction branch. A participant
votes yes only if the local execution of its transaction branch was successful and it is ready
and willing to make its updates permanent even in the presence of failures. This actually
means that the participant can locally guarantee the ACID properties of its transaction
branch. A no vote (or abort) indicates that due to some local problems (integrity constraint
violation, concurrency control problem, memory fault or storage problem), the participant
is not able to guarantee some of the ACID properties of its transaction branch.

An Atomic Commitment Protocol (ACP) is an algorithm that satisfies all of the three
properties of the AC problem.

3.2, Basic two-phase commit (2PC)

3.2.1. Protocol description. The basic Two-Phase Commit (2PC) protocol (together with
its variations) solves the AC problem by performing a voting phase and a decision phase.
In the voting phase, the coordinator sends a request-for-vote message (also called a prepare
message) to all the participants in the transaction. Each participant replies by sending its
vote. If a participant votes yes, it enters a prepared state during which it can neither commit
nor abort the transaction unless it receives the final decision from the coordinator. If, on the
other hand, a participant votes no, it can unilaterally abort its transaction branch. The period
of time from the moment a participant votes yes and until it receives the final decision is
called the uncertainty period for that participant. During the decision phase, the coordinator
decides on the transaction and sends its decision to all the participants. The coordinator’s
decision is commit if all participants have voted yes. Otherwise, the decision is abort.
When a participant receives the final decision, it complies with this decision and sends
back an acknowledgment, which is a promise from the participant that it will never ask the
coordinator about the outcome of the transaction. This describes 2PC assuming no crash
failures occur during the protocol execution.

3.2.2. Recovering from failures. Since we consider a crash-recovery failure model, par-
ticipants can be down and later become operational again. In this case, the following AC-
Termination property has to be added to the specification of the AC problem in order to
exclude uninteresting protocols that allow participants to remain undecided forever once
some crash failure has occurred during the protocol execution.

AC-Termination: If all failures are repaired, then unless a new failure occurs, every par-
ticipant eventually reaches a decision.

Recovery is made possible by recording the progress of the protocol during normal
processing (i.e., in the absence of failures) in the logs of the coordinator and the participants.
Since failures can occur at any time, some of the information stored in the logs must be force-
written (i.e., written immediately to a stable storage that sustains failures). For instance,
the coordinator force-writes its decision before sending it to the different participants.
Each participant force-writes (1) its vote before sending it to the coordinator, and (2) the
final decision before acknowledging the coordinator. Usually, a participant that votes yes

244 ABDALLAH, GUERRAOUI AND PUCHERAL

C P P,

repare
voting Phase (f_{é’,,@
Vol

— @ : Force-Write

~decson O :NonForee Wiite

\wﬁ B : Begin
L : Commit

decision Phase m g_' Abort
@ Y:Yes
N
E

l&— |ack_decision ‘No)
: End transaction
Y/N:YorN
@ C/A:CorA

Figure 1. The Basic 2PC protocol.

force-writes its vote together with all the updates performed on behalf of the transaction.
This ensures that the participant’s updates are permanent even if it crashes (i.e., to ensure
transaction resiliency). Force-writing a decision record in the log is the act by which a
process decides on the transaction. Figure 1 describes the protocol execution between a
coordinator C, and two participants P; and P,, where both the C and P; roles can be
performed by the same physical site.

To satisfy the AC-Termination property, specific actions that deal with crash failures must
be supplied. Consider first a coordinator crash that occurs during the protocol execution.
Assuming that timeouts are used to detect crash failures, if a participant P; times out waiting
for the prepare message, it can unilaterally decide abort. If, on the other hand, P; times
out waiting for the decision message (i.e., while in its uncertainty period), it cannot decide
on its own. In this case, P; starts a termination protocol during which it tries to find out
what to decide by contacting another participant that either (i) knows the decision, or (ii)
can unilaterally decide on the transaction. If however, due to crash failures, all participants
satisfying (i) or (ii) are down, P; remains blocked until at least one such participant recovers
from its crash. When used with 2PC, this termination protocol satisfies the AC-Termination
property. Indeed, if all participants that are down eventually recover and remain operational
long enough, P; will be able to communicate with at least one participant that satisfies (i)
or (ii), namely the coordinator.

Consider now a participant P; recovering from a crash. A failed participant returns
to the operational state by executing a recovery protocol. During this protocol, P; first
restores a consistent local state using the information it stored in its stable log. Then, it
tries to decide on the transactions that were active at the time the crash occurred (i.e.,
transactions for which no decision record exists in the log). For each of these transactions,
if P; does not find a yes record in its log, it can unilaterally decide abort. If, on the other
hand, a yes record is found, this means that P; failed while in its uncertainty period, and
therefore, P; is exactly in the same state as if it had timed out waiting for the decision
message. Thus, the termination protocol described above can be used to decide on the
transaction.

DICTATORIAL TRANSACTION PROCESSING 245

Finally, note that since the coordinator of a transaction has no uncertainty period, it
can always decide on the transaction. Indeed, if the coordinator times out waiting for
a participant’s vote, it can safely abort the transaction. Similarly, while recovering from
a crash, the coordinator can abort all transactions that were active at the time its crash
occurred.

3.3. Optimized 2PC variations

As stated in the introduction, 2PC introduces a substantial delay in the system even in the
absence of failures. Assuming that n is the total number of participants, 2PC requires 3
communication steps (request-for-vote, vote and decision) and 2n + 1 forced log writes
until a decision is reached at every participant. The number of force-writes performed
is very important since it determines the number of blocking I/O required for a good
behavior of the protocol. Furthermore, 2PC has a high message complexity due to 4n
messages (including the acknowledgement of the decision) exchanged during the protocol
execution.

The basic 2PC requires information to be explicitly exchanged and logged whether the
transaction is to be committed or aborted. Several 2PC optimizations that make some
presumptions about missing information were proposed:

The Presumed Abort optimization (PrA) [17] was designed to reduce the cost associated
with aborting transactions. The coordinator of the protocol does not log information nor
wait for acknowledgments regarding aborted transactions. Consequently, participants do
not acknowledge abort decisions nor log information about such decisions. In the absence
of information about a transaction, the coordinator presumes that the transaction has been
aborted.

The Presumed Commit protocol (PrC) [17] is the counterpart of PrA in the sense that it
reduces the cost associated with committing transactions. In PrC, the coordinator interprets
missing information about transactions as commit decisions. Unlike PrA, however, the
coordinator of PrC has to force-write a membership log record that contains the identities
of all the participants in the transaction, and that, before starting the voting phase of the
protocol. This is to ensure that an undecided transaction is not presumed as committed when
the coordinator recovers from a crash.

The latency of an ACP is determined by the number of forced log writes and communica-
tion steps performed during the execution of the protocol, and until a decision is reached at
every participant.’ Table 1 shows the performances of 2PC together with its optimizations

Table 1. The cost of transaction commit.

Latency
Message
complexity Forced log writes Communication steps
2PC 4n 2n+1 3
PrA 4n 2n+1 3

PrC 3n n+2 3

246 ABDALLAH, GUERRAOUI AND PUCHERAL

in terms of latency and message complexity needed in order to commit a transaction. When
compared to 2PC, PrA does not reduce the cost of committing transactions. PrC requires
fewer forced log writes and messages than 2PC but does not reduce the number of commu-
nication steps required to commit a transaction.’

Beside this inefficiency, and as already mentioned in the introduction, 2PC and its vari-
ations violate site autonomy, consume valuable resources, and increase the probability of
aborting a successfully processed transaction. We believe that these limitations, which are
particularly exacerbated in today’s distributed systems and applications, constitute a strong
argument towards a serious reconsideration of two-phase commit, and explain the renewed
interest in the atomic commitment problem.

4. Dictatorial atomic commitment
4.1. Informal description

Variations of 2PC solve the classical Afomic Commitment problem (specified in [5]) by
performing a voting phase and a decision phase. The possibility of a participant to vote no
reflects its ability to reject a transaction a posteriori, i.e., after the transaction’s operations
are processed. In particular, a participant might need to vote no if it detects a risk of
violating any of the local ACID properties of its transaction branch. Obviously, if we
remove the veto right from participants in atomic commitment, the coordinator will not
need to ask the participants for their votes and the voting phase of a 2PC becomes useless
(cf. figure 1).

Based on this idea, several authors have proposed the use of One-Phase Commit (1PC)
protocols [3, 4, 21, 22]. The basic assumption underlying 1PC is that a participant “does
not need” to vote. This actually means that before triggering the commit protocol, the
coordinator of a 1PC makes sure that the ACID properties of the local transaction branches
are already ensured at all participants. In other words, the coordinator of a 1PC acts as a
nice dictator and makes sure that no participant can have any reasonable reason to vote
no. Obviously, this introduces some assumptions on the way participants manage their
transactions as will be detailed later in the section.

4.2. The dictatorial atomic commitment problem

The problem solved by 1PC is not the classical Atomic Commitment problem (as specified
in [5]) anymore. This would contradict well-known lower bounds on the cost of solving
atomic commitment in distributed systems [9].

In this problem participants do not have the vero right. At commit time, the coordinator
proposes one of two values: commit or abort. If the coordinator does not crash, it forces the
participants to accept its proposed value so that either they all commit the transaction or
they all abort it. We formalize these notions as a set of properties that define the underlying
problem, which we call Dictatorial Atomic Commitment (DAC).

DICTATORIAL TRANSACTION PROCESSING 247

DAC-Agreement: No two participants reach different decisions.

DAC-Validity: If the coordinator does not crash, the decision value is the coordinator’s
proposed value.

DAC-Integrity: No participant can reverse its decision after it has reached one.

The proposed value of the coordinator depends on whether or not the transaction has
been successfully processed. A transaction is considered as successfully processed if all of
its operations have been successfully executed and acknowledged by all participants. In this
case, the coordinator proposes commit; otherwise, it proposes abort.

4.3. Basic one-phase commit (1PC)

All 1PC protocols that were proposed in the literature share the same basic structure and
differ only in the way recovery is managed. This section describes the basic 1PC protocol
around which all variations were designed and proves its correctness.

4.3.1. Protocol description. The simplest way to solve the DAC problem defined above
is through the ferminate() function described in figure 2.

During this function, the coordinator decides on the transaction depending on its propo-
sition value, and sends its decision to all participants in the transaction. When a participant
receives the decision from the coordinator, it decides on the transaction. Note that force-
writing a decision record in the log is the act by which a participant decides on a transaction.
The protocol corresponds exactly to a 2PC without the voting phase (see figure 1). Clearly,
one can apply various well-known optimizations of 2PC (e.g., Presumed Commit, Presumed
Abort) to 1PC.

4.3.2. Protocol correctness. In this section, we prove the correctness of the basic 1PC
protocol presented in figure 2 by showing that it satisfies all of the three properties of the
DAC problem.

function terminate ()

Only the coordinator executes:

1 decision: = proposition; /! proposition € {commit, abort}
2 decide {decision),

3 send (decision) to all other participants;

4 return;

Every participant P; # coordinator executes:

5 wait until [received (decision) from coordinator]
6 decide (decision);

7 return;

Figure 2. The Basic 1PC protocol.

248 ABDALLAH, GUERRAOUI AND PUCHERAL

Theorem 4.1. 1PC achieves the DAC-Agreement property.

Proof (Sketch): For contradiction, assume that a participant P; decides commit, while
another participant P, decides abort. In 1PC, a participant can only decide at line 6 following
the receipt of the decision message from the coordinator (line 5). This means that the
coordinator has sent two different decisions to participants P; and Py. This contradicts the
fact that the coordinator sends the decision only once at line 3 of the protocol. Furthermore,
it is clear that the decision sent by the coordinator at line 3 is nothing but the value it has
decided at line 2. Thus, all participants (including the coordinator) reach the same decision.

a

Theorem 4.2. 1PC achieves the DAC-Validity property.

Proof (Sketch): From lines 1 and 2 of the protocol, it is obvious that the coordinator’s
decision value is its proposed value. By the AC-Agreement property, the decision value of
all participants is the coordinator’s proposed value. a

Theorem 4.3. 1PC achieves the DAC-Integrity property.

Proof (Sketch): From the structure of the protocol, it is obvious that the coordinator
decides at most once by executing line 2, while the other participants decide at most once
by executing line 6. a

4.3.3. Assumptions on the transactional systems. By interpreting acknowledgement mes-
sages as yes votes, the coordinator of 1PC verifies whether or not the ACID properties of the
local transaction branches are already ensured at commit time. This obviously introduces
some assumptions on the way participants manage their transactions. More precisely:

1. 1PC assumes that every transaction operation is acknowledged. Consequently, if the
coordinator receives the acknowledgement messages for all the transaction operations
before the protocol is launched, the Afomicity of all the local transaction branches (i.e.,
local atomicity) will be already ensured at commit time.

2. 1PC assumes that integrity constraints are checked after each update operation and before
acknowledging the operation. Thus, if all operations are acknowledged, Consistency of
all the local transaction branches will be already ensured at commit time (e.g., the
possibility of discovering, at commit time, that there is not enough money for a bank
account withdrawal is excluded).

3. 1PC assumes that a transaction that executes successfully all of its operations can no
longer be aborted due to a serialization problem. Consequently, if all operations are
acknowledged, serializability (Isolation) of all the local branches will be already ensured
at commit time (e.g., concurrency control protocols that check serializability at commit
time are excluded).

4. Finally, 1PC assumes that once all operations are acknowledged, and before the protocol
is launched, the effects of all the local transaction branches are already logged on stable
storage, and hence, the Durability property will be ensured at commit time.

DICTATORIAL TRANSACTION PROCESSING 249

We believe that assuming every operation to be acknowledged before the ACP is launched
is not a strong requirement as most transactional standards like DTP from X/Open [24] and
OTS from OMG [18] assume the same behavior. Similarly, the assumption that integrity
constraints are checked after each update operation is not constraining since it covers a wide
range of applications. However, the consequences of the last two assumptions are clearly
less obvious. In the following two sections, we dissect these two assumptions and study
their impact on the concurrency control and recovery protocols employed by participants
in dictatorial atomic commitment.

5. The impact of dictatorship on concurrency control

In this section, we characterize schedulers that are correct without the need for a veto
right at commit time. We give two necessary and sufficient correctness properties of such
schedulers. The first property is an extension of serializability, which we named on-line
serializability, and the second is the well-known cascadelessness property [5]. We show
for instance that either strict Two-Phase Locking or strict Timestamp Ordering is sufficient
to ensure on-line serializability and cascadelessness.

5.1. Veto right free schedulers

The correctness of a scheduler is usually captured through two properties: serializability
and recoverability [5]. That is, a scheduler S is correct if only histories that are serializable
and recoverable are acceptable for S. Roughly speaking, a scheduler does not need a vero
right if it does not rely on a distributed voting phase to ensure either of these properties.
For instance, the scheduler cannot optimistically authorize conflicts and decide to abort
transactions at their termination time if the conflicts persist. In other words, an optimistic
certifier does need a veto right. To capture these intuitive ideas, we first define the notion
of committed extension of a history.

Definition 5.1. Let H be any history. A committed extension of H is any history obtained
by extending H with the commit operations of all active transactions in H.

Consider for example the following history:’
H = Wi[x]R[y]Wy[z] A1 W3[x]R;3[x]W4[z]C>
Both histories H1 and H?2 below are committed extensions of H.

H1 = Wi[x]R [y]W2[z]A1 W3[x]R3[x]W4[z] C2C3Cy
H2 = Wi[x]R[y]W2[z]A1 W3[x]R3[x]W4[z]C2C4C5

The following definition expresses the fact that a scheduler making use of 1PC (i.e., with
no veto right at commit time) does not control the commitment of a transaction after its
operations have been performed.

250 ABDALLAH, GUERRAOUI AND PUCHERAL

Definition 5.2. A scheduler S is commit-expanded if, whenever a history H is acceptable
for S, any committed extension of H is also acceptable for S.

It is easy to see that a scheduler might be correct but not commit expanded. Let S be any
correct scheduler (e.g., an optimistic certifier) for which the following history is acceptable:

H = Wi[x]R2[y]Wa[x]R: [x]
Now consider the following committed-extension of H:
H' = W[x]R:[y]W2[x]R [x]C, C,

The serialization graph of H' contains the cycle Ty — T» — Tj, which means that H'
is not serializable. The history H’ is not recoverable either because transaction T; reads
x from transaction 7, and yet 77 commits before 7,(C; < C;). As a consequence, H is
acceptable for S whereas H' is not. In other words, S is not commit-expanded.

Definition 5.3. We say that a scheduler is VR-free (veto right free) if it is correct and
commit-expanded.

5.2. On-line serializability and cascadelessness

The example above shows that serializability and recoverability are not sufficient for VR-
freedom. In the following, we introduce a property, that we call on-line serializability, which
is stronger than serializability. Then we show that on-line serializability and cascadelessness
(ahistory H is cascadeless if no transaction in H reads from values written by uncommitted
transactions) [5], are necessary and sufficient for VR-freedom.

To define on-line serializability, we introduce the notation E-SG(H) (Expanded Serial-
ization Graph). Given a history H over a set of transactions T = {Ty, T», ..., T,,), E-SG(H)
denotes the directed graph whose nodes are the transactions in 7 that are either committed
or active in H and whose edges are all T; — T;(i # j) such that one of 7;’s operations
precedes and conflicts with one of 7;’s operations in H . Note that E-SG(H) is a super-graph
of SG(H) (the serialization graph of H) as the latest contains only committed transactions
of H.

Definition 5.4. We say that a history H is on-line serializable iff E-SG(H) is acyclic.

Theorem 5.1. Let S be any commit-expanded scheduler. S is correct iff S ensures on-line
serializability and cascadelessness.

Proof (Sketch):

(if) Let S be any commit-expanded scheduler and assume that every history thatis acceptable
for S is on-line serializable and cascadeless. As for any history H, E-SG(H) is a super-
graph of SG(H), any cycle in SG(H) appears in E-SG(H) as well. Hence, any history

DICTATORIAL TRANSACTION PROCESSING 251

that is not serializable is not on-line serializable. Furthermore, it was shown in [5] that
any history that is cascadeless is recoverable. Hence S is correct.

(only if) We show now that if a commit-expanded scheduler does not ensure either on-line
serializability or cascadelessness, then it cannot be correct. Assume by contradiction that
there is a history H in S that is either (1) not on-line serializable or (2) not cascadeless.
Case (1) means that there is a cycle in E-SG(H). Let H' be any committed-extension
of H. As S is commit-expanded, then H' is acceptable for S. As E-SG(H) =SG(H'),
then SG(H') also contains a cycle, a contradiction with the assumption that S is correct,
i.e., S ensures serializability. Case (2) means that in H some transaction 7; reads from
values written by an uncommitted transaction 7». Let H' be any committed-extension of
H where Ty commits before T,. As S is commit-expanded, then H' is acceptable for S.
Since H' contains all reads and writes operations of H, then in H’, T reads from values
written by 75, and T; commits before 7> in H'. A contradiction with the fact that S is
correct, i.e., S ensures recoverability. O

Corollary 5.1. On-line serializability and cascadelessness are necessary and sufficient
conditions for a scheduler to be VR-free.

5.3. Examples of VR-free schedulers

We show below that a scheduler based either on strict Two-Phase Locking (2PL) or on strict
Timestamp Ordering (TO) is VR-free.

Theorem 5.2. Strict 2PL is sufficient but not necessary to ensure on-line serializability
and cascadelessness.

Proof (Sketch):

(a) It has been shown in [5] that any strict history is cascadeless. Assume H is also a 2PL
history and assume by contradiction that H is not on-line serialisable, i.e., there is a
cycleT), > T, - --- — T, — T, in E-SG(H). However, since 2PL is a lock-based
scheduler, a dependency cycle would have led to a deadlock, and H could not have
been generated: a contradiction.

(b) The following history H shows that strict 2PL is not necessary to ensure on-line seri-
alisability and cascadelessness:

H = W [x]W,[x]C,C,
The history H cannot be generated by a 2PL scheduler: transaction 7, could not

have accessed x before the termination of T;. However, H is on-line serializable and
cascadeless. O

Theorem 5.3. Strict TO is sufficient but not necessary to ensure on-line serializability
and cascadelessness.

252 ABDALLAH, GUERRAOUI AND PUCHERAL

Proof (Sketch):

(a) Similar to (a) of Theorem 5.2 above: assuming H is a TO history, the presence of a
cycle Ty > T, — - --— T, — T} in E-SG(H) would mean that ts(7}) < ts(7}), where
ts(T') denotes T’s timestamp. A contradiction.

(b) The following simple history H shows that strict TO is not necessary to ensure on-line
serializability and cascadelessness

H = Wi[x]W1[x]CC>

Whatever the timestamp order is, H cannot be generated by a strict TO scheduler.
Indeed, either ts(7}) < ts(7;) and W;[x] will be delayed until C; is performed, or
ts(7>) < ts(Ty) and T will be aborted because it arrives late. However, H is on-line
serialisable and cascadeless. O

In contrast, a certifier cannot ensure on-line serializability. A certifier typically prevents
cycles by aborting transactions (a posteriori). However, on-line serializability requires that
no cycle (even if involving only active transactions) be ever generated. The following history
can be produced by a certifier and is obviously not on-line serializable.

H = R [x]W,[x]W,[yIW [y]

5.4. Practical considerations

Strict 2PL is the most widely used serialization protocol. Hence, participants of most trans-
actional systems exhibit the VR-free property and thus, are 1PC compliant. However, com-
mercial database systems are likely to use isolation levels standardized by SQL2 [14] in
combination with 2PL. We recall below the SQL2 isolation levels and analyze the extent to
which 1PC protocols can accommodate them.

e Serializable: Transactions running at this level are fully isolated.

e Repeatable read: Transactions running at this level are no longer protected against phan-
toms. More precisely, successive reads of the same object give always the same result
but successive SQL queries selecting a group of objects may give different results if
concurrent insertions occur.

e Read committed: Transactions running at this level read only committed data but Repeat-
able Read is no longer guaranteed. In a lock-based protocol, this means that read locks
are relaxed before transaction end (in practice, as soon as they are granted).

e Read uncommitted: Transactions running at this level may do dirty reads. For this reason,
they are not allowed to update the database. In a lock-based protocol, this means that
Read Uncommitted transactions do not request locks at all.

Isolation levels are widely exploited because they allow faster executions, increase trans-
action parallelism and reduce the risk of deadlocks. For example, a transaction 7; computing

DICTATORIAL TRANSACTION PROCESSING 253

statistics on a large population of objects can take benefit of the Read Uncommitted level.
This transaction will never be blocked by concurrent writing transactions (that may affect
T;’s result but in a non significant way) and will never block other transactions.

If we refer to Definition 5.3, it is clear that schedulers implementing isolation levels,
which we call IL-schedulers, are not VR-free simply because they are not correct: they do
not ensure serializability. Consequently, they do not ensure on-line serializability either.
However, isolation levels have been actually introduced to relax serializability, and non-
serializable schedules that may be produced are considered as semantically correct. Hence,
new correctness criteria that accommodate isolation levels need to be defined in order to
characterize “correct” IL-schedulers. To this end, we introduce in the following a new
property, which we call IL-serializability.

Consider a history H over a set of transactions T = {7, 15, ..., T,). Let IL-SG(H) be
the sub-graph of SG(H) containing all dependencies in H except those incurred by conflicts
ignored by the isolation levels under which transactions in 7' are running. We say that H
is IL-serializable iff IL-SG(H) is acyclic. An IL-scheduler is said to be correct if it ensures
IL-serializability and recoverability.

Similarly to Section 5.2, we introduce on-line IL-serializability to characterize IL-sched-
ulers that are correct with no veto right at commit time. Let E-IL-SG(H) denote the expanded
IL-SG(H). We say that a history H is on-line IL-serializable iff E-IL-SG(H) is acyclic. We
can show that on-line IL-serializability and cascadelessness are necessary and sufficient
conditions for an IL-scheduler to be veto right free. The proof is very similar to that of
Theorem 5.1 and hence omitted.

‘We show below that IL-2PL (2PL based IL-scheduler) satisfies both cascadelessness and
on-line IL-serializability.

e Cascadelessness: conventionally, the cascadelessness property precludes the occurrence
of dirty reads. In IL-2PL, dirty reads are allowed only at the Read Uncommitted level,
which is restricted to Read-Only transactions. However, the semantics of Read-Only
transactions contradict the fact that they can be subject to cascading aborts. Consequently,
cascadelessness is still ensured in IL-2PL schedulers.

e On-line IL-serialisability: Assume H is an IL-2PL history, and assume by contradiction
that H is not on-line IL-serialisable, i.e., thereisacycle Ty - T, — --- -> T, - T
in E-IL-SG(H). Note that any dependency edge in E-IL-SG(H) translates a conflict not
ignored by the IL-2PL scheduler. Since IL-2PL is based on locking, a dependency cycle
would have led to a deadlock and H could not have been generated: a contradiction.

As a conclusion, IL-2PL schedulers can still be considered as veto right free, and hence
they comply with 1PC.

6. The impact of dictatorship on recovery

A data manager must ensure the Atomicity and Durability properties of every transaction.
More precisely, the data manager must guarantee that there is enough information on stable
storage so that if a failure occurs (and the information in the volatile storage is lost),

254 ABDALLAH, GUERRAOUI AND PUCHERAL

(1) the updates of aborted transactions are undone from the database and (2) the updates of
committed transactions are correctly reported on the database. Following the terminology
of [13], we call the first property abort-resiliency and the second property commit-resiliency
(these correspond to undo and redo rules respectively in [5]). A data manager is said to be
correct if it guarantees both abort-resiliency and commit-resiliency [13].

6.1. Veto right free data managers

In a centralized system, abort-resiliency is for example ensured by having the data manager
store before images in its log (this technique relies on the assumption that a strict concurrency
control is used), and commit-resiliency is ensured by force-writing the transaction updates
on stable storage at commit time [5].

In a distributed database system, the same technique is used to guarantee abort-resiliency.
To ensure commit-resiliency, participants in a transaction must guarantee that, if the trans-
action commits at any participant, there is enough information on stable storage to redo
the effects of the transaction at all participants. With a 2PC, this is guaranteed using the
notion of prepared state. A participant P enters the prepared state for a transaction only if
the commit-resiliency property is guaranteed for the transaction branch that accessed P. To
commit a transaction, its coordinator makes sure that all updated participants have entered
the prepared state of that transaction: this test is included in the voting phase of the 2PC.
A participant does only vote yes if it has entered the prepared state. If it cannot enter that
state (e.g., if the disk is full), the participant simply votes no and the transaction is aborted.

Removing the veto right has no impact on abort-resiliency. Nevertheless, the participants
must anticipate the commit and make sure the commit-resiliency property is ensured a priori.
As for schedulers, we introduce the following definitions to capture the idea of a VR-free
data manager.

Definition 6.1. We say that adata manager D is commit-expanded if whenever an operation
has been performed on behalf of a transaction T, the corresponding transaction branch can
commit.

The definition above captures the idea that (just like for a scheduler), the only way to
abort a transaction is by not performing one of its operations. If a transaction’s operation
has been acknowledged (i.e., performed), the corresponding transaction branch is able to
commit.

Definition 6.2. We say that a data manager is VR-free if it is correct and commit-expanded.

6.2. On-line commit-resiliency

We introduce the following property to characterize the behavior of data managers that are
VR-free.

DICTATORIAL TRANSACTION PROCESSING 255

Definition 6.3. We say that a data manager ensures on-line commit-resiliency if every
update operation executed on that data manager is commit-resilient.

Theorem 6.1. Let D be any commit-expanded data manager. D is correct iff it ensures
abort-resiliency and on-line commit-resiliency.

Proof (Sketch):

(if) Let D be any commit-expanded data manager that ensures abort-resiliency and on-
line commit-resiliency. In other words, before acknowledging any update operation, the
participant force-writes its effects on stable storage. As we assume that this participant
cannot commit its transaction branch before all of its operations have been acknowledged
(cf. Section 4), this means that it cannot commit its transaction branch if the effects of
any of its operations are not on stable storage, i.e., the transaction is commit-resilient at
D’s site. Hence, D is correct.

(only if) Assume by contradiction that there is an execution where D does not ensure
on-line commit-resiliency, i.e., D does not ensure the commit-resiliency of some update
operation op for a transaction 7. If the transaction commits exactly after receiving the
acknowledgement from the participant about the operation op, and the participant crashes
immediately after sending back that acknowledgment, then the effects of op are lost and
T is not commit-resilient at D’s site: a contradiction with the fact that D is correct. O

Corollary 6.1. Abort-resiliency and on-line commit-resiliency are necessary and suffi-
cient conditions for a data manager to be VR-free.

6.3. Practical considerations

6.3.1. Participant logging. To achieve the on-line commit-resiliency property, participants
in a transaction must force-write the effects of every update operation on stable storage, and
that before acknowledging the operation. The Early Prepare (EP) processing scheme of
Stamos and Cristian does ensure that property [21, 22]. Although Early Prepare can make
use of 1PC and alleviates the need for an expensive 2PC, it requires a forced-write at every
update operation of the transaction. The cost of transaction commitment is hence traded
with the cost of transaction processing.

6.3.2. Coordinator physical logging. To avoid the prohibitive cost of on-line commit-
resiliency, one might deviate from the “classical” atomic commitment scheme that requires
every participant to ensure all of the ACID properties of its transaction branches. Consider
for instance a less classical scheme that consists in having the coordinator itself ensure the
commit-resiliency property before committing a transaction. To delegate this responsibility,
the participants need however to make sure that the coordinator has enough information
on its local stable storage about all committed transactions (unless it has the adequate
information, the coordinator aborts the transaction). Coordinator Log (CL) [21, 22] and
Implicit Yes-Vote (IYV) [3, 4] do follow this scheme.

256 ABDALLAH, GUERRAOUI AND PUCHERAL

In Coordinator Log, participants do not maintain their updates in a local stable log.
Instead, they send back within the acknowledgment message of every update operation all
the log records (undo and redo log records) generated during the execution of the operation.
The coordinator is thus in charge of logging the transaction updates before performing
the commit protocol. If we refer to the basic 1PC protocol described in Section 4, this
would mean that the coordinator of CL calls the terminate() function with commit as its
proposition value only if it succeeds in storing the transaction updates on stable storage.
To recover from a crash, a participant asks the coordinator for the log records it needs to
reestablish a consistent state of its database.

The Implicit Yes-Vote scheme is similar, except that logging is a more distributed task.
The idea is to allow failed participants to perform part of the recovery procedure (the undo
phase) independently of the coordinator, and to resume the execution of transactions that are
still active in the system (i.e., transactions for which no decision was made yet) instead of
aborting them. Participants send back their redo log records together with a Log Sequence
Number (LSN) [12] whenever they acknowledge an update operation. To recover from a
crash, a participant performs the undo phase of the recovery procedure and part of the redo
phase using its local log. Then, the participant asks the coordinator for all redo log records
whose LSNs are greater than its own highest LSN, and for all read locks acquired by active
transactions. This allows the participant to reinstall the updates pertaining to the globally
committed transaction and continue the execution of transactions that are still active in the
system.

6.3.3. Coordinator logical logging. Although Coordinator Log and Implicit Yes-Vote cir-
cumvent the need for on-line commit-resiliency, they violate site autonomy by forcing par-
ticipants to externalize their redo logs. This compromises their use in existing transactional
systems. To solve this problem, we propose to maintain in the log of the coordinator the
list of operations submitted to each participant instead of the physical redo log records sent
back by these participants. In case a participant crashes during the 1PC protocol, the failed
transaction branches that make part of a globally committed transaction will be re-executed
using the operations registered in the coordinator’s log. This mechanism, which we call
Coordinator Logical Log (CLL), provides three main advantages. First, it preserves site
autonomy since no internal information has to be externalized by the participants. Second,
it can be applied to heterogeneous transactional systems using different local recovery
schemes. Finally, it does not increase the communication cost during normal processing
(redo log records are not piggybacked in the messages).

6.3.3.1. CLL: Description. ~As introduced before, our logical logging mechanism consists
in having the coordinator register in its log every transaction operation before sending it
to the participant hosting the object involved by the operation. Note that this registration
is done by a non-forced write. Non-forced writes are buffered in main memory and do not
generate blocking 1/0. Operations are then sent to and locally executed by the different
participants.

Asis the case in CL and IY'V, the coordinator of CLL is in charge of ensuring the commit-
resiliency property before committing a transaction. Thus, when all acknowledgments are
received, the coordinator force-writes the transaction operations on stable storage and calls

DICTATORIAL TRANSACTION PROCESSING 257

the terminate() function with commit as its proposition value. Recall that during this
function, the coordinator decides on the transaction by force-writing its decision value on
disk. However, in order to improve performances, the transaction operations together with
the decision log record can be forced on stable storage at the same time, thereby generating
a single blocking 1/0.

If, on the other hand, the coordinator receives a negative acknowledgement from some
participant or fails in storing the transaction operations on stable storage, it simply discards
all the transaction log records and calls the terminate() function by proposing abort.

6.3.3.2. CLL: Recovering from failures. ~Consider a participant P, recovering from a crash.
Figure 3 details the recovery algorithm associated with CLL and executed by Py. In the
following, T;; denotes the local branch of transaction 7; executed at participant P;. For the
sake of clarity, step numbers correspond here to step ordering.

Step 1 and Step 2 represent the standard local recovery procedure executed by a crashed
participant Py. To preserve site autonomy, we make no assumptions whatsoever on the way
these steps are handled. Step 3 is necessary to determine if the kth branch (i.e., T;;) of some
globally committed transactions 7; has to be locally re-executed by the crashed participant.

In Step 4, the coordinator aborts all active transactions in which Py participates. Step 5
checks if there exists some committed transaction 7; for which Py did not acknowledge the
commit decision. This may happen in two situations. Either the participant crashed before
the commit of 7;; was achieved and T;; has been undone during Step 1, or Tj; is locally

Participant’s algorithm
1- undo the transactions that were active at the time the crash occurred
2- redo the transactions that have reached their commit state before the crash occurred
3- contact the coordinator
7- answer the queries that may be sent by the coordinator during step 6
10- accept new transactions

Coordinator’s algorithm
If contacted by participant Py during step 3, do:
for each transaction T in which Py participates
4- if (commit;} & coordinator’s log, then
broadcast (abort;) to all other T; participants and forget T;
5- if (commit;) € coordinator’s log, then
if acky{commit;) & coordinator’s log, then
6- query Py to determine the exact status of Tiy
(i.e., either locally committed or aborted)
8- if Ty, has not been locally committed, then
restart a new transaction T’y on Py,
re-execute all Ty, operations within T,
9- accept new distributed transactions

Figure 3. Recovering a participant crash.

258 ABDALLAH, GUERRAOUI AND PUCHERAL

committed but the crash occurred before the acknowledgment was sent to the coordinator.
Note that these two situations must be carefully differentiated. Re-executing T} in the latter
case may lead to inconsistencies if 7;; contains non-idempotent operations.

To simplify the presentation, we assume for the moment that the coordinator can query
a participant to learn the exact state of Tj; (Step 6). We detail afterwards the way we
achieve this without violating site autonomy. The participant answers during Step 7. If Tj;
has been successfully committed, the coordinator does nothing. Otherwise, T;; has been
undone during Step 1 and must be entirely re-executed. This re-execution is performed
by exploiting the coordinator’s log (Step 8). Once the recovery procedure is completed,
new distributed transactions are accepted by the coordinator (Step 9) and the participant
(Step 10).

We now explain how the coordinator can query a participant about the state of its local
transaction branches. Our solution relies on a local Agent (called Agent;) associated with
each participant P;. The Agent does not violate site autonomy as the existing interface of the
participant is preserved, and does not increase the communication cost, as it is co-located
with its participant. Every message is submitted to the participant through its local Agent,
which acts as a liaison between the coordinator and the participant. The exact role of the
Agent is to determine, during the recovery procedure, those local transaction branches that
need to be re-executed. The mechanism works as follows. When the coordinator broadcasts
the commit decision to each participant, the participant’s Agent issues an additional operation
“write record <commit;>"" on behalf of the local transaction branch it is in charge of (e.g.,
Tix), and before submitting the commit decision to the participant.® This creates at P, a
special local record containing the commit decision for 7;. This operation will be treated
by P in exactly the same manner as the other operations belonging to T, that is, either all
committed or all aborted atomically. Once the Agent receives the acknowledgment of this
write operation, it asks P to commit the local transaction branch.

Steps 6 and 7 of the recovery algorithm are now straightforward. To get the status of a
local transaction branch T, the coordinator checks, through Agent, , the existence of record
<commit;> at P, (this can be done by a regular select operation). If the record is found,
this proves that T;; has been successfully committed at P; before the crash, since write
<commit;> is performed on behalf of T;;. Otherwise, T;; has been backward recovered
during Step 2 and must be re-executed.

6.3.3.3. CLL: Recovery correctness. Similarly to the AC problem, the following DAC-
Termination property has to be added to the specification of the DAC problem in order to
exclude protocols that allow participants to remain undecided forever once a crash failure
has occurred during the protocol execution.

DAC-Termination: If all failures are repaired, then unless a new failure occurs, every
participant eventually reaches a decision.

In this section, we show that the CLL’s recovery procedure described in figure 3 is
correct. This amounts to proving that a recovering participant eventually reaches a decision
consistent with that reached by the other participants once all failures are repaired so that
DAC-Termination is satisfied. However, since the recovery procedure may lead to a decision

DICTATORIAL TRANSACTION PROCESSING 259

through the re-execution of a transaction branch, we also need to show that re-executing the
logical operations registered in the coordinator’s log will produce exactly the same local
state at the recovering participant as the one produced during the initial execution. In the
following, we consider these two issues in turn.

e Decision consistency: Let Py be the recovering participant. If, during its local recovery
procedure, P finds in its log a decision record for a transaction branch, say Tj, then it
has already decided during the 1PC protocol execution. If, however, no decision record is
found, P, undoes the effects of T;; (Step 1). Note that the only non-trivial case to consider
here is the case where Ty is part of a globally committed transaction 7;. This may happen
if the coordinator has sent the commit decision to all participants, but P crashed before
committing ;. By the algorithm of figure 3, when P; establishes a consistent local state,
it contacts the coordinator (Step 3). In this case, once the coordinator has verified, through
Agent,, that Tj; has been locally aborted, it re-executes all T;; operations within a new
transaction branch T};. If a failure should occur during the re-execution process, it will
be retried until Tj; (7,) commits at P;. Note that although P, may be blocked during its
recovery (in case the coordinator is down), Py eventually reaches a consistent decision
once the coordinator recovers from its crash. Hence, the recovery procedure associated
with CLL satisfies the DAC-Termination property.

o Determinism: Here, we show that the re-execution of Tj; within T, produces the same
local state at Py as the one produced during the initial execution. Note that in CL and
IYYV, the coordinator’s log contains physical redo records, making the recovery algorithm
rather straightforward. The redo records are re-installed at the failed participant during
the recovery of a local transaction branch, thereby producing the same local state as
the one produced during the initial execution. By exploiting logical logging rather than
physical logging, CLL’s recovery procedure must face two new problems:

— Operations may be non-idempotent: an operation op is said to be non-idempotent if
(op(op(x)) # op(x)). Non-idempotent operations must be executed exactly once in
any failure situation.

— Operations may be non-commutative: two operations opl and op2 are said to be non-
commutative if (opl(op2(x)) # op2(opl(x))). Non-commutative operations must be
executed at recovery time in the same order as during the initial execution.

Consider first the management of non-idempotent operations. Assume the coordinator
has decided to commit 7; and has sent its decision to the participants. Assume also that
Py crashed immediately after. By the undo rule, if P; crashed before committing Tjy, Tix
will be undone during Step 1 of the recovery algorithm and the record <commit;> will be
discarded.’ Otherwise (i.e., Py crashed after the commit of Tj; was successfully performed),
the redo rule guarantees the presence of the <commit;> record at Py. These two situations
are differentiated during Step 6 of the recovery algorithm. Step 8 forward recovers only
transaction branches that have been locally aborted. This means that no transaction branch,
and hence no operation (either idempotent or not) is executed twice.

Consider now non-commutative operations. If these operations belong to the same trans-
action, no problem can occur. Indeed, the recovery algorithm re-executes the operations of a

260 ABDALLAH, GUERRAOUI AND PUCHERAL

failed transaction branch following the order in which they were logged on the coordinator,
i.e., in the order of their initial execution. The case where two or more local transaction
branches (eg., Tix, Tjx) have to be forward recovered is more tricky since most transactional
systems execute transactions in parallel through several threads of control. Thus, even if
the coordinator re-submits to P, all operations that belong to different local transaction
branches in the order of their initial execution, the result is non-deterministic. We demon-
strate below that the local database state produced by the recovery algorithm is the same as
the one produced during the initial execution. Let ¢ denote the set of all local transaction
branches that have to be forward recovered by P, during Step 8.

¢ = {T;x/commit; € coordinator’s log A acky(commit;) ¢ coordinator’s log

A <commit;> ¢ Py ‘s state}.

First, Step 2 of the recovery algorithm guarantees that all resources accessed by any
Tix € ¢ are restored to their initial state (i.e., the state before T}, execution), according to
the Atomicity property. Second, since Step 8 precedes Step 9 and Step 10, new transactions
that may modify T;; resources are executed only after the re-execution of 7;;. Consequently,
at Step 8, all Tj; € ¢ are guaranteed to re-access the initial database state. The sole problem
may come from the parallel re-execution of all 7;; € ¢ if these transactions themselves
compete on the same resources.

Assume first that P uses a locking based VR-free serialization protocol, such as strict
2PL (i.e., the general case). In this case, VTix, Tjx € ¢, =3(Tj — Ti), where — represents
a precedence in the serialization order. Otherwise, 7;; would have been blocked during its
initial execution, waiting for the termination of Tj, and would not have completed all its
operations, which contradicts 7j; € ¢. This means that T and Tj cannot compete on the
same resources. If however, P; uses another VR-free serialization protocol, such as strict
TO, the former assumption is no longer valid. Indeed, strict TO accepts some Read/Write
conflicts (those produced in the timestamp order) without blocking. To deal with this case,
Step 8 must execute all Tj; € ¢ in their initial serialization order, one after the other (i.e.,
without parallelism).

6.3.3.4. CLL: Timeout actions. To complete our discussion on CLL, and to satisfy the
DAC-Termination property, we must supply timeout actions so that participants do not wait
indefinitely for messages that may never arrive due to a coordinator crash.

Remember that in 1PC, the only point where a participant can unilaterally abort a trans-
action is by negatively acknowledging an operation. If, however, the participant has no
pending acknowledgement for any of the transaction operations, it enters its uncertainty
period until it receives either a new transaction operation or the final decision from the
coordinator.

When a participant times out while in its uncertainty period (due to a coordinator crash),
it executes a termination protocol during which it tries to decide on the transaction. The
termination protocol presented in Section 3.2.2 can be perfectly used here so that DAC-
Termination is guaranteed. Note that although the participant may be blocked during the
execution of the protocol due to the crash of other participants and/or the coordinator, it
eventually reaches a consistent decision once these crash failures are repaired.

DICTATORIAL TRANSACTION PROCESSING 261

Table 2. The cost of transaction commit in different 1PC variations.

Latency
Message
complexity Forced log writes Communication steps
EP n 1+n+op 1
CL n 1 1
IYv 2n I+n 1
CLL 2n I+n 1

6.4. Evaluation of CLL

In this section, we evaluate CLL along with existing 1PC variations, namely, EP, CL and
IYV. Table 2 shows the performance of the different protocols in terms of latency and
message complexity needed in order to commit a transaction. We denote by n the number
of participants and by op the number of update operations performed by a transaction.

From Table 2, IYV and CLL have exactly the same performances. EP and CL have the
lowest message complexity, which comes, however, at a high additional cost. Indeed, CL
eliminates the acknowledgement of (commit and abort) decisions at the cost of a coordina-
tor’s log that is never garbage collected! Since participants do not acknowledge decisions,
they do not need to force-write these decisions in their logs. This is how CL has also the
smallest number of log forces. If the coordinator’s log in CL has to be garbage collected,
CL would have exactly the same performances as IYV and CLL.

EP is the 1PC variation of PrC, and hence, commit decisions are neither acknowledged
nor force- written by the participants. Also, and just like PrC, EP requires that a membership
log record!? be force-written in the coordinator’s log. However, unlike PrC, the coordinator
of EP has to update its membership record each time a new participant joins the transaction.
This generates 1+ n log forces, assuming that participants are not known in advance.
Furthermore, by achieving on-line commit resiliency (cf. Section 6), EP generates one
force-write for each update operation, which makes a total of 1+ n + op log forces.

Finally, it is very important to note that among all atomic commitment protocols, CLL is
the only protocol that has the advantages of 1PC while preserving site autonomy. Thus, it
is the sole protocol that can be applicable to all existing commercial transactional systems
(that may not be 2PC compliant) without requiring any modification to the kernel of these
systems so that they can participate in the protocol execution.

7. Integrating 1PC into standard platforms

In this section, we show the way 1PC can be integrated into well-known transactional
standards, namely OMG’s Object Transaction Service (OTS) [18] based on a CORBA
architecture [19]. Our choice is motivated by the fact that CORBA allows for heterogeneity,
and complies with other well-known and widely supported transactional standards, namely
the X/Open DTP model [24]. We first recall some background related to the CORBA object

262 ABDALLAH, GUERRAOUI AND PUCHERAL

model and its associated Object Transaction Service. We then study how to extend OMG’s
OTS to support the 1PC behavior.

7.1. Background

7.1.1. CORBA. An important feature of today’s distributed systems is heterogeneity. Ap-
plications autonomously developed at different sites in different languages and on different
hardware and software platforms need to communicate and to share information. The Com-
mon Object Request Broker Architecture (CORBA) is an open standard, specified by the
Object Management Group (OMG) [19], which answers the need for interoperability be-
tween these applications. Simply stated, CORBA provides a distributed object-oriented
infrastructure that allows objects to communicate across boundaries such as the network,
the specific language in which they were written or the platform on which they are deployed.

7.1.2. OTS. The OMG’s Object Transaction Service (OTS) [18] brings the notion of
distributed transactions to the world of CORBA. OTS provides interfaces that allow multiple,
distributed objects to cooperate in a transaction such that they either all commit or all abort
their changes. These interfaces are defined in terms of the OMG’s Interface Definition
Language (IDL). Figure 4 illustrates the major components and interfaces defined by the
Object Transaction Service.

The transaction originator is an arbitrary program that begins a transaction using a Trans-
actionFactory. A Control Object is returned that provides access to a Terminator and a
Coordinator. The transaction originator uses the Terminator to commit or rollback the

: ..
e N
: recoverable server i
SQL | p —
transaction Recoverable B |
originator M m
Resource S S
‘\ Xa
ORB
Transaction Factory —
Can!ra! E:::i:;::;(”ﬂr Resource
Current Terminator Current |Subtransaction-
L . Recovery- i
Coordinator Coordinator AwareResource

Transaction
Context

Transaction Service

Figure 4. Object transaction service architecture.

DICTATORIAL TRANSACTION PROCESSING 263

transaction. The Coordinator provides mechanisms to coordinate the actions of the differ-
ent participants involved in the transaction.

A recoverable server implements one or more recoverable objects. A recoverable object
is an application object that manages persistent data whose state is subject to change during
the course of the transaction, and thus must participate in the commit protocol driven by the
Transaction Service.!! This is achieved by registering a Resource object that implements
the 2PC protocol with the Coordinator. In other words, the Resource object plays the role
of a participant in the commit protocol.

Note that one of the major goals of the Object Transaction Service is to allow several
legacy (possibly heterogeneous) TP based systems to participate in a CORBA transaction.
In particular, OTS is designed to be compatible with X/Open DTP compliant data managers
[24], known as X/Open Resource Managers or RMs, while preserving their autonomy in the
sense that no changes should be made to the participating RMs in order to accommodate the
OTS model. If we refer to figure 4, this means that if the persistent data are managed by an
X/Open RM, the OTS Resource object translates every OTS invocation to 2PC participants
into an X/Open Xa invocation.

To commit a transaction, the Transaction Service drives the commit protocol by issuing
requests to all the Resources registered with the Coordinator. Finally, and to simplify appli-
cation programming, the OTS model also defines the Current interface that provides trans-
parent access to the Transaction Service. Simply stated, Current can be seen as a high level
API that hides the location of the Transaction Service and the set of its defined interfaces.

7.2. Integrating 1PC into OTS

As already stated before, an important objective of the Object Transaction Service is the
integration of legacy systems in CORBA transactions. Recall from Section 6 that Coordi-
nator Logical Log (CLL) is the only 1PC variation that preserves site autonomy, which is
a preliminary condition towards this objective, while being compatible with commercial
transactional systems.'? This makes CLL the only possible candidate to the integration of
1PC into the OTS model so that it supports, instead of 2PC, the 1PC behavior.

Actually, one can think of two different approaches to achieve this goal. The first one
consists in using an existing OTS product as a black box, and to add 1PC as an independent
entity on top of it. Thus, the 1PC entity will access OTS only through its standard interfaces.
However, a deep study showed that this is technically impossible to realize due to some
constraints related to the ORB. We believe that the proof of this impossibility is out of the
scope of this paper (details can be found in [1]).

The second approach consists in integrating 1PC within the kernel of an existing OTS
implementation. Based on this approach, we present in the following a way by which Co-
ordinator Logical Log can be embedded within a fully OTS compliant Transaction Service,
named MAAO OTS, developed by the TRANSREP project at INRIA (Institut National de
Recherche en Informatique et Automatique) [16]. Our solution has been fully designed and
is currently being implemented in C++ using Orbix 2.3 MT [15], a commercial CORBA
implementation, in the context of OpenDREAMS-I1, an ongoing ESPRIT project [1] which
aims at providing a CORBA compliant platform for reliable industrial applications.

264 ABDALLAH, GUERRAOUI AND PUCHERAL

7.2.1. Interface extension. MAAO OTS extension to support 1PC necessitates very minor
changes to the standard OTS interfaces as defined by OMG. Indeed, only the Terminator
interface is extended so that it supports a new operation, called commit_IPC(), dedicated
to the 1PC protocol. Furthermore, this operation is completely transparent to application
programmers as will be shown later. This is mainly due to the fact that our solution was
designed with the issue of application portability in mind.

7.2.2. Client’s view. A client of the extended MAAO OTS will always access the standard
interfaces as defined by OMG. The transparency of our 1PC extension to the client appli-
cation is achieved through a library, called /PClib, dedicated to 1PC specific mechanisms
and to which the client application should be linked. /PClib automatically maps the client
call to the commit() operation to a call to the commit_I PC() operation on the Terminator
with the appropriate parameters. The call to commit_IPC() launches the 1PC protocol
implemented by the MAAO OTS server and commits the transaction in a single phase.

7.2.3. Recoverable server’s view. Recall from Section 6 that the concept of Agent has
been associated with each database system participating in the CLL protocol. The role of
the Agent is to determine the exact state (i.e., committed or aborted) of every transaction
branch for which its local DBMS did not acknowledge the commit decision due to a failure.
This is important in order to identify those branches that need to be locally re-executed.

In our model, we have integrated the Agent role within the Resource object. Obviously, this
is the most natural and straightforward way to do since the Resource is the entity that acts as
intermediary between the Transaction Service and the participating DBMS. Furthermore,
no interface extensions are needed since we exploit the standard commit_one_phase()
operation offered by the Resource interface'® to implement the Agent and to commit the
transaction in a single phase on the different participants.

7.2.4. Failures and recovery. Recall that to be able to guarantee the commit-resiliency of
transactions, the coordinator of CLL must keep in its log the list of application requests
invoked by a transaction. In addition, the coordinator must force its log on stable storage
before sending the commit decision to the different participants. In case a participant crashes
during the 1PC protocol execution, the coordinator re-executes the transaction branch on
the failed participant.

In OTS, the difficulty in realizing this is due to the fact that a transaction sends its requests
directly to recoverable objects. Thus, at commit time, the coordinator has no knowledge of
the list of requests invoked by the transaction during its execution.

To deal with this problem, our solution consists in keeping the list of a transaction requests
in a log maintained on the client side. This log, which is completely transparent to the client
application, will be managed by /PClib via an object called Replay. The Replay interface
defines operations that allow to (i) write the transaction requests on the log (register_op()
operation), (ii) force the log on stable storage (flush() operation), and (iii) re-execute the
requests of a transaction branch in case a participant crashes (re_execute() operation).

7.2.5. Detailed description. 1PClib has been implemented using Orbix Per-process
Filters.'* Once a client application is linked to /Pclib and the Per-process filter is installed,

DICTATORIAL TRANSACTION PROCESSING 265

Transaction Originator

Recoverable Server
Replay 1PClib ;
ilter i
H A A
ORB
Terminator | Factory -T
commitl) | o nerol Resource
commit_IPCO | -~ L tinator Current Current Subtransaction
—— rollhack(meem —— —— AwareResource
Replay \ Y \
re_execute()

Transaction
Context

Transaction Service

Figure 5. 1PClib in the extended MAAO OTS architecture.

the filter will monitor all out-going requests from the client’s address space. Figure 5 de-
scribes the role of /PClib in the extended MAAO OTS to support the CLL protocol.

Typically, when a client application begins a transaction by calling begin() on the Fac-
tory, the client filter associates a Replay object with the new transaction. During the trans-
action, the client application invokes application requests on recoverable objects. The client
filter intercepts each of these requests, registers the request in the log by calling register_
op() on the Replay object, and continues the call normally. To commit its transaction, the
client application calls commit() onthe Terminator. Again, the client filter intercepts the call
to commit(), force-writes the transaction requests on stable storage by calling flush() on
the Replay object, and maps the call to commit() by a call to commit_1PC() on the Termi-
nator. In this call, the filter sends the Replay object reference associated with the transaction
to the Transaction Service as a parameter of the operation commit_I PC(), which launches
the 1PC protocol in the MAAO OTS server and commits the transaction in a single phase.

In case a participant crashes during the 1PC protocol, the Coordinator of the transaction
re-executes the failed branch by calling the operation re_execute() on the Replay object
associated with the transaction.

8. Conclusion and future prospects

This paper discusses the impact of removing the vefo right from the traditional Atomic Com-
mitment (AC) problem, and gives a precise abstract specification of the resulting problem,
which we call the Dictatorial Atomic Commitment (DAC) problem. One obvious impact is
that a One-Phase Commit (1PC) protocol is sufficient to orchestrate transaction termination:

266 ABDALLAH, GUERRAOUI AND PUCHERAL

this saves two communication steps and associated forced-writes in comparison with the
traditional 2PC protocol. A less obvious impact is a set of restrictions on concurrency
control and recovery protocols employed by the participants in the transaction. We have
captured those restrictions through three properties: on-line serializability, cascadelessness
and on-line commit-resiliency. Those properties are strictly stronger than serializability,
recoverability and commit-resiliency, respectively. Whereas on-line serializability and cas-
cadelessness are realistic in most distributed database systems, on-line commit-resiliency
can turn out to be very expensive.

To circumvent the need for on-line commit-resiliency, we discussed “non-classical”
atomic commitment schemes that consist in having the coordinator ensure the commit-
resiliency property before committing the transaction. We pointed out the limitations of
existing protocols that are based on this scheme and proposed a new 1PC variation, named
Coordinator Logical Log (CLL), which alleviates their drawbacks, making the 1PC idea
indeed realistic and useful for most of today’s distributed systems and applications. We also
studied the implementation of our protocol in the context of current transactional standards,
namely OMG’s OTS.

Although the window of vulnerability to blocking in 1PC is larger than in 2PC (unless
it has a pending acknowledgement for a transaction operation, a participant in 1PC enters
its uncertainty period during which it cannot unilaterally decide on the transaction), non-
blocking 1PC variations that give every correct participant the ability to eventually reach
a decision despite the crash of the coordinator do exist. Indeed, in [2] we proposed a 1PC
protocol, which, in addition to the properties of the DAC problem, ensures that every correct
participant eventually reaches a decision.

Given the appealing features of CLL, we are currently investigating its adaptation to
mobile and disconnected computing. A preliminary study showed that our protocol provides
a suitable way of dealing with the problem of disconnections [7], and allows saving valuable
and critical resources on data servers hosted by lightweight intelligent devices [6].

Finally, it would be very interesting to investigate intermediate cases between veto rights
for all and no veto right at all. An interesting trade-off to better explore is then the rela-
tionship between the number of vero rights and the dependency of the recovery protocol
(e.g., [4]).

Notes

1. Typical examples of SCS are command and control systems in the field of transport (air, railway and
road) including traffic management and fleet management systems, technical management systems for
large equipment infrastructures such as telecommunication networks or electricity and water distribution
networks.

2. This integration has been realized in the context of the OpenDREAMS Esprit project. The main goal of the
project is the design and implementation of a CORBA-compliant platform to support Supervision and Control
Systems’ applications.

3. Note that this does not exclude link failures, assuming that every link failure is eventually repaired.

. This is generally the site where the transaction originated.

5. This definition of latency is based on the fact that the period of interest of an ACP is the time interval during
which participants cannot relinquish valuable system resources they hold for exclusive use on behalf of the
transaction.

~

DICTATORIAL TRANSACTION PROCESSING 267

. This corresponds to the most frequent case since most transactions are expected to commit in the absence of
failures.

. In the notations, R;[x] and W;[x] denote respectively a Read (resp. Write) operation on object x performed
by transaction 7;, while C; and A; denote the commit (resp. abort) of 7;.

. Note that this operation never generates a dependency cycle (i.e., deadlock) since it is the last operation
executed in any transaction that has to be committed.

. We recall that the operation write record <commit;> is performed on behalf of Tjx.

10. The membership log record contains the list of participants in the transaction.

. The commit protocol adopted by OMG for OTS is the standardized Presumed Abort (PrA) variation of basic
2PC.

12. No changes should be made to the kernel of existing commercial systems so that they can participate in the
CLL protocol, which is not the case for I'YV and CL protocols.

13. Note that although we exploit this function in order to implement the 1PC behavior, its semantics are totally
different from the 1PC concept in the sense that it is basically supported by the Resource object in order to
optimize the commit protocol in case of mono-site transactions.

14. Orbix filters have been normalized in CORBA 2.2 under the Interceptors concept.

References

1. M. Abdallah, C. Bobineau, R. Guerraoui, and P. Pucheral, “Specification of the transaction service,” Esprit
Project OpenDREAMS-II n°25262, Deliverable n°R13, 1998.

2. M. Abdallah and P. Pucheral, “A low-cost non-blocking atomic commitment protocol for asynchronous
systems,” in Proc. Int. Conf. on Parallel and Distributed Computing and Systems, 1999.

3. Y. Al-Houmaily and P.K. Chrysanthis, “Two-phase commit in gigabit-networked distributed databases,” in
Proc. Int. Conf. on Parallel and Distributed Computing Systems, 1995.

4. Y. Al-Houmaily and P.K. Chrysanthis, “The implicit-yes vote commit protocol with delegation of commit-
ment,” in Proc. Int. Conf. on Parallel and Distributed Computing Systems, 1996.

5. P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database Systems,
Addison Wesley: Reading, MA, 1987.

6. C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez, “PicoDBMS: Scaling down database techniques
for the smartcard,” in Proc. Int. Conf. on Very Large Data Bases, 2000.

7. C. Bobineau, P. Pucheral, and M. Abdallah, “A unilateral commit protocol for mobile and disconnected
computing,” in Proc. Int. Conf. on Parallel and Distributed Computing Systems, 2000.

8. Y. Breitbart, H. Garcia-Molina, and A. Silbershatz, “Overview of multidatabase transaction management,”
VLDB Journal, vol. 1, no. 2, 1992.

9. C. Dwork and D. Skeen, “The inherent cost of non-blocking commitment,” in Proc. ACM Symposium on
Principles of Distributed Computing, 1983.

10. J. Gray, “Notes on database operating systems,” in Operating Systems: An Advanced Course, LNCS, vol. 60,
Springer Verlag: Berlin, 1978.

11. J. Gray, “A comparison of the byzantine agreement problem and the transaction commit problem,” in Fault-
Tolerant Distributed Computing, LNCS, vol. 448, Springer Verlag: Berlin, 1987.

12. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann: San Mateo,
CA, 1993.

13. V. Hadzilacos, “A theory of reliability in database systems,” Journal of the ACM, vol. 35, no. 1, 1988.

14. International Standardization Organization, Information Processing Systems-Database Language SQL,
ISO/IEC 9075, 1992.

15. IONA, Orbix 2.3 Programmer’s Guide, IONA Technologies Plc, 1997.

16. J. Liang, M. Saheb, and F. Giudice, “Maao OTS version2,” ACTS Project ACTranS, Deliverable n°D2aa,
1998. Available at http://www.actrans.org/Publications.html.

17. C. Mohan, B. Lindsay, and R. Obermarck, “Transaction management in the R* distributed database manage-
ment system,” ACM Transactions on Database Systems, vol. 11, no. 4, 1986.

18. Object Management Group, Object Transaction Service, Document 97.12.17, OMG editor, 1997.

268 ABDALLAH, GUERRAOUI AND PUCHERAL

19.

20.

21.

22.

23.

24.

Object Management Group, The common object request broker: Architecture and specification, document
99.10.07, OMG editor, 1999.

A. Sheth and]J. Larson, “Federated database systems for managing distributed, heterogeneous, and autonomous
databases,” ACM computing surveys, vol. 22, no. 3, 1990.

J. Stamos and F. Cristian, “A low-cost atomic commit protocol,” in Proc. IEEE Symposium on Reliable
Distributed Systems, 1990.

J. Stamos and F. Cristian, “Coordinator log transaction execution protocol,” Journal of Distributed and Parallel
Databases, vol. 1, no. 4, 1993.

M. Stonebraker, “Concurrency control and consistency of multiple copies of data in distributed INGRES,”
IEEE Transactions on Software Engineering, vol. 5, no. 3, 1979.

X/Open CAE Specification, Distributed Transaction Processing: The XA Specification, XO/CAE/91/300,
1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

