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Chapter 1

Introduction

1.1 Research Context

Over the past two decades, distributed systems have become commonplace in several
computing domains. With the recent advances in communication systems, the explosion
of the Internet, and the now ubiquitous World-Wide Web (WWW), not only is the
computing infrastructure changing, but also the user community is underlying a similar
revolution. Distributed systems seem to be everywhere in our daily life activities, making

them a concern of almost every individual.

As we depend more and more heavily on distributed systems and applications, the
reliability of these becomes increasingly critical. Reliability is particularly difficult to
tackle in a distributed environment since we have to deal with some of the intrinsic
characteristics of distribution, notably partial failures or unreliable communication.
Reliability generally connotes two fundamental properties: safety and liveness [Lam77,
AlS85, Gue96]!. Roughly speaking, a safety property stipulates that “bad things do not
occur” during execution. In information systems, for instance, the proscribed “bad thing”
would be the violation of data consistency. In this context, the safety of an application
expresses its ability to maintain the consistency of accessed data objects even in the
event of failures or concurrent executions. A liveness property stipulates that “eventually
good things do occur” during execution. The desirable “good thing” can express

requirements like state progress, program termination, or service availability.

1 Safety and liveness properties were first introduced by Lamport in [Lam77], and have been since
adopted as the usual metrics to evaluate the reliability degree of distributed systems.
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1.1.1 Transaction Processing

In all information systems, as for database management systems, telecommunication
systems, industrial control systems, finance, or even electronic commerce, preserving
data consistency (i.e., applications’ safety) in the presence of failures or concurrent data
accesses relies on the transaction concept. Transactions are powerful abstractions that
enable the structuring of distributed systems in a reliable manner, while relieving the

programmer from dealing with the complexity of concurrent programming or failures.

A transaction is an atomic set of operations updating shared data objects and
satisfying the so-called ACID properties [GrR93, BCF97], namely atomicity,
consistency, isolation, and durability. In a distributed transactional system, a transaction
may access shared data objects residing at multiple sites. A distributed transaction is
decomposed into one transaction branch per accessed site. Even though it is generally
assumed that each site where a distributed transaction executed ensures the local ACID
properties of its transaction branch, the atomicity and isolation of a distributed
transaction can be jeopardized in the absence of a global control. Therefore, some
additional measures must be taken so that global atomicity and global isolation of

distributed transactions are guaranteed.

1.1.2 Atomic Commitment

This thesis deals with the global atomicity problem, which requires that either all the
updates performed by the transaction on the different accessed sites are made permanent, or
all of them are obliterated. Since each local site participating in the transaction execution
ensures the local ACID properties of its transaction branch, the task of ensuring the global
atomicity of a distributed transaction reduces to ensuring that the transaction either commits
at all the sites, or it aborts at all the sites. To solve this distributed agreement problem,
known as the Atomic Commitment (AC) problem [BHG87], every participant expresses
through a vote its ability to make its updates permanent, and all participants need to agree
on a unique outcome (commit or abort) for the transaction. A protocol that achieves this

kind of agreement is called an Atomic Commitment Protocol (ACP).
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1.2 Research Motivations

This work originated from the firm conviction that although the atomic commitment
problem has been intensively studied in the last two decades, it remains in perpetual
mutation to adapt to today’s new environments and applications. As this thesis testifies,
existing solutions to the problem suffer from their lack of flexibility with respect to the
distributed computing technology revolution in the sense that they can no longer meet the
requirements of today’s distributed systems and applications. Indeed, the simplest and
best-known ACP on which rely existing systems to coordinate transaction commitment is
the Two-Phase Commit (2PC) protocol [Gra78, BHG87]. Although widely used and de
facto standard [OMGO00a, X/Op91, 1S092a], 2PC suffers from three major drawbacks

when employed in the context of today’s distributed systems and applications:

* It is quite inefficient in terms of both time delay and message complexity. This is
mainly due to the number of communication steps and forced log writes needed in order
to commit a transaction even in the absence of failures. This inefficiency not only makes
2PC inadequate to today’s highly reliable distributed platforms, but also is particularly
unacceptable in advanced and critical applications, such as Supervision and Control

Systems' applications (SCS)? [ABG98], with strong performance requirements.

* It may lead to blocking situations in which operational sites are prevented from
terminating the transaction due to failures in other components of the system
[Ske81]. During these blocking periods, operational sites are also prevented from
releasing valuable system resources they may have acquired for exclusive use on
behalf of the transaction (otherwise transaction safety would be compromised),
thereby compromising transaction /iveness, and hence system availability. Although
this situation might be acceptable for some standard applications, in mission critical
applications however (e.g., SCS applications), for which a short response time is a

crucial factor, some liveness guarantees are indispensable. Similar requirements

2 Typical examples of SCS are command and control systems in the field of transport (air, railway and
road) including traffic management and fleet management systems, technical management systems for large
equipment infrastructures such as telecommunication networks or electricity and water distribution networks.
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arise in applications involving an important number of sites (e.g., Internet
applications) where it would be completely unconceivable to block the entire system
due to the crash of one single site. Protocols that provide liveness guarantees despite
concurrency and failures are called non-blocking protocols (also known as fault-

tolerant protocols).

» It forces participants in a transaction to externalize a local prepared state. The
consequence of this is threefold. First, it violates site autonomy?, precluding the
integration of legacy systems [ShL90] in distributed transactions. Second, it
consumes valuable system resources on data servers hosted by lightweight
intelligent devices with very limited resources, such as palmtops, cellular phones, or
even smart cards [BPA0O, BBP0OO]. Third, it leads to the abort of a transaction after it
has been successfully processed if any of its participants is unreachable during the first
phase of the protocol. The impact of this behavior is exacerbated in mobile environments

in which (accidental or voluntary) disconnections are very frequent [BPAOO].

Several optimized variations and non-blocking alternatives to 2PC have been proposed in
the literature [Ske81, Ske82, MLO86, StC90, StC93, Lal.93, BaT93, KeD9%4, AIC95, GuS95,
GLS95, AIC96, GLS96]. However, none of these protocols is able to combine efficiency
during normal processing with fault-tolerance (i.e., non-blocking), or to consider the issue of
local site autonomy. Given these limitations, the need for a novel solution to the distributed
commit problem that is capable of reconciling such crucial yet antagonistic requirements

becomes an unquestionable fact. In this thesis, we have sought to address this issue.

1.3 Research Contributions

The major objective of this work is to bridge the gap between performance and fault-
tolerance of atomic commitment protocols, while considering the challenging and key

aspect of today’s large distributed environments, namely local site autonomy. Another

3 site autonomy means that (1) participants’ local information (e.g., log records or lock tables) cannot be
externalized, and (2) no changes can be made to the participating sites to accommodate the distributed
system.
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important objective is the compliance of the proposed solutions with current transactional

standards, initially designed with 2PC in mind.

1.3.1 Atomic Commitment: Performance

As its name indicates, 2PC (and its variations) is made out of two phases. In the first phase,
called the voting phase, the participants are given an ultimate right to abort the transaction
(i.e., the veto right), and in the second phase, called the decision phase, the participants
need to agree on the same decision (commit or abort). Whereas the decision phase is
indeed necessary to ensure transaction afomicity (otherwise the participants might disagree
on the transaction’s outcome), one might wonder whether the voting phase can (sometimes)
be eliminated. This would drastically reduce the cost of commitment (two communication
steps together with their associated forced log writes would be gained), and participants
would not need to externalize a local prepared state anymore. Roughly speaking, to commit
a transaction, the coordinator of the commit protocol would simply need to force-write the

decision and send one message to the participants.

The idea of One-Phase Commit (1PC) is not new: it was informally discussed by
Gray in [Gra78, Gra90] as well as by Stonebraker in [Sto79]. More recently, several 1PC
variations have been suggested in the literature [StC90, StC93, AIC95, AIC96]. Despite
their efficiency, 1PC protocols have been completely ignored in the implementation of
distributed transactional systems. We believe that the reason for this is due to some
(strong) assumptions made by 1PC protocol designers about the underlying transactional
systems without any statement on the necessity of those assumptions. This gives the
impression, from a practical point of view, that 1PC is just an exotic concept with
unrealistic underlying assumptions and, from the theoretical point of view, that 1PC does
not make any sense as it contradicts proven lower bounds on the cost of solving the atomic

commitment problem in distributed systems [DwS83].

This work started with the broad objective of identifying the assumptions under which
1PC can be used. To our knowledge, none of the previous works that were devoted to 1PC
either defines the abstract properties of the problem that is solved or gives a precise

description of the impact of eliminating the voting phase on transaction processing. In this
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context, the present thesis provides three major contributions: it introduces the
Dictatorial Atomic Commitment problem, defines On-line Serializability and On-line

Commit-Resiliency, and proposes the Coordinator Logical Log mechanism.

Dictatorial Atomic Commitment. We point out the fact that removing the veto right
from atomic commitment comes down to an agreement problem that is different from the
traditional atomic commitment problem solved by a 2PC [BHGS87]. In light of this
observation, we give a precise abstract specification of the resulting problem, which we
baptize the Dictatorial Atomic Commitment (DAC) problem, and propose a simple
algorithm that solves it. A crucial feature of this algorithm is that it can be seen as the
basic building block around which all existing 1PC variations are designed. The lack of
the veto right explains why 1PC is actually more efficient than any of the well-known

optimized variations of 2PC [MLOS86].

On-line Serializability & On-line Commit-Resiliency. Given the abstract specification
of the DAC problem, we investigate its impact on the concurrency control and recovery
protocols employed by the participants in a transaction. In particular, we define three
conditions that are necessary and sufficient to ensure the correctness of transactional
systems with no participant veto right:. on-line serializability, cascadelessness and on-
line commit-resiliency. These conditions are strictly stronger than the usual correctness
metrics for transactional systems, namely serializability, recoverability and resiliency,
respectively [Had88]. We also discuss the practical impact of those conditions on real
transactional systems, and show that unlike on-line serializability and cascadelessness,

on-line commit-resiliency is however rarely realistic in practice.

Coordinator Logical Log. Given the above limitation, we investigate techniques
employed by existing 1PC protocols to circumvent the need for on-line commit-resiliency
by considering “non-classical” atomic commitment schemes in which participants in a
transaction are allowed to delegate part of their transactional responsibilities to the
coordinator of the protocol. We point out the fact that although the existing techniques

overcome on-line commit-resiliency, they come however at a very high cost as they
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violate site autonomy, which compromises their use in existing commercial systems. We
then study an adaptation of those techniques and propose a new 1PC variation, named
Coordinator Logical Log (CLL), which preserves site autonomy, making 1PC indeed

realistic and useful in practice.

1.3.2 Atomic Commitment: Fault-Tolerance

The second major part of this research deals with the non-blocking dictatorial atomic
commitment problem. This problem is of major importance given that, compared to 2PC,
1PC increases the probability to blocking of participants in case of failures. Indeed, by
removing veto rights from atomic commitment, the window of vulnerability to blocking
of the protocol lasts all along the transaction. In this context, our work provides two
major contributions: it proposes the Non-Blocking Coordinator Logical Log protocol, and

the Asynchronous Non-Blocking Coordinator Logical Log protocol.

Non-Blocking Coordinator Logical Log. = We propose a solution to the non-blocking
dictatorial atomic commitment problem in the context of synchronous systems. The
resulting protocol can be seen as a straightforward extension of CLL, called Non-
Blocking CLL (NB-CLL), that achieves non-blocking based on a Uniform Timed Reliable

Broadcast (UTRB) primitive and assuming reliable failure detection.

Asynchronous Non-Blocking Coordinator Logical Log.  Obviously, the assumption
of a synchronous system and a reliable failure detector is not always realistic in practice
since variable or unexpected workloads are sources of asynchrony. Therefore, we
propose a new non-blocking extension to CLL, called Asynchronous NB-CLL (ANB-
CLL), that achieves non-blocking in an asynchronous system augmented with an
unreliable failure detector, and in which processes may crash and recover. To our
knowledge, it is the first time that the non-blocking atomic commitment problem is
studied in the context of asynchronous systems based on a crash-recovery model of
computation. An interesting feature of our non-blocking solutions is that they can be
directly applied to any existing 1PC protocol. Performance analysis shows that NB-CLL

and ANB-CLL are more efficient in terms of time delay, message complexity and
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number of forced log writes than all other non-blocking commit protocols proposed in
the literature. Furthermore, they appear to be the sole protocols that can cope with

existing transactional systems without violating their autonomy.

1.3.3 Pragmatic Implementation

We are currently finalizing the implementation of the ANB-CLL protocol in the context of the
OpenDREAMS-II project (Esprit-VI R&D project n° 25262) in which I have been
participating since 1997. The project is financed by the European Union and aims at designing
and building a CORBA compliant platform dedicated to industrial Supervision and Control
Systems (SCS). The OpenDREAMS-II platform is augmented with several components and
services specifically tailored to answer SCS requirements, including a Transaction Service

designed and implemented by the PRiSM laboratory of the University of Versailles.

The project platform is experimented and validated through two industrial
applications, namely a Condition Monitoring and Diagnostics of Thermal Power Plants
application, as well as an Advanced Surface Movement Guidance & Control Systems (A-
SMGCS) application for managing all moving vehicles in an airport environment. Both
applications showed the effectiveness of our protocol in meeting SCS requirements in
terms of performance and fault-tolerance. The implementation of the ANB-CLL
prototype is at a far advanced stage that enables us to prove the validity of our theoretical
study, and to show the compatibility of our protocol with existing transactional standards

(OTS/CORBA, XA/DTP) and commercial database systems.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapters 2 and 3, which constitute
the first major part of this work, tackle performance issues related to distributed commit
protocols. In Chapter 2, we define a general model of a distributed transactional system
that we follow throughout the thesis. We then give some background about the Atomic
Commitment problem, and recall the Two-Phase Commit approach to the problem

through a description of the most well-known 2PC variations commonly found in the
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literature. We finally point out 2PC limitations in terms of performance and applicability

to existing transactional systems.

In Chapter 3, we present proposals to overcome those limitations. We first introduce
the Dictatorial Atomic Commitment (DAC) problem, resulting from removing veto rights
from the traditional Atomic Commitment problem, and propose a highly efficient
algorithm that solves it based on a One-Phase Commit (1PC) approach. We next define
three necessary and sufficient conditions to ensure the correctness of transactional systems
with no participant veto right: on-line serializability, cascadlessness, and on-line commit-
resiliency, and discuss the practical impact of those conditions on concurrency control and
recovery protocols. Based on this discussion, we draw an interesting parallel between
existing 1PC variations, and point out their practical limitations. We finally propose the
Coordinator Logical Log (CLL) protocol, a new 1PC variation that capitalizes on the

existing ones so as to keep the best of the 1PC approach while being useful and practical.

Chapters 4 and 5, which constitute the second major part of this thesis, extend the work
presented in the previous chapters on distributed commit protocols to tackle fault-tolerant
issues. In Chapter 4, we recall the issue of blocking in 2PC, and define the Non-Blocking
Atomic Commitment problem. We then present a survey of existing non-blocking commit
protocols commonly found in the literature. In order to do so, we refine the general system
model described in Chapter 2 in order to reflect different assumptions about failures and
failure detections, and focus on the two extremes of a spectrum of possible models, namely
synchronous and asynchronous systems. Each protocol is then described in the context of the
underlying system model it assumes. We finally point out the limitations of the discussed

protocols in terms of both performance and compliance with existing transactional systems.

In Chapter 5, we provide solutions to those limitations by extending our results on
dictatorial transaction processing to cover fault-tolerance issues. We first discuss the blocking
problem in 1PC and refine the Dictatorial Atomic Commitment problem specification to
include the non-blocking property. We then propose the NB-CLL and ANB-CLL protocols
that solve the problem in the context of synchronous and asynchronous systems, respectively.
These protocols blend the efficiency of the One-Phase Commit approach with non-blocking,

without compromising their practical applicability to existing commercial systems.
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Chapter 6 constitutes the third and final part of this thesis. It briefly surveys existing
distributed transaction processing standards, and discusses a practical prototype
implementation of ANB-CLL in the context of the OMG’s Object Transaction Service
(OTS). Finally, Chapter 7 summarizes the major contributions of this thesis, and

discusses some future research directions and open issues around this work.
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Chapter 2

Atomic Commitment:
Background

A significant body of literature is available on distributed commit protocols. In order to
put our work into perspective, we give in this chapter an overview of some of these
protocols. The chapter is not intended to provide a complete survey on the matter but
rather to highlight the essential by concentrating on well-established protocols that have
received the most attention in the transactional world. In order to do so, we first define a
general model of a distributed transactional system. We then recall some background
about the Atomic Commitment (AC) problem, and discuss the basic Two-Phase Commit
(2PC) protocol together with its best-known optimizations. We finally point out the
limitations of the Two-Phase Commit approach in answering the needs of today’s

distributed systems and applications.

2.1 Distributed Transactional System Model

Distributed computing problems have been studied in a variety of computational models.
In this section, we define a general model of a distributed transactional system that we
follow throughout this thesis. In Chapters 4 and 5, we refine our model and make it more
precise in order to reflect the different assumptions we make on the environment, and

also on the failures and the failure detection mechanisms we consider.
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2.1.1 Sites and Processes

We consider a distributed system composed of a finite set of sites 1 = {S, S, ..., S}
completely connected through a set of communication channels*. Each site has a local
memory and executes one or more processes. For the sake of simplicity, we assume only
one process per site. We consider the so-called message-passing communication model in the
sense that processes (sites) communicate with each other by exchanging messages. To
simplify the subsequent discussion, when a process disseminates a message to every other

process, we will speak as if the process sends the message to itself (and reacts accordingly).

At any given time, a process may be operational or down. While operational, a
process is assumed to follow exactly the actions specified by the algorithm it is running.
Operational processes may go down due to crash failures [LaF82], i.e., we do not consider
Byzantine failures in which processes can behave arbitrarily [LSP82, Fis83]. A process is

said to be correct if it has never crashed; otherwise, the process is said to be faulty °.

We consider a crash-recovery failure model in the sense that a process can be down
(crash) and later become operational again. When it does so, we say that the process
recovers, in which case it executes a specific recovery protocol. A process that is down
stops all its activities, including sending messages to other processes, until it recovers.
Each process has access to a stable storage (i.e., that sustains crash failures) in which it
maintains information necessary for the recovery protocol. During recovery, a process

restores its local state based on the information it wrote on stable storage.

2.1.2 Transactions

A transaction is an atomic set of operations updating shared data objects and satisfying
the so-called ACID properties [GrR93, BGS92, BCF97], namely atomicity, consistency,
isolation, and durability. The atomicity property, also called all-or-nothing property,
means that either the transaction successfully executes to completion and the effects of

all of its operations are recorded in the accessed objects (the transaction is said to be

4 Note that although the physical network is not always completely connected, virtual links between
every pair of processes can be provided by network layer protocols.

5 Note that the period of interest of these definitions is the duration of the commit protocol, i.e., a process
is correct if it never crashes during the execution of the commit protocol.
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committed), or it fails and it has no effect at all (the transaction is aborted). In other word,
all the transaction’s operations are treated as a single, indivisible, atomic unit. Consistency
means that the transaction does not violate the integrity constraints of accessed shared
objects, while isolation means that the intermediate effects of a transaction are not visible
to concurrent transactions. Durability means that the updates of a committed transaction are

permanent (i.e., stored on a stable storage that sustains failures).

The atomicity and durability properties have been formalized through the resiliency
theory [BHG87, Had88], and are usually ensured using a set of protocols known as
recovery protocols. Isolation has been formalized through the serializability and
recoverability theories [BHG87, Had88], and is ensured using a set of protocols referred
to as concurrency control protocols. Consistency is generally assumed to be the
responsibility of the transaction programmer (i.e., users are required to write transactions
such that each takes the database from one consistent state to another) and can be

enforced by some semantic integrity mechanisms built into the system.

A distributed transaction (henceforth called a “transaction’) accesses shared objects
residing at multiple sites. For each transaction, the processes that perform operations on
its behalf are called transaction participants. The portion of a transaction executed at one
participant is called a transaction branch. In the following, we assume the “classical”
distributed transactional scheme in the sense that each participant ensures the ACID
properties of every transaction branch it executes. We also assume that for every
transaction, there is one specific participant, called the transaction coordinator, which

manages the transaction processing and termination®.

The coordinator forwards every transaction operation to the participant hosting the object
involved by the operation. If a participant succeeds in processing an operation, it replies by
sending back an acknowledgment message; otherwise, the participant aborts the transaction
and sends back a negative acknowledgment. To conclude the transaction, the coordinator
triggers an Atomic Commitment Protocol (ACP) whose aim is to ensure that a logical atomic
commit or abort action is consistently carried out at all participants despite failures. In the

following, we recall the abstract formulation of the underlying agreement problem.

6 This is generally the site where the transaction originated.
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2.2 The Atomic Commitment Problem

The Atomic Commitment (AC) problem is a distributed agreement problem that is
concerned with bringing all participants in a transaction to agree on a unique
outcome (commit or abort) for that transaction. This problem was formally defined in
[BHG87]. Each participant has exactly one of two votes: yes or no, and can reach exactly

one of two decisions: commit or abort, such that the following properties are satisfied:

— AC-Uniform-Agreement: No two participants reach different decisions.
- AC-Uniform-Validity: commit is decided only if all participants vote yes.
— AC-Uniform-Integrity: No participant can reverse its decision after it has reached one.

- AC-Non-Triviality: If all participants vote yes and no failures occur, then all
participants must decide commit.

The vote of a participant reflects its ability to commit its transaction branch. A
participant votes yes only if the local execution of its transaction branch was successful
and it is ready and willing to make its updates permanent even in the presence of failures.
This actually means that the participant can locally guarantee the ACID properties of its
transaction branch. A no vote (or aborf) indicates that due to some local problems (integrity
constraint violation, concurrency control problem, memory fault or storage problem), the
participant is not able to guarantee some of the ACID properties of its transaction branch. An

ACEP is an algorithm that satisfies all of the four properties of the AC problem.

The AC-Uniform-Agreement, AC-Uniform-Validity and AC-Uniform-Integrity
conditions are safety conditions in the sense that they ensure the atomicity property of
the transaction. The AC-Non-Triviality condition excludes from consideration trivial

solutions to the problem in which participants always decide abort.

2.3 The Basic Two-Phase Commit Protocol

All 2PC variations can be regarded as optimizations to the basic 2PC protocol. In this
section, we recall the principle of the Two-Phase Commit approach in general, and

discuss the details of the basic 2PC protocol in particular.
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2.3.1 Failure-Free Execution

The basic Two-Phase Commit (2PC) protocol [Gra78, BHGS87] (together with its
variations) solves the AC problem by performing a voting phase and a decision phase. In
the voting phase, the coordinator sends a request-for-vote message (also called a prepare
message) to all the participants in the transaction. Each participant replies by sending its
vote. If a participant votes yes, it enters a prepared state during which it can neither
commit nor abort the transaction unless it receives the final decision from the
coordinator. The period of time from the moment a participant votes yes and until it
receives the final decision is called the uncertainty period for that participant. If, on the

other hand, a participant votes no, it can unilaterally abort its transaction branch.

During the decision phase, the coordinator decides on the transaction depending on
the votes it receives from the participants. If all participants have voted yes, the
coordinator decides commit, and sends its decision to all the participants in the
transaction. Otherwise, the coordinator decides abort, and sends its decision (only) to the
participants that are in the prepared state, i.e., those participants that voted yes. When a
participant receives the final decision, it complies with this decision and sends back an
acknowledgment message. This acknowledgment is a promise from the participant that it will
never ask the coordinator about the outcome of the transaction. Finally, after receiving
acknowledgments from all the prepared participants, the coordinator can forget about the
transaction. This describes 2PC assuming no failures occur during the protocol execution. It is

easy to see that 2PC satisfies all of the four properties of the AC problem.

2.3.2 Dealing with Failures

In order to exclude uninteresting protocols that allow participants to remain undecided
forever once some failures have occurred during the protocol execution, the following

AC-Termination property has to be added to the specification of the AC problem [BHGS7].

— AC-Termination: If all failures are repaired, then unless a new failure

occurs, every participant eventually reaches a decision.
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Figure 2.1: The basic 2PC protocol

To satisfy AC-Termination, specific actions that deal with site and communication
failures must be supplied. First, failures may prevent one site from communicating with
another, leading a process to wait indefinitely for a message that may never arrive. To
avoid such a situation, special timeout actions must be associated with each point in the
protocol where a process is waiting for a message. Furthermore, since we consider a crash-
recovery failure model, participants can be down and later become operational again. In
this case, a recovering process must attempt to reach a decision consistent with the
decision operational processes may have reached. In the following, we consider these

two issues in turn.

Timeout Actions

There are three cases to consider: (1) a participant is waiting for the prepare message
from the coordinator, (2) the coordinator is waiting for participants’ votes, and (3) a

participant is waiting for the coordinator’s decision.

Case (1): If a participant P; times out waiting for the prepare message from the

coordinator, P; can unilaterally decide abort since it has not voted yet.

Case (2): If the coordinator times out waiting for a participant vote, it can safely
decide abort. This is because at this point, the coordinator has not reached any decision

yet, and no participant can have decided commit.
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Case (3): If a participant P; times out waiting for the decision message (i.e., while in
its uncertainty period), it cannot decide on its own. In this case, P; starts a termination
protocol during which it tries to find out what to decide by contacting another participant
that either (i) knows the decision, or (ii) can unilaterally decide on the transaction. If,
however, all participants with which P; can communicate neither satisfy (i) nor (ii), P;
remains blocked until it can communicate with at least one such participant. When used
with 2PC, this termination protocol satisfies the AC-Termination property. Indeed, if all
failures are repaired, and no new failures occur, P; will eventually be able to

communicate with a participant for which either (i) or (ii) holds, namely the coordinator.

Crash Recovery

Recovery is made possible by recording the progress of the protocol during normal
processing (i.e., in the absence of failures) in the logs of the coordinator and the
participants. Since failures can occur at any time, some of the information stored in the
logs must be force-written, i.e., written immediately to a stable (nonvolatile) storage that
sustains failures. For instance, the coordinator force-writes its decision before sending it
to the different participants. Each participant force-writes (1) its vote before sending it to
the coordinator, and (2) the final decision before acknowledging the coordinator.
Usually, a participant that votes yes force-writes its vote together with all the updates
performed on behalf of the transaction. This ensures that the participant’s updates are
permanent even if it crashes (i.e., to ensure transaction resiliency). Force-writing a
decision record in the log is the act by which a process decides on the transaction. When
the coordinator receives acknowledgments from all participants, it writes a non-forced
end record, indicating that the information pertaining to the transaction can be garbage
collected from its log. Finally, it is important to note that forcing a log record implies that
the forced log record and all preceding (non-forced) ones are moved immediately from
main memory buffers to stable storage. Figure 2.1 describes the protocol execution

between a coordinator C, and two participants P; and P».

Consider a participant P; recovering from a crash. A failed participant returns to the
operational state by executing a recovery protocol. During this protocol, P; first restores

a consistent local state using the information it stored in its stable log. Then, it tries to
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decide on the transactions that were active at the time the crash occurred (i.e.,
transactions for which no decision record exists in the log). For each of these
transactions, if P; does not find a yes record in its log, it can unilaterally decide abort. If,
on the other hand, a yes record is found, this means that P; failed while in its uncertainty
period, and therefore, P; is exactly in the same state as if it had timed out waiting for the
decision message. Thus, the termination protocol described above can be used to decide

on the transaction.

2.4 2PC Optimizations

The efficiency of an atomic commitment protocol is usually measured following three
performance metrics [BHG87, MLOS86, AbP97]: (1) message complexity, which
corresponds to the number of coordination messages that need to be exchanged between
the participants in the transaction, (2) time complexity, which corresponds to the number
of communication steps or rounds required until a decision is reached at every
participant, and (3) log complexity, which corresponds to the number of forced log writes
performed by the participants in order to support recovery. The latter is of particular
importance since it determines the number of blocking I/O required for a good behavior

of the protocol.

As already mentioned in Chapter 1, 2PC introduces a considerable latency in the
system even in the absence of failures. Assuming that » is the total number of
participants in the transaction, 2PC requires 3 communication steps (request-for-vote,
vote and decision) and 2n+1 forced log writes until a decision is reached at every
participant’. The higher the latency of an ACP, the longer the length of time a transaction
may be holding shared objects, preventing other transactions from accessing these
objects. Furthermore, 2PC has a high message complexity due to 4n messages (including
the acknowledgement of the decision) exchanged during the protocol execution. These
significant overheads have motivated many researchers to propose several optimizations

to the basic 2PC.

7 Note that in all our evaluations, and in accordance with Section 2.1.1, we assume that when the
coordinator sends a message to all participants in the transaction, it also sends the message to itself, and acts,
just like any other participant, accordingly.
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Figure 2.2: The Presumed Abort protocol (Abort Case)

2.4.1 Presumed Abort (PrA)

The basic 2PC protocol requires information to be explicitly exchanged and logged whether the
transaction is to be committed or aborted. This is why it is often referred to as the Presumed
Nothing 2PC (PrN) protocol. However, if after having failed and recovered, the coordinator of
PrN gets an inquiry about the outcome of a transaction for which no information is found in its

stable log, the coordinator (implicitly) presumes that the transaction is aborted.

The Presumed Abort optimization (PrA) [MLO86] exploits further this property in order
to reduce the message and logging overhead associated with aborting transactions by making
the implicit abort presumptions of PrN explicit. As illustrated in Figure 2.2, the coordinator of
PrA does not log information nor wait for acknowledgments regarding aborted transactions.
Consequently, participants do not acknowledge abort decisions nor log information about
such decisions. To abort a transaction, the coordinator simply informs the participants of the
abort decision and forgets about the transaction. In the absence of information about a
transaction, the coordinator presumes that the transaction has been aborted. Regarding

committing transactions, PrA behaves in exactly the same way as PrN.

It should be noted that PrA is now part of the ISO OSI-TP [ISO92a], X/Open DTP
[X/Op91, X/Op93], and OMG OTS [OMGO0Oa] distributed transaction processing
standards, and has been implemented in a number of commercial products, such as IBM
Almaden Research Center’s R* [MLO86], Transarc’s Encina [She93], and Unix System
Laboratories” TUXEDO [Pri94].
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Figure 2.3: The Presumed Commit protocol

2.4.2 Presumed Commit (PrC)

The Presumed Commit protocol (PrC) [MLOS86] is the counterpart of PrA in the sense
that it reduces the cost associated with committing transactions. It is based on the
observation that, in general, transactions are most likely to commit than to abort. In PrC,

the coordinator interprets missing information about transactions as commit decisions.

Unlike PrA, however, the coordinator of PrC has to force-write a membership log
record, and that, before starting the voting phase of the protocol. This is to ensure that an
undecided transaction is not (erroneously) presumed as committed when the coordinator
recovers from a crash. Furthermore, the membership record is exploited in order to
record the identities of all the participants in the transaction, which, in the case of PrN

and PrA, are recorded in the decision record.

As illustrated in Figure 2.3 (a), to commit a transaction, the coordinator of PrC
force-writes a commit log record before sending the commit decision to the participants.
This is actually needed so as to “logically” erase the membership record, since lack of
information means a commit. When a participant receives the commit decision, it simply
writes a non-forced commit record without acknowledging the decision. Figure 2.3 (b)

illustrates the protocol behavior for aborting transactions. The coordinator writes a non-
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forced abort record, and sends the abort decision only to those participants that voted
yes. When a participant receives the abort decision from the coordinator, it force-writes an

abort log record and then acknowledges the decision.

Although most transactions are expected to commit in the absence of failures, the
argument usually goes in favor of PrA. Clearly, this is due to the extra logging activities
associated with the membership record in PrC. Mechanisms for reducing the logging overhead
of the original PrC and making its cost comparable to that of PrA have been proposed

[ACL97, LaL93].

2.4.3 Decentralized 2PC (D2PC)

The Decentralized 2PC (D2PC) protocol [BHGS87, Ske81] has been proposed in an
attempt to reduce the time complexity of the basic 2PC. Instead of communicating
through the coordinator, participants in D2PC communicate directly with one another.
Similarly to PrN, the coordinator of D2PC initiates the protocol by sending a prepare
message to all participants in the transaction. Unlike PrN, however, a participant that
receives the prepare message responds by sending its vote to all participants in the
transaction (rather than only to the coordinator). When a participant receives the votes
from all participants, it decides on the transaction. If all votes are yes and the
participant’s own vote is yes, it decides commit; otherwise, it decides abort. Compared to
the basic 2PC, D2PC ecliminates one message round at the expense, however, of a
quadratic message complexity assuming a point-to-point communication network (n+2n*

messages, where n denotes the total number of participants in the transaction).

2.4.4 Read-Only

The Read-Only optimization [MLO86] has been proposed based on the observation that a
transaction branch that performs only read operations cannot violate transaction
atomicity. Since no local update has been performed on behalf of the transaction, a read-
only participant does not care about the transaction outcome. When such a participant
receives the prepare message, it sends a read-only vote (instead of a yes vote) and then

immediately releases all the read locks it has acquired on behalf of its transaction branch.
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Figure 2.4 : The cost of transaction commit under the different 2PC variations.

The read-only vote has a dual role: it informs the coordinator that the transaction
branch has read consistent data, and also tells it that the participant does not need to be
involved in the second phase of the protocol. In short, a read-only participant does not

perform any log write and sends only one message.

2.5 Performance Evaluation

The latency of an ACP is determined by the number of forced log writes and
communication steps performed during the execution of the protocol, and until a decision is
reached at every participant. Figure 2.4 shows the performances of 2PC together with its
optimized variations in terms of latency and message complexity needed in order to commit
a transaction (this actually corresponds to the most frequent case since most transactions
are expected to commit in the absence of failures). Regarding message complexity, we
distinguish two cases: (a) using a point-to-point network, and (b) using a broadcast

network.

When compared to PrN (i.e., basic 2PC), PrA does not reduce the cost of
committing transactions. Concerning PrC, we observe that although it reduces the
number of messages and forced log writes, it does not reduce the number of
communication steps required to commit a transaction. Furthermore, the force-writes that
are saved at each participant in PrC are executed in parallel by the participants in PrN.
Thus, PrC does not considerably reduce the overall latency of PrN given that it incurs an
additional force-write associated with the membership log record at the coordinator site.
D2PC reduces the time complexity of its centralized counterparts from three

communication steps to two, which decreases the transaction response time.
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Furthermore, D2PC requires one forced log-write less than the other 2PC variations due
to the fact that, from the moment the coordinator of D2PC starts the protocol, it assumes
exactly the same role as the other participants. As we have already pointed out, this gain
in D2PC comes, however, at the expense of a quadratic number of messages exchanged

during the protocol execution if a point-to-point communication network is used.

2.6 Discussion

In the light of the above study, it follows that, from a performance perspective, 2PC
optimizations do not provide substantial benefits over basic 2PC. Thus, although adapted
to the classical distributed environments and applications of their time, 2PC variations
are far from being satisfactory when employed in foday’s highly reliable distributed
platforms, and fail in meeting the strong performance requirements of advanced and

critical applications, such as SCS applications [ABG9S].

Beside this inefficiency, all 2PC variations require that the participating sites provide a
local prepared state, which, as already mentioned in Chapter 1, violates site autonomy,
precluding the integration of pre-existing legacy systems in distributed transactions
[ShL90]. Although one might argue that this issue is no longer of topical interest as 2PC
is now standardized, and hence a// transactional systems are expected to become 2PC
compliant, the actual situation shows that this is still not the case. Furthermore, and from
a cost perspective, it would certainly be unreasonable to require that modifications be made

to all existing transactional systems to support the standard protocol.

We believe that all these limitations constitute a strong argument towards a serious
reconsideration of the two-phase commit approach, and explain the renewed interest in

the atomic commitment problem.

0
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Chapter 3

Dictatorial Atomic Commitment

The traditional transaction processing paradigm relies on a Two-Phase Commit approach
to coordinate transaction termination. While Two-Phase Commit is indeed sufficient to
guarantee transaction atomicity, one might wonder whether it is a/ways necessary. This
suggests that there might be room for a One-Phase Commit approach. In this chapter, we
introduce the Dictatorial Atomic Commitment (DAC) problem, a novel paradigm for
distributed transaction commit, which overcomes the need for Two-Phase Commit in
most practical situations. The intuition behind Dictatorial Atomic Commitment is that the
votes of the participants in a transaction introduce a high cost, and in most existing

transactional systems, participants’ votes can turn out to be more than necessary.

We first give a precise abstract specification of the Dictatorial Atomic Commitment
problem, resulting from removing veto rights from the traditional Atomic Commitment
problem, and describe a basic One-Phase Commit (1PC) algorithm that solves it. We
then characterize transactional systems that are compatible with the DAC specification in
terms of three necessary and sufficient conditions on concurrency control and recovery
protocols. We also discuss the practical impacts of those conditions through an in-depth
analysis of existing 1PC protocols. From this analysis, we point out some severe drawbacks
related to the discussed protocols, which make them inapplicable to today’s distributed
systems. We finally propose a new 1PC variation that capitalizes on the existing ones so as to
broaden the applicability of dictatorial transaction processing to meet the requirements of
today’s distributed environments and applications, and point out some interesting

performance tradeoffs.
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3.1 The Dictatorial Atomic Commitment Problem

3.1.1 Informal Description

Variations of 2PC solve the classical Atomic Commitment problem (specified in
[BHG87]) by performing a voting phase and a decision phase. The possibility of a
participant to vote no reflects its ability to reject a transaction a posteriori, i.e., after the
transaction’s operations are processed. In particular, a participant might need to vote no
if it detects a risk of violating any of the local ACID properties of its transaction branch.
Obviously, if we remove the veto right from participants in atomic commitment, the
coordinator will not need to ask the participants for their votes and the voting phase of a

2PC becomes useless (cf. Figure 2.1).

Based on this idea, several authors have proposed the use of One-Phase Commit
(1PC) protocols [StC90, StC93, AICI95, AIC96]. The basic assumption underlying 1PC is
that a participant “does not need” to vote. This actually means that, before triggering the
commit protocol, the coordinator of a 1PC makes sure that the ACID properties of all the
local transaction branches are already ensured. In other words, the coordinator of a 1PC
acts as a “nice dictator” and makes sure that no participant can have any reasonable
reason to vote no. Obviously, this introduces some assumptions on the way participants

manage their transactions as will be detailed later in the chapter.

3.1.2 Problem Definition

In light of the above discussion, we point out the fact that, by eliminating participants’ votes,
the problem solved by 1PC is no longer the classical Atomic Commitment problem solved by
2PC. This would contradict well-known lower bounds on the cost of solving atomic
commitment in distributed transactional systems [DwS83]. In the following, we introduce the
Dictatorial Atomic Commitment (DAC) problem, a distributed agreement problem resulting

from removing veto rights from the traditional Atomic Commitment problem.

In Dictatorial Atomic Commitment, participants do not have the veto right. At commit

time, the coordinator proposes one of two values: commit or abort. If the coordinator does
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not crash, it forces the participants to accept its proposed value so that either they all
commit the transaction or they all abort it. We formalize these notions as a set of

properties that together define the Dictatorial Atomic Commitment problem [AGP0O0].

- DAC-Uniform-Agreement: No two participants reach different decisions.
— DAC-Uniform-Validity: The decision value is the coordinator’s proposed value.

- DAC-Uniform-Integrity: No participant can reverse its decision after it has
reached one.

The DAC-Uniform-Validity property clearly expresses the coordinator’s dictatorship.
The proposed value of the coordinator depends on whether or not the transaction has been
successfully processed. A transaction is considered as successfully processed if all of its
operations have been successfully executed and acknowledged by all participants. In this

case, the coordinator proposes commit; otherwise, it proposes abort.

3.2 The Basic One-Phase Commit Protocol

In this section, we give a basic 1PC algorithm that solves the DAC problem, prove its
correctness, and identify the different assumptions underlying it. An interesting feature of
our algorithm is that it can be seen as the basic building block around which all existing 1PC
variations are designed. Indeed, all 1PC protocols that were proposed in the literature share

the same basic structure and differ only in the way recovery is managed (cf. Section 3.4.3).

3.2.1 Protocol Description

The simplest way to solve the DAC problem defined above is through the terminate()
function described in Figure 3.1. During this function, the coordinator decides on the
transaction depending on its proposition value, and sends its decision to all participants
in the transaction. When a participant receives the decision from the coordinator, it
decides on the transaction. Note that force-writing a decision record in the log is the act
by which a participant decides on a transaction. The protocol corresponds exactly to a
2PC without the voting phase (see Figure 2.1). Clearly, one can apply various well-
known optimizations of 2PC (e.g., PrA, or PrC) to 1PC.
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function terminate ()

Only the coordinator executes:

1 decision: = proposition; /I proposition O {commit, abort}
2 decide (decision);,

3 send (decision) to all other participants;

4 return;

Every participant P; executes:

5 wait until [received (decision) from coordinator]
6 decide (decision);

7 return;

Figure 3.1: The basic 1PC protocol

3.2.2 Protocol Correctness

In this section, we prove the correctness of our basic 1PC algorithm presented in Figure
3.1. This amounts to proving that it satisfies all of the three properties of the DAC

problem.

Theorem 3.1. /PC achieves the DAC-Uniform-Agreement property.

PROOF. For contradiction, assume that a participant P; decides commit, while
another participant Py decides abort. In 1PC, a participant can only decide at line 6
following the receipt of the decision message from the coordinator (line 5). This
means that the coordinator has sent two different decisions to participants P; and Py.
This contradicts the fact that the coordinator sends the decision only once at line 3
of the protocol. Furthermore, it is clear that the decision sent by the coordinator at
line 3 is nothing but the value it has decided at line 2. Thus, all participants

(including the coordinator) reach the same decision.

Theorem 3.2. /PC achieves the DAC-Uniform-Validity property.
PROOF. From lines 1 and 2 of the protocol, it is obvious that the coordinator’s
decision value is its proposed value. By the DAC-Uniform-Agreement property, the

decision value of all participants is the coordinator’s proposed value.
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Theorem 3.3. /PC achieves the DAC-Uniform-Integrity property.

PROOF. From the structure of the protocol, it is obvious that the coordinator decides
at most once by executing line 2, while the other participants decide at most once by

executing line 6.

3.2.3 Assumptions on the Transactional Systems

By interpreting acknowledgement messages as yes votes, the coordinator of 1PC verifies
whether or not the ACID properties of the local transaction branches are already ensured
at commit time. This obviously introduces some assumptions on the way participants
manage their transactions. In the following, we give a precise identification of the
different assumptions underlying 1PC, and usually made (explicitly or implicitly) by 1PC
variations [AGP98]:

1. 1PC assumes that every transaction operation is acknowledged. Consequently, if
the coordinator receives the acknowledgement messages for all the transaction operations
before the protocol is launched, the afomicity of all the local transaction branches (i.e., local

atomicity) will be already ensured at commit time.

2. 1PC assumes that integrity constraints are checked after each update operation
and before acknowledging the operation. Thus, if all operations are acknowledged,
consistency of all the local transaction branches will be already ensured at commit time
(e.g., the possibility of discovering, at commit time, that there is not enough money for a

bank account withdrawal is excluded).

3. 1PC assumes that a transaction that executes successfully all of its operations can
no longer be aborted due to a serialization problem. Consequently, if all operations are
acknowledged, serializability (isolation) of all the local branches will be already ensured
at commit time (e.g., concurrency control protocols that check serializability at commit

time are excluded).

4. Finally, 1PC assumes that once all operations are acknowledged, and before the
protocol is launched, the effects of all the local transaction branches are already logged

on stable storage, and hence, the durability property will be ensured at commit time.
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We believe that assuming every operation to be acknowledged before the ACP is
launched is not a strong requirement as most transactional standards like DTP from X/Open
[X/Op93] and OTS from OMG [OMGOOa] assume the same behavior. The second
assumption means that deferred integrity constraints validation is excluded. However, the
consequences of the last two assumptions are clearly less obvious. In the following two
sections, we dissect these two assumptions and study their impact on the concurrency

control and recovery protocols employed by participants in dictatorial atomic commitment.

3.3 The Impact of Dictatorship on Concurrency Control

In this section, we characterize schedulers that are correct without the need for a veto
right at commit time. We give two necessary and sufficient correctness properties of
such schedulers. The first property is an extension of serializability, which we named on-
line serializability [AGP00], and the second is the well-known cascadelessness property
[BHG87]. We show for instance that either strict Two-Phase Locking or strict Timestamp

Ordering is sufficient to ensure on-line serializability and cascadelessness.

3.3.1 Veto Right Free Schedulers

The correctness of a scheduler is usually captured through two properties: serializability
and recoverability [BHG87]. That is, a scheduler S is correct if only histories that are
serializable and recoverable are acceptable for S. Roughly speaking, a scheduler does
not need a veto right if it does not rely on a distributed voting phase to ensure either of
these properties. For instance, the scheduler cannot optimistically authorize conflicts and
decide to abort transactions at their termination time if the conflicts persist. In other
words, an optimistic certifier does need a veto right. To capture these intuitive ideas, we

first introduce the notion of committed extension of a history.

Definition 3.1. Let H be any history. A committed extension of H is any history

obtained by extending H with the commit operations of all active transactions in H.

Consider for example the following history?:

8 In the notations, Ri[x] and Wi[x] denote respectively a Read (resp. Write) operation on object x
performed by transaction Ti, while Ci and Ai denote the commit (resp. abort) of Ti.
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H=W;i[x] Ri[y] W>[z] A; W3[x] R3[x] Wy4[z] C;
Both histories H1 and H2 below are committed extensions of H.
HI =W[x] Ri[y] Wa[z] A1 W3[x] R3[x] W4[z] C; C3 Cy

H2 = W[x] Ri[y] W2[z] A; W3[x] R3[x] Wa[z] C; Cy4 C3

The following definition expresses the fact that a scheduler making use of 1PC (i.e.,
with no veto right at commit time) does not control the commitment of a transaction after

its operations have been performed.

Definition 3.2. A scheduler S is commit-expanded if, whenever a history H is
acceptable for S, any committed extension of H is also acceptable for S.

It is easy to see that a scheduler might be correct but not commit expanded. Let S be any

correct scheduler (e.g., an optimistic certifier) for which the following history is acceptable:

H=Wi[x] Ro[y] W2[x] Ri[x]
Now consider the following committed-extension of H:

H’ = Wi[x] Rofy] Wa[x] Ri[x] C; C3

The serialization graph of H’ contains the cycle 7; — T, — T;, which means that H’
is not serializable. The history H’ is not recoverable either because transaction 77; reads x
from transaction 7, and yet 7; commits before T, (C; < C;). As a consequence, H is

acceptable for S whereas H’ is not. In other words, S is not commit-expanded.

Definition 3.3. We say that a scheduler is VR-fiee (veto right free) if it is correct and

commit-expanded.

3.3.2 On-line Serializability and Cascadelessness

The example above shows that serializability and recoverability are not sufficient for VR-
freedom. In the following, we introduce a property, that we call on-line serializability
[AGPO0O0], which is stronger than serializability. Then we show that on-line serializability
and cascadelessness (a history H is cascadeless if no transaction in H reads from values

written by uncommitted transactions) [BHG87] are necessary and sufficient for VR-fieedom.
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To define on-line serializability, we introduce the notation E-SG(H) (Expanded
Serialization Graph). Given a history H over a set of transactions T = {7}, T», ...T},), E-
SG(H) denotes the directed graph whose nodes are the transactions in T that are either
committed or active in H and whose edges are all T; —» T; (i # j) such that one of 7;’s
operations precedes and conflicts with one of 7’s operations in H. Note that E-SG(H) is
a super-graph of SG(H) (the serialization graph of H) as the latest contains only

committed transactions of H.
Definition 3.4. We say that a history H is on-line serializable iff E-SG(H) is acyclic.

Theorem 3.4. Let S be any commit-expanded scheduler. S is correct iff S ensures

on-line serializability and cascadelessness.

PROOF.

(IF)  Let S be any commit-expanded scheduler and assume that every history that is
acceptable for S is on-line serializable and cascadeless. As for any history H, E-
SG(H) is a super-graph of SG(H), any cycle in SG(H) appears in E-SG(H) as well.
Hence, any history that is not serializable is not on-line serializable. Furthermore, it
was shown in [BHG87] that any history that is cascadeless is recoverable. Hence S

1s correct.

(ONLYIF) We show now that if a commit-expanded scheduler does not ensure
either on-line serializability or cascadelessness, then it cannot be correct. Assume
by contradiction that there is a history H in S that is either (1) not on-line
serializable or (2) not cascadeless. Case (1) means that there is a cycle in E-SG(H).
Let H’ be any committed-extension of H. As S is commit-expanded, then H’ is
acceptable for S. As E-SG(H) = SG(H’), then SG(H’) also contains a cycle, a
contradiction with the assumption that S is correct, i.e., S ensures serializability.
Case (2) means that in H some transaction 7; reads from values written by an
uncommitted transaction 7,. Let H> be any committed-extension of H where T}
commits before 7). As S is commit-expanded, then H’ is acceptable for S. Since H’
contains all read and write operations of H, then in H’, T; reads from values written
by 75, and 7; commits before 7, in H’. A contradiction with the fact that S is

correct, i.e., S ensures recoverability.
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Corollary 3.1. On-line serializability and cascadelessness are necessary and

sufficient conditions for a scheduler to be VR-fiee.

3.3.3 Examples of VR-free Schedulers

We show below that a scheduler based either on strict Two-Phase Locking (2PL) or on
strict Timestamp Ordering (TO) is VR-free.

Theorem 3.5. Strict 2PL is sufficient but not necessary to ensure on-line

serializability and cascadelessness.
PROOF.

(a) It has been shown in [BHGS87] that any strict history is cascadeless. Assume H
is also a 2PL history and assume by contradiction that H is not on-line
serialisable, i.e., there is a cycle 7] - T -»...» T, - T; in E-SG(H).
However, since 2PL is a lock-based scheduler, a dependency cycle would have

led to a deadlock, and H could not have been generated: a contradiction.

(b) The following history H shows that strict 2PL is not necessary to ensure on-/ine

serialisability and cascadelessness:
H=W[x] W2[x] C> Cy

The history H cannot be generated by a 2PL scheduler: transaction 7, could not
have accessed x before the termination of 7;. However, H is on-line

serializable and cascadeless.

Theorem 3.6. Strict TO is sufficient but not necessary to ensure on-line serializability and

cascadelessness.
PROOF.
(a) Similar to (a) of Theorem 3.5 above: assuming H is a TO history, the presence

ofacycle 7; - Tr -»...» T, - T; in E-SG(H) would mean that ts(T1) <

ts(T1), where ts(T) denotes T’s timestamp. A contradiction.

(b) The following simple history H shows that strict TO is not necessary to ensure

on-line serializability and cascadelessness
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H=Wi[x] W)[x] C; C>

Whatever the timestamp order is, H cannot be generated by a strict TO
scheduler. Indeed, either ts(7;) < ts(7,) and W5[x] will be delayed until C1 is
performed, or ts(75) < ts(7;) and T2 will be aborted because it arrives late.

However, H is on-line serialisable and cascadeless.

In contrast, a certifier cannot ensure on-line serializability. A certifier typically
prevents cycles by aborting transactions (a posteriori). However, on-line serializability
requires that no cycle (even if involving only active transactions) be ever generated. The

following history can be produced by a certifier and is obviously not on-line serializable.

H = R;[x] W)[x] Wa[y] Wi[y]

3.3.4 Practical Considerations

Strict 2PL is the most widely used serialization protocol. Hence, participants of most
transactional systems exhibit the VR-free property and thus, are 1PC compliant.
However, commercial database systems are likely to use isolation levels standardized by
SQL2 [ISO92b] in combination with 2PL. We recall below the SQL2 isolation levels and

analyze the extent to which 1PC protocols can accommodate them.

e Serializable: Transactions running at this level are fully isolated.

* Repeatable Read: Transactions running at this level are no longer protected against
phantoms. More precisely, successive reads of the same object give always the same
result but successive SQL queries selecting a group of objects may give different

results if concurrent insertions occur.

* Read Committed: Transactions running at this level read only committed data but
Repeatable Read is no longer guaranteed. In a lock-based protocol, this means that

read locks are relaxed before transaction end (in practice, as soon as they are granted).

* Read Uncommitted: Transactions running at this level may do dirty reads. For this
reason, they are not allowed to update the database. In a lock-based protocol, this

means that Read Uncommitted transactions do not request locks at all.
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Isolation levels are widely exploited because they allow faster executions, increase
transaction parallelism and reduce the risk of deadlocks. For example, a transaction 7;
computing statistics on a large population of objects can take benefit of the Read
Uncommitted level. This transaction will never be blocked by concurrent writing
transactions (that may affect 7;’s result but in a non significant way) and will never block

other transactions.

If we refer to definition 3.3, it is clear that schedulers implementing isolation levels,
which we call IL-schedulers, are not VR-free simply because they are not correct: they do
not ensure serializability. Consequently, they do not ensure on-line serializability either.
However, isolation levels have been actually introduced to relax serializability, and non-
serializable schedules that may be produced are considered as semantically correct.
Hence, new correctness criteria that accommodate isolation levels need to be defined in
order to characterize “correct” IL-schedulers. To this end, we introduce in the following

a new property, which we call IL-serializability.

Consider a history H over a set of transactions T = {7, T», ..., T,). Let IL-SG(H) be
the sub-graph of SG(H) containing all dependencies in H except those incurred by
conflicts ignored by the isolation levels under which transactions in T are running. We
say that H is IL-serializable iff IL-SG(H) is acyclic. An IL-scheduler is said to be correct

if it ensures /L-serializability and recoverability.

Similarly to Section 3.3.2, we introduce a new property, which we call on-line IL-
serializability, to characterize IL-schedulers that are correct with no veto right at commit
time. Let E-IL-SG(H) denote the expanded /L-SG(H). We say that a history H is on-line IL-
serializable iff E-IL-SG(H) is acyclic. We can show that on-line IL-serializability and
cascadelessness are necessary and sufficient conditions for an IL-scheduler to be veto right
free. The proof is very similar to that of Theorem 3.4 and hence omitted. We show below that

IL-2PL (2PL based IL-scheduler) satisfies both cascadelessness and on-line IL-serializability.

* Cascadelessness: conventionally, the cascadelessness property precludes the
occurrence of dirty reads. In /L-2PL, dirty reads are allowed only at the Read
Uncommitted level, which is restricted to Read-Only transactions. However, the

semantics of Read-Only transactions contradict the fact that they can be subject to
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cascading aborts. Consequently, cascadelessness is still ensured in IL-2PL

schedulers.

* On-line IL-serialisability: Assume H is an [L-2PL history, and assume by
contradiction that H is not on-line IL-serialisable, i.e., there is a cycle T; - T»
—...— T, - T;in E-IL-SG(H). Note that any dependency edge in E-IL-SG(H)
translates a conflict not ignored by the /L-2PL scheduler. Since /L-2PL is based
on locking, a dependency cycle would have led to a deadlock and H could not

have been generated: a contradiction.

As a conclusion, /L-2PL schedulers can still be considered as veto right free, and

hence they comply with 1PC.

3.4 The Impact of Dictatorship on Recovery

A data manager must ensure the atomicity and durability properties of every transaction.
More precisely, the data manager must guarantee that there is enough information on stable
storage so that if a failure occurs (and the information in the volatile storage is lost), (1) the
updates of aborted transactions are undone from the database and (2) the updates of
committed transactions are correctly reported on the database. Following the terminology of
[Had88], we call the first property abort-resiliency and the second property commit-
resiliency (these correspond to undo and redo rules respectively in [BHG87]). A data
manager is said to be correct if it guarantees both abort-resiliency and commit-resiliency

[Had88].

3.4.1 Veto Right Free Data Managers

In a centralized system, abort-resiliency is for example ensured by having the data
manager store before images in its log (this technique relies on the assumption that a
strict concurrency control is used), and commit-resiliency is ensured by force-writing the

transaction updates on stable storage at commit time [BHG87].

In a distributed database system, the same technique is used to guarantee abort-

resiliency. To ensure commit-resiliency, participants in a transaction must guarantee that,
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if the transaction commits at any participant, there is enough information on stable
storage to redo the effects of the transaction at all participants. With a 2PC, this is
guaranteed using the notion of prepared state. A participant P enters the prepared state
for a transaction only if the commit-resiliency property is guaranteed for the transaction
branch that accessed P. To commit a transaction, its coordinator makes sure that all
updated participants have entered the prepared state of that transaction: this test is
included in the voting phase of the 2PC. A participant does only vote yes if it has entered
the prepared state. If it cannot enter that state (e.g., if the disk is full), the participant

simply votes no and the transaction is aborted.

Removing the veto right has no impact on abort-resiliency. Nevertheless, the
participants must anticipate the commit and make sure the commit-resiliency property is
ensured a priori. As for schedulers, we introduce the following definitions to capture the

idea of a VR-firee data manager [AGPO0O].

Definition 3.5. We say that a data manager D is commit-expanded if whenever an
operation has been performed on behalf of a transaction T, the corresponding

transaction branch can commit.

The definition above captures the idea that, just like for a scheduler, the only way to
abort a transaction is by not performing one of its operations. If a transaction’s operation
has been acknowledged (i.e., performed), the corresponding transaction branch is able to

commit.

Definition 3.6. We say that a data manager is VR-free if it is correct and commit-
expanded.
3.4.2 On-line Commit-resiliency

We introduce the following property to characterize the behavior of data managers that

are VR-free.

Definition 3.7. We say that a data manager ensures on-line commit-resiliency if

every update operation executed on that data manager is commit-resilient.
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Theorem 3.7. Let D be any commit-expanded data manager. D is correct iff it

ensures abort-resiliency and on-line commit-resiliency.
PROOF.

(IF) Let D be any commit-expanded data manager that ensures abort-resiliency
and on-line commit-resiliency. In other words, before acknowledging any update
operation, the participant force-writes its effects on stable storage. As we assume
that this participant cannot commit its transaction branch before all of its operations
have been acknowledged (cf. Sections 3.1 and 3.2), this means that it cannot commit
its transaction branch if the effects of any of its operations are not on stable storage,

i.e., the transaction is commit-resilient at D’s site. Hence, D is correct.

(ONLY IF)  Assume by contradiction that there is an execution where D does not
ensure on-line commit-resiliency, i.e., D does not ensure the commit-resiliency of
some update operation op for a transaction 7. If the transaction commits exactly
after receiving the acknowledgement from the participant about the operation op,
and the participant crashes immediately after sending back that acknowledgment,
then the effects of op are lost and T is not commit-resilient at D’s site: a

contradiction with the fact that D is correct.

Corollary 3.2. Abort-resiliency and on-line commit-resiliency are necessary and

sufficient conditions for a data manager to be VR-free.

3.4.3 Practical Considerations

Participant Logging

To achieve the on-line commit-resiliency property, participants in a transaction must
force-write the effects of every update operation on stable storage, and that before
acknowledging the operation. The Early Prepare (EP) processing scheme of Stamos and
Cristian does ensure that property [StC90, StC93]. Although Early Prepare can make
direct use of 1PC (as described in Section 3.2.1) and alleviates the need for an expensive
2PC, it requires a forced-write at every update operation of the transaction. The cost of

transaction commitment is hence traded with the cost of transaction processing.
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Coordinator Physical Logging

To avoid the prohibitive cost of on-line commit-resiliency, one might deviate from the
“classical” atomic commitment scheme that requires every participant to ensure all of the
ACID properties of its transaction branches. Consider for instance a less classical scheme
that consists in having the coordinator itself ensure the commit-resiliency property before
committing a transaction. To delegate this responsibility, participants need however to
make sure that the coordinator has enough information on its local stable log about all
committed transactions (unless it has the adequate information, the coordinator aborts the
transaction). Coordinator Log (CL) [StC90, StC93] and Implicit Yes-Vote (IYV) [AIC95,
AlC96] do follow this scheme.

In Coordinator Log, participants do not maintain their updates in a local stable log.
Instead, they send back within the acknowledgment message of every update operation
all the log records (undo and redo log records) generated during the execution of the
operation. The coordinator is thus in charge of logging the transaction’s update
information before performing the commit protocol. If we refer to the basic 1PC protocol
described in Section 3.2.1, this would mean that the coordinator of CL calls the terminate()
function with commit as its proposition value only if it succeeds in storing the transaction’s
log records on stable storage. To recover from a crash, a participant asks the coordinator for

the undo/redo log records it needs to reestablish a consistent state of its database.

The Implicit Yes-Vote scheme is similar to Coordinator Log, except that logging is a
more distributed task. The idea is to allow failed participants to perform part of the
recovery procedure (the undo phase) independently of the coordinator, and to resume the
execution of transactions that are still active in the system (i.e., transactions for which no
decision was made yet) instead of aborting them. Participants send back their redo log
records together with a Log Sequence Number (LSN) [GrR93] whenever they
acknowledge an update operation. To recover from a crash, a participant performs the
undo phase of the recovery procedure and part of the redo phase using its local log. Then,
the participant asks the coordinator for all redo log records whose LSNs are greater than
its own highest LSN, and for all read locks acquired by active transactions. This allows
the participant to reinstall the updates pertaining to globally committed transactions and

continue the execution of transactions that are still active in the system.
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Coordinator Logical Logging

Although Coordinator Log and Implicit Yes-Vote circumvent the need for on-line
commit-resiliency, they violate site autonomy by forcing participants in a transaction to
externalize their local log information. This certainly compromises their use in existing
transactional systems. To solve this problem, we propose to maintain in the log of the
coordinator the list of operations submitted to each participant instead of the physical
redo log records sent back by these participants. In case a participant crashes during the
1PC protocol execution, the failed transaction branches that make part of a globally
committed transaction will be re-executed using the operations registered in the

coordinator's log.

This mechanism, which we call Coordinator Logical Log (CLL) [AbP98], provides
three main advantages. First, it preserves site autonomy since no internal information has
to be externalized by the participants. This feature is of primary importance if the commit
protocol is to be used in today’s large and autonomous distributed environments. Second,
it can be applied to heterogeneous transactional systems using different local recovery
schemes, which is not the case in Coordinator Log or Implicit Yes-Vote. Finally, it does
not increase the communication cost during normal processing since log records are not

piggybacked in the messages.

3.5 The CLL Protocol

3.5.1 Failure-Free Execution

As introduced before, our logical logging mechanism consists in having the coordinator
register in its log every transaction operation before sending it to the participant hosting
the object involved by the operation. Note that this registration is done by a non-forced
write. Non-forced writes are buffered in main memory and do not generate blocking 1/O.

Operations are then sent to and locally executed by the different participants.

As is the case in CL and 1YV, the coordinator of CLL is in charge of ensuring the
commit-resiliency property before committing a transaction. Thus, when all

acknowledgments are received, the coordinator force-writes the transaction operations on



3.5. THE CLL PROTOCOL 43

stable storage and calls the terminate() function with commit as its proposition value.
Recall that during this function, the coordinator decides on the transaction by force-
writing its decision value on disk. In order to improve performances, the transaction
operations together with the decision log record can be forced on stable storage at the
same time, thereby generating a single blocking I/O. If, on the other hand, the coordinator
receives a negative acknowledgement from some participant or fails in storing the
transaction operations on stable storage, it simply discards all the transaction’s log

records and calls the ferminate() function by proposing abort.

3.5.2 Dealing with Failures

Similarly to the AC problem, the following DAC-Termination property has to be added to the
specification of the DAC problem in order to exclude protocols that allow participants to

remain undecided forever once some failures have occurred during the protocol execution.

- DAC-Termination: If all failures are repaired, then unless a new failure

occurs, every participant eventually reaches a decision.

To satisfy DAC-Termination, we must supply timeout actions for each point in the
1PC protocol in which a participant is waiting for a message. Timeout actions define
what a participant should do in case an expected message does not arrive. We must also
describe how a recovering participant attempts to reach a decision consistent with the
decision other participants may have reached in the meanwhile. In the following, we

consider these two issues in turn®.

Timeout Actions

In 1PC, the only point where a participant can unilaterally abort a transaction is by
negatively acknowledging an operation. If, however, the participant has no pending
acknowledgement for any of the transaction’s operations, it enters its uncertainty period
until it receives either a new operation or the final decision from the coordinator. When a

participant times out while in its uncertainty period, it executes a termination protocol

9 For details on how crash recovery and timeout actions are handled in CL and IYV, please refer to
[StC90, StC93, AICIS5, AICI6].
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during which it tries to decide on the transaction. The termination protocol presented in
Section 2.3.2 can be perfectly used here so that DAC-Termination is guaranteed. Note
that although the participant may be blocked during the execution of the termination
protocol due to failures in other parts of the system, it eventually reaches a consistent

decision once these failures are repaired.

Crash Recovery

We now describe how a recovering participant can reach a decision consistent with the
decision operational processes may have reached. Consider a participant Py recovering
from a crash. Figure 3.2 details the recovery algorithm associated with CLL and executed
by Pf. In the following, Tj; denotes the local branch of transaction 7; executed at participant

Py For the sake of clarity, step numbers correspond here to step ordering.

Step 1 and Step 2 represent the standard local recovery procedure executed by a
crashed participant Pj. To preserve site autonomy, we make no assumptions whatsoever on
the way these steps are handled. Step 3 is necessary to determine if the K branch (i.e., Ti)
of some globally committed transactions 7; has to be locally re-executed by the crashed

participant. In Step 4, the coordinator aborts all active transactions in which Py participates.

Step 5 checks if there exists some committed transaction 7; for which P did not
acknowledge the commit decision. This may happen in two situations. Either the participant
crashed before the commit of Tj; was achieved and Tj; has been undone during Step 1, or
Tj is locally committed but the crash occurred before the acknowledgment was sent to the
coordinator. Note that these two situations must be carefully differentiated. Re-executing
Ty in the latter case may lead to inconsistencies if 7j; contains non-idempotent operations.
To simplify the presentation, we assume for the moment that the coordinator can query a
participant to learn the exact state of Tj; (Step 6). We detail afterwards the way we achieve
this without violating site autonomy. The participant answers during Step 7. If T;; has been
successfully committed, the coordinator does nothing. Otherwise, Tj; has been undone
during Step 1 and must be entirely re-executed. This re-execution is performed by exploiting
the coordinator's log (Step 8). Once the recovery procedure is completed, new distributed

transactions are accepted by the coordinator (Step 9) and the participant (Step 10).
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Participant’s algorithm

1-  undo the transactions that were active at the time the crash occurred

2-  redo transactions that have reached their commit state before the crash
occurred

3- contact the coordinator
7- answer the queries that may be sent by the coordinator during step 6
10- accept new transactions

Coordinator's algorithm
If contacted by participant Py during step 3, do:
for each transaction T;in which Py, participates
4- if (commit;) [Jcoordinator's log, then
send (abort;) to all other T; participants and forget T;
5- if (commit;) [Jcoordinator's log, then
if acki(commit;) [Jcoordinator's log, then
6- query Py to determine the exact status of Ty

(i.e., either locally committed or aborted)
8- if T has not been locally committed, then

restart a new transaction 1", on Py
re-execute all Ty, operations within T

9- accept new distributed transactions

Figure 3.2. Recovering a participant crash

We now explain how the coordinator can query a participant about the state of its
local transaction branches. Our solution relies on a local Agent (called Agenty) associated
with each participant P;. The Agent does not violate site autonomy as the existing
interface of the participant is preserved, and does not increase the communication cost,
as it is co-located with its participant. Every message is submitted to the participant
through its local Agent, which acts as a liaison between the coordinator and the
participant. The exact role of the Agent is to determine, during the recovery procedure,
those local transaction branches that need to be re-executed. The mechanism works as
follows. When the coordinator sends the commit decision to each participant, the
participant’s Agent issues an additional operation "write record <commit;>" on behalf of

the local transaction branch it is in charge of (e.g., Tj;), and before submitting the commit



46 CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

decision to the participant 10. This creates at Py a special local record containing the
commit decision for 7;. This operation will be treated by P in exactly the same manner
as the other operations belonging to Ty that is, either all committed or all aborted
atomically. Once the Agent receives the acknowledgment of this write operation, it asks

P to commit the local transaction branch.

Steps 6 and 7 of the recovery algorithm are now straightforward. To get the status of
a local transaction branch Tj;, the coordinator checks, through Agent;, the existence of
record <commit;> at Py (this can be done by a regular select operation). If the record is
found, this proves that Tj; has been successfully committed at Py before the crash, since
write<commit;> is performed on behalf of Tj. Otherwise, Tj; has been backward

recovered during Step 2 and must be re-executed.

3.5.3 Recovery Correctness

In this section, we show that the CLL’s recovery procedure described in the previous
section is correct. This amounts to proving that a recovering participant eventually
reaches a decision consistent with that reached by the other participants once all failures
are repaired so that DAC-Termination is satisfied. However, since the recovery procedure
may lead to a decision through the re-execution of a transaction branch, we also need to
show that re-executing the logical operations registered in the coordinator’s log will
produce exactly the same local state at the recovering participant as the one produced

during the initial execution. In the following, we consider these two issues in turn.

* Decision Consistency: Let Py be the recovering participant. If, during its local
recovery procedure, Py finds in its log a decision record for a transaction branch, say Tj,
then it has already decided during the 1PC protocol execution. If, however, no decision
record is found, P undoes the effects of 7j; (Step 1). Note that the only non-trivial case
to consider here is the case where Ty is part of a globally committed transaction 7;. This
may happen if the coordinator has sent the commit decision to all participants, but P

crashed before committing 7Tj;. By the algorithm of Figure 3.2, when Py establishes a

10 Note that this operation never generates a dependency cycle (i.e., deadlock) since it is the last
operation executed in any transaction that has to be committed.
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consistent local state, it contacts the coordinator (Step 3). In this case, once the
coordinator has verified, through Agenty, that Tj; has been locally aborted, it re-executes
all Tj; operations within a new transaction branch 7. If a failure should occur during
the re-execution process, it will be retried until Tj; (T’;) commits at P Note that
although Pj; may be blocked during its recovery (in case the coordinator is down), Py
eventually reaches a consistent decision once the coordinator recovers from its crash.

Hence, the recovery procedure associated with CLL satisfies DAC-Termination.

* Determinism: Here, we show that the re-execution of Tj; within T produces
the same local state at Py as the one produced during the initial execution. Note that in
CL and 1YV, the coordinator's log contains physical redo records, making the recovery
algorithm rather straightforward. The redo records are re-installed at the failed
participant during the recovery of a local transaction branch, thereby producing the same
local state as the one produced during the initial execution. By exploiting logical logging

rather than physical logging, CLL’s recovery procedure must face two new problems:

- operations may be non-idempotent: an operation op is said to be non-idempotent if
(op(op(x)) # op(x)). Non-idempotent operations must be executed exactly once in

any failure situation.

- operations may be non-commutative: two operations op/ and op?2 are said to
be non-commutative if (opl(op2(x)) # op2(opl(x))). Non-commutative operations

must be executed at recovery time in the same order as during the initial execution.

Consider first the management of non-idempotent operations. Assume the coordinator
has decided to commit 7; and has sent its decision to the participants. Assume also that Py
crashed immediately after. By the undo rule, if Py crashed before committing Ty, Ty will be
undone during Step 1 of the recovery algorithm and the record <commit> will be
discarded!!. Otherwise (i.e., P crashed after the commit of 7Tj was successfully
performed), the redo rule guarantees the presence of the <commit;> record at Px. These two
situations are differentiated during Step 6 of the recovery algorithm. Step 8 forward
recovers only transaction branches that have been locally aborted. This means that no

transaction branch, and hence no operation (whether idempotent or not) is executed twice.

11 'We recall that the operation write record <commit;> is performed on behalf of Tj.
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Consider now non-commutative operations. If these operations belong to the same
transaction, no problem can occur. Indeed, the recovery algorithm re-executes the
operations of a failed transaction branch following the order in which they were logged
on the coordinator, i.e., in the order of their initial execution. The case where two or
more local transaction branches (e.g., Tit, Tjx) have to be forward recovered is trickier
since most transactional systems execute transactions in parallel through several threads
of control. Thus, even if the coordinator re-submits to Py all operations that belong to
different local transaction branches in the order of their initial execution, the result is
non-deterministic. We demonstrate below that the local database state produced by the
recovery algorithm is the same as the one produced during the initial execution. Let ¢ denote

the set of all local transaction branches that have to be forward recovered by P during Step 8.

¢ = {Ty / commit; O coordinator's log O acky(commit;) [ coordinator's log O
<commit;> [ P;‘s state}

First, Step 2 of the recovery algorithm guarantees that all resources accessed by any
Ti O ¢ are restored to their initial state (i.e., the state before Tj; execution), according to
the atomicity property. Second, since Step 8 precedes Step 9 and Step 10, new
transactions that may modify 7Tj; resources are executed only after the re-execution of Tj.
Consequently, at Step 8, all Tj; (I ¢ are guaranteed to re-access the initial database state.
The sole problem may come from the parallel re-execution of all T O¢ if these

transactions themselves compete on the same resources.

Assume first that Py uses a locking based VR-free serialization protocol, such as
strict 2PL (i.e., the general case). In this case, OTy, Tjx U, ~OTj - Tjy), where —
represents a precedence in the serialization order. Otherwise, Tj; would have been
blocked during its initial execution, waiting for the termination of 7j, and would not
have completed all its operations, which contradicts Tj; 0 ¢. This means that T and T
cannot compete on the same resources. If however, Py uses another VR-free serialization
protocol, such as strict 70O, the former assumption is no longer valid. Indeed, strict 7O
accepts some Read/Write conflicts (those produced in the timestamp order) without
blocking. To deal with this case, Step 8 must execute each T;; ¢ in their initial

serialization order, one after the other (i.e., without parallelism).
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Figure 3.3: The EP protocol.

3.5.4 Performance Evaluation

In this section, we investigate the performance of One-Phase Commit, and compare the
CLL protocol with existing 1PC variations, namely EP, CL and IYV. In our evaluations,
we denote by 7 the total number of participants in a transaction, and we assume failure-free

executions.

As opposed to the basic 2PC, which requires 3 communication steps, 2n+1 log forces,
and 4n messages in order to commit/abort a transaction (cf. Section 2.5), the basic 1PC
protocol (described in Section 3.2) only requires one communication step, #n+1 log forces, and

2n messages. The absence of the veto right explains why 1PC is much more efficient than 2PC.

While basic 1PC treats all transactions uniformly, whether they are to be committed
or aborted, one can clearly apply various well-known optimizations of 2PC (e.g., PrA and
PrC) to 1PC. The EP protocol combines the 1PC idea with PrC in the sense that it
reduces the message and logging overheads associated with committing transactions.
Consequently, commit decisions are neither acknowledged nor force-written by the
participants. However, since the coordinator of PrC must record the identities of the
transaction participants on stable storage as part of a forced membership log record, and

that, before sending prepare messages to the participants (cf. Section 2.4.2), the
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Figure 3.4: The CL protocol.

coordinator of EP may have to force-write multiple membership log records, because the
transaction membership may grow as the transaction execution progresses. Furthermore,
by achieving on-line commit resiliency (cf. Section 3.4.3), EP generates one force-write for
each update operation. This makes a total of 1+ + op log forces for the commit case, and
2n+op log forces for the abort case, where op denotes the number of update operations
performed by a transaction. Figure 3.3 illustrates the protocol behavior for committing as

well as aborting transactions.

Another 1PC variation that is based on PrC is the CL protocol (Figure 3.4). Unlike
EP, however, CL eliminates the forced membership log record of PrC by requiring a
recovering coordinator to communicate with every possible participant in the system in
order to determine all the transactions that were active at the time of the crash, and to
abort them instead of wrongly presuming commit. This means, however, that
coordinators in CL cannot independently recover, and must wait for all participants in the
system in order to resume execution. Furthermore, as discussed in Section 3.4.3, CL
overcomes the high cost of on-line commit resiliency by implementing distributed write-
ahead logging (DWAL) in order to give up any logging activity at the participants. The
combination of this mechanism with PrC results in a severe problem since transactions’
updates must be remembered forever, and hence, the coordinator’s log can never be garbage

collected!
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Figure 3.6: The CLL protocol.

From the above discussion, it follows that the implications of the combination of 1PC
with PrC are severe. Consequently, unlike EP and CL, the IYV protocol (Figure 3.5) and
the CLL protocol (Figure 3.6) exploit the PrA optimization by adopting abort presumptions.
Thus, for committing transactions, both protocols have the same performances as basic
1PC, and reduce the message and logging overheads for aborting ones. Similarly to CL,
IYV and CLL eliminate the high logging cost of on-line commit resiliency. In 1YV,
however, this is achieved by implementing a replicated write-ahead logging mechanism

(RWAL), whereas in CLL by implementing a coordinator logical logging mechanism.
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Message Complexity Latency
point-to-point network broadcast network Time complexity  Log Complexity
EP n 1 1 n+op+1
CL n 1 1 1
IYV 2n n+1 1 n+1
CLL 2n n+1 1 n+1

Figure 3.7: The cost of transaction commit under the different 1PC variations.

Message Complexity Latency
point-to-point network broadcast network Time complexity  Log Complexity
EP 2n n+1 1 2n+ op
CL 2n n+1 1 0
IYV n 1 1 0
CLL n 1 1 0

Figure 3.8: The cost of transaction abort under the different 1PC variations.

Figure 3.7 and Figure 3.8 summarize the cost of the different 1PC variations in
terms of latency and message complexity needed in order to commit and abort a
transaction, respectively. Regarding message complexity, we distinguish two cases: (a)
using a point-to-point network, and (b) using a broadcast network. We recall that n
denotes the total number of participants in the transaction, while op stands for the

number of update operations performed by a transaction.

For the commit as well as the abort case, the cost associated with EP is highly
dependent on the number of participants in a transaction and on the number of update
operations performed by the transaction. This makes EP quite inefficient when used in
today’s large distributed systems, where transactions are most likely to span several sites,
and to execute an important number of operations at these sites. Thus, unless every
transaction performs at most one update operation at every site, or the sites are equipped
with electronic stable storage (i.e., free log forces), the cost of EP can turn out to be far

more prohibitive than the cost of a 2PC.
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By combining PrC with DWAL, CL outperforms the other variations in the commit
case as far as log forces are concerned, and shares with EP the lowest message
complexity. However, as already stated before, the price of this efficiency is a set of
severe drawbacks resulting, on one hand, from a coordinator’s log that can never be
garbage collected (a rather unrealistic assumption), and on the other hand, from a
coordinator recovery procedure that totally depends on every possible participant in the
system. Furthermore, participants in CL cannot locally handle aborted transactions, not
to mention unilateral aborts! This is because the undo records are maintained only at the
coordinator site. Hence, undoing a transaction has to be completely performed over the
network, and local resources held by an aborted transaction cannot be released by a
participant before getting the necessary undo records from the coordinator. This leads to
a quick degradation in CL’s performances, making it much more suitable for parallel

architectures rather than geographically distributed systems.

For the abort case, IYV and CLL have the best overall performances, and share with
CL the lowest logging overhead. Even though, by combining RWAL with PrA, IYV
overcomes the abovementioned problems introduced by CL, both protocols require that
participants in a transaction externalize their local log information. This means that
major modifications should be made to existing transactional systems in order to support
CL or IYV, which is definitely unacceptable in today’s large distributed environments in
which local site autonomy is of key importance. By combining a logical logging
mechanism with PrA, CLL capitalizes on both CL and IYV. This leads to the conclusion
that, among all the discussed protocols, CLL offers the best tradeoff between
performance and compliance with existing transactional systems. Therefore, it appears to
be the best candidate for distributed transaction termination in today’s distributed

environments and applications.

3.6 Discussion

One-Phase Commit is a highly efficient approach to distributed transaction commit that is
based on a Dictatorial Atomic Commitment paradigm. The intuition behind 1PC is that veto
rights in the traditional 2PC introduce a high cost, and this cost should only be paid when

necessary.
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The advantages of 1PC over 2PC are not only performance issues. By eliminating
participants’ votes, 1PC overcomes the various problems incurred by the local prepared
state required in 2PC. Obviously, the appealing features of 1PC have a price, which we
expressed in terms of three necessary and sufficient conditions on concurrency control
and recovery protocols employed by the participants in a transaction. When adequately
exploited, however, we have shown that 1PC offers a highly efficient approach to
distributed transaction commit that is applicable to most practical situations. In
particular, we proposed a new 1PC protocol that exploits a Coordinator Logical Logging
mechanism in order to achieve correct recovery without compromising site autonomy,
making it the sole protocol that can cope with all existing transactional systems [ be

they or not 2PC compliant.

B0
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Chapter 4

Non-Blocking Atomic
Commitment: Background

Although the atomic commitment protocols we have discussed thus far guarantee
transaction atomicity, which is a safety condition, they do not provide liveness
guarantees, i.e., they may lead to blocking situations in which participants are unable to
decide on the transaction due to failures in other parts in the system. Consequently, a
transaction can hold valuable system resources for an unbounded period, making these
unavailable to other transactions that in turn become blocked, which may eventually block

the entire system.

The impact of indefinite blocking and long-duration delays is particularly
aggravated in mission critical applications (e.g., SCS) or applications involving an
important number of sites (e.g., Internet). Furthermore, in today’s large distributed
environments in which the various sites participating in the system may belong to several
autonomous, and possibly competing business organizations, it would be unconceivable
to allow a remote transaction belonging to a competing organization from blocking local
resources. An atomic commitment protocol is said to be non-blocking if it allows a

decision to be reached at every correct participant despite failures of others.

This chapter gives some background about the Non-Blocking Atomic Commitment
(NB-AC) problem, and presents a survey of non-blocking commit protocols commonly
found in the literature. In order to do so, we refine the general system model described in

Section 2.1 in order to reflect different assumptions made about failures and failure
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detection. Each protocol is then described in the context of the underlying system model
it assumes. We finally point out the limitations of the discussed protocols in terms of the
different evaluation metrics we have used so far, namely, performance and compliance

with existing commercial systems.

4.1 The Non-Blocking Atomic Commitment Problem

The Non-Blocking Atomic Commitment (NB-AC) problem [BHG87, Had90, BaT93] is a
fault-tolerant agreement problem that, in addition to transaction atomicity, aims at
providing transaction liveness guarantees. Formally, the NB-AC problem is defined by the
AC-Uniform-Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, AC-Non-Triviality,
and AC-Termination properties of the AC problem (cf. Sections 2.2 and 2.3), and the
following AC-Non-Blocking property:

- AC-Non-Blocking: Every correct participant eventually decides.

The AC-Non-Blocking condition is a liveness condition in the sense that it ensures
progress at correct participants despite failures of others. Note that this property is
expressed in terms of correct participants and not operational ones. This is because an
operational participant might be faulty, i.e., it has crashed and then recovered, in which
case, it must decide through the associated recovery protocol rather than the commit
protocol [BaT93]. An atomic commitment protocol is said to be non-blocking (also

called fault-tolerant) if it satisfies all of the six properties of the NB-AC problem.

Just like other fault-tolerant agreement problems, the solvability of the NB-AC
problem totally depends on the nature of “admissible” faults and the ability to detect
them. The latter issue is of particular importance as it is tightly dependent on the
underlying system that is considered. More precisely, the ability to have a (more or less)
precise knowledge about the occurrence of faults depends on the synchrony guarantees
that the underlying system can provide. Solutions to the NB-AC problem can thus be
categorized according to whether liveness guarantees are achieved assuming (1) a

synchronous system or, on the other extreme, (2) a totally asynchronous system.
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4.2 NB-AC in Synchronous Systems

As already stated before, solutions to fault-tolerant agreement problems in general, and to
the NB-AC problem in particular, depend heavily on the assumptions made about the
computational model and the kind of failures to which it is prone. In this section, we
refine the general model described in Section 2.1, and consider a synchronous model of
computation. We then discuss well-known non-blocking atomic commitment protocols

that have been proposed in this context.

4.2.1 System Model

The model of synchronous computation we consider in the present and the following
chapter is closely patterned after the one in [BaT93]. Synchrony is actually an attribute
of both processes and communication links. A system is said to be synchronous if there is

a known upper bound on both message transfer delays and process relative speeds.

Since it is well known that distributed systems with unreliable communication do
not admit non-blocking solutions to the atomic commitment problem [Gra78, Had90,
HaM90], we also assume reliable communication between the processes in the following
sense: if a process P; sends a message to a process Py, then unless Py is down, the
message is received by P within dtime units after being sent, i.e., no link failures occur.
The parameter O includes the message transfer delay as well as the time required to
process it at the sending and receiving processes. In such a model, site failures can be
reliably detected and reported to any operational site by means of timeouts. For instance,
if a process P; does not receive an answer to a message it has sent to Py within 20 time

units after sending the message, it can safely deduce that Py is faulty.

4.2.2 The Three-Phase Commit Protocol

Assuming that communication is failure-free, several non-blocking atomic commitment
protocols have been proposed, the most well known of which is the Three-Phase Commit

(3PC) protocol [Ske81].
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Failure-Free Execution

The 3PC protocol can be seen as a straightforward extension of 2PC. One way to
understand 3PC is to understand why 2PC is blocking. In 2PC, blocking can occur
because some participants may commit the transaction following the receipt of a commit
decision while others are still uncertain about the transaction outcome!2. Consequently, if
crash failures happen in such a way that all correct participants are uncertain, these
participants are blocked (cf. Section 2.3.2). Indeed, they cannot decide abort without
risking a violation of the AC-Agreement property because some failed participants could

have decided commit.

The idea underlying 3PC is to prevent this situation by ensuring that if any correct
participant is uncertain about the transaction, then no participant (whether correct or not)
could have decided commit. This is achieved by inserting an extra phase, called the pre-
commit phase, in between the two phases of the 2PC protocol. During this phase, a

preliminary decision is reached before the final decision is made.

More precisely, when the coordinator of 3PC finds that all participants’ votes are
yes, it sends a pre-commit message to all participants. When a participant receives pre-
commit, it sends a pre-commit acknowledgment to the coordinator. By receiving the pre-
commit message, a participant learns that all votes were yes, and thus, moves outside its
uncertainty period. Once the coordinator has received the pre-commit acknowledgments
from all, it decides commit and sends its decision to all participants. Finally, when a
participant receives the commit decision from the coordinator, it decides commit (at this
point, the participant knows that all other participants are outside their uncertainty
period) . This describes 3PC assuming no participant votes no, and no participant crashes
during the protocol 13. Figure 4.1 illustrates the 3PC protocol execution between six

participants, P;, P,, P3, P,, Ps, and P4, where P; acts as the coordinator of the protocol.

12 Recall that an uncertain participant does not know whether or not the remaining participants have voted
yes.

13 Note that, to simplify the subsequent discussion and concentrate on the non-blocking feature of the
described protocols, we henceforth omit from our discussion and evaluations decision acknowledgment
messages.
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Figure 4.1: The 3PC protocol.

Dealing with Failures

In order to deal with failures, special timeout actions that describe what a process should
do if an expected message does not arrive must be supplied. Furthermore, a recovering
participant must be able to reach a decision consistent with the decision operational

processes may have reached.

There are five cases to consider: (1) a participant is waiting for the prepare message,
(2) the coordinator is waiting for votes, (3) a participant is waiting for pre-commit, (4)
the coordinator is waiting for pre-commit acknowledgments, and (5) a participant is
waiting for commit. Cases (1) and (2) are handled in exactly the same way as in 2PC (cf.
Section2.3.2). Case (4) means that a participant failed before sending a pre-commit
acknowledgment. However, since the failed participant has already voted yes, the

coordinator ignores its failure and decides commit as if no failure has taken place.

In cases (3) and (5), however, participants cannot decide on their own!4. Therefore,
they start a termination protocol during which they communicate with other participants
to find out what to decide. In order to satisfy 4C-Non-Blocking, the termination protocol
associated with 3PC must enable all correct participants to reach a consistent decision
without waiting for failures to be repaired. The basic idea of this protocol is to elect a

new coordinator, called backup coordinator, from the set of correct participants. Once

14 Although in case (5) participants are outside their uncertainty period, they cannot decide commit
because some other participants might be still uncertain about the transaction outcome.
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elected, the backup will direct all the correct participants toward a commit or an abort
depending on its own local state. A participant is in an ABORT state if (i) it has already
decided abort, or (ii) it can unilaterally decide so. It is in an UNCERTAIN state if it is in its
uncertainty period. It is in a COMMITTABLE state if it has received the pre-commit
message but not the commit decision. Finally, a participant is in a COMMIT state if it has
already decided commit. The backup coordinator decides abort when its local state is (1)
ABORT, or (2) UNCERTAIN, and decides commit when its local state is (3) COMMITTABLE,

or (4) COMMIT:

Case (1) indicates that the backup (i) has not voted yet, or (ii) has voted no, or (iii)
has already received an abort decision before the invocation of the termination protocol.
In (i) and (i), it is clear that no participant could have previously decided commit, while
(ii1) means that the 3PC coordinator had started to send abort decisions before it crashed.
Since the coordinator sends the same decision to all participants, no participant could
have received a commit decision, and hence, no participant could have decided commit.
In case (2), since the pre-commit phase of 3PC prevents any participant from deciding
commit once some correct participant is still uncertain, a backup with an UNCERTAIN

local state is sure that no participant could have decided commit.

Case (3) indicates that the backup has already received a pre-commit message from
the 3PC coordinator. This means that (i) all participants must have voted yes, i.e., no
participant could have unilaterally decided abort, and (ii) no participant could have
received an abort decision from the 3PC coordinator given that the latter had already
initiated the pre-commit phase before it crashed, i.e., no participant could have decided
abort. Finally, case (4) implies that the backup has received a commit decision from the
3PC coordinator, meaning that (i) all participants must have voted yes, i.e., no unilateral
abort, and (ii) no participant could have received an abort decision from the 3PC
coordinator, as the latter sends the same decision to all participants. Hence, no

participant could have decided abort.

Since failures may occur during the termination protocol execution, a backup asks
all participants to move to its local state, and waits for an acknowledgment of their state

transition before sending them its final decision. This actually ensures that, in the event
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of a backup crash, subsequent backups will make the same decision. From the above
discussion, it follows that 3PC (and its termination protocol) satisfies the AC-Uniform-
Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, AC-Non-Triviality, and AC-
Non-Blocking conditions of the NB-AC problem.

We now turn our attention to recovering participants. To satisfy AC-Termination, a
recovering participant is required to reach a decision consistent with the decision reached
by correct ones. As in 2PC, a failed participant returns to the operational state using the
information it stored in its stable log. During recovery, the participant tries to decide on the
transactions that were active at the time the crash occurred. This is actually achieved in

exactly the same way as in 2PC. Therefore, we will not discuss the issue any further 13.

Finally, note that in an attempt to reduce the time complexity of 3PC, a decentralized
3PC variation has been also discussed in [Ske81]. Similarly to decentralized 2PC,
decentralized 3PC reduces the time complexity of 3PC from 5 communication steps to 3 at

the expense of a higher message complexity.

4.2.3 The ACP-UTRB Protocol

Although non-blocking, the 3PC protocol requires 5 communication steps so that a
decision can be reached at every correct participant. In order to reduce the time
complexity of 3PC, Babaoglu and Toueg have proposed the ACP-UTRB protocol
[BaT93]. ACP-UTRB has the same basic structure as 2PC, and achieves non-blocking by
exploiting the properties of the communication primitive it uses to disseminate decision
messages to the participants in a transaction. The primitive that achieves this
dissemination is called broadcast, and has a corresponding action at the destination,
called deliver. Broadcast and deliver are usually implemented using multiple send and

receive operations that the underlying network provides.

15 Note, however, that if the participant had failed after voting yes but before receiving the decision, the
participant needs to communicate with other processes asking them what to decide, whether or not it has
already received pre-commit.
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// for the broadcaster, S-broadcast(m, @) occurs as follows:

send(m) to all processes in @ ;

// for each process in @, S-deliver (m) occurs as follows:

when receive(m)
S-deliver(m);

Figure 4.2: A Simple Broadcast primitive.

Failure-Free Execution

In order to understand ACP-UTRB, let us first examine how the coordinator of a 2PC
disseminates decision messages to the participants in a transaction. In 2PC, the
dissemination of decision messages is achieved using a broadcast primitive, called Simple

Broadcast (SB), which satisfies the following three properties (with A= 0) [BaT93]:

- Validity: If a correct process broadcasts a message m to the members of set @,

then all correct processes in ¢ eventually deliver m.

- Uniform-Integrity: For any message m, every correct process in @ delivers m at

most once, and only if m was previously broadcast by some process.

- Uniform-A-Timeliness: There exists a known constant A such that if the
broadcast of a message m is initiated at real-time ¢, then no process in ¢ receives
m after real-time ¢ + A.

SB is defined in terms of two primitives, S-broadcast(m, @) and S-deliver(m), where
m is the message broadcast to all the members of set @. Figure 4.2 illustrates a Simple
Broadcast algorithm [BaT93]. Note that SB is unreliable, i.e., if the broadcaster crashes
while broadcasting a message m, some processes might deliver m while some correct
processes never do so. Recall that 2PC leads to blocking situations because it allows
faulty participants to decide on the transaction following the delivery of the coordinator’s
decision, while all correct participants never deliver that decision. Consequently, if all
correct participants are uncertain, they are blocked. They cannot decide abort because

some failed participants could have decided commit.
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// for the broadcaster, R-broadcast(m, @) occurs as follows:
send(m) to all processes in ¢ ;

// for each process P in @, R-deliver(m) occurs as follows:

when receive(m) for the first time
if P # broadcaster then send(m) to all processes in @ ;
R-deliver(m);

Figure 4.3: A Uniform Timed Reliable Broadcast primitive.

In ACP-UTRB, such blocking scenarios are prevented by using a different broadcast
primitive, called Uniform Timed Reliable Broadcast (UTRB), which guarantees, in
addition to the Validity, Uniform-Integrity, and Uniform-A-Timeliness properties of

Simple Broadcast, the following Uniform-Agreement property:

- Uniform-Agreement: if any participant, correct or not, delivers a message m,

then all correct participants in ¢ eventually deliver m.

UTRB is defined in terms of two primitives, R-broadcast(m, ¢) and R-deliver(m),
where m is the message broadcast to all the members of set @. Figure 4.3 describes a
possible UTRB algorithm [BaT93, HaT94]. Every process relays every message it
receives for the first time to all other processes, and then delivers the message. Thus, if a
process delivers a message m, then it has already achieved relaying it. This guarantees
that all correct processes will eventually deliver m. It is clear that this primitive satisfies
Uniform-Agreement even if the initial broadcaster (or the relayer) subsequently crashes.
Furthermore, in [BT93], the authors show that there exists a constant delay A = (F + 1),
by which the delivery of m occurs, where F' denotes the maximum number of processes

that may crash during the execution of the atomic commitment protocol.

Figure 4.4 illustrates the ACP-UTRB protocol, assuming no participant votes no and
no participant crashes during the protocol execution. The set of participants is {P;, P>,
P;3, Py, Ps5, Pg}, and the coordinator is P;. The protocol is directly obtained from 2PC by
replacing the SB primitive with the UTRB primitive in order to disseminate decision

messages.
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Figure 4.4: The ACP-UTRB protocol.

Dealing with Failures

Recall from Section 2.3.2 that the only place in 2PC where a participant cannot
unilaterally decide on the transaction is when it times out waiting for the decision
message. In this case, the participant starts a termination protocol during which it tries to
find out what to decide by consulting with other participants in the transaction. This
termination protocol may, however, lead to blocking situations if all correct participants

are uncertain about the transaction outcome.

By exploiting the UTRB primitive to disseminate decision messages, ACP-UTRB
eliminates the blocking scenarios of 2PC. More precisely, once a participant in ACP-
UTRB has sent a yes vote following the receipt of prepare, it sets its timeout to 0+ A,
where O represents the upper bound on the time delay needed for its vote to reach the
coordinator, while A represents the upper bound on the time delay needed for the
decision message to reach every correct participant. If, due to a coordinator crash, the
participant times out while waiting for the decision message, it can unilaterally decide
abort, safe in its knowledge that no other participant could have received commit (by the
Uniform- Agreement and Uniform-A-Timeliness properties of UTRB). Thus, by
substituting the termination protocol of 2PC with a unilateral abort decision, ACP-UTRB

eliminates the only potential source of indefinite wait.

To complete our discussion on failures, note that in ACP-UTRB, participants’

recovery is achieved in exactly the same way as in 2PC so that AC-Termination is satisfied.
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Message Complexity Latency
point-to-point network broadcast network | Time complexity Log Complexity
3PC S5n 2n+3 5 2n +1
ACP-UTRB 2n+n’ 2n+1 3 2n+1

Figure 4.5: The cost of transaction commit under 3PC and ACP-UTRB.

4.2.3 Performance Evaluation

In this section, we examine the cost for non-blocking under the 3PC and ACP-UTRB
protocols. Figure 4.5 summarizes the performances of both protocols in terms of latency
and message complexity needed to commit a transaction. We denote by n the total
number of participants in the transaction, and assume failure-free executions in which

every participant votes yes.

By introducing a pre-commit phase, 3PC achieves non-blocking at the expense of 5
communication steps needed until a decision is reached at every correct participant,
compared to 3 steps needed in blocking 2PC. Concerning message complexity, 3PC
requires up to S5n messages (resp. 2n+3 messages), assuming a point-to-point network
(resp. a broadcast network), while 3n (resp. n+2) messages are exchanged under 2PC!6.
This high cost is paid even during normal processing, i.e., when no crash failures occur
during the protocol execution, which is definitely unacceptable in today’s highly reliable

distributed platforms.

By sharing the same basic structure with 2PC, ACP-UTRB reduces the time
complexity of 3PC, as it requires 3 communication steps so that a commit decision is
reached at every correct participant. This comes, however, at the expense of a quadratic
number of messages required by the UTRB primitive (1n”) in case of a point-to-point
network, making a total of 2n+n” messages exchanged during the protocol execution.
However, in case of a broadcast network, ACP-UTRB outperforms 3PC in both time and

message complexity.

16 Recall that decision acknowledgment messages are not considered.



68 CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

Finally, it is noteworthy that while 3PC and ACP-UTRB achieve non-blocking
assuming a synchronous system and reliable communication (cf. Section 4.2.1), both
protocols may result in participants reaching inconsistent decisions if either of these
assumptions is not satisfied. In ACP-UTRB, for instance, unreliable communication
(resp. unbounded message processing and transmission delays) renders the Uniform-
Agreement property (resp. the Uniform-A-Timeliness property) of UTRB unattainable,
leading participants to decide inconsistently in response to timeouts. Similar
inconsistencies might arise under 3PC and its associated termination protocol if either of

the above mentioned conditions does not hold.

To illustrate, consider a transaction involving three participants P;, P, and P3;, where
P; is the transaction coordinator. Consider the following scenario: all participants vote
ves. P; receives the yes votes, sends pre-commit to all, and waits for pre-commit
acknowledgments. Assume that, due to communication failures or arbitrary (i.e.,
unbounded) message transmission delays, P; times out waiting for the coordinator’s pre-
commit message. P; and P,, on the other hand, do receive and acknowledge this message.
According to the timeout actions associated with 3PC (cf. Section 4.2.2), P; invokes a
termination protocol during which a backup coordinator, say P; itself, is elected. Since
P3’s local state is UNCERTAIN, it decides abort according to the decision rule of the
termination protocol. On the other hand, when P; times out (within the 3PC protocol)
waiting for the pre-commit acknowledgment from P;, it decides commit, given that P; has

voted yes.

To avoid such inconsistencies, new 3PC variations that exploit a quorum (or
majority) based termination protocol have been proposed [Ske82, KeD94]. More
precisely, the protocols discussed in [Ske82, KeD94] guarantee that, even if the
abovementioned system assumptions are not satisfied, no two participants can decide
differently. Unfortunately, these protocols do not completely eliminate blocking, but they
cause blocking less frequently than 2PC. However, there is no precise characterization of
the conditions under which these protocols provide liveness guarantees in systems where

no timing assumptions can be made whatsoever.
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4.3 NB-AC in Asynchronous Systems

Based on the general system model described in Section 2.1, we define in this section an
asynchronous model of computation. We then overview the most well known atomic

commitment protocols that have been proposed in this context.

4.3.1 System Model

The model of asynchronous computation we consider in this and the following chapter is
patterned after the one in [Cha93, ChT96]. Informally, a system is said to be asynchronous
if there is no bound on message transfer delays or process relative speeds. The
asynchronous model of computation is very attractive and compelling because distributed
algorithms designed and implemented in this context bring general solutions to distributed
problems, which are very easy to port. Furthermore, today’s large distributed systems are

often subject to variable or unexpected workloads that are sources of asynchrony.

Although asynchronous systems are very attractive in practice, Fischer, Lynch, and
Paterson have shown that distributed agreement problems are impossible to solve in a
deterministic and fault-tolerant (i.e., non-blocking) way in an asynchronous system that
is subject to even a single crash failure [FLP85]. This theoretical result, known as the
Fischer-Lynch-Paterson impossibility result (FLP, for short), applies to a variety of well-
known agreement problems, notably the Consensus problem (cf. Section 4.3.3), and the
NB-AC problem. This result translates the fact that, in an environment where no timing
assumptions can be made whatsoever, it is impossible to distinguish a crashed process
from a process that is only “very slow”. Therefore, crash failures cannot be reliably

detected and reported to correct processes.

To circumvent this impossibility result, Chandra and Toueg have augmented the
asynchronous model of computation with the notion of unreliable failure detectors for
systems with crash failures [Cha93, CT96]. More precisely, each process P; has access to
a local failure detector module FD;, which informs it of the list of processes that it
currently suspects to have crashed. A failure detector can make mistakes by providing

incorrect information, i.e., it may suspect a correct process, or never suspect a failed one.
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Furthermore, at any given time, the failure detector modules at two different processes

may provide inconsistent information, i.e., they do not have the same list of suspects.

Although a failure detector can make mistakes, it must, however, follow a certain
behavior pattern so that it can be useful. This behavior is captured through two abstract
properties that the failure detector must satisfy, namely completeness and accuracy.

These properties are detailed in the next section.

It is important to note that the model of unreliable failure detectors proposed in
[Cha93, CT96], and which has formed the bases for the construction of existing solutions
to the NB-AC problem in the context of asynchronous systems, only considered systems
in which process crashes are permanent (henceforth called a crash-stop failure model). In
Chapter 5, we show how to exploit the results presented in [Cha93, CT96] to solve the
distributed commit problem in asynchronous systems in which processes may crash and

later recover (henceforth called a crash-recovery failure model).

While processes may crash, the communication subsystem is assumed to be reliable
in the following sense: if a process P; sends a message to a process Py, then unless one of

them crashes after the message is sent, the message is eventually received by Py 17.

4.3.2 Properties of Failure Detectors

As stated earlier, failure detectors are characterized by completeness and accuracy
properties. The completeness property characterizes the degree to which a failure
detector can suspect crashed processes, while the accuracy property restricts the false
suspicions that a failure detector can make. Two completeness properties and four

accuracy properties have been defined:

e COMPLETENESS:

> Strong Completeness: Eventually, every process that crashes is
permanently suspected by every correct process.

>  Weak Completeness: Eventually, every process that crashes is permanently
suspected by some correct process.

17 Note that this does not exclude link failures, assuming that these are eventually repaired so as to allow
retransmission of lost or corrupted messages.
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Figure 4.6: Failure detector classes.

* ACCURACY:
>  Strong Accuracy: No process is suspected before it crashes.
»  Weak Accuracy: Some correct process is never suspected.

>  Eventual Strong Accuracy: There is a time after which correct processes
are not suspected by any correct process.

>  Eventual Weak Accuracy: There is a time after which some correct process
is never suspected by any correct process.

A failure detector is characterized by the completeness property and the accuracy
property that it satisfies. By combining the two completeness properties with the four
accuracy properties, eight different classes of failure detectors can be defined. These are
summarized in Figure 4.6. In [Cha93, ChT96], it has been shown that Strong
Completeness can be emulated out of Weak Completeness, meaning that any failure
detector of class Q (resp. W, <Q,, <W) can be transformed into a failure detector of
class P (resp. S, <P, <=5). Note that failure detectors satisfying Strong Accuracy are
reliable, i.e., they never make false suspicions, whereas all other failure detectors are

unreliable, i.e., they can make an infinite number of false suspicions.

The fundamental result of Chandra and Toueg’s work on failure detectors states that
the Consensus problem, an abstract form of agreement, can be solved deterministically in
an asynchronous system augmented with an unreliable failure detector. The relevance of
this result to our transactional context lies in the similarity between the Consensus

problem and the NB-AC problem given that both problems entail fault-tolerant
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agreement among processes. In [ChT96], the authors describe several solutions to the
Consensus problem using each one of the eight failure detector classes. Of particular
interest is an algorithm that solves Consensus using any failure detector of class <=S and
assuming a majority of correct processes, i.e., the algorithm tolerates up to f crash
failures, where f < [n /2] The importance of class <>§ resides in the fact that it is the
weakest class of failure detectors that allows solving the Consensus problem in an
asynchronous system [ChT96, CHT96]. With a stronger failure detector class, notably

class S, the resilience of the algorithm can be increased up to n - 1.

4.3.3 A Story of Consensus

The Consensus problem can be viewed as a general form of agreement in distributed
systems. In this problem, each process P; proposes a binary initial value v; (v; O {0, 1})
and the processes must agree on some binary decision value v (v U {0, 1}) such that the

following properties are satisfied [Fis83]:

C-Agreement: No two correct processes decide differently.

C-Uniform-Validity: The decision value must be the initial value of some process.

— C-Uniform-Integrity: Every process decides at most once.

C-Non-Blocking: Every correct process eventually decides.

Interestingly, the algorithms proposed in [ChT96] actually solve a stronger form of
Consensus, called Uniform Consensus. The Uniform Consensus problem is defined by
the C-Uniform-Validity, C-Uniform-Integrity, and C-Non-Blocking properties of

Consensus, and the following C-Uniform-Agreement property:

- C-Uniform-Agreement: No two processes decide differently.

Whereas the Consensus problem allows two processes to decide differently as long
as at least one of them crashes, Uniform Consensus forbids any two processes from ever
deciding differently whether they crash or not. This uniform agreement on the decision
value is crucial for maintaining decision consistency if we consider that crashed
processes may become operational again by executing a recovery protocol. This issue

will be further discussed in the next chapter.
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4.3.4 On the Solvability of NB-AC

The fundamental results of Chandra and Toueg on solving Consensus have constituted
the cornerstone of several research works around fault-tolerant agreement problems in
the context of asynchronous systems. Given these results, an interesting question is then
whether the NB-AC problem can also be solved in asynchronous systems with unreliable

failure detectors.

In [Gue95], Guerraoui answers this question negatively. More precisely, the author
shows that NB-AC is impossible to solve in an asynchronous system with unreliable
failure detectors, which is rather not surprising given that NB-AC was proved harder than
Consensus [Had90]. This actually explains why NB-AC has been mostly studied under
the assumption of reliable failure detection. With this impossibility, one is naturally

tempted to go one step further and find out the real reason behind it.

A key result of the work presented in [Gue95] is a clear identification of the reason
why NB-AC cannot be solved using unreliable failure detectors. This result states that
the difficulty in solving NB-AC stems from its AC-Non-Triviality condition (if all
participants vote yes and “no failures occur”, then all participants must decide commit),
which requires precise, i.e., reliable, knowledge about failures that unreliable failure
detectors cannot provide. By weakening the AC-Non-Triviality condition, however,
Guerraoui defines a weaker problem than NB-AC, called NB-WAC (Non-Blocking Weak
Atomic Commitment), which is sufficient in most real transactional systems. A
fundamental characteristic of NB-WAC is its reducibility to Consensus, i.e., whenever

Consensus is solvable, NB-WAC is also solvable [Gue95].

4.3.5 The Non-Blocking Weak Atomic Commitment Problem

The Non-Blocking Weak Atomic Commitment (NB-WAC) problem is defined by the AC-
Uniform-Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, and AC-Non-Blocking of
the NB-AC problem, and by the following 4C-Weak-Non-Triviality condition [Gue95]:

- AC-Weak-Non-Triviality: If all participants vote yes and no participant is ever

suspected, then all participants must decide commit.
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The importance of this new condition lies in the fact that, although weaker than its
original version (i.e., transactions are allowed to abort in case of failure suspicions), it
still eliminates trivial solutions to the problem where participants always decide abort.
As stated before, a fundamental characteristic of NB-WAC is that it is reducible to
Consensus, and therefore, is solvable in asynchronous systems augmented with
unreliable failure detectors. The main significance of this result is in defining a rigorous

framework in which atomic commitment with some liveness guarantees can be achieved.

Note, however, that although solvable in the context of asynchronous systems, NB-
WAC was proposed assuming a crash-stop failure model, i.e., once a process crashes, it
does not recover. This assumption is translated by the absence of the AC-Termination

property from the set of properties that define the NB-WAC problem.

4.3.6 The DNB-AC protocol

Based on the above results, several protocols that solve the NB-WAC problem were
devised and are typified by the Decentralized Non-Blocking Atomic Commitment (DNB-
AC) protocol [GuS95]. In the absence of failure suspicions, DNB-AC has the same basic
structure as the decentralized 3PC protocol discussed by Skeen in the context of
synchronous systems [Ske81] (cf. Section 4.2.2). As opposed to decentralized 3PC,
however, the termination protocol of DNB-AC is encapsulated within a wuniform
consensus protocol, enabling a precise characterization of its liveness in an asynchronous

system augmented with any unreliable failure detector of class <>S.

As illustrated in Figure 4.7, the DNB-AC protocol has three communication steps. During
the first step, the coordinator initiates the protocol by sending a prepare message to all
participants in the transaction. In step 2 of the protocol, a participant that votes yes sends its
vote to all other participants. In step 3, when a participant receives yes votes from all, it
sends a pre-commit message to all. Finally, once a participant has received pre-commit
from all, it decides commit. Note, however, that a participant that decides on the transaction
needs to forward its decision to all other participants. This is required in order to ensure
that if a correct participant reaches a decision, then all correct participants also reach a

decision.
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Figure 4.7: The DNB-AC protocol.

This describes the protocol assuming no participant votes no, and no participant is
suspected to have crashed during the protocol execution. If, during the first step of the
protocol, a participant P; either suspects the coordinator or votes no, then P; takes a
unilateral abort decision, and sends abort to all other participants. During step 2,
however, a participant P; that suspects any other participant cannot unilaterally decide.
Therefore, P; asks all other participants to start a uniform consensus protocol by sending
them a start-consensus message, and then starts the uniform consensus with abort as its
initial value. This value translates the fact that at this point, P; does not know yet the
votes of all participants. The outcome of the uniform consensus protocol defines the
transaction outcome for P;. During step 3 of the protocol, if a participant P; suspects any
other participant or receives a start-consensus message, then P; starts a uniform
consensus with commit as its initial value (at this point, P; knows that all votes are yes),

and the outcome of the consensus protocol becomes the transaction outcome for P;.

In the absence of failure suspicions, it is clear that DNB-AC preserves transaction
atomicity as it reduces to a classical decentralized 3PC protocol. In the event of failure
suspicions, DNB-AC exploits a uniform consensus protocol as a termination protocol,
which guarantees a unique outcome for the transaction in a fault-tolerant way. It follows
that the resilience (to blocking) of DNB-AC depends on the resilience of the uniform
consensus protocol, and hence on the underlying failure detector class that is considered.
More precisely, based on a failure detector of class <=5, DNB-AC tolerates up to f crash

failures, where f< [n/2] ie., atleast] (n + 1)/ 2] participants are correct.
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4.3.7 The Modular Decentralized 3PC Protocol

While DNB-AC needs the same number of communication steps to commit as blocking
2PC protocols (i.e., 3 steps), 3n*+n (resp. 3n+1) messages need to be exchanged during
the protocol execution assuming a point-to-point (resp. a broadcast) network. It is in an
attempt to reduce the message complexity associated with DNB-AC that the Modular
Decentralized 3PC (MD3PC) protocol has been proposed [GLS96].

The key idea underlying MD3PC is to have the sub-protocol required for non-
blocking performed by only a subset noted Sefy;z of the participants in the transaction,
and the cardinality of this subset depends on the number of crash failures to be tolerated.
As a consequence, the resilience of the protocol is traded against the number of messages
exchanged during its execution. More precisely, to be resilient to f crash failures, given
that f < [n /2] and the failure detector is <>S, the protocol requires that Sezy;p contain
2f+1 members (i.e., | Setyp | = 2f + 1). Another fundamental difference with DNB-AC
relates to the termination protocol used in case of failure suspicions. Whereas DNB-AC
requires a uniform consensus protocol as a termination protocol, MD3PC is based on a

majority consensus.

The Majority Consensus problem is defined by the C-Uniform-Agreement, C-
Uniform-Integrity, and C-Non-Blocking properties of Uniform Consensus, and the

following C-Majority-Uniform-Validity property:

- C-Majority-Uniform-Validity: (i) the decision value must be the initial value of
some process, and (ii) if a majority of initial values are 1, then the decision value

must be 1.

In our transactional context, the value 1 clearly corresponds to commit while 0
corresponds to abort. As opposed to the C-Uniform-Validity property of Uniform
Consensus, the C-Majority-Uniform-Validity property enables a participant in MD3PC to
decide commit once it has received pre-commit messages from a majority of Sefyp. Note
that, just like Consensus and Uniform Consensus, the Majority Consensus problem can

also be solved with any failure detector of class <5 [GLS96].
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Figure 4.8: The MD3PC protocol.

Figure 4.8 illustrates the MD3PC protocol, assuming no participant votes no and no
participant is ever suspected. Similarly to DNB-AC, during the first step of MD3PC, the
coordinator sends a prepare message to all participants in the transaction. In step 2,
however, participants’ votes are only sent to the members of Setyp. In Figure 4.8 for
instance, /= 1 and Setyp = {P}, P>, P3} (i.e., | Setyg | = 3). In step 3, when a member of
Setyp receives yes votes from all, it sends a pre-commit message to all. Finally, once a
participant has received pre-commit from a majority of Sezy;p, it sends its decision to all

other participants and decides commit.

If, during step 1, a participant P; either votes no or suspects the coordinator, then P;
takes a unilateral abort decision. The remaining failure suspicion cases can be reduced to a
majority consensus protocol, which is only launched by the members of Sezyp. More
precisely, a failure suspicion that occurs during step 2 of the protocol leads a member P; of
Setyp to start a majority consensus with abort as its initial value, while a failure suspicion

that occurs during step 3 leads P; to start a majority consensus with commit as initial value.

4.3.8 Performance Evaluation

In this section, we examine the cost for non-blocking under DNB-AC and MD3PC. Figure
4.9 summarizes the performances of both protocols in terms of latency and message
complexity, assuming no participant votes no and no participant is ever suspected during
the protocol execution. We denote by »n the total number of participants, and by f the

number of crash failures to be tolerated, where /< [n/2].
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Figure 4.9: The cost of transaction commit under DNB-AC and MD3PC.

As already pointed out, DNB-AC and MD3PC have the same basic structure and
differ only in the number of messages that need to be exchanged during the protocol. More
precisely, both protocols need, like 2PC, 3 communication steps until a decision is reached
at every correct participant. In MD3PC, however, the resilience of the protocol can be
traded against the number of messages exchanged. For instance, with n = 12, f= 2, and
assuming a point-to-point network, DNB-AC requires 444 messages, while MD3PC
requires 276 messages (compared to 36 in 2PC). In case of a broadcast network, DNB-

AC needs 37 messages whereas MD3PC needs 30 (compared to 14 in 2PC).

Even though both protocols have the same latency, a participant in MD3PC is
allowed to decide commit once it has received pre-commit from a majority of Sety g,
whereas a participant in DNB-AC cannot decide commit until it receives pre-commit

from all participants in the transaction.

Based on Chandra and Toueg’s work on solving (Uniform) Consensus, DNB-AC
and MD3PC achieve non-blocking in asynchronous systems assuming reliable
communication, any unreliable failure detector of class <=S, and a maximum of f crash
failures, where f<[n / 21 If these assumptions are not satisfied, both protocols might

block, but never lead two participants to decide on different outcomes.

An important point to note is that both DNB-AC and MD3PC were devised
assuming a crash-stop failure model, meaning that a process that crashes is not assumed
to recover nor to inquire other participants about the transaction outcome. Consequently,
no log force is performed and no acknowledgment of decision messages is needed, as

these are usually required in order to support recovery.
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4.4 Discussion

In an attempt to provide transaction liveness guarantees, fault-tolerant (i.e., non-
blocking) commit protocols have emerged. As shown in Sections 4.2.4 and 4.3.8,
however, fault-tolerance has a price, and this price is paid in terms of time complexity,
message complexity, or both. Indeed, when compared to their blocking counterparts, the
commit protocols discussed in this chapter trade performance for fault-tolerance. This is
mainly due to the fact that most of the existing works on fault-tolerant commit protocols
have, in a way, pushed performance issues into the background, and if not, the best they

hoped for is to attain performances comparable to those of blocking 2PC variations.

Another major problem has to do with participants’ prepared states. Indeed, all the
protocols discussed in this chapter are extensions of basic 2PC. Therefore, they all
require that the participating local sites provide a prepared state for each transaction they
execute, thus inheriting all the problems associated with the support of that state (cf.

Sections 1.2 and 2.6).

Finally, and as already pointed out, solutions to the NB-AC problem depend on the
underlying system and failure assumptions, and on the knowledge about the occurrence
of failures in the system. Whereas this knowledge can be precise under a synchronous
system, asynchronous systems render any such knowledge imprecise, and thus any
solution to the NB-AC problem impossible. By considering a slightly weaker variation of
NB-AC, fault-tolerant commit protocols have started to emerge in the context of
asynchronous systems (cf. Sections 3.4.6 and 3.4.7). These protocols essentially build on
the work of Chandra and Toueg on solving Consensus in asynchronous systems, and
hence assume, just like consensus protocols, a failure model in which process crashes are
permanent. Whereas this assumption indeed makes sense in environments where process
decisions are used to trigger some real-time actions, i.e., there is no time to take into
account process recovery and hence the decision of faulty processes, it is definitely
unacceptable in a transactional context where participants’ recovery is an intrinsic
feature, and where the decision of faulty processes must be taken into account if

transaction atomicity is to be guaranteed.



80

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND




81

Chapter 5

Non-Blocking Dictatorial Atomic
Commitment

As we have shown in the previous chapter, existing non-blocking commit protocols
impose high costs on distributed transaction processing, which results in a significant
increase in transaction response times. Furthermore, given the assumptions they make
about the underlying system model, notably in the context of asynchronous systems, their
practical utility in real-world transactional systems becomes questionable. Based on the
observation that all these protocols are extensions of 2PC, an important question is then
whether non-blocking protocols can rather be derived from 1PC, hence reconciling high
performance and fault-tolerance. In this chapter, we answer this question positively, and

propose several non-blocking solutions to the Dictatorial Atomic Commitment problem.

In order to do so, we first discuss the issue of blocking in 1PC, and define the Non-
Blocking Dictatorial Atomic Commitment (NB-DAC) problem. We then give a protocol,
called NB-CLL, that solves the problem in a synchronous system, while maintaining the
cost of distributed transaction commit below that of all existing non-blocking protocols

proposed in this context.

We point out the fact that, just like the NB-AC problem, NB-DAC is unattainable in
asynchronous systems. By refining the NB-DAC specification, and following the
approach proposed in [Gue95], we introduce the Non-Blocking Weak Dictatorial Atomic
Commitment (NB-WDAC) problem that is better suited to asynchronous environments.

We then propose a protocol, called ANB-CLL, which solves NB-WDAC in an
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asynchronous system augmented with an unreliable failure detector. In contrast with
existing non-blocking protocols previously proposed in this context, our protocol
achieves non-blocking in systems in which processes may crash and later recover (i.e.,
crash-recovery failure model), making it more suitable for real-world transactional

systems where process recovery is an intrinsic feature.

The NB-CLL and ANB-CLL protocols can be viewed as non-blocking extensions of
CLL, our 1PC variation (cf. Section 3.5). Consequently, they both blend the advantages of
CLL with fault-tolerance. We show through performance analysis that our protocols are

more efficient than all other non-blocking protocols proposed in their respective contexts.

5.1 The Window of Vulnerability to Blocking of 1PC

To better illustrate the blocking problem in 1PC, let us go back over this issue in 2PC. In
2PC, blocking can occur if the coordinator crashes after the participants have sent a yes
vote. This period of time is called the window of vulnerability to blocking of the

protocol.

In a 1PC protocol, the window of vulnerability is much larger than in a 2PC
protocol. This is because the only period during which a participant has the freedom to
unilaterally abort a transaction is after receiving an operation from the coordinator and
before acknowledging this operation. Otherwise, the participant is at the coordinator's
mercy, and the latter acts as a dictator for choosing the transaction outcome. In other
words, whenever it has acknowledged an operation and unless it receives another
operation or the final decision, a participant in 1PC enters the window of vulnerability to
blocking. If the coordinator crashes while all participants have acknowledged the
operations submitted to them, they are all blocked until the coordinator recovers from its
crash. In comparison, unless it has sent back a yes vote, a participant in a 2PC can at any

time unilaterally abort a transaction.

The above observation raises a crucial issue and suggests that non-blocking
solutions to the DAC problem are indispensable if dictatorial transaction processing is to

be used in today’s systems and applications.
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5.2 The Non-Blocking Dictatorial Atomic Commitment
Problem

We define the Non-Blocking Dictatorial Atomic Commitment (NB-DAC) problem by the
DAC-Uniform-Agreement, DAC-Uniform-Integrity, and DAC-Termination properties of
the DAC problem (cf. Sections 3.1.2 and 3.5.2), and the following DAC-Uniform-Validity,
and DAC-Non-Blocking properties:

- DAC-Uniform-Validity: If the coordinator does not crash, the decision value is

the coordinator’s proposed value.

- DAC-Non-Blocking: Every correct participant eventually decides.

Just like AC-Non-Blocking, the DAC-Non-Blocking property is expressed in terms of
correct participants and not operational ones. This is mainly due to the fact that, in a
transactional context, operational participants that have crashed and later recovered should
decide through the associated recovery protocol rather than the commit protocol. As we
shall see later, it is precisely this feature that enables us to extend the applicability field of
Chandra & Toueg’s unreliable failure detectors model so as to solve the distributed commit

problem in asynchronous systems based on a crash-recovery model of computation.

5.3 NB-DAC in Synchronous Systems

Based on the system model described in Section 4.2.1, we propose in this section a
protocol, called Non-Blocking Coordinator Logical Log (NB-CLL), which solves the
NB-DAC problem in synchronous systems [AbP98a, AbP98b]. We then prove the
correctness of our protocol and compare its performances with existing non-blocking

protocols proposed in this context.

5.3.1 The NB-CLL Protocol

Failure-Free Execution

NB-CLL has exactly the same basic structure as the CLL protocol (cf. Section 3.5), and
differs only in the way decision messages are disseminated by the coordinator of the
transaction. To illustrate, recall that CLL (as well as all other 1PC variations) exploits a

basic 1PC protocol, which we defined in terms of the terminate() function in Figure 3.1.
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Figure 5.1: (a) The CLL protocol, and (b) the NB-CLL protocol.

During this function, the coordinator disseminates its decision message by
sequentially sending this message to each participant in the transaction. Once a
participant receives the coordinator’s decision, it immediately decides accordingly and
returns. This message diffusion corresponds exactly to the Simple Broadcast (SB)
primitive discussed in Section 4.2.3. For the sake of clarity, Figure 5.1(a) illustrates the
CLL protocol behavior based on SB, and assuming no failures occur during the protocol

execution. The set of participants is {P;, P,, P3, P4, Ps, P}, and the coordinator is P,.

Thus, just like 2PC, 1PC protocols (including CLL) lead to blocking situations
because of the unreliability of SB that allows faulty participants to deliver the
coordinator’s decision (and then crash), while all correct participants never deliver that
decision. If failures occur such that all correct participants are uncertain, they cannot
decide on the transaction even if they know that participants they cannot communicate
with have crashed. Indeed, any such decision might contradict the decision another
participant might have reached before crashing. Unlike 2PC, however, such blocking
scenarios are much more likely to occur in a 1PC protocol given that the uncertainty

period of a 1PC participant lasts all along the transaction execution.

CLL can thus be made non-blocking by substituting the SB primitive by a Uniform
Timed Reliable Broadcast (UTRB) that achieves uniform agreement on decision delivery
among participants [BaT93, HaT94] (cf. Section 4.2.3). Using UTRB guarantees that if

any participant, whether correct or not, delivers a decision message, then all correct
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participants will deliver that message within A=(F + 1) time units after the time the
coordinator has initiated the broadcast!8. Figure 5.1(b) illustrates the resulting protocol,
which we call Non-Blocking CLL (NB-CLL) [AbP98a, AbP98b], assuming no failures

occur during the protocol execution.

Dealing with Failures

Recall that in CLL, if a participant P; times out while waiting for a transaction’s
operation or the final decision from the coordinator, it cannot unilaterally decide on the
transaction. In this case, P; starts a termination protocol during which it tries to consult
with other participants that might have reached a decision or can unilaterally do so. If,
however, all the participants with which P; can communicate are uncertain, P; is blocked

inside the termination protocol.

By exploiting the properties of the UTRB primitive, NB-CLL eliminates such
undesirable scenarios. The idea is inspired from the ACP-UTRB protocol, and consists
on substituting the (blocking) termination protocol executed in response to the timeout
with an action that always enables a consistent decision to be reached at P;. For this to
work, however, P; needs a reliable and accurate detection of the crash of the coordinator
before it engages in the associated timeout action (otherwise, transaction atomicity would
be compromised). Whereas this issue is rather straightforward in 2PC — a participant
that times out waiting for the coordinator’s decision in response to its vote can safely
conclude that the coordinator has crashed 1° — it is less obvious in our 1PC context given
that a 1PC participant does not wait for the decision (or a transaction’s operation) as a
response to a message it has sent to the coordinator. Therefore, there is no mean by
which the participant can tell the moment at which the coordinator is supposed to
terminate the transaction and broadcast its decision. As a consequence, the timeout of a
1PC participant cannot be relied on to detect a coordinator crash: the coordinator can be

simply busy executing operations on other participants.

18 Recall that F denotes the maximum number of participants that may crash during the execution of the
commit protocol, while drepresents the upper bound on message processing and transport delay over a link.

19 Recall that in our model of synchronous system and reliable communication, if a 2PC participant does
not deliver the decision message within 0+ A time units after sending its vote (where the value of A depends
on the particular broadcast primitive that is used), it can safely conclude that the coordinator is faulty.
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To overcome this problem, we propose to augment our synchronous system model
with an external failure detector mechanism by which crash failures are reliably detected
and reported to operational sites. In other words, each process P; has access to a reliable
failure detector module RFD;, which maintains a list of those processes that have
crashed. Given our model of synchronous system and reliable communication, reliable
failure detectors can be easily implemented by means of timeouts. For instance, each failure
detector module RFD; can periodically query other processes in the system. If a process P;
does not respond by the specified timeout, RFD; can safely conclude that P; has crashed. In

the notations, P; [J RFD; means that process P; has detected the crash of process P;.

In this context, our NB-CLL protocol, defined by the terminate() function in Figure
5.2, works as follows [AbP98a, AbP98b]. When a participant P; detects a coordinator
crash, it sets its timeout to A=(F + 1)J, which represents the upper bound on the time
delay needed for the decision message to reach every correct participant under UTRB.
On timeout, P; takes a unilateral abort decision, safe in its knowledge that no other

participant could have received (and decided) commit.

To complete our discussion on failures, note that NB-CLL exploits our Coordinator
Logical Logging recovery mechanism described in Section 3.4.3. Therefore, participant’s
recovery is achieved in exactly the same way as in CLL, that is, using CLL’s recovery

procedure of Figure 3.2 (cf. Section 3.5.2).

5.3.2 Protocol Correctness

In this section, we show that our NB-CLL protocol presented in Figure 5.2 is correct and
non-blocking. This amounts to proving that it satisfies all of the five properties of the

NB-DAC problem.

Theorem 5.1. NB-CLL achieves the DAC-Uniform-Agreement property.

PROOF. For contradiction, assume that a participant P; decides commit, while
another participant Py decides abort. In NB-CLL, P; can decide commit only at lines
7 and 13 following the delivery of a commit decision message. By the Uniform-

Integrity property of UTRB, the coordinator must have broadcast a commit decision
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function terminate ()

Only the coordinator executes:

1 decision: = proposition; /I proposition 1 {commit, abort}
2 R-broadcast (decision, participants);

Every participant P; executes:

3 wait until [R-deliver (decision) or coordinator [ RFD;]
4 if (coordinator [ RFD;) then

5 set time-out to A;

6 wait until [R-deliver (decision)]
7 decide (decision);

8 return;

9 on-timeout

10 decide (abort),

11 return;

12 else

13 decide (decision);

14 return;

Figure 5.2: The NB-CLL protocol.

message at line 2, say at real-time t Participant Py can decide abort at lines

R-broadcast’
7, 10, and 13. Since we have a single coordinator per transaction and since the
coordinator broadcasts only one decision for each transaction (at line 2), participant
P;. could not have delivered an abort decision, and hence, could not have decided
abort at lines 7 or 13. Therefore, Py, must have decided abort at line 10 following the
time-out expiration. In this case, Py must have detected a coordinator crash. Assuming
that this detection occurs at real-time t.ash, the time-out expiration occurs at real-
time teaghTA. Since participant P; has delivered a commit decision, this means that the
coordinator had broadcast a commit decision before it crashed. Thus, t,, . < ftergh.
Furthermore, by the Uniform-Agreement and A-timeliness properties of UTRB, Py

eventually delivers a commit decision as well, and it does so at most by real-time

t +A. Since t

Rebroadeast Rebroadeast~ terashs Pk must have received the commit decision before

timing out. This contradicts the fact that Py has executed line 10.
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Theorem 5.2. NB-CLL achieves the DAC-Uniform-Validity property.

PROOF. Assume that the coordinator is correct. Since we consider a reliable failure
detector, then no participant could have detected a coordinator crash, and therefore,
no participant could have decided at line 7 or at line 10. Consequently, all participants
must have decided at line 13 following the delivery of the decision message, and this
message must have been broadcast by the coordinator at line 2 (by the Uniform-
Integrity property of UTRB). From lines 1 and 2 of the protocol, it is obvious that
the decision value broadcast by the coordinator is nothing but its proposition.

Consequently, the decision value of all participants is the coordinator’s proposed value.

Theorem 5.3. NB-CLL achieves the DAC-Uniform-Integrity property.

PROOF. From the structure of the protocol, it is obvious that every participant

decides at most once.

Theorem 5.4. NB-CLL achieves the DAC-Non-Blocking property.

PROOF. In NB-CLL, if the coordinator does not crash, then it eventually broadcasts
its decision to all participants by executing line 2. Consequently, every correct
participant eventually decides at line 13 following the delivery of the coordinator’s
decision message. On the other hand, if the coordinator crashes, then every
undecided (correct) participant will eventually detect the coordinator crash, in which
case, the participant executes the associated wait statement at line 6 after having set
its timeout. If the decision message being waited for is not received by the specified
time, the timeout expires and the participant decides abort at line 10; otherwise, the
participant decides on line 7 following the delivery of the decision message.

Therefore, every correct participant eventually decides.

Theorem 5.5. NB-CLL achieves the DAC-Termination property.

PROOF. To show that DAC-Termination is satisfied, we must consider participants’
recovery. Given that NB-CLL exploits the same recovery procedure as CLL, the

proof remains the same for both protocols (cf. Section 3.5.3).
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Message Complexity Latency
point-to-point network broadcast network Time complexity Log Complexity
3PC S5n 2n+3 5 2n +1
ACP-UTRB 2n+n’ 2n+1 3 2n+1
NB-CLL n’ n 1 n+1

Figure 5.3: The cost of transaction commit under 3PC, ACP-UTRB, and NB-CLL.

5.3.3 Performance Evaluation

In this section, we examine the cost for non-blocking under the NB-CLL protocol, and
compare its performances with previously discussed non-blocking protocols proposed in
the same context, namely 3PC and ACP-UTRB. Figure 5.3 summarizes the performances
of the protocols in terms of latency and message complexity needed to commit a

transaction. We denote by » the total number of participants in the transaction.

By sharing the same basic structure with CLL, NB-CLL drastically reduces the time
and log complexities of both 3PC and ACP-UTRB, thereby reducing transaction
response times. Furthermore, we note that although NB-CLL achieves non-blocking at
the expense of a quadratic number of messages exchanged under a point-to-point
network, it still maintains message complexity far below that of ACP-UTRB, and with a
reasonable number of participants (i.e., # < 5) or in the case of a broadcast network, even
below that of 3PC, thus providing the best tradeoff between performance and fault-

tolerance.

5.4 NB-DAC in Asynchronous Systems

Our NB-CLL protocol described in the previous section provides both safety and liveness
guarantees, assuming a synchronous system and reliable communication. Just like 3PC
and ACP-UTRB, however, NB-CLL may lead participants to reach inconsistent decisions
if either of these assumptions is not satisfied, thus compromising transaction safety. To
avoid such inconsistencies, and based on the asynchronous system model defined in
Section 4.3.1, we study in this section the NB-DAC problem in asynchronous

environments. In particular, we propose a new non-blocking extension to CLL, called
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Asynchronous Non-Blocking Coordinator Logical Log (ANB-CLL), which always
guarantees transaction safety, while providing liveness guarantees in asynchronous

systems with reliable communication and unreliable failure detectors [AbP99].

In contrast with existing fault-tolerant protocols proposed in this context, ANB-CLL
achieves non-blocking in asynchronous environments in which processes may crash and
later recover. Indeed, by exploiting the recovery semantics of the distributed commit
problem, we show that the previous results of Chandra & Toueg on solving (Uniform)
Consensus in asynchronous systems assuming a crash-stop failure model [Cha93,
ChT96] can be adapted to a transactional context so as to provide fault-tolerant solutions
to the distributed commit problem in asynchronous systems based on a crash-recovery

failure model of computation.

5.4.1 On the Solvability of NB-DAC

Recall from Section 5.2 that the NB-DAC problem is defined by the DAC-Uniform-
Agreement, DAC-Uniform-Integrity, DAC-Termination and DAC-Non-Blocking
properties, and the following DAC-Uniform-Validity property:

- DAC-Uniform-Validity: If the coordinator does not crash, then the decision

value is the coordinator’s proposed value.

This property is of particular importance as it reflects the dictatorial aspect of the
NB-DAC problem as opposed to the classical NB-AC problem [ unless the coordinator
crashes, the decision value must only be determined by the coordinator. Clearly, this
property is too strong in the context of asynchronous systems since it requires a precise
knowledge about the occurrence of a coordinator crash, thus making the NB-DAC

problem rather unattainable.

To illustrate, assume that the coordinator crashes before sending its decision to the
participants. In this case, participants can neither wait indefinitely for the coordinator’s
decision (otherwise, DAC-Non-Blocking would be violated), nor can they take a
unilateral decision unless they know that the coordinator is indeed faulty (otherwise,

DAC-Uniform-Validity would be compromised). Since unreliable failure detectors can
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never provide participants with such a precise knowledge about the crash of the
coordinator, it follows that NB-DAC cannot be solved in asynchronous systems with

unreliable failure detectors.

However, by weakening the DAC-Uniform-Validity condition, and following the
approach proposed in [Gue95], we define in the next section the Non-Blocking Weak
Dictatorial Atomic Commitment (NB-WDAC) problem that is better suited to

asynchronous environments.

5.4.2 The Non-Blocking Weak Dictatorial Atomic Commitment
Problem

We define the Non-Blocking Weak Dictatorial Atomic Commitment (NB-WDAC)
problem by the DAC-Uniform-Agreement, DAC-Uniform-Integrity, DAC-Termination, and
DAC-Non-Blocking properties of the DAC problem, and the following DAC-Weak-
Uniform-Validity property:

- DAC-Weak-Uniform-Validity: If the coordinator is not suspected, then the

decision value is the coordinator’s proposed value.

Note that, although weaker than its original version (i.e., participants are allowed to
decide unilaterally on the transaction if the coordinator is suspected to have crashed), this
new property still maintains the dictatorial aspect of NB-DAC, while making the NB-

WDAC problem solvable in asynchronous systems with unreliable failure detectors.

5.4.3 NB-(WD)AC in the Crash-Recovery Model

As we have seen in the previous chapter, the results of Chandra & Toueg on solving
(Uniform) Consensus with unreliable failure detectors [Cha93, CT96] have constituted
the bases for the construction of fault-tolerant solutions to the distributed commit
problem in asynchronous environments. Indeed, by encapsulating failure suspicions
scenarios within a uniform consensus protocol, non-blocking commit protocols have

started to emerge in this context [GuS95, GLS96] (cf. Sections 4.3.6 and 4.3.7).
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However, given that the consensus protocols proposed in [Cha93, CT96] have been
devised assuming a crash-stop failure model, existing non-blocking commit protocols
that build on these works follow the same assumption, and hence do not support process
recovery. Whereas this assumption indeed makes sense in environments where process
decisions are used to trigger some actions within a critical real-time deadline?? (i.e.,
there is no time to wait for crashed processes to recover and decide, so faulty processes
are simply ignored) [Had90], it is definitely unacceptable in a transactional context
where process recovery is an inherent feature, and where the decision of faulty processes
must be taken into account if transaction atomicity is to be preserved. This requirement is
even intrinsic to the specification of the distributed commit problem and is expressed in
terms of the (D)AC-Termination property (cf. Sections 2.3.2 and 3.5.2), which states that
once a crash failure is repaired, the recovering participant must attempt to reach a

consistent decision [ if not immediately, then once enough failures are repaired.

In light of the above discussion, a fundamental question is then whether Chandra &
Toueg’s results on solving Consensus in asynchronous systems assuming a crash-stop
failure model [Cha93, CT96] can be exploited to devise non-blocking solutions to the
distributed commit problem (in its various forms) in asynchronous systems in which

processes may crash and later recover.

In contrast with initial intuition, and based on the (D)4 C-Non-Blocking property, we
show that the answer to this question is “Yes” [AbP99]. To illustrate, recall that (D)AC-
Non-Blocking requires that “every correct participant eventually decides”. The fact that
this property is expressed in terms of correct participants and not operational ones
means that an operational participant that has crashed and later recovered is not allowed
to participate again in the execution of the commit protocol. Instead, recovering
participants have to decide through the associated recovery protocol rather than the

commit protocol.

Seen in this light, the following idea for exploiting the results in [Cha93, CT96] in
our transactional context while taking into account participants’ recovery suggests itself.

When failure suspicions occur during the execution of the commit protocol, a uniform

20 Examples are process control systems for power plants, air traffic control, etc.



5.4. NB-DAC IN ASYNCHRONOUS SYSTEMS 93

consensus protocol is launched in order to terminate the transaction in a non-blocking
way at all correct participants. If, however, a participant P; crashes while executing the
uniform consensus protocol, it will not be allowed to participate again in the protocol
execution in case it recovers from its crash. Instead, P; will try to decide on the transaction
inside its recovery procedure. Therefore, upon recovering, P; informs all other participants
in the transaction that, although operational, it is faulty and hence has to be excluded from
any consensus protocol execution. As far as uniform consensus is concerned, this approach

reduces the problem to the case where process crashes are permanent.

We conclude that the uniform consensus protocols described in [Cha93, CT96] can
be adapted to our transactional context so as to provide non-blocking solutions to the

distributed commit problem, while taking into account participants’ recovery.

5.4.4 The ANB-CLL protocol

Based on the above results, we propose in this section the Asynchronous Non-Blocking
Coordinator Logical Log (ANB-CLL) protocol, which solves the NB-WDAC problem in
asynchronous systems assuming any unreliable failure detector of class <=S and a

majority of correct participants [AbP99].

ANB-CLL: Overview

Just like NB-CLL, ANB-CLL can be viewed as a non-blocking extension to CLL. Unlike
NB-CLL, however, ANB-CLL necessitates an additional communication step so that a
commit decision can be reached at every correct participant. As illustrated in Figure 5.4,
ANB-CLL operates in two communication steps. During the first step of the protocol, if the
coordinator’s proposition is commit 2!, the coordinator sends a start-pre-commit message to
all participants. In step 2, when a participant receives start-pre-commit from the
coordinator, it sends a pre-commit message to all. Finally, when a participant receives pre-

commit from all, it decides commit. Note that a participant that decides on the transaction

21 Recall that the coordinator’s proposition is commit if (1) it has received acknowledgment messages for
all the transaction’s operations, and (2) it has succeeded in saving these operations on stable log.
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needs to forward its decision to all other participants. This actually ensures that if a correct

participant reaches a decision, then all correct participants also reach a decision.

This describes the protocol assuming the coordinator proposes commit, and no
participant is suspected to have crashed during the protocol execution. If, during step 1,
the coordinator proposes abort, then it sends an abort decision to all participants in the
transaction and decides abort. All failure suspicion scenarios are handled within a
uniform consensus protocol used as a termination protocol, enabling a consistent
decision to be reached at every correct participant in a non-blocking way. More
precisely, if during step 1, a participant P; suspects the coordinator, P; starts a uniform
consensus protocol with abort as its initial value (at this point, the participant does not
know whether the transaction has been successfully executed, i.e. all the transaction’s
operations have been acknowledged and the coordinator has force-written its log on
stable storage). In step 2, if a participant P; suspects any other participant, it starts a
uniform consensus protocol with commit as its initial value (at this point, P; knows that

the transaction has been successfully executed).

ANB-CLL: Detailed Description

The ANB-CLL protocol is defined by the ferminate() function described in Figure 5.5.
This function consists of two concurrent tasks, Task I and Task 2, and terminates by the
execution of a return (decision) statement, by which the participant decides the value
“decision” (and stops). To deal with failure suspicions, a uniform consensus protocol
defined by the uniform-consensus() function is employed as a termination protocol. We
assume that every participant P; has access to a local failure detector module FD, that
informs it of the list of participants that it currently suspects to have crashed. In the
notations, P; [1 FD,; means that participant P; suspects participant P;. Task I implements
the main protocol, while 7ask 2 is used in order to ensure that if a correct participant
receives the decision message, then all correct participants eventually receive this

message. The main protocol operates in two steps as follows (Task I):
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Figure 5.4: The ANB-CLL protocol.

During stepl (lines 1-10), if the coordinator’s proposition is abort (line 1), then the
coordinator sends an abort decision message to all (line 2), and decides abort (line 3);
otherwise, the coordinator sends a start-pre-commit message to all (line 4). Each
participant P; waits until (i) it receives a start-pre-commit message from the coordinator,
or (ii) it suspects the coordinator (line 5). In case (ii), P; asks all other participants to start
a uniform consensus protocol by sending a start-consensus message to all (line 7), then
P; starts a uniform consensus with abort as its initial value (line 8). When the uniform
consensus protocol returns a decision, P; decides accordingly (line 9); In case (i), P; sends

a pre-commit message to all (line 10), and proceeds to step 2 of the protocol.

During step 2 (lines 11-17), each participant P; waits until (i) it receives a pre-
commit message from all, or (ii) it receives a start-consensus message, or (iii) it suspects
another participant (line 12). In case (i) P; sends a commit decision message to all (line
16), and decides commit (line 17). In cases (ii) and (iii) (line 13), P; starts a uniform
consensus protocol with commit as its initial value (line 14). When the uniform

consensus protocol returns a decision, P;decides accordingly (line 15).

During Task 2 (lines 18-20), a participant P; waits until it receives a decision
message (line 18), sends the decision to all (line 19), and decides upon this decision (line

20).
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function terminate()

// Taskl
Only the coordinator executes:

1 If proposition = abort then

send (abort) to all participants;

return (abort); // decide abort
send (start-pre-commit) to all participants; /I proposition = commit

W N

// Every participant P; executes:

wait until [received (start-pre-commit) from coordinator or coordinator 11 FD,];
if coordinator 1 FD; then
send (start-consensus) to all participants;

decision = uniform-consensus(abort);

o 9 &N W

return (decision);  // decide decision

10 send (pre-commit) to all participants;

11  for every participant P; in the transaction:

12 wait until [received ((pre-commit) or (start-consensus)) from P; or P; U FD|];
13 if received (start-consensus) from P; or P; 11 FD, then

14 decision = uniform-consensus(commit);

15 return (decision);  // decide decision

16 send (commit) to all participants;

17 return (commit); // decide commit

// Task2

18 wait until [received (decision) from any P;];

19 send (decision) to all participants;

20 return (decision);  // decide decision

Figure 5.5: The ANB-CLL protocol.
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5.4.5 Protocol Correctness

In this section, we show that our ANB-CLL protocol presented in Figure 5.5 is correct
and non-blocking. This amounts to proving that it satisfies all of the five properties of the

NB-WDAC problem.

Theorem 5.6. ANB-CLL achieves the DAC-Uniform-Validity property.

PROOF. Assume that no participant suspects the coordinator during the protocol
execution. Since a participant can decide commit (resp., abort) in Task 2 only if
some participant has decided commit (resp., abort) in Task 1, we only need to show
that (i) if the coordinator’s proposition is commit, then no participant can decide
abort in Task 1, and (ii) if the coordinator’s proposition is abort, then no participant

can decide commit in Task 1.

Case (i): For contradiction, assume that a participant P; decides abort in Task 1.
In Task 1, a participant can decide abort only at lines 3, 9, and 15. Since no
participant suspects the coordinator, then P; could not have decided abort at line 9.
To decide abort at line 3, P; must be the coordinator of the protocol. For the
coordinator to reach line 3, its proposition must be abort: a contradiction. To decide
abort at line 15, P; must have gotten abort as the outcome of the uniform consensus
of line 14. By the C-Uniform-Validity property of uniform consensus, some
participant P; must have started uniform consensus with abort as its initial value at
line 8. For P; to reach line 8, P; must have suspected the coordinator at line 5: a
contradiction with the assumption that no participant suspects the coordinator.

Therefore, no participant can decide abort in Task 1.

Case (ii): For contradiction, assume that a participant P; decides commit in
Task 1. In Task 1, P; can decide commit only at lines 9, 15, or 17. Since no
participant suspects the coordinator, then P; could not have decided commit at line 9.
Hence, P; must have decided commit at lines 15 or 17. For P; to reach lines 15 or 17,
P; must have received a start-pre-commit message from the coordinator (line 5).

This means that the coordinator must have executed line 4. For the coordinator to
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execute line 4, the coordinator’s proposition must be commit: a contradiction. Thus,

no participant can decide commit in Task 1.

Theorem 5.7. ANB-CLL achieves the DAC-Uniform-Agreement property.

PROOF. A participant can decide commit (resp. abort) in Task 2 only if some
participant has decided commit (resp. abort) in Task 1. We show that no two
participants can decide differently in Task 1. In Task 1, a participant can only decide
at lines 3, 9, 15, and 17. We have to consider two cases: (i) the coordinator decides

(abort) at line 3, or (ii) the coordinator does not decide at line 3.

Case (i): In this case, the coordinator does not execute line 4, and hence does
not send start-pre-commit to all. Therefore, no participant decides at lines 15 or 17.
Thus, every participant (that decides) decides at line 9 following the execution of
the uniform consensus (of line 8) with abort as initial value. By the C-Uniform-

Validity property of uniform consensus, every participant (that decides) decides abort.

Case (ii): There are two sub-cases to consider: (a) no participant suspects the
coordinator during step 1, or (b) at least one participant P; suspects the coordinator
during step 1. In (b), P; starts a uniform consensus with abort as its initial value
(line 8), and thus, does not send a pre-commit message to all. This means that no
participant can decide at line 17, since the pre-commit message of P; is missing.
Consequently, every participant (that decides) decides either at line 9 or at line 15
following the execution of the uniform consensus (started either at line 8 or at line
14). By the C-Uniform-Agreement property of the uniform consensus, no two
participants decide differently. In (a), no uniform consensus is started (at line 8)
with abort as initial value. By the C-Uniform-Validity condition of uniform
consensus, no participant decides abort at line 15. Hence, every participant (that

decides) decides commit, either at line 15 or at line 17.

Theorem 5.8. ANB-CLL achieves the DAC-Non-Blocking property (assuming a

failure detector of class <>S, and a majority of correct participants).

PROOF. We consider two cases: (i) at least one correct participant does not execute

step 2, and (ii) all correct participants execute step 2.
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Case (i): Assume that the coordinator crashes. By the strong completeness
property of <>S, every correct participant eventually suspects the coordinator. If,
however, the coordinator is correct, then it eventually sends either (a) a start-pre-
commit message to all (line 4) or (b) an abort decision message to all (line 2). In (a),
if the coordinator sends a start-pre-commit message to all (line 4), then every
correct participant executing the wait statement at line 5 eventually receives this
message (by the reliable communication assumption). Therefore, if a participant P;
does not execute step 2, then P; must have suspected the coordinator in step 1, in
which case, P; sends a start-consensus message to all participants (line 7) and starts
uniform consensus (line 8). Since P; does not execute line 10, correct participants that
have reached step 2 do not receive the pre-commit of P;. Hence, either they receive the
start-consensus message of P; (reliable communication), or they suspect another
participant. In both cases, every correct participant in step 2 eventually starts uniform
consensus (linel4). Since we assume a majority of correct participants, and by the C-
Non-Blocking property of uniform consensus, every correct participant eventually
decides. In (b), if the coordinator sends an abort decision message to all (line 2), then
every correct participant that has not decided yet eventually receives this message

(reliable communication), and decides accordingly (at line 20 of Task 2).

Case (ii): In this case, either some correct participant receives pre-commit from
all, or no correct participant receives pre-commit from all. If some correct
participant in step 2 receives pre-commit from all, then this participant sends commit
to all (line 16), and decides commit (line 17). Hence, every correct participant that
has not decided yet eventually receives the commit decision message (by the reliable
communication assumption) and decides commit (at line 20 of Task 2). The case
where no correct participant receives pre-commit from all is subtler: all correct
participants execute step 2 means that all correct participants sent their pre-commit
to all. If all participants are correct, then all correct participants receive pre-commit
from all due to reliable communication: a contradiction. It follows that some
participants are not correct. By the strong completeness property of <>, all correct
participants eventually suspect another participant (line 12). Thus, every correct
participant in step 2 eventually starts uniform consensus (line 14). Since we assume

a majority of correct participants, then a majority of correct participants eventually
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start uniform consensus. Again, by the C-Non-Blocking property of uniform

consensus, every correct participant eventually decides.

Theorem 5.9. ANB-CLL achieves the DAC-Uniform-Integrity property.

PROOF. From the structure of the protocol, it is clear that every participant decides

at most once (either in Task 1 or in Task 2).

Theorem 5.10. ANB-CLL achieves the DAC-Termination property.

PROOF. To show that DAC-Termination is satisfied, we must consider participants’
recovery. Given that ANB-CLL exploits the same recovery procedure as CLL (and
NB-CLL), the proof remains the same for both protocols (cf. Section 3.5.3).

5.4.6 Performance Evaluation

In this section, we examine the cost for non-blocking under the ANB-CLL protocol, and
compare it with existing non-blocking protocols proposed in the same context, namely
DNB-AC and MD3PC. Figure 5.6 summarizes the performances of the protocols in terms
of latency and message complexity needed to commit a transaction. We denote by # the
number of participants in the transaction and by f the number of crash failures to be

tolerated, where f< [n/2].

By exploiting the 1PC approach to distributed transaction commit, ANB-CLL
reduces the time complexity of both DNB-AC and MD3PC from 3 communication steps

to 2, thus reducing transaction response times.

Regarding message complexity, we distinguish two cases: (1) with a broadcast
network, and (2) without a broadcast network. In case (1), with 6 participants (n = 6) and
a resiliency rate of 1 (f = 1), DNB-AC requires 114 messages, whereas both MD3PC
and ANB-CLL require 78 messages. In case (2), DNB-AC requires 19 messages, MD3PC
requires 16 messages, and ANB-CLL requires 13 messages. To illustrate further, assume
now that » = 12 and f = 2. In case (1), DNB-AC requires 444 messages, MD3PC
requires 276 messages, while ANB-CLL requires 300 messages. In case (2), DNB-AC
requires 37 messages, MD3PC requires 30 messages, and ANB-CLL requires 25 messages.
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Message Complexity Latency
point-to-point network broadcast network | Time complexity = Log Complexity
DNB-AC n+3n’ 3n+1 3 -
MD3PC | n(4f+3)+n’ 2(m+f+1) 3 -
ANB-CLL n+2n’ 2n+ 1 2 n+ 1

Figure 5.6: The cost of transaction commit under DNB-AC, MD3PC, and ANB-CLL.

To summarize, we note that, independently of the number of participants in a
transaction, ANB-CLL reduces the message complexity of DNB-AC under both types of
networks, and that of MD3PC when a broadcast network is used. In case of a point-to-
point network, if the number of participants exceeds 6 (i.e., n > 6), more messages need
to be exchanged in ANB-CLL than in MD3PC. This is rather not surprising given that in
MD3PC, the sub-protocol required for non-blocking is executed only by a subset of the
participants in the transaction, and the cardinality of this subset depends on the number
of failures to be tolerated. Although in real-world transactional applications the number of
participants rarely exceeds 6, we can perfectly apply this optimization to ANB-CLL so as to
trade the resiliency of the protocol with the number of messages exchanged, thus making its
message complexity always below that of MD3PC: in this case, (n+1) + (2f+1) + n* (resp.
n + 2+ 2) messages would be needed assuming a point-to-point network (resp. a broadcast
network), making a total of 209 (resp. 18) messages, with n = 12 and f = 2. This gives

ANB-CLL the best overall performances among the three discussed protocols.

Like DNB-AC and MD3PC, our ANB-CLL protocol achieves non-blocking in
asynchronous systems assuming reliable communication, any unreliable failure detector of
class <=S, and a majority of correct participants. If these assumptions are not satisfied, our

protocol might block, but never leads two participants to decide on different outcomes.

5.5 Discussion

The work presented in this chapter originated from the observation that, in today’s
transactional systems and applications, high performance and fault-tolerance are crucial

requirements of equal importance.
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Based on this observation, and given the high efficiency of the 1PC approach to
distributed transaction commit, we were prompted to investigate fault-tolerant solutions
to the Dictatorial Atomic Commitment problem. This led us to propose two non-blocking
extensions to CLL, our 1PC variation, which provide transaction liveness guarantees
under the two extremes of a spectrum of possible system models, namely synchronous
and asynchronous systems. The resulting protocols, which we called NB-CLL and ANB-
CLL, blend the efficiency of 1PC with fault-tolerance. The importance of this work is
further emphasized by the fact that, compared to 2PC, 1PC increases the probability to

blocking of the participating sites in case of failures.

The advantages of NB-CLL and ANB-CLL over other non-blocking protocols
proposed in the literature are not only performance issues. By combining the 1PC
approach with our CLL’s recovery mechanism, our protocols are able to cope with

existing systems without violating their autonomy U be they or not 2PC compliant.

Furthermore, by adapting Chandra & Toueg’s consensus protocols [Cha93, CT96]
to the transactional context, and based on the recovery semantics of the distributed
commit problem, ANB-CLL achieves non-blocking in asynchronous systems assuming a
crash-recovery failure model. To the best of our knowledge, it is the first time that fault-
tolerant solutions to the distributed commit problem have been devised for asynchronous
systems in which processes may crash and later recover. With all these features, ANB-
CLL is able to meet the fundamental requirements of today’s real-world transactional

systems and applications.

0
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Chapter 6
The ANB-CLL Prototype

In this chapter, we show how to put our theoretical results into practice by presenting a
way by which 1PC can be exploited in current transactional standards and products,
initially designed with 2PC in mind. To do so, we first give an overview of well-
established TP standards promoted by ISO, X/Open, and OMG, which have gained
widespread acceptance and commercial product support. We then show how our ANB-
CLL protocol, discussed in the previous chapter, can be smoothly integrated into these
standards through a prototype design and implementation achieved in the context of this

thesis.

6.1 Transactional Standards

This section recalls some background related to the ISO OSI-TP protocol, X/Open DTP
model, and OMG’s OTS service.

6.1.1 The ISO OSI-TP Protocol

OSI-TP (Open Systems Interconnection - Transaction Processing) [ISO92a] is a
transactional protocol defined by ISO (International Standardization Organization), which
guarantees interoperability between different transactional components (e.g., TP
monitors) involved in the commitment of a distributed transaction. More precisely, OSI-
TP defines (i) a standard communication protocol for establishing and managing dialogs
between participants in a transaction, (ii) a standard two-phase commit (2PC) protocol,

and (iii) a standard failure management and recovery protocol.
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As far as atomic commitment is concerned, OSI-TP integrates several optimizations
of basic 2PC, namely the Presumed Abort (PrA) (cf. Section 2.4.1), Read-Only (cf.
Section 2.4.4), and One Phase Commit optimizations. We caution the reader that the
latter is not to be confused with our 1PC concept as it has totally different semantics U it
is rather intended to optimize the cost of commit processing in case of mono-site

transactions, i.e., when there is only one participant in the transaction.

Given that 2PC is a blocking protocol, a heuristic decision concept has been also
adopted in order to resolve blocking situations that may arise in case of failures. More
precisely, if a coordinator crash occurs, an uncertain participant can unilaterally commit
or abort the transaction rather than waiting for the coordinator to recover. Upon
recovery, if the coordinator’s final decision contradicts the participant’s heuristic
decision, a manual procedure is launched to reestablish a global consistent state. Thus,

non-blocking is obtained at the expense of data consistency.

6.1.2 The X/Open DTP Model

The DTP (Distributed Transaction Processing) model [X/Open93] is a transactional
standard promoted by X/Open, which aims at providing standard interfaces between
transactional components so as to make them portable. This model distinguishes four
software entities that participate in the execution of a transaction: (i) an Application
Program (AP) is an arbitrary program that implements the desired function of the end-
user application, and accesses shared resources within the scope of a transaction, (ii) a
Resource Manager (RM), (e.g., a Database Management System, or simply DBMYS),
manages shared resources and guarantees the consistency of data it is in charge of, (iii) a
Transaction Manager (TM) (e.g., a TP-Monitor) coordinates atomic transaction
completion at all RMs accessed by a transaction, and manages failure recovery, and (iv) a
Communication Resource Manager (CRM) facilitates interoperability between different
instances of the DTP model by managing communication between distributed and
potentially heterogeneous TMs located in different domains, and provides portable APIs

for DTP communication between several APs.
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Figure 6.1: X/Open DTP model.

Figure 6.1 illustrates the functional components of a local instance of a DTP system.
Typically, an AP accesses the TM through the TX interface in order to begin/commit/abort
a transaction, and accesses RMs through their native interface (e.g., SQL). When the AP
requests the TM to commit a transaction, the latter acts as the coordinator of the commit
protocol during which it directs the different participating RMs for a commit or an abort
through their XA interface. As defined in OSI-TP, the commit protocol adopted in the
X/Open DTP model is the PrA 2PC protocol, together with the Read-Only and One Phase

Commit optimizations.

In case several distributed (possibly) heterogencous TMs are involved in the
execution of the same transaction, they communicate through their respective CRMs
using the OSI-TP protocols in order to exchange DTP information and application data
(Figure 6.1). Thus, X/Open DTP ensures the portability of transactional components

while OSI-TP ensures their interoperability.

6.1.3 The OMG Object Transaction Service

Oriented towards the object world, OMG (Object Management Group) has specified a
transactional standard, named OTS (Object Transaction Service) [OMGO00a], based on
the CORBA architecture ratified by the members of OMG [OMGO00b].
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Figure 6.2. OMG’s OTS architecture.

Simply stated, CORBA provides a distributed object-oriented infrastructure that
allows objects to communicate across boundaries such as the network, the specific
language in which they were written or the platform on which they are deployed. The
communication heart of the CORBA architecture is the Object Request Broker (ORB)
that acts as the object bus over which objects transparently interact with other remote

objects. OTS brings the notion of distributed transactions to the CORBA world.

OTS Architecture

As illustrated in Figure 6.2, the CORBA OTS model distinguishes six main entities that
participate in the execution of a transaction: (i) a Transactional Client (TC) is an
arbitrary program that invokes operations on transactional objects within the scope of a
transaction, (ii) a Transactional Object (TO) is an application object whose behavior is
affected by being invoked within the scope of a transaction, (iii) a Recoverable Object
(RO) is an application object that directly manages persistent data whose state is subject
to change during the course of a transaction, and thus must participate in the 2PC
protocol defined by OTS22, (iv) a Transactional Server is a collection of one or more

transactional (but not recoverable) objects, (v) a Recoverable Server is a collection of

22 In accordance with OSI-TP and X/Open DTP, the commit protocol defined in OTS is the PrA
variation of basic 2PC, together with the Read-Only and One Phase Commit optimizations.
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objects, at least one of which is recoverable, and (vi) the Transaction Service coordinates

all the transactions in the system, and drives the 2PC protocol.

A Recoverable Object participates in the 2PC protocol by registering an object
called Resource with the Transaction Service. The Resource object implements the 2PC
protocol as a participant on behalf of the Recoverable Object in order to update the
Recoverable Object’s data resources in accordance with the transaction outcome. At
transaction end, the Transaction Service drives the 2PC protocol by issuing requests to

all the resources registered for the transaction.

Note that even though a Recoverable Object is by definition a Transactional Object,
an object can be Transactional but not Recoverable, in which case it does not directly
manage persistent data, but rather, it invokes operations on some other Recoverable
Object(s). Consequently, Transactional objects that are not Recoverable do not

participate in the 2PC protocol; however, they may force the rollback of the transaction.

Principal OTS Interfaces

In OTS, a transaction is managed by a set of CORBA objects, each having a standard
interface defined in terms of the OMG’s Interface Definition Language (IDL). Figure 6.3
illustrates the key interfaces defined in OTS together with the major components using
them. These interfaces are discussed below:

« Current interface: provides application objects with a transparent access to the
Transaction Service. It can be used to begin, commit, or rollback a transaction, and
to get information about the current transaction.

+ Transaction Factory interface: allows the Transactional Client to begin a transaction.

« Control interface: can be viewed as the handle to the transaction. More precisely,
it provides access to two other interfaces that control the transaction life cycle,
namely the Coordinator and the Terminator interfaces, thus enabling the
application to interact directly with the Transaction Service objects.

« Coordinator interface: provides operations used by participants in a transaction, and

supports mechanisms to coordinate transaction termination at these participants.

« Terminator interface: provides operations to commit or rollback a transaction.
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Figure 6.3. Key interfaces in OTS.

«  Resource interface: defines the operations invoked by the Transaction Service to

complete a transaction on a resource following the 2PC protocol. This interface

can be used to wrap non-CORBA resources to the CORBA domain so that they

can participate in a CORBA transaction.

«  Recovery Coordinator interface: is used by Recoverable Objects to drive the

recovery process in case of failures.

«  Subtransaction Aware Resource interface: is a specialization of the Resource

interface, used by Recoverable Objects that support the nested transaction behavior.

It is very important to note that one of the major goals of the OTS specification is to

allow legacy TP-based systems to participate in an OTS transaction. In particular, OTS is

designed to interact with X/Open DTP-compliant Resource Managers, or simply RMs

(Figure 6.3). This actually means that OTS Recoverable Objects can use X/Open RMs

interfaces (e.g., SQL) and access the data resources they manage within the scope of an

OTS transaction. In this case, the registered Resource object represents the accessed RM

as a participant in the transaction completion. Recall that X/Open RMs can participate in

a distributed transaction by allowing their 2PC protocol to be controlled via the XA

interface (cf. Section 6.2). Therefore, to complete a transaction, the Transaction Service

drives the commit protocol by issuing 2PC requests on the registered Resource, while the

Resource drives the RM through its XA interface as we further detail in the following.
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Figure 6.4: OTS execution flows using direct transaction management.

Typical Usage

In OTS, client applications manage their transactions either directly or indirectly.

With direct transaction management, the client application directly accesses and
manipulates the Transaction Service objects that represent the transaction (i.e.,
Transaction Factory, Control, Terminator, Coordinator, etc.). Figure 6.4
illustrates a typical OTS transaction execution using the direct mode. The
Transactional Client starts a transaction using a Transaction Factory object. A
Control object is returned, which provides access to a Terminator and a
Coordinator. Then, the client starts sending requests to the Recoverable Server,
and includes in each of its requests the transaction context?3, which can be
obtained from the Coordinator object. On receipt of a service request, the
Recoverable Server registers a Resource object with the Coordinator. At
transaction end, the client uses the Terminator object to commit or rollback the
transaction. On a commit request, the Transaction Service starts the 2PC protocol

by issuing requests to all the Resources registered with the Coordinator.

23 An OTS transaction context generally contains the object reference to the transaction Coordinator

together with a unique global transaction identifier.
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Figure 6.5: Indirect transaction management mode.

With indirect transaction management, the set of OTS interfaces are hidden by the
Current pseudo object, which provides a fully transparent access to OTS. Figure
6.5 illustrates the role of the Current object and its relation with application
objects and the Transaction Service objects. Requests from the application object
to the Current pseudo object are local requests. The Current interacts with the
Transaction Service objects through the ORB as an application object using direct
transaction management mode. Thus, the Current can be viewed as a high level

API that hides the location of the Transaction Service and the set of its interfaces.

6.1.4 OTS and DTP Compared

OTS can be seen as an object redefinition of the X/Open DTP model. It brings the
transaction paradigm and the object paradigm together, thus promoting reliable,
modular, reusable and evolutionary object-based software components. Most
importantly, OTS has been designed to be compatible with well-established transactional
standards, thus enabling the integration and interoperability of legacy TP based systems
with the CORBA domain. In particular, OTS is fully compatible with X/Open DTP-
compliant software, which allows a single (X/Open or OTS) transaction to be shared by

both object and procedural code.
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Fully based on the CORBA architecture, inter-component communications in OTS
are all in the form of object requests sent via the ORB, which enables access and location
transparency of remote objects. This is compared to the X/Open DTP model where a
Communication Resource Manager (CRM) is required to process transactions that are

distributed over several TMs.

6.2 ANB-CLL in Standard Platforms

Given that the transactional models presented in the previous section are well-established
TP standards that have gained widespread acceptance and commercial product support, it
is important to show how our ANB-CLL protocol, described in the previous chapter

(Section 5.4.4), can be exploited in an OTS/DTP environment.

To do so, we first show how our (blocking) CLL protocol (cf. Section 3.5) can be
embedded within a fully OTS-compliant Transaction Service, named MAAO-OTS
[LSGY98], while maintaining the interoperability of DTP-compliant systems with the
CORBA domain. We then describe how to achieve non-blocking by exploiting a CORBA
compliant service, called OGS [Fel98], which defines an object-oriented framework of

CORBA components for reliable distributed systems.

6.2.1 Prototype Context

The ANB-CLL prototype has been performed in the context of OpenDREAMS-II 24, an
ESPRIT project financed by the European Union (December 1997 -- May 2000).
OpenDREAMS-II (henceforth called “OD-II”’) aims at designing and building a CORBA
compliant platform dedicated to industrial Supervision and Control Systems (SCS). The
OD-II platform is augmented with several components and services specifically tailored
to answer SCS requirements, including a Transaction Service designed and implemented

by the PRiSM laboratory [ABG98].

The project platform is experimented and validated through two industrial SCS

applications, namely a Condition Monitoring and Diagnostics of Thermal Power Plants

24 OpenDREAMS is the acronym for “Open Distributed Reliable Environment, Architecture &
Middleware for Supervision”.
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application, as well as an Advanced Surface Movement Guidance & Control Systems (A-
SMGCS) application for managing all moving vehicles in an airport environment. Both
applications showed the effectiveness of our protocol in meeting SCS requirements in
terms of performance, fault-tolerance, and compliance with commercial transactional

systems.

6.2.2 Major Objectives

When defining the overall project goal, we have set out the following major objectives

for our ANB-CLL prototype:

To show the applicability of the 1PC idea in general, and our protocol in

particular, to real-world transactional systems and standards.

To enable application portability from the OD-II Transaction Service to other OTS

implementations by following the standard OTS interfaces defined by OMG.

To enable the integration of X/Open DTP-compliant transactional systems in the

OD-II Transaction Service by directing them through their standard XA interface.

6.2.3 Integrating CLL into OTS

In this section, we show how the (blocking) CLL protocol can be embedded within a
fully OTS compliant Transaction Service, named MAAO-OTS [LSGI8], developed by the
TRANSREP project members headed by Simone Sédillot at INRIA 25. The CLL prototype
components have been fully designed, and implemented in C++ using Orbix 2.3 MT
[ION97], a commercial CORBA implementation.

Transactional Client

In the OD-II Transaction Service, the support of the CLL protocol is totally transparent
to the client application. More precisely, a client of the OD-II Transaction Service still
accesses the standard OTS interfaces as defined by OMG to begin (resp. commit) its

transaction by calling the standard begin() (resp. commit()) operation on the Current

25 INRIA is the acronym for “Institut National de Recherche en Informatique et Automatique”.
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object (indirect mode), or the Factory (resp. Terminator) object (direct mode). The call
to commit() on either object launches the CLL protocol implemented by the OD-II
Transaction Service, and commits the transaction in a single phase on the participating

resources.

Transaction Service

The integration of the CLL protocol within the OD-II Transaction Service has been
realized thanks to the collaboration of the TRANSREP project members at INRIA. This
integration consisted in modifying the MAAO-OTS coordinator automaton so as to
follow the 1PC approach rather than the traditional 2PC approach. The necessary
modification is rather straightforward, and is achieved by simply having the coordinator
ask the registered Resource objects to commit the transaction without first asking them to

prepare.

It is very important to note that eliminating the voting phase from the commit
protocol does not require any modification/extension to the Resource interface as defined
by OMG. Instead, we exploit the standard commit one phase() operation (traditionally
offered by the Resource interface and employed by the transaction coordinator in case of
mono-site transactions) for our 1PC purpose. Clearly, a call to commit _one phase() on
each participating resource is mapped to a call to xa_commit(TMONEPHASE) on the
corresponding X/Open DTP-compliant RM.

Recoverable Server

Recall from Chapter 3 (Section 3.5.2) that the concept of Agent has been associated with
each transactional system (typically, RMs) participating in the CLL protocol. The role of
the Agent is to determine the exact state (i.e., committed or aborted) of every transaction
branch for which its local site did not acknowledge the commit decision due to a failure.

This is important in order to identify those branches that need to be locally re-executed.

In the OD-II Transaction Service, we have integrated the Agent role within the
Resource object. Obviously, this is the most natural and straightforward way to do since
the Resource object is the entity that acts as intermediary between the Transaction

Service and the underlying participating RMs.
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Figure 6.6: 1PC _[ib in the OD-II Transaction Service architecture.

Achieving Commit-resiliency

Recall that to overcome the need for on-line commit-resiliency at the participants while
preserving their autonomy, the coordinator of CLL guarantees the commit-resiliency
property of transactions by maintaining in its log the list of operations invoked within the
scope of a transaction. In addition, the CLL coordinator forces its log on stable storage
before sending the commit decision to the different participants. In case a participant
crashes during the CLL protocol execution, the coordinator re-executes the transaction

branch on the failed participant.

In an OTS architecture, the difficulty in meeting this requirement lies in the fact that
a Transactional Client sends its service requests directly to Recoverable Objects. Thus, at
commit time, the Coordinator object has no knowledge of the list of requests invoked

within the scope of a transaction.

To deal with this problem, our solution consists in keeping the list of a transaction’s
requests in a log maintained on the Transactional Client side. This log is kept transparent to
the client application by means of a library, called /PC [ib, dedicated to CLL’s specific

mechanisms and to which the client application should be linked. More precisely,
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Figure 6.7: OD-II Transaction Service execution flows.

1PC lib manages the requests’ log via a new object that we introduce, called Replay.
The Replay interface defines operations that allow to (i) write the transaction’s requests
on the log (register op() operation), (ii) force the log on stable storage (flush()
operation), and (iii) re-execute the requests of a transaction branch in the event of a

participant crash during the CLL protocol execution (re_execute() operation).

Detailed Description

IPC lib is implemented using Orbix Per-Process Filters2°. Per-Process filters monitor
all incoming and outgoing operation and attribute requests to and from an address space.
Figure 6.6 illustrates the role of /PC /[ib in the OD-II Transaction Service architecture. A

typical transaction execution is described in Figure 6.7.

When a client application begins a transaction by calling begin() on the Factory
object (or the Current object), the client filter associates a Replay object with the new

transaction. During the transaction, the Transactional Client invokes service requests on

26 The filter concept has been first introduced in IONA’s Orbix ORB, but has been since normalized in
CORBA 2.2 under the Interceptors concept.
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Recoverable Objects. The client filter intercepts each of these requests, registers the
request in the log by calling register op() on the Replay object, and continues the call

normally.

When the Transactional Client calls commit() on the transaction Terminator object
(or the Current object), the client filter intercepts the call to commit(), force-writes the
log (i.e., the transaction’s requests) on stable storage by calling flush() on the Replay, and
continues the call normally. The call to commit() launches the CLL protocol and commits
the transaction in a single phase, while ensuring the transaction commit-resiliency

property at the client side.

In case a participant crashes during the CLL protocol execution, the Coordinator
“replays” the failed transaction branch by calling the re_execute() operation on the
transaction’s Replay object with the corresponding Resource object reference as a
parameter. Note that the Replay object reference can be made available to the
Transaction Service by having it piggybacked to the commit() request message by the

client filter, and extracted by a receiving filter on the Transaction Service side.

6.2.4 Achieving Non-Blocking

This section briefly presents the design of a non-blocking extension to our CLL
prototype, following the ANB-CLL protocol described in Section 5.4.4. The solution we
propose exploits some of the facilities provided by a CORBA Object Group Service
(OGS) [Fel98], designed and implemented at the Operating Systems Laboratory (LSE)
directed by Professor André Schiper at the Swiss Federal Institute of Technology
(EPFL).

Roughly, OGS provides object group support for CORBA environments by
combining several distinct CORBA services, each providing a separate facility and can
be exploited in isolation. Of particular importance for our purpose, an Object Monitoring
Service that provides a distributed failure detection mechanism based on Chandra &
Toueg’s model of unreliable failure detectors [ChT96], and an Object Consensus Service
that allows several CORBA objects to solve the Consensus problem based on Chandra &

Toueg’s Consensus algorithm, and using a failure detector of class <>§ [ChT96].
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Figure 6.8: Non-Blocking components of the OD-II Transaction Service.

Components and Interactions

The non-blocking extension we propose is totally encapsulated within a library, called
NB_lib, to which the Recoverable Server and the Transaction Service are linked. NB_[ib
manages all the non-blocking mechanisms introduced by ANB-CLL by defining new
components, and by exploiting some of the services provided by OGS’s library (OGSL).
These mechanisms include a pre-commit phase, a Uniform Consensus algorithm, and a
failure detection mechanism. Figure 6.8 presents a simplified high-level view of the non-

blocking extension components.

On the Recoverable Server side, NB_[ib introduces a new object, called Resourceyp,
which acts as intermediary between the transaction Coordinator and the Recoverable

Object’s Resource, and implements the ANB-CLL protocol (cf. Figure 5.5) as a
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participant on behalf of the Recoverable Object. From the transaction Coordinator
viewpoint, the Resourceyp object becomes the actual participant in transaction
completion. To achieve its role, the Resourceyp interface extends the standard Resource
interface by defining, in addition to the commit-one-phase() operation, new operations

required for non-blocking, namely pre-commit(), and start-consensus().

To deal with the failure detection problem, NB [ib exploits OGS’s Object
Monitoring Service by creating a failure detector object (FD) at the Recoverable Server,
and the Transaction Service. Each local FD object monitors a subset of the processes in
the system (roughly, by communicating with FDs local to these processes), and maintains
a list of those processes that it currently suspects to have crashed. Given that in ANB-
CLL, failure suspicions are handled within a Uniform Consensus protocol, NB_/ib makes
use of OGS’s Object Consensus Service by creating a consensus manager object (CM) at
each Recoverable Server. CM objects implement the consensus protocol and reach

agreement with each other.

In this context, a Resourceyp object acts as a client of its co-located /D and CM in
order to get information about failure suspicions of other participating Resourceyp

objects, and to reach a consistent decision through the execution of a consensus protocol.

Typical Execution

When the Recoverable Object calls the register resource() operation on the transaction
Coordinator with a Resource object reference as a parameter, NB_[ib intercepts the call
by means of an Interceptor (or Filter), creates a new Resourceyp object, and registers it
with the Coordinator by modifying the value of the operation parameter to include the

Resourceyp object reference instead of that of the Recoverable Object’s Resource.

To commit the transaction, the Coordinator performs the commit-one-phase()
operation on every registered Resourceyp. This call initiates ANB-CLL’s pre-commit
phase between the different participating Resourceyp objects through their respective
pre-commit() operation. In the absence of failure suspicions, a commit decision is
reached, in which case, the Resourceyp performs commit-one-phase() on the

Recoverable Object’s Resource. In case of failure suspicions, the Resourceyp asks the
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CM object to start a uniform consensus protocol, and decides on the transaction (in a
non-blocking way) according to the uniform consensus protocol outcome. Finally, note
that if a failure suspicion occurs during the pre-commit phase, the Resourceyg needs also
to perform start-consensus() on the other participating Resourceyg objects, as defined in

ANB-CLL.

6.3 Discussion

In this chapter, we studied the integration of our ANB-CLL protocol into well-
established TP standards that have gained widespread acceptance and commercial
product support. Our primary objective here was to show the applicability of the 1PC
concept in general, and our ANB-CLL protocol in particular, to real-world transactional

systems and standards, namely OMG’s OTS [OMGO00a] and X/Open DTP [X/Open93].

This integration has been achieved following the same modular approach by which
ANB-CLL has been designed. This consisted first in embedding the basic 1PC protocol
(cf. Section 3.2) within an OTS architecture, and then encapsulating all CLL’s specific
mechanisms on the one hand and non-blocking facilities on the other within two separate

libraries, named /PC [ib and NB_lib, respectively.

Our CLL prototype has been implemented in C++ using Orbix 2.3MT [ION97]
based on a fully OTS-compliant transaction service, named MAAO-OTS [LSG98]. This
enabled us to prove the practical validity of the 1PC concept, and to show the
compatibility of our protocol with existing transactional standards and commercial
database systems. As far as fault-tolerance is concerned, our non-blocking solution has
been fully designed following a CORBA-compliant approach, but has not yet been
implemented and integrated to the prototype due to timing and organizational constraints
related to the OD-II project. It would be thus important to complete the present work, and
study the cost for non-blocking through an actual implementation of the proposed

solution in the context of real-world transactional systems based on a CORBA architecture.

Some issues related to the CLL prototype remain open for further investigations,

notably concerning performance measurements. Although the performance gain of 1PC
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over 2PC is obvious, it would be important to quantify this gain not only in terms of
message and log complexities, but also in terms of overall transaction processing metrics,

such as transaction (peak) throughput or transaction (mean) response time.

O
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Chapter 7

Conclusion

Over the past two decades, distributed systems have become the norm for the
organization of computing facilities. From common daily life activities to mission critical
computing industries, everything shows evidence that we depend more and more heavily
on distributed systems and applications, making the reliability of these more critical than

it has ever been before.

Originated from the field of databases, the transaction abstraction has been widely
acknowledged as the basic building block by which distributed systems and applications
can be reliably structured and implemented. Reliability guarantees are provided despite
concurrency and failures through transaction ACIDity (i.e., atomicity, consistency,
isolation, and durability), where atomicity is ensured through an atomic commitment
protocol, enabling a distributed agreement to be reached among participating processes
concerning the faith of the transaction. Given their great impact on distributed
transaction processing, a plethora of atomic commitment protocols has been proposed.
These protocols, however, usually compel a trade-off between high-performance and fault-
tolerance (i.e., non-blocking), making them inadequate for many of today’s distributed
systems and applications in which it becomes hardly acceptable to sacrifice one

requirement for the other.

In this thesis, we have considered this issue through the discussion of the details
involved in the design of a distributed commit protocol that reconciles high-performance
and fault-tolerance, while being applicable to most transactional standards and products.
This protocol was the final result of a series of contributions that rely on a novel

paradigm for distributed transaction commit proposed in the context of this research.
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7.1 Research Assessment

Divided into three parts, this thesis has led to six major contributions. The first part
tackled performance issues, and introduced the Dictatorial Atomic Commitment problem,
defined On-line Serializability and On-line Commit-Resiliency, and proposed a highly
efficient commit protocol, named Coordinator Logical Log (CLL). The second part
extended the previous results to cover fault-tolerance issues, and proposed two non-
blocking extensions to CLL, which provide liveness guarantees under the two extremes
of a spectrum of possible system models, namely synchronous and asynchronous
systems. The third and final part addressed practical issues by describing a way by which
the asynchronous non-blocking CLL variation can be integrated into existing

transactional standards and products.

7.1.1 Performance Issues

Dictatorial Atomic Commitment. We have discussed some serious drawbacks of the
traditional Two-Phase Commit (2PC) approach to the distributed commit problem, and
argued that although it ensures transaction atomicity, 2PC introduces a substantial delay
in the system, leading to a significant increase in transaction execution times. To meet
the strong efficiency requirements of today’s advanced and critical applications, and
through a careful look into the characteristics of real-world transactional systems, we
have identified the conditions under which a One-Phase Commit (1PC) approach can be
used. Our research led us to define the Dictatorial Atomic Commitment (DAC) problem,
a novel paradigm for distributed transaction termination, which overcomes the need for
2PC in most practical situations. Based on the pragmatic observation that, in most real
settings, participants’ votes can turn out to be more than necessary, the Dictatorial
Atomic Commitment problem resulted from removing veto rights from the traditional

Atomic Commitment problem.

In addition to defining Dictatorial Atomic Commitment, we have also proposed a
simple algorithm that solves it based on a 1PC approach. This algorithm corresponds
exactly to a 2PC without the voting phase, which explains why 1PC is much more
efficient than 2PC. A crucial feature of our algorithm is that it constitutes the basic
building block around which all existing 1PC variations are designed, thus promoting

modularity.
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On-line Serializability & On-line Commit-Resiliency. To characterize transactional
systems that are compatible with dictatorial transaction processing, we have studied the
impact of dictatorship on concurrency control and recovery protocols employed by the
participants in a transaction. In particular, we have defined three necessary and sufficient
conditions to ensure the correctness of transactional systems with no participant veto
right: on-line serializability, cascadelessness, and on-line commit-resiliency. These
conditions are strictly stronger than the usual correctness metrics for transactional
systems, namely serializability, recoverability and resiliency, respectively. We have also
addressed practical considerations related to those conditions, and have shown that,
whereas on-line serializability and cascadelessness are realistic in most real settings, on-

line commit-resiliency turned out to be very expensive in practice.

Coordinator Logical Log. To overcome the high cost imposed by on-line commit-
resiliency, we have considered a “non-classical” atomic commitment scheme that allows
participants to delegate part of their transactional responsibilities to the coordinator of
the commit protocol. Through a deep analysis of existing 1PC variations that follow this
scheme, we have pointed out their practical limitations when it comes to meeting
autonomy requirements of today’s distributed environments. In order to combine the
high-efficiency of 1PC with practical utility, we have proposed a new 1PC variation,
called Coordinator Logical Log (CLL), which preserves site autonomy based on a logical
logging recovery mechanism. The advantages of CLL are not only performance issues.
By eliminating participants’ votes, and maintaining logical operations instead of physical
log records at the coordinator site, CLL seems to be the sole protocol that can cope with

all existing transactional systems, be they or not 2PC compliant.

7.1.2 Fault-tolerance Issues

Non-blocking Coordinator Logical Log.  Although more efficient than the 2PC
approach, 1PC increases the probability of blocking of transaction participants in case of
failures, making the window of vulnerability to blocking last all along the transaction
execution. While this might be acceptable in some standard applications, there are
mission critical applications for which high-performance and fault-tolerance are crucial

requirements of equal importance. The above observation constituted our starting point
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for investigating solutions to the Non-Blocking Dictatorial Atomic Commitment (NB-
DAC) problem. The first result of this study has been a variation of our CLL protocol,
named Non-Blocking CLL (NB-CLL), which achieves non-blocking in the context of
synchronous systems based on a Uniform Timed Reliable Broadcast (UTRB) primitive,

and assuming reliable communication and reliable failure detection.

Asynchronous Non-blocking Coordinator Logical Log. Given  that  synchrony
assumptions and reliable failure detectors are not always realistic in practice, we have
extended our work on fault-tolerance and proposed a variation of CLL, called
Asynchronous Non-Blocking CLL (ANB-CLL), which guarantees non-blocking assuming
an asynchronous system with reliable communication and unreliable failure detectors. A
crucial feature of ANB-CLL is that it achieves non-blocking based on a crash-recovery
failure model. To the best of our knowledge, it is the first time that fault-tolerant
solutions to the distributed commit problem have been designed in the context of
asynchronous systems in which processes may crash and later recover. Furthermore,
ANB-CLL blends the advantages of CLL in terms of efficiency and autonomy
requirements with fault-tolerance, making it the best candidate for distributed transaction

commit in the context of today’s systems and applications.

7.1.3 Prototype Design & Implementation

Through a prototype design and implementation, we have shown how our ANB-CLL
protocol can be integrated into well-known transactional standards. This prototype has
served as a proof of concept, which shows the validity of our theoretical study, and the

compliance of our protocol with current transactional standards and products.

Following a “compositional methodology” of protocol integration, the (blocking)
CLL protocol has been first embedded into an OTS/DTP environment. We have then
designed a non-blocking extension to the CLL prototype as a separate construct that can
be added on top of it. At the time of writing of this thesis, the non-blocking extension has
not yet been implemented and integrated into the prototype, and thus remains at its

design stage.
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7.2 Future Directions and Open Issues

In addition to the contributions presented in the previous section, several extensions to
our work need to be explored, allowing plenty of scope for interesting research. In the

following, we describe some future directions and open questions.

Towards a Higher Resiliency During Recovery. = The Coordinator Logical Logging
recovery mechanism associated with the different CLL variations preserves site
autonomy, and overcomes the high cost introduced by on-line commit-resiliency at the
expense, however, of a coordinator-dependent recovery protocol. An important future
work would be to explore new coordination schemes that enable to increase the resilience
of the recovery protocol by decreasing its dependency level. One intuitive way of
achieving this would consist in replicating the coordinator’s log at some other sites,
which number depends on the desired resiliency rate. This actually lays the basis for

further investigations related to the cost this might introduce in the system.

Deferred Consistency Constraints. One consequence of removing veto rights from
transaction participants is that integrity constraints are checked after each update
operation, and thus deferred integrity validation is excluded. An open question is then
whether it is possible to circumvent this assumption so as to widen the applicability field
of dictatorial transaction processing. This would probably consist in exploring

intermediate schemes between veto rights for all and no veto right at all.

ANB-CLL for Mobile and Disconnected Computing. Mobile and disconnected
computing is clearly one of the most challenging areas for future distributed
environments. The growing number of applications using mobile and disconnected
facilities, supported by the emerging world of lightweight intelligent devices, raises new
issues in terms of transaction management and introduces new requirements that the
traditional transaction processing paradigm cannot meet. For instance, a traditional (i.e.,
2PC-like) commit protocol leads to the abort of a transaction after it has been
successfully processed if any of its participants disconnects during the voting phase. This
situation is rather intolerable in a mobile environment where (accidental or voluntary)

disconnections are very frequent. Furthermore, by forcing participants in a transaction to
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externalize local prepared states, traditional protocols consume valuable system

resources on data servers hosted by lightweight devices.

In this context, our ANB-CLL protocol seems to cope effectively with these issues,
and it would be very interesting to study its adaptation to mobile and disconnected
computing environments. Indeed, by eliminating participants’ votes and local prepared
states, ANB-CLL provides a very suitable way of dealing with disconnections, and
allows saving critical resources on lightweight servers. Although not yet totally
conclusive, a preliminary study showed the appropriateness of our protocol in bringing
answers to these issues through three typical mobile/disconnected computing

applications [BPAOO], but this still needs further investigation.

G2
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