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Chapter 1

Introduction 

1.1 Research Context 

Over the past two decades, distributed systems have become commonplace in several 

computing domains. With the recent advances in communication systems, the explosion 

of the Internet, and the now ubiquitous World-Wide Web (WWW), not only is the 

computing infrastructure changing, but also the user community is underlying a similar 

revolution. Distributed systems seem to be everywhere in our daily life activities, making 

them a concern of almost every individual. 

As we depend more and more heavily on distributed systems and applications, the 

reliability of these becomes increasingly critical. Reliability is particularly difficult to 

tackle in a distributed environment since we have to deal with some of the intrinsic 

characteristics of distribution, notably partial failures or unreliable communication. 

Reliability generally connotes two fundamental properties: safety and liveness [Lam77, 

AlS85, Gue96]1. Roughly speaking, a safety property stipulates that “bad things do not 

occur” during execution. In information systems, for instance, the proscribed “bad thing” 

would be the violation of data consistency. In this context, the safety of an application 

expresses its ability to maintain the consistency of accessed data objects even in the 

event of failures or concurrent executions. A liveness property stipulates that “eventually 

good things do occur” during execution. The desirable “good thing” can express 

requirements like state progress, program termination, or service availability.  

                                                           
1 Safety and liveness properties were first introduced by Lamport in [Lam77], and have been since 

adopted as the usual metrics to evaluate the reliability degree of distributed systems. 



CHAPTER 1.    INTRODUCTION 2 

1.1.1 Transaction Processing 

In all information systems, as for database management systems, telecommunication 

systems, industrial control systems, finance, or even electronic commerce, preserving 

data consistency (i.e., applications’ safety) in the presence of failures or concurrent data 

accesses relies on the transaction concept. Transactions are powerful abstractions that 

enable the structuring of distributed systems in a reliable manner, while relieving the 

programmer from dealing with the complexity of concurrent programming or failures. 

A transaction is an atomic set of operations updating shared data objects and 

satisfying the so-called ACID properties [GrR93, BCF97], namely atomicity, 

consistency, isolation, and durability. In a distributed transactional system, a transaction 

may access shared data objects residing at multiple sites. A distributed transaction is 

decomposed into one transaction branch per accessed site. Even though it is generally 

assumed that each site where a distributed transaction executed ensures the local ACID 

properties of its transaction branch, the atomicity and isolation of a distributed 

transaction can be jeopardized in the absence of a global control. Therefore, some 

additional measures must be taken so that global atomicity and global isolation of 

distributed transactions are guaranteed. 

1.1.2 Atomic Commitment 

This thesis deals with the global atomicity problem, which requires that either all the 

updates performed by the transaction on the different accessed sites are made permanent, or 

all of them are obliterated. Since each local site participating in the transaction execution 

ensures the local ACID properties of its transaction branch, the task of ensuring the global 

atomicity of a distributed transaction reduces to ensuring that the transaction either commits 

at all the sites, or it aborts at all the sites. To solve this distributed agreement problem, 

known as the Atomic Commitment (AC) problem [BHG87], every participant expresses 

through a vote its ability to make its updates permanent, and all participants need to agree 

on a unique outcome (commit or abort) for the transaction. A protocol that achieves this 

kind of agreement is called an Atomic Commitment Protocol (ACP). 
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1.2 Research Motivations 

This work originated from the firm conviction that although the atomic commitment 

problem has been intensively studied in the last two decades, it remains in perpetual 

mutation to adapt to today’s new environments and applications. As this thesis testifies, 

existing solutions to the problem suffer from their lack of flexibility with respect to the 

distributed computing technology revolution in the sense that they can no longer meet the 

requirements of today’s distributed systems and applications. Indeed, the simplest and 

best-known ACP on which rely existing systems to coordinate transaction commitment is 

the Two-Phase Commit (2PC) protocol [Gra78, BHG87]. Although widely used and de 

facto standard [OMG00a, X/Op91, ISO92a], 2PC suffers from three major drawbacks 

when employed in the context of today’s distributed systems and applications: 

• It is quite inefficient in terms of both time delay and message complexity. This is 

mainly due to the number of communication steps and forced log writes needed in order 

to commit a transaction even in the absence of failures. This inefficiency not only makes 

2PC inadequate to today’s highly reliable distributed platforms, but also is particularly 

unacceptable in advanced and critical applications, such as Supervision and Control 

Systems' applications (SCS)2 [ABG98], with strong performance requirements. 

• It may lead to blocking situations in which operational sites are prevented from 

terminating the transaction due to failures in other components of the system 

[Ske81]. During these blocking periods, operational sites are also prevented from 

releasing valuable system resources they may have acquired for exclusive use on 

behalf of the transaction (otherwise transaction safety would be compromised), 

thereby compromising transaction liveness, and hence system availability. Although 

this situation might be acceptable for some standard applications, in mission critical 

applications however (e.g., SCS applications), for which a short response time is a 

crucial factor, some liveness guarantees are indispensable. Similar requirements 

                                                           
2 Typical examples of SCS are command and control systems in the field of transport (air, railway and 

road) including traffic management and fleet management systems, technical management systems for large 

equipment infrastructures such as telecommunication networks or electricity and water distribution networks. 
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arise in applications involving an important number of sites (e.g., Internet 

applications) where it would be completely unconceivable to block the entire system 

due to the crash of one single site. Protocols that provide liveness guarantees despite 

concurrency and failures are called non-blocking protocols (also known as fault-

tolerant protocols). 

• It forces participants in a transaction to externalize a local prepared state. The 

consequence of this is threefold. First, it violates site autonomy3, precluding the 

integration of legacy systems [ShL90] in distributed transactions. Second, it 

consumes valuable system resources on data servers hosted by lightweight 

intelligent devices with very limited resources, such as palmtops, cellular phones, or 

even smart cards [BPA00, BBP00]. Third, it leads to the abort of a transaction after it 

has been successfully processed if any of its participants is unreachable during the first 

phase of the protocol. The impact of this behavior is exacerbated in mobile environments 

in which (accidental or voluntary) disconnections are very frequent [BPA00]. 

Several optimized variations and non-blocking alternatives to 2PC have been proposed in 

the literature [Ske81, Ske82, MLO86, StC90, StC93, LaL93, BaT93, KeD94, AlC95, GuS95, 

GLS95, AlC96, GLS96]. However, none of these protocols is able to combine efficiency 

during normal processing with fault-tolerance (i.e., non-blocking), or to consider the issue of 

local site autonomy. Given these limitations, the need for a novel solution to the distributed 

commit problem that is capable of reconciling such crucial yet antagonistic requirements 

becomes an unquestionable fact. In this thesis, we have sought to address this issue. 

1.3 Research Contributions 

The major objective of this work is to bridge the gap between performance and fault-

tolerance of atomic commitment protocols, while considering the challenging and key 

aspect of today’s large distributed environments, namely local site autonomy. Another 

                                                           
3  Site autonomy means that (1) participants’ local information (e.g., log records or lock tables) cannot be 

externalized, and (2) no changes can be made to the participating sites to accommodate the distributed 

system. 
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important objective is the compliance of the proposed solutions with current transactional 

standards, initially designed with 2PC in mind. 

1.3.1 Atomic Commitment: Performance 

As its name indicates, 2PC (and its variations) is made out of two phases. In the first phase, 

called the voting phase, the participants are given an ultimate right to abort the transaction 

(i.e., the veto right), and in the second phase, called the decision phase, the participants 

need to agree on the same decision (commit or abort).  Whereas the decision phase is 

indeed necessary to ensure transaction atomicity (otherwise the participants might disagree 

on the transaction’s outcome), one might wonder whether the voting phase can (sometimes) 

be eliminated. This would drastically reduce the cost of commitment (two communication 

steps together with their associated forced log writes would be gained), and participants 

would not need to externalize a local prepared state anymore. Roughly speaking, to commit 

a transaction, the coordinator of the commit protocol would simply need to force-write the 

decision and send one message to the participants. 

The idea of One-Phase Commit (1PC) is not new: it was informally discussed by 

Gray in [Gra78, Gra90] as well as by Stonebraker in [Sto79]. More recently, several 1PC 

variations have been suggested in the literature [StC90, StC93, AlC95, AlC96]. Despite 

their efficiency, 1PC protocols have been completely ignored in the implementation of 

distributed transactional systems. We believe that the reason for this is due to some 

(strong) assumptions made by 1PC protocol designers about the underlying transactional 

systems without any statement on the necessity of those assumptions. This gives the 

impression, from a practical point of view, that 1PC is just an exotic concept with 

unrealistic underlying assumptions and, from the theoretical point of view, that 1PC does 

not make any sense as it contradicts proven lower bounds on the cost of solving the atomic 

commitment problem in distributed systems [DwS83].  

This work started with the broad objective of identifying the assumptions under which 

1PC can be used. To our knowledge, none of the previous works that were devoted to 1PC 

either defines the abstract properties of the problem that is solved or gives a precise 

description of the impact of eliminating the voting phase on transaction processing. In this 
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context, the present thesis provides three major contributions: it introduces the 

Dictatorial Atomic Commitment problem, defines On-line Serializability and On-line 

Commit-Resiliency, and proposes the Coordinator Logical Log mechanism. 

Dictatorial Atomic Commitment. We point out the fact that removing the veto right 

from atomic commitment comes down to an agreement problem that is different from the 

traditional atomic commitment problem solved by a 2PC [BHG87]. In light of this 

observation, we give a precise abstract specification of the resulting problem, which we 

baptize the Dictatorial Atomic Commitment (DAC) problem, and propose a simple 

algorithm that solves it. A crucial feature of this algorithm is that it can be seen as the 

basic building block around which all existing 1PC variations are designed. The lack of 

the veto right explains why 1PC is actually more efficient than any of the well-known 

optimized variations of 2PC [MLO86]. 

On-line Serializability & On-line Commit-Resiliency. Given the abstract specification 

of the DAC problem, we investigate its impact on the concurrency control and recovery 

protocols employed by the participants in a transaction. In particular, we define three 

conditions that are necessary and sufficient to ensure the correctness of transactional 

systems with no participant veto right: on-line serializability, cascadelessness and on-

line commit-resiliency. These conditions are strictly stronger than the usual correctness 

metrics for transactional systems, namely serializability, recoverability and resiliency, 

respectively [Had88]. We also discuss the practical impact of those conditions on real 

transactional systems, and show that unlike on-line serializability and cascadelessness, 

on-line commit-resiliency is however rarely realistic in practice. 

Coordinator Logical Log. Given the above limitation, we investigate techniques 

employed by existing 1PC protocols to circumvent the need for on-line commit-resiliency 

by considering “non-classical” atomic commitment schemes in which participants in a 

transaction are allowed to delegate part of their transactional responsibilities to the 

coordinator of the protocol. We point out the fact that although the existing techniques 

overcome on-line commit-resiliency, they come however at a very high cost as they 
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violate site autonomy, which compromises their use in existing commercial systems. We 

then study an adaptation of those techniques and propose a new 1PC variation, named 

Coordinator Logical Log (CLL), which preserves site autonomy, making 1PC indeed 

realistic and useful in practice. 

1.3.2 Atomic Commitment: Fault-Tolerance 

The second major part of this research deals with the non-blocking dictatorial atomic 

commitment problem. This problem is of major importance given that, compared to 2PC, 

1PC increases the probability to blocking of participants in case of failures. Indeed, by 

removing veto rights from atomic commitment, the window of vulnerability to blocking 

of the protocol lasts all along the transaction. In this context, our work provides two 

major contributions: it proposes the Non-Blocking Coordinator Logical Log protocol, and 

the Asynchronous Non-Blocking Coordinator Logical Log protocol. 

Non-Blocking Coordinator Logical Log. We propose a solution to the non-blocking 

dictatorial atomic commitment problem in the context of synchronous systems. The 

resulting protocol can be seen as a straightforward extension of CLL, called Non-

Blocking CLL (NB-CLL), that achieves non-blocking based on a Uniform Timed Reliable 

Broadcast (UTRB) primitive and assuming reliable failure detection. 

Asynchronous Non-Blocking Coordinator Logical Log. Obviously, the assumption 

of a synchronous system and a reliable failure detector is not always realistic in practice 

since variable or unexpected workloads are sources of asynchrony. Therefore, we 

propose a new non-blocking extension to CLL, called Asynchronous NB-CLL (ANB-

CLL), that achieves non-blocking in an asynchronous system augmented with an 

unreliable failure detector, and in which processes may crash and recover. To our 

knowledge, it is the first time that the non-blocking atomic commitment problem is 

studied in the context of asynchronous systems based on a crash-recovery model of 

computation. An interesting feature of our non-blocking solutions is that they can be 

directly applied to any existing 1PC protocol. Performance analysis shows that NB-CLL 

and ANB-CLL are more efficient in terms of time delay, message complexity and 
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number of forced log writes than all other non-blocking commit protocols proposed in 

the literature. Furthermore, they appear to be the sole protocols that can cope with 

existing transactional systems without violating their autonomy. 

1.3.3 Pragmatic Implementation 

We are currently finalizing the implementation of the ANB-CLL protocol in the context of the 

OpenDREAMS-II project (Esprit-VI R&D project n° 25262) in which I have been 

participating since 1997. The project is financed by the European Union and aims at designing 

and building a CORBA compliant platform dedicated to industrial Supervision and Control 

Systems (SCS). The OpenDREAMS-II platform is augmented with several components and 

services specifically tailored to answer SCS requirements, including a Transaction Service 

designed and implemented by the PRiSM laboratory of the University of Versailles. 

The project platform is experimented and validated through two industrial 

applications, namely a Condition Monitoring and Diagnostics of Thermal Power Plants 

application, as well as an Advanced Surface Movement Guidance & Control Systems (A-

SMGCS) application for managing all moving vehicles in an airport environment. Both 

applications showed the effectiveness of our protocol in meeting SCS requirements in 

terms of performance and fault-tolerance. The implementation of the ANB-CLL 

prototype is at a far advanced stage that enables us to prove the validity of our theoretical 

study, and to show the compatibility of our protocol with existing transactional standards 

(OTS/CORBA, XA/DTP) and commercial database systems. 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. Chapters 2 and 3, which constitute 

the first major part of this work, tackle performance issues related to distributed commit 

protocols. In Chapter 2, we define a general model of a distributed transactional system 

that we follow throughout the thesis. We then give some background about the Atomic 

Commitment problem, and recall the Two-Phase Commit approach to the problem 

through a description of the most well-known 2PC variations commonly found in the 
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literature. We finally point out 2PC limitations in terms of performance and applicability 

to existing transactional systems. 

In Chapter 3, we present proposals to overcome those limitations. We first introduce 

the Dictatorial Atomic Commitment (DAC) problem, resulting from removing veto rights 

from the traditional Atomic Commitment problem, and propose a highly efficient 

algorithm that solves it based on a One-Phase Commit (1PC) approach. We next define 

three necessary and sufficient conditions to ensure the correctness of transactional systems 

with no participant veto right: on-line serializability, cascadlessness, and on-line commit-

resiliency, and discuss the practical impact of those conditions on concurrency control and 

recovery protocols. Based on this discussion, we draw an interesting parallel between 

existing 1PC variations, and point out their practical limitations. We finally propose the 

Coordinator Logical Log (CLL) protocol, a new 1PC variation that capitalizes on the 

existing ones so as to keep the best of the 1PC approach while being useful and practical. 

Chapters 4 and 5, which constitute the second major part of this thesis, extend the work 

presented in the previous chapters on distributed commit protocols to tackle fault-tolerant 

issues. In Chapter 4, we recall the issue of blocking in 2PC, and define the Non-Blocking 

Atomic Commitment problem. We then present a survey of existing non-blocking commit 

protocols commonly found in the literature. In order to do so, we refine the general system 

model described in Chapter 2 in order to reflect different assumptions about failures and 

failure detections, and focus on the two extremes of a spectrum of possible models, namely 

synchronous and asynchronous systems. Each protocol is then described in the context of the 

underlying system model it assumes. We finally point out the limitations of the discussed 

protocols in terms of both performance and compliance with existing transactional systems. 

In Chapter 5, we provide solutions to those limitations by extending our results on 

dictatorial transaction processing to cover fault-tolerance issues. We first discuss the blocking 

problem in 1PC and refine the Dictatorial Atomic Commitment problem specification to 

include the non-blocking property. We then propose the NB-CLL and ANB-CLL protocols 

that solve the problem in the context of synchronous and asynchronous systems, respectively. 

These protocols blend the efficiency of the One-Phase Commit approach with non-blocking, 

without compromising their practical applicability to existing commercial systems. 
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Chapter 6 constitutes the third and final part of this thesis. It briefly surveys existing 

distributed transaction processing standards, and discusses a practical prototype 

implementation of ANB-CLL in the context of the OMG’s Object Transaction Service 

(OTS). Finally, Chapter 7 summarizes the major contributions of this thesis, and 

discusses some future research directions and open issues around this work. 
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Chapter 2

Atomic Commitment: 
Background 

A significant body of literature is available on distributed commit protocols. In order to 

put our work into perspective, we give in this chapter an overview of some of these 

protocols. The chapter is not intended to provide a complete survey on the matter but 

rather to highlight the essential by concentrating on well-established protocols that have 

received the most attention in the transactional world. In order to do so, we first define a 

general model of a distributed transactional system. We then recall some background 

about the Atomic Commitment (AC) problem, and discuss the basic Two-Phase Commit 

(2PC) protocol together with its best-known optimizations. We finally point out the 

limitations of the Two-Phase Commit approach in answering the needs of today’s 

distributed systems and applications. 

2.1 Distributed Transactional System Model 

Distributed computing problems have been studied in a variety of computational models. 

In this section, we define a general model of a distributed transactional system that we 

follow throughout this thesis. In Chapters 4 and 5, we refine our model and make it more 

precise in order to reflect the different assumptions we make on the environment, and 

also on the failures and the failure detection mechanisms we consider. 
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2.1.1 Sites and Processes 

We consider a distributed system composed of a finite set of sites Π = {S1, S2, …, Sn} 

completely connected through a set of communication channels4. Each site has a local 

memory and executes one or more processes. For the sake of simplicity, we assume only 

one process per site. We consider the so-called message-passing communication model in the 

sense that processes (sites) communicate with each other by exchanging messages. To 

simplify the subsequent discussion, when a process disseminates a message to every other 

process, we will speak as if the process sends the message to itself (and reacts accordingly). 

At any given time, a process may be operational or down. While operational, a 

process is assumed to follow exactly the actions specified by the algorithm it is running. 

Operational processes may go down due to crash failures [LaF82], i.e., we do not consider 

Byzantine failures in which processes can behave arbitrarily [LSP82, Fis83]. A process is 

said to be correct if it has never crashed; otherwise, the process is said to be faulty 5.  

We consider a crash-recovery failure model in the sense that a process can be down 

(crash) and later become operational again. When it does so, we say that the process 

recovers, in which case it executes a specific recovery protocol. A process that is down 

stops all its activities, including sending messages to other processes, until it recovers. 

Each process has access to a stable storage (i.e., that sustains crash failures) in which it 

maintains information necessary for the recovery protocol. During recovery, a process 

restores its local state based on the information it wrote on stable storage. 

2.1.2 Transactions 

A transaction is an atomic set of operations updating shared data objects and satisfying 

the so-called ACID properties [GrR93, BGS92, BCF97], namely atomicity, consistency, 

isolation, and durability. The atomicity property, also called all-or-nothing property, 

means that either the transaction successfully executes to completion and the effects of 

all of its operations are recorded in the accessed objects (the transaction is said to be 

                                                           
4 Note that although the physical network is not always completely connected, virtual links between 

every pair of processes can be provided by network layer protocols. 
5 Note that the period of interest of these definitions is the duration of the commit protocol, i.e., a process 

is correct if it never crashes during the execution of the commit protocol. 
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committed), or it fails and it has no effect at all (the transaction is aborted). In other word, 

all the transaction’s operations are treated as a single, indivisible, atomic unit. Consistency 

means that the transaction does not violate the integrity constraints of accessed shared 

objects, while isolation means that the intermediate effects of a transaction are not visible 

to concurrent transactions. Durability means that the updates of a committed transaction are 

permanent (i.e., stored on a stable storage that sustains failures). 

The atomicity and durability properties have been formalized through the resiliency 

theory [BHG87, Had88], and are usually ensured using a set of protocols known as 

recovery protocols. Isolation has been formalized through the serializability and 

recoverability theories [BHG87, Had88], and is ensured using a set of protocols referred 

to as concurrency control protocols. Consistency is generally assumed to be the 

responsibility of the transaction programmer (i.e., users are required to write transactions 

such that each takes the database from one consistent state to another) and can be 

enforced by some semantic integrity mechanisms built into the system. 

A distributed transaction (henceforth called a “transaction”) accesses shared objects 

residing at multiple sites. For each transaction, the processes that perform operations on 

its behalf are called transaction participants. The portion of a transaction executed at one 

participant is called a transaction branch. In the following, we assume the “classical” 

distributed transactional scheme in the sense that each participant ensures the ACID 

properties of every transaction branch it executes. We also assume that for every 

transaction, there is one specific participant, called the transaction coordinator, which 

manages the transaction processing and termination6. 

The coordinator forwards every transaction operation to the participant hosting the object 

involved by the operation. If a participant succeeds in processing an operation, it replies by 

sending back an acknowledgment message; otherwise, the participant aborts the transaction 

and sends back a negative acknowledgment. To conclude the transaction, the coordinator 

triggers an Atomic Commitment Protocol (ACP) whose aim is to ensure that a logical atomic 

commit or abort action is consistently carried out at all participants despite failures. In the 

following, we recall the abstract formulation of the underlying agreement problem. 

                                                           
6 This is generally the site where the transaction originated. 
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2.2 The Atomic Commitment Problem 

The Atomic Commitment (AC) problem is a distributed agreement problem that is 

concerned with bringing all participants in a transaction to agree on a unique 

outcome (commit or abort) for that transaction. This problem was formally defined in 

[BHG87]. Each participant has exactly one of two votes: yes or no, and can reach exactly 

one of two decisions: commit or abort, such that the following properties are satisfied:  

−−−− AC-Uniform-Agreement: No two participants reach different decisions. 

−−−− AC-Uniform-Validity: commit is decided only if all participants vote yes. 

−−−− AC-Uniform-Integrity: No participant can reverse its decision after it has reached one. 

−−−− AC-Non-Triviality: If all participants vote yes and no failures occur, then all   

participants must decide commit. 

The vote of a participant reflects its ability to commit its transaction branch. A 

participant votes yes only if the local execution of its transaction branch was successful 

and it is ready and willing to make its updates permanent even in the presence of failures. 

This actually means that the participant can locally guarantee the ACID properties of its 

transaction branch. A no vote (or abort) indicates that due to some local problems (integrity 

constraint violation, concurrency control problem, memory fault or storage problem), the 

participant is not able to guarantee some of the ACID properties of its transaction branch. An 

ACP is an algorithm that satisfies all of the four properties of the AC problem. 

The AC-Uniform-Agreement, AC-Uniform-Validity and AC-Uniform-Integrity 

conditions are safety conditions in the sense that they ensure the atomicity property of 

the transaction. The AC-Non-Triviality condition excludes from consideration trivial 

solutions to the problem in which participants always decide abort. 

2.3 The Basic Two-Phase Commit Protocol 

All 2PC variations can be regarded as optimizations to the basic 2PC protocol. In this 

section, we recall the principle of the Two-Phase Commit approach in general, and 

discuss the details of the basic 2PC protocol in particular. 
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2.3.1 Failure-Free Execution  

The basic Two-Phase Commit (2PC) protocol [Gra78, BHG87] (together with its 

variations) solves the AC problem by performing a voting phase and a decision phase. In 

the voting phase, the coordinator sends a request-for-vote message (also called a prepare 

message) to all the participants in the transaction. Each participant replies by sending its 

vote. If a participant votes yes, it enters a prepared state during which it can neither 

commit nor abort the transaction unless it receives the final decision from the 

coordinator. The period of time from the moment a participant votes yes and until it 

receives the final decision is called the uncertainty period for that participant. If, on the 

other hand, a participant votes no, it can unilaterally abort its transaction branch. 

During the decision phase, the coordinator decides on the transaction depending on 

the votes it receives from the participants. If all participants have voted yes, the 

coordinator decides commit, and sends its decision to all the participants in the 

transaction. Otherwise, the coordinator decides abort, and sends its decision (only) to the 

participants that are in the prepared state, i.e., those participants that voted yes. When a 

participant receives the final decision, it complies with this decision and sends back an 

acknowledgment message. This acknowledgment is a promise from the participant that it will 

never ask the coordinator about the outcome of the transaction. Finally, after receiving 

acknowledgments from all the prepared participants, the coordinator can forget about the 

transaction. This describes 2PC assuming no failures occur during the protocol execution. It is 

easy to see that 2PC satisfies all of the four properties of the AC problem. 

2.3.2 Dealing with Failures 

In order to exclude uninteresting protocols that allow participants to remain undecided 

forever once some failures have occurred during the protocol execution, the following 

AC-Termination property has to be added to the specification of the AC problem [BHG87]. 

−−−− AC-Termination: If all failures are repaired, then unless a new failure 

occurs, every participant eventually reaches a decision. 
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Figure 2.1: The basic 2PC protocol 

To satisfy AC-Termination, specific actions that deal with site and communication 

failures must be supplied. First, failures may prevent one site from communicating with 

another, leading a process to wait indefinitely for a message that may never arrive. To 

avoid such a situation, special timeout actions must be associated with each point in the 

protocol where a process is waiting for a message. Furthermore, since we consider a crash-

recovery failure model, participants can be down and later become operational again. In 

this case, a recovering process must attempt to reach a decision consistent with the 

decision operational processes may have reached. In the following, we consider these 

two issues in turn. 

Timeout Actions 

There are three cases to consider: (1) a participant is waiting for the prepare message 

from the coordinator, (2) the coordinator is waiting for participants’ votes, and (3) a 

participant is waiting for the coordinator’s decision. 

Case (1): If a participant Pi times out waiting for the prepare message from the 

coordinator, Pi can unilaterally decide abort since it has not voted yet. 

Case (2): If the coordinator times out waiting for a participant vote, it can safely 

decide abort. This is because at this point, the coordinator has not reached any decision 

yet, and no participant can have decided commit. 
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Case (3): If a participant Pi times out waiting for the decision message (i.e., while in 

its uncertainty period), it cannot decide on its own. In this case, Pi starts a termination 

protocol during which it tries to find out what to decide by contacting another participant 

that either (i) knows the decision, or (ii) can unilaterally decide on the transaction. If, 

however, all participants with which Pi can communicate neither satisfy (i) nor (ii), Pi 

remains blocked until it can communicate with at least one such participant. When used 

with 2PC, this termination protocol satisfies the AC-Termination property. Indeed, if all 

failures are repaired, and no new failures occur, Pi will eventually be able to 

communicate with a participant for which either (i) or (ii) holds, namely the coordinator. 

Crash Recovery 

Recovery is made possible by recording the progress of the protocol during normal 

processing (i.e., in the absence of failures) in the logs of the coordinator and the 

participants. Since failures can occur at any time, some of the information stored in the 

logs must be force-written, i.e., written immediately to a stable (nonvolatile) storage that 

sustains failures. For instance, the coordinator force-writes its decision before sending it 

to the different participants. Each participant force-writes (1) its vote before sending it to 

the coordinator, and (2) the final decision before acknowledging the coordinator. 

Usually, a participant that votes yes force-writes its vote together with all the updates 

performed on behalf of the transaction. This ensures that the participant’s updates are 

permanent even if it crashes (i.e., to ensure transaction resiliency). Force-writing a 

decision record in the log is the act by which a process decides on the transaction. When 

the coordinator receives acknowledgments from all participants, it writes a non-forced 

end record, indicating that the information pertaining to the transaction can be garbage 

collected from its log. Finally, it is important to note that forcing a log record implies that 

the forced log record and all preceding (non-forced) ones are moved immediately from 

main memory buffers to stable storage. Figure 2.1 describes the protocol execution 

between a coordinator C, and two participants P1 and P2. 

Consider a participant Pi recovering from a crash. A failed participant returns to the 

operational state by executing a recovery protocol. During this protocol, Pi first restores 

a consistent local state using the information it stored in its stable log. Then, it tries to 
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decide on the transactions that were active at the time the crash occurred (i.e., 

transactions for which no decision record exists in the log). For each of these 

transactions, if Pi does not find a yes record in its log, it can unilaterally decide abort. If, 

on the other hand, a yes record is found, this means that Pi failed while in its uncertainty 

period, and therefore, Pi is exactly in the same state as if it had timed out waiting for the 

decision message. Thus, the termination protocol described above can be used to decide 

on the transaction. 

2.4 2PC Optimizations 

The efficiency of an atomic commitment protocol is usually measured following three 

performance metrics [BHG87, MLO86, AbP97]: (1) message complexity, which 

corresponds to the number of coordination messages that need to be exchanged between 

the participants in the transaction, (2) time complexity, which corresponds to the number 

of communication steps or rounds required until a decision is reached at every 

participant, and (3) log complexity, which corresponds to the number of forced log writes 

performed by the participants in order to support recovery. The latter is of particular 

importance since it determines the number of blocking I/O required for a good behavior 

of the protocol. 

As already mentioned in Chapter 1, 2PC introduces a considerable latency in the 

system even in the absence of failures. Assuming that n is the total number of 

participants in the transaction, 2PC requires 3 communication steps (request-for-vote, 

vote and decision) and 2n+1 forced log writes until a decision is reached at every 

participant7. The higher the latency of an ACP, the longer the length of time a transaction 

may be holding shared objects, preventing other transactions from accessing these 

objects. Furthermore, 2PC has a high message complexity due to 4n messages (including 

the acknowledgement of the decision) exchanged during the protocol execution. These 

significant overheads have motivated many researchers to propose several optimizations 

to the basic 2PC. 

                                                           
7 Note that in all our evaluations, and in accordance with Section 2.1.1, we assume that when the 

coordinator sends a message to all participants in the transaction, it also sends the message to itself, and acts, 

just like any other participant, accordingly. 
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Figure 2.2: The Presumed Abort protocol (Abort Case) 

2.4.1 Presumed Abort (PrA) 

The basic 2PC protocol requires information to be explicitly exchanged and logged whether the 

transaction is to be committed or aborted. This is why it is often referred to as the Presumed 

Nothing 2PC (PrN) protocol. However, if after having failed and recovered, the coordinator of 

PrN gets an inquiry about the outcome of a transaction for which no information is found in its 

stable log, the coordinator (implicitly) presumes that the transaction is aborted. 

The Presumed Abort optimization (PrA) [MLO86] exploits further this property in order 

to reduce the message and logging overhead associated with aborting transactions by making 

the implicit abort presumptions of PrN explicit. As illustrated in Figure 2.2, the coordinator of 

PrA does not log information nor wait for acknowledgments regarding aborted transactions. 

Consequently, participants do not acknowledge abort decisions nor log information about 

such decisions. To abort a transaction, the coordinator simply informs the participants of the 

abort decision and forgets about the transaction. In the absence of information about a 

transaction, the coordinator presumes that the transaction has been aborted. Regarding 

committing transactions, PrA behaves in exactly the same way as PrN. 

It should be noted that PrA is now part of the ISO OSI-TP [ISO92a], X/Open DTP 

[X/Op91, X/Op93], and OMG OTS [OMG00a] distributed transaction processing 

standards, and has been implemented in a number of commercial products, such as IBM 

Almaden Research Center’s R* [MLO86], Transarc’s Encina [She93], and Unix System 

Laboratories’ TUXEDO [Pri94]. 
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Figure 2.3: The Presumed Commit protocol 

2.4.2 Presumed Commit (PrC) 

The Presumed Commit protocol (PrC) [MLO86] is the counterpart of PrA in the sense 

that it reduces the cost associated with committing transactions. It is based on the 

observation that, in general, transactions are most likely to commit than to abort. In PrC, 

the coordinator interprets missing information about transactions as commit decisions.  

Unlike PrA, however, the coordinator of PrC has to force-write a membership log 

record, and that, before starting the voting phase of the protocol. This is to ensure that an 

undecided transaction is not (erroneously) presumed as committed when the coordinator 

recovers from a crash. Furthermore, the membership record is exploited in order to 

record the identities of all the participants in the transaction, which, in the case of PrN 

and PrA, are recorded in the decision record. 

As illustrated in Figure 2.3 (a), to commit a transaction, the coordinator of PrC 

force-writes a commit log record before sending the commit decision to the participants. 

This is actually needed so as to “logically” erase the membership record, since lack of 

information means a commit. When a participant receives the commit decision, it simply 

writes a non-forced commit record without acknowledging the decision. Figure 2.3 (b) 

illustrates the protocol behavior for aborting transactions. The coordinator writes a non-
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forced abort record, and sends the abort decision only to those participants that voted 

yes. When a participant receives the abort decision from the coordinator, it force-writes an 

abort log record and then acknowledges the decision. 

Although most transactions are expected to commit in the absence of failures, the 

argument usually goes in favor of PrA. Clearly, this is due to the extra logging activities 

associated with the membership record in PrC. Mechanisms for reducing the logging overhead 

of the original PrC and making its cost comparable to that of PrA have been proposed 

[ACL97, LaL93]. 

2.4.3 Decentralized 2PC (D2PC) 

The Decentralized 2PC (D2PC) protocol [BHG87, Ske81] has been proposed in an 

attempt to reduce the time complexity of the basic 2PC. Instead of communicating 

through the coordinator, participants in D2PC communicate directly with one another. 

Similarly to PrN, the coordinator of D2PC initiates the protocol by sending a prepare 

message to all participants in the transaction. Unlike PrN, however, a participant that 

receives the prepare message responds by sending its vote to all participants in the 

transaction (rather than only to the coordinator). When a participant receives the votes 

from all participants, it decides on the transaction. If all votes are yes and the 

participant’s own vote is yes, it decides commit; otherwise, it decides abort. Compared to 

the basic 2PC, D2PC eliminates one message round at the expense, however, of a 

quadratic message complexity assuming a point-to-point communication network (n + 2n
2
 

messages, where n denotes the total number of participants in the transaction). 

2.4.4 Read-Only 

The Read-Only optimization [MLO86] has been proposed based on the observation that a 

transaction branch that performs only read operations cannot violate transaction 

atomicity. Since no local update has been performed on behalf of the transaction, a read-

only participant does not care about the transaction outcome. When such a participant 

receives the prepare message, it sends a read-only vote (instead of a yes vote) and then 

immediately releases all the read locks it has acquired on behalf of its transaction branch. 
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Message Complexity 
      point-to-point network                broadcast network  

Latency 
      Time complexity        Log Complexity 

PrN 4n 2n + 2 3 2n + 1 

PrA 4n 2n + 2 3 2n + 1 

PrC 3n n + 2 3 n + 2 

D2PC n  +  2n
2  
 2n + 1 2 2n 

Figure 2.4 : The cost of transaction commit under the different 2PC variations. 

The read-only vote has a dual role: it informs the coordinator that the transaction 

branch has read consistent data, and also tells it that the participant does not need to be 

involved in the second phase of the protocol. In short, a read-only participant does not 

perform any log write and sends only one message. 

2.5 Performance Evaluation 

The latency of an ACP is determined by the number of forced log writes and 

communication steps performed during the execution of the protocol, and until a decision is 

reached at every participant. Figure 2.4 shows the performances of 2PC together with its 

optimized variations in terms of latency and message complexity needed in order to commit 

a transaction (this actually corresponds to the most frequent case since most transactions 

are expected to commit in the absence of failures). Regarding message complexity, we 

distinguish two cases: (a) using a point-to-point network, and (b) using a broadcast 

network. 

When compared to PrN (i.e., basic 2PC), PrA does not reduce the cost of 

committing transactions. Concerning PrC, we observe that although it reduces the 

number of messages and forced log writes, it does not reduce the number of 

communication steps required to commit a transaction. Furthermore, the force-writes that 

are saved at each participant in PrC are executed in parallel by the participants in PrN. 

Thus, PrC does not considerably reduce the overall latency of PrN given that it incurs an 

additional force-write associated with the membership log record at the coordinator site. 

D2PC reduces the time complexity of its centralized counterparts from three 

communication steps to two, which decreases the transaction response time. 



2.6.    DISCUSSION 

 

25 

Furthermore, D2PC requires one forced log-write less than the other 2PC variations due 

to the fact that, from the moment the coordinator of D2PC starts the protocol, it assumes 

exactly the same role as the other participants. As we have already pointed out, this gain 

in D2PC comes, however, at the expense of a quadratic number of messages exchanged 

during the protocol execution if a point-to-point communication network is used. 

2.6 Discussion 

In the light of the above study, it follows that, from a performance perspective, 2PC 

optimizations do not provide substantial benefits over basic 2PC. Thus, although adapted 

to the classical distributed environments and applications of their time, 2PC variations 

are far from being satisfactory when employed in today’s highly reliable distributed 

platforms, and fail in meeting the strong performance requirements of advanced and 

critical applications, such as SCS applications [ABG98]. 

Beside this inefficiency, all 2PC variations require that the participating sites provide a 

local prepared state, which, as already mentioned in Chapter 1, violates site autonomy, 

precluding the integration of pre-existing legacy systems in distributed transactions 

[ShL90]. Although one might argue that this issue is no longer of topical interest as 2PC 

is now standardized, and hence all transactional systems are expected to become 2PC 

compliant, the actual situation shows that this is still not the case. Furthermore, and from 

a cost perspective, it would certainly be unreasonable to require that modifications be made 

to all existing transactional systems to support the standard protocol.  

We believe that all these limitations constitute a strong argument towards a serious 

reconsideration of the two-phase commit approach, and explain the renewed interest in 

the atomic commitment problem. 

�� 



CHAPTER 2.    ATOMIC COMMITMENT: BACKGROUND 

 

26 

 



 

 

27 

Chapter 3 

Dictatorial Atomic Commitment 

The traditional transaction processing paradigm relies on a Two-Phase Commit approach 

to coordinate transaction termination. While Two-Phase Commit is indeed sufficient to 

guarantee transaction atomicity, one might wonder whether it is always necessary. This 

suggests that there might be room for a One-Phase Commit approach. In this chapter, we 

introduce the Dictatorial Atomic Commitment (DAC) problem, a novel paradigm for 

distributed transaction commit, which overcomes the need for Two-Phase Commit in 

most practical situations. The intuition behind Dictatorial Atomic Commitment is that the 

votes of the participants in a transaction introduce a high cost, and in most existing 

transactional systems, participants’ votes can turn out to be more than necessary. 

We first give a precise abstract specification of the Dictatorial Atomic Commitment 

problem, resulting from removing veto rights from the traditional Atomic Commitment 

problem, and describe a basic One-Phase Commit (1PC) algorithm that solves it. We 

then characterize transactional systems that are compatible with the DAC specification in 

terms of three necessary and sufficient conditions on concurrency control and recovery 

protocols. We also discuss the practical impacts of those conditions through an in-depth 

analysis of existing 1PC protocols. From this analysis, we point out some severe drawbacks 

related to the discussed protocols, which make them inapplicable to today’s distributed 

systems. We finally propose a new 1PC variation that capitalizes on the existing ones so as to 

broaden the applicability of dictatorial transaction processing to meet the requirements of 

today’s distributed environments and applications, and point out some interesting 

performance tradeoffs. 
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3.1 The Dictatorial Atomic Commitment Problem 

3.1.1 Informal Description 

Variations of 2PC solve the classical Atomic Commitment problem (specified in 

[BHG87]) by performing a voting phase and a decision phase. The possibility of a 

participant to vote no reflects its ability to reject a transaction a posteriori, i.e., after the 

transaction’s operations are processed. In particular, a participant might need to vote no 

if it detects a risk of violating any of the local ACID properties of its transaction branch. 

Obviously, if we remove the veto right from participants in atomic commitment, the 

coordinator will not need to ask the participants for their votes and the voting phase of a 

2PC becomes useless (cf. Figure 2.1). 

Based on this idea, several authors have proposed the use of One-Phase Commit 

(1PC) protocols [StC90, StC93, AlC95, AlC96]. The basic assumption underlying 1PC is 

that a participant “does not need” to vote. This actually means that, before triggering the 

commit protocol, the coordinator of a 1PC makes sure that the ACID properties of all the 

local transaction branches are already ensured. In other words, the coordinator of a 1PC 

acts as a “nice dictator” and makes sure that no participant can have any reasonable 

reason to vote no. Obviously, this introduces some assumptions on the way participants 

manage their transactions as will be detailed later in the chapter. 

3.1.2 Problem Definition 

In light of the above discussion, we point out the fact that, by eliminating participants’ votes, 

the problem solved by 1PC is no longer the classical Atomic Commitment problem solved by 

2PC. This would contradict well-known lower bounds on the cost of solving atomic 

commitment in distributed transactional systems [DwS83]. In the following, we introduce the 

Dictatorial Atomic Commitment (DAC) problem, a distributed agreement problem resulting 

from removing veto rights from the traditional Atomic Commitment problem. 

In Dictatorial Atomic Commitment, participants do not have the veto right. At commit 

time, the coordinator proposes one of two values: commit or abort. If the coordinator does 



3.2.    THE BASIC ONE-PHASE COMMIT PROTOCOL 

 

29 

not crash, it forces the participants to accept its proposed value so that either they all 

commit the transaction or they all abort it. We formalize these notions as a set of 

properties that together define the Dictatorial Atomic Commitment problem [AGP00]. 

−−−− DAC-Uniform-Agreement: No two participants reach different decisions. 

−−−− DAC-Uniform-Validity: The decision value is the coordinator’s proposed value.  

−−−− DAC-Uniform-Integrity: No participant can reverse its decision after it has 

reached one. 

The DAC-Uniform-Validity property clearly expresses the coordinator’s dictatorship. 

The proposed value of the coordinator depends on whether or not the transaction has been 

successfully processed. A transaction is considered as successfully processed if all of its 

operations have been successfully executed and acknowledged by all participants. In this 

case, the coordinator proposes commit; otherwise, it proposes abort. 

3.2 The Basic One-Phase Commit Protocol 

In this section, we give a basic 1PC algorithm that solves the DAC problem, prove its 

correctness, and identify the different assumptions underlying it. An interesting feature of 

our algorithm is that it can be seen as the basic building block around which all existing 1PC 

variations are designed. Indeed, all 1PC protocols that were proposed in the literature share 

the same basic structure and differ only in the way recovery is managed (cf. Section 3.4.3). 

3.2.1 Protocol Description 

The simplest way to solve the DAC problem defined above is through the terminate() 

function described in Figure 3.1. During this function, the coordinator decides on the 

transaction depending on its proposition value, and sends its decision to all participants 

in the transaction. When a participant receives the decision from the coordinator, it 

decides on the transaction. Note that force-writing a decision record in the log is the act 

by which a participant decides on a transaction. The protocol corresponds exactly to a 

2PC without the voting phase (see Figure 2.1). Clearly, one can apply various well-

known optimizations of 2PC (e.g., PrA, or PrC) to 1PC. 
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function terminate () 

 Only the coordinator executes: 

 1 decision: = proposition;   // proposition ∈ {commit, abort} 

 2 decide (decision); 

3 send (decision) to all other participants; 

4 return; 

 Every participant Pi executes: 

5 wait until [received (decision) from coordinator] 

 6 decide (decision); 

 7 return; 

Figure 3.1: The basic 1PC protocol 

3.2.2 Protocol Correctness 

In this section, we prove the correctness of our basic 1PC algorithm presented in Figure 

3.1. This amounts to proving that it satisfies all of the three properties of the DAC 

problem. 

Theorem 3.1. 1PC achieves the DAC-Uniform-Agreement property. 

PROOF. For contradiction, assume that a participant Pi decides commit, while 

another participant Pk decides abort. In 1PC, a participant can only decide at line 6 

following the receipt of the decision message from the coordinator (line 5). This 

means that the coordinator has sent two different decisions to participants Pi and Pk. 

This contradicts the fact that the coordinator sends the decision only once at line 3 

of the protocol. Furthermore, it is clear that the decision sent by the coordinator at 

line 3 is nothing but the value it has decided at line 2. Thus, all participants 

(including the coordinator) reach the same decision.  � 

Theorem 3.2. 1PC achieves the DAC-Uniform-Validity property. 

PROOF. From lines 1 and 2 of the protocol, it is obvious that the coordinator’s 

decision value is its proposed value. By the DAC-Uniform-Agreement property, the 

decision value of all participants is the coordinator’s proposed value. � 
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Theorem 3.3. 1PC achieves the DAC-Uniform-Integrity property. 

PROOF.  From the structure of the protocol, it is obvious that the coordinator decides 

at most once by executing line 2, while the other participants decide at most once by 

executing line 6.  � 

3.2.3 Assumptions on the Transactional Systems 

By interpreting acknowledgement messages as yes votes, the coordinator of 1PC verifies 

whether or not the ACID properties of the local transaction branches are already ensured 

at commit time. This obviously introduces some assumptions on the way participants 

manage their transactions. In the following, we give a precise identification of the 

different assumptions underlying 1PC, and usually made (explicitly or implicitly) by 1PC 

variations [AGP98]: 

1. 1PC assumes that every transaction operation is acknowledged. Consequently, if 

the coordinator receives the acknowledgement messages for all the transaction operations 

before the protocol is launched, the atomicity of all the local transaction branches (i.e., local 

atomicity) will be already ensured at commit time. 

2. 1PC assumes that integrity constraints are checked after each update operation 

and before acknowledging the operation. Thus, if all operations are acknowledged, 

consistency of all the local transaction branches will be already ensured at commit time 

(e.g., the possibility of discovering, at commit time, that there is not enough money for a 

bank account withdrawal is excluded). 

3. 1PC assumes that a transaction that executes successfully all of its operations can 

no longer be aborted due to a serialization problem. Consequently, if all operations are 

acknowledged, serializability (isolation) of all the local branches will be already ensured 

at commit time (e.g., concurrency control protocols that check serializability at commit 

time are excluded). 

4.  Finally, 1PC assumes that once all operations are acknowledged, and before the 

protocol is launched, the effects of all the local transaction branches are already logged 

on stable storage, and hence, the durability property will be ensured at commit time. 
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 We believe that assuming every operation to be acknowledged before the ACP is 

launched is not a strong requirement as most transactional standards like DTP from X/Open 

[X/Op93] and OTS from OMG [OMG00a] assume the same behavior. The second 

assumption means that deferred integrity constraints validation is excluded. However, the 

consequences of the last two assumptions are clearly less obvious. In the following two 

sections, we dissect these two assumptions and study their impact on the concurrency 

control and recovery protocols employed by participants in dictatorial atomic commitment. 

3.3 The Impact of Dictatorship on Concurrency Control 

In this section, we characterize schedulers that are correct without the need for a veto 

right at commit time.  We give two necessary and sufficient correctness properties of 

such schedulers. The first property is an extension of serializability, which we named on-

line serializability [AGP00], and the second is the well-known cascadelessness property 

[BHG87]. We show for instance that either strict Two-Phase Locking or strict Timestamp 

Ordering is sufficient to ensure on-line serializability and cascadelessness. 

3.3.1 Veto Right Free Schedulers 

The correctness of a scheduler is usually captured through two properties: serializability 

and recoverability [BHG87]. That is, a scheduler S is correct if only histories that are 

serializable and recoverable are acceptable for S. Roughly speaking, a scheduler does 

not need a veto right if it does not rely on a distributed voting phase to ensure either of 

these properties. For instance, the scheduler cannot optimistically authorize conflicts and 

decide to abort transactions at their termination time if the conflicts persist. In other 

words, an optimistic certifier does need a veto right. To capture these intuitive ideas, we 

first introduce the notion of committed extension of a history.  

Definition 3.1. Let H be any history. A committed extension of H is any history 

obtained by extending H with the commit operations of all active transactions in H. 

Consider for example the following history8: 

                                                           
8 In the notations, Ri[x] and Wi[x] denote respectively a Read (resp. Write) operation on object x 

performed by transaction Ti, while Ci and Ai denote the commit (resp. abort) of Ti. 
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H = W1[x] R1[y] W2[z] A1 W3[x] R3[x] W4[z] C2 

Both histories H1 and H2 below are committed extensions of H.  

H1 = W1[x] R1[y] W2[z] A1 W3[x] R3[x] W4[z] C2 C3 C4 

H2 = W1[x] R1[y] W2[z] A1 W3[x] R3[x] W4[z] C2 C4 C3 

The following definition expresses the fact that a scheduler making use of 1PC (i.e., 

with no veto right at commit time) does not control the commitment of a transaction after 

its operations have been performed. 

Definition 3.2. A scheduler S is commit-expanded if, whenever a history H is 

acceptable for S, any committed extension of H is also acceptable for S. 

It is easy to see that a scheduler might be correct but not commit expanded. Let S be any 

correct scheduler (e.g., an optimistic certifier) for which the following history is acceptable:  

H = W1[x] R2[y] W2[x] R1[x] 

Now consider the following committed-extension of H:  

H’ = W1[x] R2[y] W2[x] R1[x] C1 C2 

The serialization graph of H’ contains the cycle T1 → T2 →T1, which means that H’ 

is not serializable. The history H’ is not recoverable either because transaction T1 reads x 

from transaction T2 and yet T1 commits before T2 (C1 < C2). As a consequence, H is 

acceptable for S whereas H’ is not. In other words, S is not commit-expanded. 

Definition 3.3. We say that a scheduler is VR-free (veto right free) if it is correct and 

commit-expanded. 

3.3.2 On-line Serializability and Cascadelessness 

The example above shows that serializability and recoverability are not sufficient for VR-

freedom. In the following, we introduce a property, that we call on-line serializability 

[AGP00], which is stronger than serializability. Then we show that on-line serializability 

and cascadelessness (a history H is cascadeless if no transaction in H reads from values 

written by uncommitted transactions) [BHG87] are necessary and sufficient for VR-freedom.  
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To define on-line serializability, we introduce the notation E-SG(H) (Expanded 

Serialization Graph). Given a history H over a set of transactions T = {T1, T2, …Tn), E-

SG(H) denotes the directed graph whose nodes are the transactions in T that are either 

committed or active in H and whose edges are all Ti → Tj (i ≠  j) such that one of Ti’s 

operations precedes and conflicts with one of Tj’s operations in H. Note that E-SG(H) is 

a super-graph of SG(H) (the serialization graph of H) as the latest contains only 

committed transactions of H. 

Definition 3.4. We say that a history H is on-line serializable iff E-SG(H) is acyclic. 

Theorem 3.4. Let S be any commit-expanded scheduler. S is correct iff S ensures 

on-line serializability and cascadelessness. 

PROOF. 

(IF) Let S be any commit-expanded scheduler and assume that every history that is 

acceptable for S is on-line serializable and cascadeless. As for any history H, E-

SG(H) is a super-graph of SG(H), any cycle in SG(H) appears in E-SG(H) as well. 

Hence, any history that is not serializable is not on-line serializable. Furthermore, it 

was shown in [BHG87] that any history that is cascadeless is recoverable. Hence S 

is correct. 

(ONLY IF) We show now that if a commit-expanded scheduler does not ensure 

either on-line serializability or cascadelessness, then it cannot be correct. Assume 

by contradiction that there is a history H in S that is either (1) not on-line 

serializable or (2) not cascadeless. Case (1) means that there is a cycle in E-SG(H). 

Let H’ be any committed-extension of H. As S is commit-expanded, then H’ is 

acceptable for S. As E-SG(H) = SG(H’), then SG(H’) also contains a cycle, a 

contradiction with the assumption that S is correct, i.e., S ensures serializability. 

Case (2) means that in H some transaction T1 reads from values written by an 

uncommitted transaction T2. Let H’ be any committed-extension of H where T1 

commits before T2. As S is commit-expanded, then H’ is acceptable for S. Since H’ 

contains all read and write operations of H, then in H’, T1 reads from values written 

by T2, and T1 commits before T2 in H’. A contradiction with the fact that S is 

correct, i.e., S ensures recoverability.  � 
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Corollary 3.1.  On-line serializability and cascadelessness are necessary and 

sufficient conditions for a scheduler to be VR-free.  

3.3.3 Examples of VR-free Schedulers 

We show below that a scheduler based either on strict Two-Phase Locking (2PL) or on 

strict Timestamp Ordering (TO) is VR-free. 

Theorem 3.5. Strict 2PL is sufficient but not necessary to ensure on-line 

serializability and cascadelessness.  

PROOF. 

(a) It has been shown in [BHG87] that any strict history is cascadeless. Assume H 

is also a 2PL history and assume by contradiction that H is not on-line 

serialisable, i.e., there is a cycle T1 → T2 →…→ Tn → T1 in E-SG(H). 

However, since 2PL is a lock-based scheduler, a dependency cycle would have 

led to a deadlock, and H could not have been generated: a contradiction. 

(b) The following history H shows that strict 2PL is not necessary to ensure on-line 

serialisability and cascadelessness: 

H = W1[x] W2[x] C2 C1 

The history H cannot be generated by a 2PL scheduler: transaction T2 could not 

have accessed x before the termination of T1. However, H is on-line 

serializable and cascadeless.  � 

Theorem 3.6. Strict TO is sufficient but not necessary to ensure on-line serializability and 

cascadelessness.  

PROOF. 

(a) Similar to (a) of Theorem 3.5 above: assuming H is a TO history, the presence 

of a cycle T1 → T2 →…→ Tn → T1 in E-SG(H) would mean that ts(T1) < 

ts(T1), where ts(T) denotes T’s timestamp. A contradiction. 

(b) The following simple history H shows that strict TO is not necessary to ensure 

on-line serializability and cascadelessness  
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H = W1[x] W2[x] C1 C2 

Whatever the timestamp order is, H cannot be generated by a strict TO 

scheduler. Indeed, either ts(T1) < ts(T2) and W2[x] will be delayed until C1 is 

performed, or ts(T2) < ts(T1) and T2 will be aborted  because it arrives late. 

However, H is on-line serialisable and cascadeless.  � 

In contrast, a certifier cannot ensure on-line serializability. A certifier typically 

prevents cycles by aborting transactions (a posteriori). However, on-line serializability 

requires that no cycle (even if involving only active transactions) be ever generated. The 

following history can be produced by a certifier and is obviously not on-line serializable. 

H = R1[x] W2[x] W2[y] W1[y] 

3.3.4 Practical Considerations 

Strict 2PL is the most widely used serialization protocol. Hence, participants of most 

transactional systems exhibit the VR-free property and thus, are 1PC compliant. 

However, commercial database systems are likely to use isolation levels standardized by 

SQL2 [ISO92b] in combination with 2PL. We recall below the SQL2 isolation levels and 

analyze the extent to which 1PC protocols can accommodate them. 

• Serializable: Transactions running at this level are fully isolated. 

• Repeatable Read: Transactions running at this level are no longer protected against 

phantoms. More precisely, successive reads of the same object give always the same 

result but successive SQL queries selecting a group of objects may give different 

results if concurrent insertions occur. 

• Read Committed: Transactions running at this level read only committed data but 

Repeatable Read is no longer guaranteed. In a lock-based protocol, this means that 

read locks are relaxed before transaction end (in practice, as soon as they are granted). 

• Read Uncommitted: Transactions running at this level may do dirty reads. For this 

reason, they are not allowed to update the database. In a lock-based protocol, this 

means that Read Uncommitted transactions do not request locks at all.  
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Isolation levels are widely exploited because they allow faster executions, increase 

transaction parallelism and reduce the risk of deadlocks. For example, a transaction Ti 

computing statistics on a large population of objects can take benefit of the Read 

Uncommitted level. This transaction will never be blocked by concurrent writing 

transactions (that may affect Ti’s result but in a non significant way) and will never block 

other transactions. 

If we refer to definition 3.3, it is clear that schedulers implementing isolation levels, 

which we call IL-schedulers, are not VR-free simply because they are not correct: they do 

not ensure serializability. Consequently, they do not ensure on-line serializability either. 

However, isolation levels have been actually introduced to relax serializability, and non-

serializable schedules that may be produced are considered as semantically correct. 

Hence, new correctness criteria that accommodate isolation levels need to be defined in 

order to characterize “correct” IL-schedulers. To this end, we introduce in the following 

a new property, which we call IL-serializability. 

Consider a history H over a set of transactions T = {T1, T2, …, Tn). Let IL-SG(H) be 

the sub-graph of SG(H) containing all dependencies in H except those incurred by 

conflicts ignored by the isolation levels under which transactions in T are running. We 

say that H is IL-serializable iff IL-SG(H) is acyclic. An IL-scheduler is said to be correct 

if it ensures IL-serializability and recoverability. 

Similarly to Section 3.3.2, we introduce a new property, which we call on-line IL-

serializability, to characterize IL-schedulers that are correct with no veto right at commit 

time. Let E-IL-SG(H) denote the expanded IL-SG(H). We say that a history H is on-line IL-

serializable iff E-IL-SG(H) is acyclic. We can show that on-line IL-serializability and 

cascadelessness are necessary and sufficient conditions for an IL-scheduler to be veto right 

free. The proof is very similar to that of Theorem 3.4 and hence omitted. We show below that 

IL-2PL (2PL based IL-scheduler) satisfies both cascadelessness and on-line IL-serializability.  

• Cascadelessness: conventionally, the cascadelessness property precludes the 

occurrence of dirty reads. In IL-2PL, dirty reads are allowed only at the Read 

Uncommitted level, which is restricted to Read-Only transactions. However, the 

semantics of Read-Only transactions contradict the fact that they can be subject to 
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cascading aborts. Consequently, cascadelessness is still ensured in IL-2PL 

schedulers. 

• On-line IL-serialisability: Assume H is an IL-2PL history, and assume by 

contradiction that H is not on-line IL-serialisable, i.e., there is a cycle T1 → T2 

→…→ Tn → T1 in E-IL-SG(H). Note that any dependency edge in E-IL-SG(H) 

translates a conflict not ignored by the IL-2PL scheduler. Since IL-2PL is based 

on locking, a dependency cycle would have led to a deadlock and H could not 

have been generated: a contradiction. 

As a conclusion, IL-2PL schedulers can still be considered as veto right free, and 

hence they comply with 1PC. 

3.4 The Impact of Dictatorship on Recovery 

A data manager must ensure the atomicity and durability properties of every transaction. 

More precisely, the data manager must guarantee that there is enough information on stable 

storage so that if a failure occurs (and the information in the volatile storage is lost), (1) the 

updates of aborted transactions are undone from the database and (2) the updates of 

committed transactions are correctly reported on the database. Following the terminology of 

[Had88], we call the first property abort-resiliency and the second property commit-

resiliency (these correspond to undo and redo rules respectively in [BHG87]). A data 

manager is said to be correct if it guarantees both abort-resiliency and commit-resiliency 

[Had88]. 

3.4.1 Veto Right Free Data Managers 

In a centralized system, abort-resiliency is for example ensured by having the data 

manager store before images in its log (this technique relies on the assumption that a 

strict concurrency control is used), and commit-resiliency is ensured by force-writing the 

transaction updates on stable storage at commit time [BHG87].  

In a distributed database system, the same technique is used to guarantee abort-

resiliency. To ensure commit-resiliency, participants in a transaction must guarantee that, 
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if the transaction commits at any participant, there is enough information on stable 

storage to redo the effects of the transaction at all participants. With a 2PC, this is 

guaranteed using the notion of prepared state. A participant P enters the prepared state 

for a transaction only if the commit-resiliency property is guaranteed for the transaction 

branch that accessed P. To commit a transaction, its coordinator makes sure that all 

updated participants have entered the prepared state of that transaction: this test is 

included in the voting phase of the 2PC. A participant does only vote yes if it has entered 

the prepared state. If it cannot enter that state (e.g., if the disk is full), the participant 

simply votes no and the transaction is aborted. 

Removing the veto right has no impact on abort-resiliency. Nevertheless, the 

participants must anticipate the commit and make sure the commit-resiliency property is 

ensured a priori. As for schedulers, we introduce the following definitions to capture the 

idea of a VR-free data manager [AGP00]. 

Definition 3.5. We say that a data manager D is commit-expanded if whenever an 

operation has been performed on behalf of a transaction T, the corresponding 

transaction branch can commit. 

The definition above captures the idea that, just like for a scheduler, the only way to 

abort a transaction is by not performing one of its operations. If a transaction’s operation 

has been acknowledged (i.e., performed), the corresponding transaction branch is able to 

commit. 

Definition 3.6. We say that a data manager is VR-free if it is correct and commit-

expanded. 

3.4.2 On-line Commit-resiliency 

We introduce the following property to characterize the behavior of data managers that 

are VR-free.  

Definition 3.7. We say that a data manager ensures on-line commit-resiliency if 

every update operation executed on that data manager is commit-resilient. 
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Theorem 3.7. Let D be any commit-expanded data manager. D is correct iff it 

ensures abort-resiliency and on-line commit-resiliency. 

PROOF. 

(IF) Let D be any commit-expanded data manager that ensures abort-resiliency 

and on-line commit-resiliency. In other words, before acknowledging any update 

operation, the participant force-writes its effects on stable storage. As we assume 

that this participant cannot commit its transaction branch before all of its operations 

have been acknowledged (cf. Sections 3.1 and 3.2), this means that it cannot commit 

its transaction branch if the effects of any of its operations are not on stable storage, 

i.e., the transaction is commit-resilient at D’s site. Hence, D is correct. 

(ONLY IF) Assume by contradiction that there is an execution where D does not 

ensure on-line commit-resiliency, i.e., D does not ensure the commit-resiliency of 

some update operation op for a transaction T. If the transaction commits exactly 

after receiving the acknowledgement from the participant about the operation op, 

and the participant crashes immediately after sending back that acknowledgment, 

then the effects of op are lost and T is not commit-resilient at D’s site: a 

contradiction with the fact that D is correct.  � 

Corollary 3.2.  Abort-resiliency and on-line commit-resiliency are necessary and 

sufficient conditions for a data manager to be VR-free. 

3.4.3 Practical Considerations 

Participant Logging 

To achieve the on-line commit-resiliency property, participants in a transaction must 

force-write the effects of every update operation on stable storage, and that before 

acknowledging the operation. The Early Prepare (EP) processing scheme of Stamos and 

Cristian does ensure that property [StC90, StC93]. Although Early Prepare can make 

direct use of 1PC (as described in Section 3.2.1) and alleviates the need for an expensive 

2PC, it requires a forced-write at every update operation of the transaction. The cost of 

transaction commitment is hence traded with the cost of transaction processing.  
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Coordinator Physical Logging 

To avoid the prohibitive cost of on-line commit-resiliency, one might deviate from the 

“classical” atomic commitment scheme that requires every participant to ensure all of the 

ACID properties of its transaction branches. Consider for instance a less classical scheme 

that consists in having the coordinator itself ensure the commit-resiliency property before 

committing a transaction. To delegate this responsibility, participants need however to 

make sure that the coordinator has enough information on its local stable log about all 

committed transactions (unless it has the adequate information, the coordinator aborts the 

transaction). Coordinator Log (CL) [StC90, StC93] and Implicit Yes-Vote (IYV) [AlC95, 

AlC96] do follow this scheme. 

In Coordinator Log, participants do not maintain their updates in a local stable log. 

Instead, they send back within the acknowledgment message of every update operation 

all the log records (undo and redo log records) generated during the execution of the 

operation. The coordinator is thus in charge of logging the transaction’s update 

information before performing the commit protocol. If we refer to the basic 1PC protocol 

described in Section 3.2.1, this would mean that the coordinator of CL calls the terminate() 

function with commit as its proposition value only if it succeeds in storing the transaction’s 

log records on stable storage. To recover from a crash, a participant asks the coordinator for 

the undo/redo log records it needs to reestablish a consistent state of its database. 

The Implicit Yes-Vote scheme is similar to Coordinator Log, except that logging is a 

more distributed task. The idea is to allow failed participants to perform part of the 

recovery procedure (the undo phase) independently of the coordinator, and to resume the 

execution of transactions that are still active in the system (i.e., transactions for which no 

decision was made yet) instead of aborting them. Participants send back their redo log 

records together with a Log Sequence Number (LSN) [GrR93] whenever they 

acknowledge an update operation. To recover from a crash, a participant performs the 

undo phase of the recovery procedure and part of the redo phase using its local log. Then, 

the participant asks the coordinator for all redo log records whose LSNs are greater than 

its own highest LSN, and for all read locks acquired by active transactions. This allows 

the participant to reinstall the updates pertaining to globally committed transactions and 

continue the execution of transactions that are still active in the system. 
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Coordinator Logical Logging 

Although Coordinator Log and Implicit Yes-Vote circumvent the need for on-line 

commit-resiliency, they violate site autonomy by forcing participants in a transaction to 

externalize their local log information. This certainly compromises their use in existing 

transactional systems. To solve this problem, we propose to maintain in the log of the 

coordinator the list of operations submitted to each participant instead of the physical 

redo log records sent back by these participants. In case a participant crashes during the 

1PC protocol execution, the failed transaction branches that make part of a globally 

committed transaction will be re-executed using the operations registered in the 

coordinator's log. 

This mechanism, which we call Coordinator Logical Log (CLL) [AbP98], provides 

three main advantages. First, it preserves site autonomy since no internal information has 

to be externalized by the participants. This feature is of primary importance if the commit 

protocol is to be used in today’s large and autonomous distributed environments. Second, 

it can be applied to heterogeneous transactional systems using different local recovery 

schemes, which is not the case in Coordinator Log or Implicit Yes-Vote. Finally, it does 

not increase the communication cost during normal processing since log records are not 

piggybacked in the messages. 

3.5 The CLL Protocol 

3.5.1 Failure-Free Execution 

As introduced before, our logical logging mechanism consists in having the coordinator 

register in its log every transaction operation before sending it to the participant hosting 

the object involved by the operation. Note that this registration is done by a non-forced 

write. Non-forced writes are buffered in main memory and do not generate blocking I/O. 

Operations are then sent to and locally executed by the different participants. 

As is the case in CL and IYV, the coordinator of CLL is in charge of ensuring the 

commit-resiliency property before committing a transaction. Thus, when all 

acknowledgments are received, the coordinator force-writes the transaction operations on 
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stable storage and calls the terminate() function with commit as its proposition value. 

Recall that during this function, the coordinator decides on the transaction by force-

writing its decision value on disk. In order to improve performances, the transaction 

operations together with the decision log record can be forced on stable storage at the 

same time, thereby generating a single blocking I/O. If, on the other hand, the coordinator 

receives a negative acknowledgement from some participant or fails in storing the 

transaction operations on stable storage, it simply discards all the transaction’s log 

records and calls the terminate() function by proposing abort. 

3.5.2 Dealing with Failures 

Similarly to the AC problem, the following DAC-Termination property has to be added to the 

specification of the DAC problem in order to exclude protocols that allow participants to 

remain undecided forever once some failures have occurred during the protocol execution. 

−−−− DAC-Termination: If all failures are repaired, then unless a new failure 

occurs, every participant eventually reaches a decision. 

To satisfy DAC-Termination, we must supply timeout actions for each point in the 

1PC protocol in which a participant is waiting for a message. Timeout actions define 

what a participant should do in case an expected message does not arrive. We must also 

describe how a recovering participant attempts to reach a decision consistent with the 

decision other participants may have reached in the meanwhile. In the following, we 

consider these two issues in turn9. 

Timeout Actions 

In 1PC, the only point where a participant can unilaterally abort a transaction is by 

negatively acknowledging an operation. If, however, the participant has no pending 

acknowledgement for any of the transaction’s operations, it enters its uncertainty period 

until it receives either a new operation or the final decision from the coordinator. When a 

participant times out while in its uncertainty period, it executes a termination protocol 

                                                           
9 For details on how crash recovery and timeout actions are handled in CL and IYV, please refer to 

[StC90, StC93, AlC95, AlC96]. 
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during which it tries to decide on the transaction. The termination protocol presented in 

Section 2.3.2 can be perfectly used here so that DAC-Termination is guaranteed. Note 

that although the participant may be blocked during the execution of the termination 

protocol due to failures in other parts of the system, it eventually reaches a consistent 

decision once these failures are repaired. 

Crash Recovery 

We now describe how a recovering participant can reach a decision consistent with the 

decision operational processes may have reached. Consider a participant Pk recovering 

from a crash. Figure 3.2 details the recovery algorithm associated with CLL and executed 

by Pk. In the following, Tik denotes the local branch of transaction Ti executed at participant 

Pk. For the sake of clarity, step numbers correspond here to step ordering. 

Step 1 and Step 2 represent the standard local recovery procedure executed by a 

crashed participant Pk. To preserve site autonomy, we make no assumptions whatsoever on 

the way these steps are handled. Step 3 is necessary to determine if the kth branch (i.e., Tik) 

of some globally committed transactions Ti has to be locally re-executed by the crashed 

participant. In Step 4, the coordinator aborts all active transactions in which Pk participates. 

Step 5 checks if there exists some committed transaction Ti for which Pk did not 

acknowledge the commit decision. This may happen in two situations. Either the participant 

crashed before the commit of Tik was achieved and Tik has been undone during Step 1, or 

Tik is locally committed but the crash occurred before the acknowledgment was sent to the 

coordinator. Note that these two situations must be carefully differentiated. Re-executing 

Tik in the latter case may lead to inconsistencies if Tik contains non-idempotent operations. 

To simplify the presentation, we assume for the moment that the coordinator can query a 

participant to learn the exact state of Tik (Step 6). We detail afterwards the way we achieve 

this without violating site autonomy. The participant answers during Step 7. If Tik has been 

successfully committed, the coordinator does nothing. Otherwise, Tik has been undone 

during Step 1 and must be entirely re-executed. This re-execution is performed by exploiting 

the coordinator's log (Step 8). Once the recovery procedure is completed, new distributed 

transactions are accepted by the coordinator (Step 9) and the participant (Step 10). 
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Participant's algorithm 

1- undo the transactions that were active at the time the crash occurred 

2-  redo transactions that have reached their commit state before the crash 

occurred 

3-  contact the coordinator 

7- answer the queries that may be sent by the coordinator during step 6  

10- accept new transactions 
 

Coordinator's algorithm  

If contacted by participant Pk during step 3, do: 

for each transaction Ti in which Pk participates 

  4- if (commiti) ∉ coordinator's log, then  

    send (aborti) to all other Ti participants and forget Ti 

  5- if (commiti) ∈ coordinator's log, then 
    if ackk(commiti) ∉ coordinator's log, then 
     6- query Pk  to determine the exact status of Tik 

      (i.e., either locally committed or aborted) 

     8- if Tik has not been locally committed, then 

      restart a new transaction T'ik on Pk 

      re-execute all Tik operations within T’ik 

9- accept new distributed transactions 

 Figure 3.2. Recovering a participant crash 

We now explain how the coordinator can query a participant about the state of its 

local transaction branches. Our solution relies on a local Agent (called Agentk) associated 

with each participant Pk. The Agent does not violate site autonomy as the existing 

interface of the participant is preserved, and does not increase the communication cost, 

as it is co-located with its participant. Every message is submitted to the participant 

through its local Agent, which acts as a liaison between the coordinator and the 

participant. The exact role of the Agent is to determine, during the recovery procedure, 

those local transaction branches that need to be re-executed. The mechanism works as 

follows. When the coordinator sends the commit decision to each participant, the 

participant’s Agent issues an additional operation "write record <commiti>" on behalf of 

the local transaction branch it is in charge of (e.g., Tik), and before submitting the commit 
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decision to the participant 10. This creates at Pk a special local record containing the 

commit decision for Ti. This operation will be treated by Pk in exactly the same manner 

as the other operations belonging to Tik, that is, either all committed or all aborted 

atomically. Once the Agent receives the acknowledgment of this write operation, it asks 

Pk to commit the local transaction branch.  

Steps 6 and 7 of the recovery algorithm are now straightforward. To get the status of 

a local transaction branch Tik, the coordinator checks, through Agentk, the existence of 

record <commiti> at Pk (this can be done by a regular select operation). If the record is 

found, this proves that Tik has been successfully committed at Pk before the crash, since 

write<commiti> is performed on behalf of Tik. Otherwise, Tik has been backward 

recovered during Step 2 and must be re-executed. 

3.5.3 Recovery Correctness 

In this section, we show that the CLL’s recovery procedure described in the previous 

section is correct. This amounts to proving that a recovering participant eventually 

reaches a decision consistent with that reached by the other participants once all failures 

are repaired so that DAC-Termination is satisfied. However, since the recovery procedure 

may lead to a decision through the re-execution of a transaction branch, we also need to 

show that re-executing the logical operations registered in the coordinator’s log will 

produce exactly the same local state at the recovering participant as the one produced 

during the initial execution. In the following, we consider these two issues in turn. 

• Decision Consistency: Let Pk be the recovering participant. If, during its local 

recovery procedure, Pk finds in its log a decision record for a transaction branch, say Tik, 

then it has already decided during the 1PC protocol execution. If, however, no decision 

record is found, Pk undoes the effects of Tik (Step 1). Note that the only non-trivial case 

to consider here is the case where Tik is part of a globally committed transaction Ti. This 

may happen if the coordinator has sent the commit decision to all participants, but Pk 

crashed before committing Tik. By the algorithm of Figure 3.2, when Pk establishes a 

                                                           
10 Note that this operation never generates a dependency cycle (i.e., deadlock) since it is the last 

operation executed in any transaction that has to be committed. 
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consistent local state, it contacts the coordinator (Step 3). In this case, once the 

coordinator has verified, through Agentk, that Tik has been locally aborted, it re-executes 

all Tik operations within a new transaction branch T’ik. If a failure should occur during 

the re-execution process, it will be retried until Tik (T’ik) commits at Pk. Note that 

although Pk may be blocked during its recovery (in case the coordinator is down), Pk 

eventually reaches a consistent decision once the coordinator recovers from its crash. 

Hence, the recovery procedure associated with CLL satisfies DAC-Termination. 

• Determinism: Here, we show that the re-execution of Tik within T’ik produces 

the same local state at Pk as the one produced during the initial execution. Note that in 

CL and IYV, the coordinator's log contains physical redo records, making the recovery 

algorithm rather straightforward. The redo records are re-installed at the failed 

participant during the recovery of a local transaction branch, thereby producing the same 

local state as the one produced during the initial execution. By exploiting logical logging 

rather than physical logging, CLL’s recovery procedure must face two new problems: 

- operations may be non-idempotent: an operation op is said to be non-idempotent if 

(op(op(x)) ≠ op(x)). Non-idempotent operations must be executed exactly once in 

any failure situation. 

- operations may be non-commutative: two operations op1 and op2 are said to 

be non-commutative if (op1(op2(x)) ≠ op2(op1(x))). Non-commutative operations 

must be executed at recovery time in the same order as during the initial execution. 

Consider first the management of non-idempotent operations. Assume the coordinator 

has decided to commit Ti and has sent its decision to the participants. Assume also that Pk 

crashed immediately after. By the undo rule, if Pk crashed before committing Tik, Tik will be 

undone during Step 1 of the recovery algorithm and the record <commiti> will be 

discarded11. Otherwise (i.e., Pk crashed after the commit of Tik was successfully 

performed), the redo rule guarantees the presence of the <commiti> record at Pk. These two 

situations are differentiated during Step 6 of the recovery algorithm. Step 8 forward 

recovers only transaction branches that have been locally aborted. This means that no 

transaction branch, and hence no operation (whether idempotent or not) is executed twice. 

                                                           
11 We recall that the operation write record <commiti> is performed on behalf of Tik. 
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Consider now non-commutative operations. If these operations belong to the same 

transaction, no problem can occur. Indeed, the recovery algorithm re-executes the 

operations of a failed transaction branch following the order in which they were logged 

on the coordinator, i.e., in the order of their initial execution. The case where two or 

more local transaction branches (e.g., Tik, Tjk) have to be forward recovered is trickier 

since most transactional systems execute transactions in parallel through several threads 

of control. Thus, even if the coordinator re-submits to Pk all operations that belong to 

different local transaction branches in the order of their initial execution, the result is 

non-deterministic. We demonstrate below that the local database state produced by the 

recovery algorithm is the same as the one produced during the initial execution. Let ϕ denote 

the set of all local transaction branches that have to be forward recovered by Pk during Step 8. 

ϕ = {Tik / commiti ∈ coordinator's log ∧∧∧∧ ackk(commiti) ∉ coordinator's log ∧∧∧∧ 
<commiti> ∉ Pk‘s state} 

First, Step 2 of the recovery algorithm guarantees that all resources accessed by any 

Tik ∈ ϕ are restored to their initial state (i.e., the state before Tik execution), according to 

the atomicity property. Second, since Step 8 precedes Step 9 and Step 10, new 

transactions that may modify Tik resources are executed only after the re-execution of Tik. 

Consequently, at Step 8, all Tik ∈ ϕ are guaranteed to re-access the initial database state. 

The sole problem may come from the parallel re-execution of all Tik ∈ ϕ if these 

transactions themselves compete on the same resources. 

Assume first that Pk uses a locking based VR-free serialization protocol, such as 

strict 2PL (i.e., the general case). In this case, ∀Tik, Tjk ∈ ϕ, ¬∃(Tjk → Tik), where → 

represents a precedence in the serialization order. Otherwise, Tik would have been 

blocked during its initial execution, waiting for the termination of Tjk, and would not 

have completed all its operations, which contradicts Tik ∈ ϕ. This means that Tik and Tjk 

cannot compete on the same resources. If however, Pk uses another VR-free serialization 

protocol, such as strict TO, the former assumption is no longer valid. Indeed, strict TO 

accepts some Read/Write conflicts (those produced in the timestamp order) without 

blocking. To deal with this case, Step 8 must execute each Tik ∈ ϕ in their initial 

serialization order, one after the other (i.e., without parallelism). 
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Figure 3.3: The EP protocol. 

3.5.4 Performance Evaluation 

In this section, we investigate the performance of One-Phase Commit, and compare the 

CLL protocol with existing 1PC variations, namely EP, CL and IYV. In our evaluations, 

we denote by n the total number of participants in a transaction, and we assume failure-free 

executions. 

As opposed to the basic 2PC, which requires 3 communication steps, 2n+1 log forces, 

and 4n messages in order to commit/abort a transaction (cf. Section 2.5), the basic 1PC 

protocol (described in Section 3.2) only requires one communication step, n+1 log forces, and 

2n messages. The absence of the veto right explains why 1PC is much more efficient than 2PC. 

While basic 1PC treats all transactions uniformly, whether they are to be committed 

or aborted, one can clearly apply various well-known optimizations of 2PC (e.g., PrA and 

PrC) to 1PC. The EP protocol combines the 1PC idea with PrC in the sense that it 

reduces the message and logging overheads associated with committing transactions. 

Consequently, commit decisions are neither acknowledged nor force-written by the 

participants. However, since the coordinator of PrC must record the identities of the 

transaction participants on stable storage as part of a forced membership log record, and 

that, before sending prepare messages to the participants (cf. Section 2.4.2), the 

(a) Commit Case (b) Abort Case 
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Figure 3.4: The CL protocol. 

coordinator of EP may have to force-write multiple membership log records, because the 

transaction membership may grow as the transaction execution progresses. Furthermore, 

by achieving on-line commit resiliency (cf. Section 3.4.3), EP generates one force-write for 

each update operation. This makes a total of 1+ n+op log forces for the commit case, and 

2n+op log forces for the abort case, where op denotes the number of update operations 

performed by a transaction. Figure 3.3 illustrates the protocol behavior for committing as 

well as aborting transactions. 

Another 1PC variation that is based on PrC is the CL protocol (Figure 3.4). Unlike 

EP, however, CL eliminates the forced membership log record of PrC by requiring a 

recovering coordinator to communicate with every possible participant in the system in 

order to determine all the transactions that were active at the time of the crash, and to 

abort them instead of wrongly presuming commit. This means, however, that 

coordinators in CL cannot independently recover, and must wait for all participants in the 

system in order to resume execution. Furthermore, as discussed in Section 3.4.3, CL 

overcomes the high cost of on-line commit resiliency by implementing distributed write-

ahead logging (DWAL) in order to give up any logging activity at the participants. The 

combination of this mechanism with PrC results in a severe problem since transactions’ 

updates must be remembered forever, and hence, the coordinator’s log can never be garbage 

collected! 
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Figure 3.5: The IYV protocol. 
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Figure 3.6: The CLL protocol. 

From the above discussion, it follows that the implications of the combination of 1PC 

with PrC are severe. Consequently, unlike EP and CL, the IYV protocol (Figure 3.5) and 

the CLL protocol (Figure 3.6) exploit the PrA optimization by adopting abort presumptions. 

Thus, for committing transactions, both protocols have the same performances as basic 

1PC, and reduce the message and logging overheads for aborting ones. Similarly to CL, 

IYV and CLL eliminate the high logging cost of on-line commit resiliency. In IYV, 

however, this is achieved by implementing a replicated write-ahead logging mechanism 

(RWAL), whereas in CLL by implementing a coordinator logical logging mechanism. 

(a) Commit Case (b) Abort Case 
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Message Complexity 
  point-to-point network              broadcast network  

Latency 
      Time complexity        Log Complexity 

EP n 1 1 n + op + 1 

CL n 1 1 1 

IYV 2n n + 1 1 n + 1 

CLL 2n n + 1 1 n + 1 

Figure 3.7: The cost of transaction commit under the different 1PC variations. 

 

Message Complexity 
 point-to-point network              broadcast network  

Latency 
      Time complexity        Log Complexity 

EP 2n n + 1 1 2n + op 

CL 2n n + 1 1 0 

IYV n 1 1 0 

CLL n 1 1 0 

Figure 3.8: The cost of transaction abort under the different 1PC variations. 

Figure 3.7 and Figure 3.8 summarize the cost of the different 1PC variations in 

terms of latency and message complexity needed in order to commit and abort a 

transaction, respectively. Regarding message complexity, we distinguish two cases: (a) 

using a point-to-point network, and (b) using a broadcast network. We recall that n 

denotes the total number of participants in the transaction, while op stands for the 

number of update operations performed by a transaction. 

For the commit as well as the abort case, the cost associated with EP is highly 

dependent on the number of participants in a transaction and on the number of update 

operations performed by the transaction. This makes EP quite inefficient when used in 

today’s large distributed systems, where transactions are most likely to span several sites, 

and to execute an important number of operations at these sites. Thus, unless every 

transaction performs at most one update operation at every site, or the sites are equipped 

with electronic stable storage (i.e., free log forces), the cost of EP can turn out to be far 

more prohibitive than the cost of a 2PC. 
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By combining PrC with DWAL, CL outperforms the other variations in the commit 

case as far as log forces are concerned, and shares with EP the lowest message 

complexity. However, as already stated before, the price of this efficiency is a set of 

severe drawbacks resulting, on one hand, from a coordinator’s log that can never be 

garbage collected (a rather unrealistic assumption), and on the other hand, from a 

coordinator recovery procedure that totally depends on every possible participant in the 

system. Furthermore, participants in CL cannot locally handle aborted transactions, not 

to mention unilateral aborts! This is because the undo records are maintained only at the 

coordinator site. Hence, undoing a transaction has to be completely performed over the 

network, and local resources held by an aborted transaction cannot be released by a 

participant before getting the necessary undo records from the coordinator. This leads to 

a quick degradation in CL’s performances, making it much more suitable for parallel 

architectures rather than geographically distributed systems. 

For the abort case, IYV and CLL have the best overall performances, and share with 

CL the lowest logging overhead. Even though, by combining RWAL with PrA, IYV 

overcomes the abovementioned problems introduced by CL, both protocols require that 

participants in a transaction externalize their local log information. This means that 

major modifications should be made to existing transactional systems in order to support 

CL or IYV, which is definitely unacceptable in today’s large distributed environments in 

which local site autonomy is of key importance. By combining a logical logging 

mechanism with PrA, CLL capitalizes on both CL and IYV. This leads to the conclusion 

that, among all the discussed protocols, CLL offers the best tradeoff between 

performance and compliance with existing transactional systems. Therefore, it appears to 

be the best candidate for distributed transaction termination in today’s distributed 

environments and applications. 

3.6 Discussion

One-Phase Commit is a highly efficient approach to distributed transaction commit that is 

based on a Dictatorial Atomic Commitment paradigm. The intuition behind 1PC is that veto 

rights in the traditional 2PC introduce a high cost, and this cost should only be paid when 

necessary.  



CHAPTER 3.    DICTATORIAL ATOMIC COMMITMENT 

 

54 

The advantages of 1PC over 2PC are not only performance issues. By eliminating 

participants’ votes, 1PC overcomes the various problems incurred by the local prepared 

state required in 2PC. Obviously, the appealing features of 1PC have a price, which we 

expressed in terms of three necessary and sufficient conditions on concurrency control 

and recovery protocols employed by the participants in a transaction. When adequately 

exploited, however, we have shown that 1PC offers a highly efficient approach to 

distributed transaction commit that is applicable to most practical situations. In 

particular, we proposed a new 1PC protocol that exploits a Coordinator Logical Logging 

mechanism in order to achieve correct recovery without compromising site autonomy, 

making it the sole protocol that can cope with all existing transactional systems  be 

they or not 2PC compliant. 
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Chapter 4 

Non-Blocking Atomic 
Commitment: Background 

Although the atomic commitment protocols we have discussed thus far guarantee 

transaction atomicity, which is a safety condition, they do not provide liveness 

guarantees, i.e., they may lead to blocking situations in which participants are unable to 

decide on the transaction due to failures in other parts in the system. Consequently, a 

transaction can hold valuable system resources for an unbounded period, making these 

unavailable to other transactions that in turn become blocked, which may eventually block 

the entire system. 

The impact of indefinite blocking and long-duration delays is particularly 

aggravated in mission critical applications (e.g., SCS) or applications involving an 

important number of sites (e.g., Internet). Furthermore, in today’s large distributed 

environments in which the various sites participating in the system may belong to several 

autonomous, and possibly competing business organizations, it would be unconceivable 

to allow a remote transaction belonging to a competing organization from blocking local 

resources. An atomic commitment protocol is said to be non-blocking if it allows a 

decision to be reached at every correct participant despite failures of others. 

This chapter gives some background about the Non-Blocking Atomic Commitment 

(NB-AC) problem, and presents a survey of non-blocking commit protocols commonly 

found in the literature. In order to do so, we refine the general system model described in 

Section 2.1 in order to reflect different assumptions made about failures and failure 
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detection. Each protocol is then described in the context of the underlying system model 

it assumes. We finally point out the limitations of the discussed protocols in terms of the 

different evaluation metrics we have used so far, namely, performance and compliance 

with existing commercial systems. 

4.1 The Non-Blocking Atomic Commitment Problem 

The Non-Blocking Atomic Commitment (NB-AC) problem [BHG87, Had90, BaT93] is a 

fault-tolerant agreement problem that, in addition to transaction atomicity, aims at 

providing transaction liveness guarantees. Formally, the NB-AC problem is defined by the 

AC-Uniform-Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, AC-Non-Triviality, 

and AC-Termination properties of the AC problem (cf. Sections 2.2 and 2.3), and the 

following AC-Non-Blocking property:  

−−−− AC-Non-Blocking: Every correct participant eventually decides. 

The AC-Non-Blocking condition is a liveness condition in the sense that it ensures 

progress at correct participants despite failures of others. Note that this property is 

expressed in terms of correct participants and not operational ones. This is because an 

operational participant might be faulty, i.e., it has crashed and then recovered, in which 

case, it must decide through the associated recovery protocol rather than the commit 

protocol [BaT93]. An atomic commitment protocol is said to be non-blocking (also 

called fault-tolerant) if it satisfies all of the six properties of the NB-AC problem. 

Just like other fault-tolerant agreement problems, the solvability of the NB-AC 

problem totally depends on the nature of “admissible” faults and the ability to detect 

them. The latter issue is of particular importance as it is tightly dependent on the 

underlying system that is considered. More precisely, the ability to have a (more or less) 

precise knowledge about the occurrence of faults depends on the synchrony guarantees 

that the underlying system can provide. Solutions to the NB-AC problem can thus be 

categorized according to whether liveness guarantees are achieved assuming (1) a 

synchronous system or, on the other extreme, (2) a totally asynchronous system. 
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4.2 NB-AC in Synchronous Systems 

As already stated before, solutions to fault-tolerant agreement problems in general, and to 

the NB-AC problem in particular, depend heavily on the assumptions made about the 

computational model and the kind of failures to which it is prone. In this section, we 

refine the general model described in Section 2.1, and consider a synchronous model of 

computation. We then discuss well-known non-blocking atomic commitment protocols 

that have been proposed in this context. 

4.2.1 System Model 

The model of synchronous computation we consider in the present and the following 

chapter is closely patterned after the one in [BaT93].  Synchrony is actually an attribute 

of both processes and communication links. A system is said to be synchronous if there is 

a known upper bound on both message transfer delays and process relative speeds. 

Since it is well known that distributed systems with unreliable communication do 

not admit non-blocking solutions to the atomic commitment problem [Gra78, Had90, 

HaM90], we also assume reliable communication between the processes in the following 

sense: if a process Pi sends a message to a process Pk, then unless Pk is down, the 

message is received by Pk within δ time units after being sent, i.e., no link failures occur. 

The parameter δ includes the message transfer delay as well as the time required to 

process it at the sending and receiving processes. In such a model, site failures can be 

reliably detected and reported to any operational site by means of timeouts. For instance, 

if a process Pi does not receive an answer to a message it has sent to Pk within 2δ time 

units after sending the message, it can safely deduce that Pk is faulty. 

4.2.2 The Three-Phase Commit Protocol  

Assuming that communication is failure-free, several non-blocking atomic commitment 

protocols have been proposed, the most well known of which is the Three-Phase Commit 

(3PC) protocol [Ske81]. 
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Failure-Free Execution 

The 3PC protocol can be seen as a straightforward extension of 2PC. One way to 

understand 3PC is to understand why 2PC is blocking. In 2PC, blocking can occur 

because some participants may commit the transaction following the receipt of a commit 

decision while others are still uncertain about the transaction outcome12. Consequently, if 

crash failures happen in such a way that all correct participants are uncertain, these 

participants are blocked (cf. Section 2.3.2). Indeed, they cannot decide abort without 

risking a violation of the AC-Agreement property because some failed participants could 

have decided commit. 

The idea underlying 3PC is to prevent this situation by ensuring that if any correct 

participant is uncertain about the transaction, then no participant (whether correct or not) 

could have decided commit. This is achieved by inserting an extra phase, called the pre-

commit phase, in between the two phases of the 2PC protocol. During this phase, a 

preliminary decision is reached before the final decision is made. 

More precisely, when the coordinator of 3PC finds that all participants’ votes are 

yes, it sends a pre-commit message to all participants. When a participant receives pre-

commit, it sends a pre-commit acknowledgment to the coordinator. By receiving the pre-

commit message, a participant learns that all votes were yes, and thus, moves outside its 

uncertainty period. Once the coordinator has received the pre-commit acknowledgments 

from all, it decides commit and sends its decision to all participants. Finally, when a 

participant receives the commit decision from the coordinator, it decides commit (at this 

point, the participant knows that all other participants are outside their uncertainty 

period) . This describes 3PC assuming no participant votes no, and no participant crashes 

during the protocol 13. Figure 4.1 illustrates the 3PC protocol execution between six 

participants, P1, P2, P3, P4, P5, and P6, where P1 acts as the coordinator of the protocol . 

                                                           
12 Recall that an uncertain participant does not know whether or not the remaining participants have voted 

yes. 
13 Note that, to simplify the subsequent discussion and concentrate on the non-blocking feature of the 

described protocols, we henceforth omit from our discussion and evaluations decision acknowledgment 

messages. 
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Figure 4.1: The 3PC protocol. 

Dealing with Failures 

In order to deal with failures, special timeout actions that describe what a process should 

do if an expected message does not arrive must be supplied. Furthermore, a recovering 

participant must be able to reach a decision consistent with the decision operational 

processes may have reached. 

There are five cases to consider: (1) a participant is waiting for the prepare message, 

(2) the coordinator is waiting for votes, (3) a participant is waiting for pre-commit, (4) 

the coordinator is waiting for pre-commit acknowledgments, and (5) a participant is 

waiting for commit. Cases (1) and (2) are handled in exactly the same way as in 2PC (cf. 

Section2.3.2). Case (4) means that a participant failed before sending a pre-commit 

acknowledgment. However, since the failed participant has already voted yes, the 

coordinator ignores its failure and decides commit as if no failure has taken place. 

In cases (3) and (5), however, participants cannot decide on their own14. Therefore, 

they start a termination protocol during which they communicate with other participants 

to find out what to decide. In order to satisfy AC-Non-Blocking, the termination protocol 

associated with 3PC must enable all correct participants to reach a consistent decision 

without waiting for failures to be repaired. The basic idea of this protocol is to elect a 

new coordinator, called backup coordinator, from the set of correct participants. Once 

                                                           
14 Although in case (5) participants are outside their uncertainty period, they cannot decide commit 

because some other participants might be still uncertain about the transaction outcome. 
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elected, the backup will direct all the correct participants toward a commit or an abort 

depending on its own local state. A participant is in an ABORT state if (i) it has already 

decided abort, or (ii) it can unilaterally decide so. It is in an UNCERTAIN state if it is in its 

uncertainty period. It is in a COMMITTABLE state if it has received the pre-commit 

message but not the commit decision. Finally, a participant is in a COMMIT state if it has 

already decided commit. The backup coordinator decides abort when its local state is (1) 

ABORT, or (2) UNCERTAIN, and decides commit when its local state is (3) COMMITTABLE, 

or (4) COMMIT: 

Case (1) indicates that the backup (i) has not voted yet, or (ii) has voted no, or (iii) 

has already received an abort decision before the invocation of the termination protocol. 

In (i) and (ii), it is clear that no participant could have previously decided commit, while 

(iii) means that the 3PC coordinator had started to send abort decisions before it crashed. 

Since the coordinator sends the same decision to all participants, no participant could 

have received a commit decision, and hence, no participant could have decided commit. 

In case (2), since the pre-commit phase of 3PC prevents any participant from deciding 

commit once some correct participant is still uncertain, a backup with an UNCERTAIN 

local state is sure that no participant could have decided commit. 

Case (3) indicates that the backup has already received a pre-commit message from 

the 3PC coordinator. This means that (i) all participants must have voted yes, i.e., no 

participant could have unilaterally decided abort, and (ii) no participant could have 

received an abort decision from the 3PC coordinator given that the latter had already 

initiated the pre-commit phase before it crashed, i.e., no participant could have decided 

abort. Finally, case (4) implies that the backup has received a commit decision from the 

3PC coordinator, meaning that (i) all participants must have voted yes, i.e., no unilateral 

abort, and (ii) no participant could have received an abort decision from the 3PC 

coordinator, as the latter sends the same decision to all participants. Hence, no 

participant could have decided abort. 

Since failures may occur during the termination protocol execution, a backup asks 

all participants to move to its local state, and waits for an acknowledgment of their state 

transition before sending them its final decision. This actually ensures that, in the event 
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of a backup crash, subsequent backups will make the same decision. From the above 

discussion, it follows that 3PC (and its termination protocol) satisfies the AC-Uniform-

Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, AC-Non-Triviality, and AC-

Non-Blocking conditions of the NB-AC problem. 

We now turn our attention to recovering participants. To satisfy AC-Termination, a 

recovering participant is required to reach a decision consistent with the decision reached 

by correct ones. As in 2PC, a failed participant returns to the operational state using the 

information it stored in its stable log. During recovery, the participant tries to decide on the 

transactions that were active at the time the crash occurred. This is actually achieved in 

exactly the same way as in 2PC. Therefore, we will not discuss the issue any further 15. 

Finally, note that in an attempt to reduce the time complexity of 3PC, a decentralized 

3PC variation has been also discussed in [Ske81]. Similarly to decentralized 2PC, 

decentralized 3PC reduces the time complexity of 3PC from 5 communication steps to 3 at 

the expense of a higher message complexity. 

4.2.3 The ACP-UTRB Protocol  

Although non-blocking, the 3PC protocol requires 5 communication steps so that a 

decision can be reached at every correct participant. In order to reduce the time 

complexity of 3PC, Babaoglu and Toueg have proposed the ACP-UTRB protocol 

[BaT93]. ACP-UTRB has the same basic structure as 2PC, and achieves non-blocking by 

exploiting the properties of the communication primitive it uses to disseminate decision 

messages to the participants in a transaction. The primitive that achieves this 

dissemination is called broadcast, and has a corresponding action at the destination, 

called deliver. Broadcast and deliver are usually implemented using multiple send and 

receive operations that the underlying network provides. 

                                                           
15 Note, however, that if the participant had failed after voting yes but before receiving the decision, the 

participant needs to communicate with other processes asking them what to decide, whether or not it has 

already received pre-commit. 
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// for the broadcaster, S-broadcast (m, ϕ) occurs as follows: 
 send(m) to all processes in ϕ ; 

// for each process in ϕ, S-deliver (m) occurs as follows: 
 when receive(m) 
  S-deliver(m); 

Figure 4.2: A Simple Broadcast primitive. 

Failure-Free Execution 

In order to understand ACP-UTRB, let us first examine how the coordinator of a 2PC 

disseminates decision messages to the participants in a transaction. In 2PC, the 

dissemination of decision messages is achieved using a broadcast primitive, called Simple 

Broadcast (SB), which satisfies the following three properties (with ∆ = δ ) [BaT93]: 

−−−− Validity: If a correct process broadcasts a message m to the members of set ϕ, 
then all correct processes in ϕ eventually deliver m. 

−−−− Uniform-Integrity: For any message m, every correct process in ϕ delivers m at 
most once, and only if m was previously broadcast by some process. 

−−−− Uniform-∆∆∆∆-Timeliness: There exists a known constant ∆ such that if the 
broadcast of a message m is initiated at real-time t, then no process in ϕ receives 
m after real-time t + ∆. 

SB is defined in terms of two primitives, S-broadcast(m, ϕ) and S-deliver(m), where 

m is the message broadcast to all the members of set ϕ. Figure 4.2 illustrates a Simple 

Broadcast algorithm [BaT93]. Note that SB is unreliable, i.e., if the broadcaster crashes 

while broadcasting a message m, some processes might deliver m while some correct 

processes never do so. Recall that 2PC leads to blocking situations because it allows 

faulty participants to decide on the transaction following the delivery of the coordinator’s 

decision, while all correct participants never deliver that decision. Consequently, if all 

correct participants are uncertain, they are blocked. They cannot decide abort because 

some failed participants could have decided commit. 
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// for the broadcaster, R-broadcast(m, ϕ) occurs as follows: 
 send(m) to all processes in ϕ ; 

// for each process P in ϕ , R-deliver(m) occurs as follows:  
 when receive(m) for the first time 

 if P ≠ broadcaster then  send(m) to all processes in ϕ ; 
 R-deliver(m); 

 

Figure 4.3: A Uniform Timed Reliable Broadcast primitive. 

In ACP-UTRB, such blocking scenarios are prevented by using a different broadcast 

primitive, called Uniform Timed Reliable Broadcast (UTRB), which guarantees, in 

addition to the Validity, Uniform-Integrity, and Uniform-∆-Timeliness properties of 

Simple Broadcast, the following Uniform-Agreement property: 

−−−− Uniform-Agreement: if any participant, correct or not, delivers a message m, 

then all correct participants in ϕ eventually deliver m. 

UTRB is defined in terms of two primitives, R-broadcast(m, ϕ) and R-deliver(m), 

where m is the message broadcast to all the members of set ϕ. Figure 4.3 describes a 

possible UTRB algorithm [BaT93, HaT94]. Every process relays every message it 

receives for the first time to all other processes, and then delivers the message. Thus, if a 

process delivers a message m, then it has already achieved relaying it. This guarantees 

that all correct processes will eventually deliver m. It is clear that this primitive satisfies 

Uniform-Agreement even if the initial broadcaster (or the relayer) subsequently crashes. 

Furthermore, in [BT93], the authors show that there exists a constant delay ∆ = (F + 1)δ, 

by which the delivery of m occurs, where F denotes the maximum number of processes 

that may crash during the execution of the atomic commitment protocol. 

Figure 4.4 illustrates the ACP-UTRB protocol, assuming no participant votes no and 

no participant crashes during the protocol execution. The set of participants is {P1, P2, 

P3, P4, P5, P6}, and the coordinator is P1. The protocol is directly obtained from 2PC by 

replacing the SB primitive with the UTRB primitive in order to disseminate decision 

messages. 
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Figure 4.4: The ACP-UTRB protocol. 

Dealing with Failures 

Recall from Section 2.3.2 that the only place in 2PC where a participant cannot 

unilaterally decide on the transaction is when it times out waiting for the decision 

message. In this case, the participant starts a termination protocol during which it tries to 

find out what to decide by consulting with other participants in the transaction. This 

termination protocol may, however, lead to blocking situations if all correct participants 

are uncertain about the transaction outcome. 

By exploiting the UTRB primitive to disseminate decision messages, ACP-UTRB 

eliminates the blocking scenarios of 2PC. More precisely, once a participant in ACP-

UTRB has sent a yes vote following the receipt of prepare, it sets its timeout to δ + ∆, 

where δ represents the upper bound on the time delay needed for its vote to reach the 

coordinator, while ∆ represents the upper bound on the time delay needed for the 

decision message to reach every correct participant. If, due to a coordinator crash, the 

participant times out while waiting for the decision message, it can unilaterally decide 

abort, safe in its knowledge that no other participant could have received commit (by the 

Uniform- Agreement and Uniform-∆-Timeliness properties of UTRB). Thus, by 

substituting the termination protocol of 2PC with a unilateral abort decision, ACP-UTRB 

eliminates the only potential source of indefinite wait. 

To complete our discussion on failures, note that in ACP-UTRB, participants’ 

recovery is achieved in exactly the same way as in 2PC so that AC-Termination is satisfied. 
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Message Complexity 
     point-to-point network            broadcast network  

Latency 
        Time complexity    Log Complexity 

3PC 5n 2n + 3 5 2n + 1 

ACP-UTRB 2n+n
2
 2n + 1 3 2n + 1 

Figure 4.5: The cost of transaction commit under 3PC and ACP-UTRB. 

4.2.3 Performance Evaluation 

In this section, we examine the cost for non-blocking under the 3PC and ACP-UTRB 

protocols. Figure 4.5 summarizes the performances of both protocols in terms of latency 

and message complexity needed to commit a transaction. We denote by n the total 

number of participants in the transaction, and assume failure-free executions in which 

every participant votes yes.  

By introducing a pre-commit phase, 3PC achieves non-blocking at the expense of 5 

communication steps needed until a decision is reached at every correct participant, 

compared to 3 steps needed in blocking 2PC. Concerning message complexity, 3PC 

requires up to 5n messages (resp. 2n+3 messages), assuming a point-to-point network 

(resp. a broadcast network), while 3n (resp. n+2) messages are exchanged under 2PC16. 

This high cost is paid even during normal processing, i.e., when no crash failures occur 

during the protocol execution, which is definitely unacceptable in today’s highly reliable 

distributed platforms. 

By sharing the same basic structure with 2PC, ACP-UTRB reduces the time 

complexity of 3PC, as it requires 3 communication steps so that a commit decision is 

reached at every correct participant. This comes, however, at the expense of a quadratic 

number of messages required by the UTRB primitive (n
2
) in case of a point-to-point 

network, making a total of 2n+n
2
 messages exchanged during the protocol execution. 

However, in case of a broadcast network, ACP-UTRB outperforms 3PC in both time and 

message complexity. 

                                                           
16 Recall that decision acknowledgment messages are not considered. 
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Finally, it is noteworthy that while 3PC and ACP-UTRB achieve non-blocking 

assuming a synchronous system and reliable communication (cf. Section 4.2.1), both 

protocols may result in participants reaching inconsistent decisions if either of these 

assumptions is not satisfied. In ACP-UTRB, for instance, unreliable communication  

(resp. unbounded message processing and transmission delays) renders the Uniform-

Agreement property (resp. the Uniform-∆-Timeliness property) of UTRB unattainable, 

leading participants to decide inconsistently in response to timeouts. Similar 

inconsistencies might arise under 3PC and its associated termination protocol if either of 

the above mentioned conditions does not hold. 

To illustrate, consider a transaction involving three participants P1, P2 and P3, where 

P1 is the transaction coordinator. Consider the following scenario: all participants vote 

yes. P1 receives the yes votes, sends pre-commit to all, and waits for pre-commit 

acknowledgments. Assume that, due to communication failures or arbitrary (i.e., 

unbounded) message transmission delays, P3 times out waiting for the coordinator’s pre-

commit message. P1 and P2, on the other hand, do receive and acknowledge this message. 

According to the timeout actions associated with 3PC (cf. Section 4.2.2), P3 invokes a 

termination protocol during which a backup coordinator, say P3 itself, is elected. Since 

P3’s local state is UNCERTAIN, it decides abort according to the decision rule of the 

termination protocol. On the other hand, when P1 times out (within the 3PC protocol) 

waiting for the pre-commit acknowledgment from P3, it decides commit, given that P3 has 

voted yes. 

To avoid such inconsistencies, new 3PC variations that exploit a quorum (or 

majority) based termination protocol have been proposed [Ske82, KeD94]. More 

precisely, the protocols discussed in [Ske82, KeD94] guarantee that, even if the 

abovementioned system assumptions are not satisfied, no two participants can decide 

differently. Unfortunately, these protocols do not completely eliminate blocking, but they 

cause blocking less frequently than 2PC. However, there is no precise characterization of 

the conditions under which these protocols provide liveness guarantees in systems where 

no timing assumptions can be made whatsoever. 
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4.3 NB-AC in Asynchronous Systems 

Based on the general system model described in Section 2.1, we define in this section an 

asynchronous model of computation. We then overview the most well known atomic 

commitment protocols that have been proposed in this context. 

4.3.1 System Model 

The model of asynchronous computation we consider in this and the following chapter is 

patterned after the one in [Cha93, ChT96]. Informally, a system is said to be asynchronous 

if there is no bound on message transfer delays or process relative speeds. The 

asynchronous model of computation is very attractive and compelling because distributed 

algorithms designed and implemented in this context bring general solutions to distributed 

problems, which are very easy to port. Furthermore, today’s large distributed systems are 

often subject to variable or unexpected workloads that are sources of asynchrony. 

Although asynchronous systems are very attractive in practice, Fischer, Lynch, and 

Paterson have shown that distributed agreement problems are impossible to solve in a 

deterministic and fault-tolerant (i.e., non-blocking) way in an asynchronous system that 

is subject to even a single crash failure [FLP85]. This theoretical result, known as the 

Fischer-Lynch-Paterson impossibility result (FLP, for short), applies to a variety of well-

known agreement problems, notably the Consensus problem (cf. Section 4.3.3), and the 

NB-AC problem. This result translates the fact that, in an environment where no timing 

assumptions can be made whatsoever, it is impossible to distinguish a crashed process 

from a process that is only “very slow”. Therefore, crash failures cannot be reliably 

detected and reported to correct processes. 

To circumvent this impossibility result, Chandra and Toueg have augmented the 

asynchronous model of computation with the notion of unreliable failure detectors for 

systems with crash failures [Cha93, CT96]. More precisely, each process Pi has access to 

a local failure detector module FDi, which informs it of the list of processes that it 

currently suspects to have crashed. A failure detector can make mistakes by providing 

incorrect information, i.e., it may suspect a correct process, or never suspect a failed one. 
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Furthermore, at any given time, the failure detector modules at two different processes 

may provide inconsistent information, i.e., they do not have the same list of suspects. 

Although a failure detector can make mistakes, it must, however, follow a certain 

behavior pattern so that it can be useful. This behavior is captured through two abstract 

properties that the failure detector must satisfy, namely completeness and accuracy. 

These properties are detailed in the next section. 

It is important to note that the model of unreliable failure detectors proposed in 

[Cha93, CT96], and which has formed the bases for the construction of existing solutions 

to the NB-AC problem in the context of asynchronous systems, only considered systems 

in which process crashes are permanent (henceforth called a crash-stop failure model). In 

Chapter 5, we show how to exploit the results presented in [Cha93, CT96] to solve the 

distributed commit problem in asynchronous systems in which processes may crash and 

later recover (henceforth called a crash-recovery failure model). 

While processes may crash, the communication subsystem is assumed to be reliable 

in the following sense: if a process Pi sends a message to a process Pk, then unless one of 

them crashes after the message is sent, the message is eventually received by Pk 
17. 

4.3.2 Properties of Failure Detectors 

As stated earlier, failure detectors are characterized by completeness and accuracy 

properties. The completeness property characterizes the degree to which a failure 

detector can suspect crashed processes, while the accuracy property restricts the false 

suspicions that a failure detector can make. Two completeness properties and four 

accuracy properties have been defined: 

• COMPLETENESS: 

� Strong Completeness: Eventually, every process that crashes is 

permanently suspected by every correct process. 

� Weak Completeness: Eventually, every process that crashes is permanently 

suspected by some correct process. 

                                                           
17 Note that this does not exclude link failures, assuming that these are eventually repaired so as to allow 

retransmission of lost or corrupted messages. 
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Figure 4.6: Failure detector classes. 

• ACCURACY: 

� Strong Accuracy: No process is suspected before it crashes. 

� Weak Accuracy: Some correct process is never suspected. 

� Eventual Strong Accuracy: There is a time after which correct processes 

are not suspected by any correct process. 

� Eventual Weak Accuracy: There is a time after which some correct process 

is never suspected by any correct process. 

A failure detector is characterized by the completeness property and the accuracy 

property that it satisfies. By combining the two completeness properties with the four 

accuracy properties, eight different classes of failure detectors can be defined. These are 

summarized in Figure 4.6. In [Cha93, ChT96], it has been shown that Strong 

Completeness can be emulated out of Weak Completeness, meaning that any failure 

detector of class Q (resp. W, <>Q,, <>W) can be transformed into a failure detector of 

class P (resp. S, <>P, <>S). Note that failure detectors satisfying Strong Accuracy are 

reliable, i.e., they never make false suspicions, whereas all other failure detectors are 

unreliable, i.e., they can make an infinite number of false suspicions. 

The fundamental result of Chandra and Toueg’s work on failure detectors states that 

the Consensus problem, an abstract form of agreement, can be solved deterministically in 

an asynchronous system augmented with an unreliable failure detector. The relevance of 

this result to our transactional context lies in the similarity between the Consensus 

problem and the NB-AC problem given that both problems entail fault-tolerant 
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agreement among processes. In [ChT96], the authors describe several solutions to the 

Consensus problem using each one of the eight failure detector classes. Of particular 

interest is an algorithm that solves Consensus using any failure detector of class <>S and 

assuming a majority of correct processes, i.e., the algorithm tolerates up to f crash 

failures, where f < n / 2. The importance of class <>S resides in the fact that it is the 

weakest class of failure detectors that allows solving the Consensus problem in an 

asynchronous system [ChT96, CHT96]. With a stronger failure detector class, notably 

class S, the resilience of the algorithm can be increased up to n - 1. 

4.3.3 A Story of Consensus 

The Consensus problem can be viewed as a general form of agreement in distributed 

systems. In this problem, each process Pi proposes a binary initial value vi (vi ∈ {0, 1}) 

and the processes must agree on some binary decision value v (v ∈ {0, 1}) such that the 

following properties are satisfied [Fis83]: 

−−−− C-Agreement: No two correct processes decide differently. 

−−−− C-Uniform-Validity: The decision value must be the initial value of some process.  

−−−− C-Uniform-Integrity: Every process decides at most once. 

−−−− C-Non-Blocking: Every correct process eventually decides. 

Interestingly, the algorithms proposed in [ChT96] actually solve a stronger form of 

Consensus, called Uniform Consensus. The Uniform Consensus problem is defined by 

the C-Uniform-Validity, C-Uniform-Integrity, and C-Non-Blocking properties of 

Consensus, and the following C-Uniform-Agreement property: 

−−−− C-Uniform-Agreement: No two processes decide differently. 

Whereas the Consensus problem allows two processes to decide differently as long 

as at least one of them crashes, Uniform Consensus forbids any two processes from ever 

deciding differently whether they crash or not. This uniform agreement on the decision 

value is crucial for maintaining decision consistency if we consider that crashed 

processes may become operational again by executing a recovery protocol. This issue 

will be further discussed in the next chapter. 
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4.3.4 On the Solvability of NB-AC 

The fundamental results of Chandra and Toueg on solving Consensus have constituted 

the cornerstone of several research works around fault-tolerant agreement problems in 

the context of asynchronous systems. Given these results, an interesting question is then 

whether the NB-AC problem can also be solved in asynchronous systems with unreliable 

failure detectors. 

In [Gue95], Guerraoui answers this question negatively. More precisely, the author 

shows that NB-AC is impossible to solve in an asynchronous system with unreliable 

failure detectors, which is rather not surprising given that NB-AC was proved harder than 

Consensus [Had90]. This actually explains why NB-AC has been mostly studied under 

the assumption of reliable failure detection. With this impossibility, one is naturally 

tempted to go one step further and find out the real reason behind it. 

A key result of the work presented in [Gue95] is a clear identification of the reason 

why NB-AC cannot be solved using unreliable failure detectors. This result states that 

the difficulty in solving NB-AC stems from its AC-Non-Triviality condition (if all 

participants vote yes and “no failures occur”, then all participants must decide commit), 

which requires precise, i.e., reliable, knowledge about failures that unreliable failure 

detectors cannot provide. By weakening the AC-Non-Triviality condition, however, 

Guerraoui defines a weaker problem than NB-AC, called NB-WAC (Non-Blocking Weak 

Atomic Commitment), which is sufficient in most real transactional systems. A 

fundamental characteristic of NB-WAC is its reducibility to Consensus, i.e., whenever 

Consensus is solvable, NB-WAC is also solvable [Gue95]. 

4.3.5 The Non-Blocking Weak Atomic Commitment Problem 

The Non-Blocking Weak Atomic Commitment (NB-WAC) problem is defined by the AC-

Uniform-Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, and AC-Non-Blocking of 

the NB-AC problem, and by the following AC-Weak-Non-Triviality condition [Gue95]: 

−−−− AC-Weak-Non-Triviality: If all participants vote yes and no participant is ever 

suspected, then all participants must decide commit. 
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The importance of this new condition lies in the fact that, although weaker than its 

original version (i.e., transactions are allowed to abort in case of failure suspicions), it 

still eliminates trivial solutions to the problem where participants always decide abort. 

As stated before, a fundamental characteristic of NB-WAC is that it is reducible to 

Consensus, and therefore, is solvable in asynchronous systems augmented with 

unreliable failure detectors. The main significance of this result is in defining a rigorous 

framework in which atomic commitment with some liveness guarantees can be achieved. 

Note, however, that although solvable in the context of asynchronous systems, NB-

WAC was proposed assuming a crash-stop failure model, i.e., once a process crashes, it 

does not recover. This assumption is translated by the absence of the AC-Termination 

property from the set of properties that define the NB-WAC problem. 

4.3.6 The DNB-AC protocol 

Based on the above results, several protocols that solve the NB-WAC problem were 

devised and are typified by the Decentralized Non-Blocking Atomic Commitment (DNB-

AC) protocol [GuS95]. In the absence of failure suspicions, DNB-AC has the same basic 

structure as the decentralized 3PC protocol discussed by Skeen in the context of 

synchronous systems [Ske81] (cf. Section 4.2.2). As opposed to decentralized 3PC, 

however, the termination protocol of DNB-AC is encapsulated within a uniform 

consensus protocol, enabling a precise characterization of its liveness in an asynchronous 

system augmented with any unreliable failure detector of class <>S. 

As illustrated in Figure 4.7, the DNB-AC protocol has three communication steps. During 

the first step, the coordinator initiates the protocol by sending a prepare message to all 

participants in the transaction. In step 2 of the protocol, a participant that votes yes sends its 

vote to all other participants. In step 3, when a participant receives yes votes from all, it 

sends a pre-commit message to all. Finally, once a participant has received pre-commit 

from all, it decides commit. Note, however, that a participant that decides on the transaction 

needs to forward its decision to all other participants. This is required in order to ensure 

that if a correct participant reaches a decision, then all correct participants also reach a 

decision. 
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Figure 4.7: The DNB-AC protocol. 

This describes the protocol assuming no participant votes no, and no participant is 

suspected to have crashed during the protocol execution. If, during the first step of the 

protocol, a participant Pi either suspects the coordinator or votes no, then Pi takes a 

unilateral abort decision, and sends abort to all other participants. During step 2, 

however, a participant Pi that suspects any other participant cannot unilaterally decide. 

Therefore, Pi asks all other participants to start a uniform consensus protocol by sending 

them a start-consensus message, and then starts the uniform consensus with abort as its 

initial value. This value translates the fact that at this point, Pi does not know yet the 

votes of all participants. The outcome of the uniform consensus protocol defines the 

transaction outcome for Pi. During step 3 of the protocol, if a participant Pi suspects any 

other participant or receives a start-consensus message, then Pi starts a uniform 

consensus with commit as its initial value (at this point, Pi knows that all votes are yes), 

and the outcome of the consensus protocol becomes the transaction outcome for Pi. 

In the absence of failure suspicions, it is clear that DNB-AC preserves transaction 

atomicity as it reduces to a classical decentralized 3PC protocol. In the event of failure 

suspicions, DNB-AC exploits a uniform consensus protocol as a termination protocol, 

which guarantees a unique outcome for the transaction in a fault-tolerant way. It follows 

that the resilience (to blocking) of DNB-AC depends on the resilience of the uniform 

consensus protocol, and hence on the underlying failure detector class that is considered. 

More precisely, based on a failure detector of class <>S, DNB-AC tolerates up to f crash 

failures, where f < n / 2, i.e., at least (n + 1) / 2 participants are correct. 
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4.3.7 The Modular Decentralized 3PC Protocol 

While DNB-AC needs the same number of communication steps to commit as blocking 

2PC protocols (i.e., 3 steps), 3n
2
+n (resp. 3n+1) messages need to be exchanged during 

the protocol execution assuming a point-to-point (resp. a broadcast) network. It is in an 

attempt to reduce the message complexity associated with DNB-AC that the Modular 

Decentralized 3PC (MD3PC) protocol has been proposed [GLS96]. 

The key idea underlying MD3PC is to have the sub-protocol required for non-

blocking performed by only a subset noted SetNB of the participants in the transaction, 

and the cardinality of this subset depends on the number of crash failures to be tolerated. 

As a consequence, the resilience of the protocol is traded against the number of messages 

exchanged during its execution. More precisely, to be resilient to f crash failures, given 

that f < n / 2 and the failure detector is <>S, the protocol requires that SetNB contain 

2 f+1 members (i.e., | SetNB | = 2f + 1). Another fundamental difference with DNB-AC 

relates to the termination protocol used in case of failure suspicions. Whereas DNB-AC 

requires a uniform consensus protocol as a termination protocol, MD3PC is based on a 

majority consensus. 

The Majority Consensus problem is defined by the C-Uniform-Agreement, C-

Uniform-Integrity, and C-Non-Blocking properties of Uniform Consensus, and the 

following C-Majority-Uniform-Validity property: 

−−−− C-Majority-Uniform-Validity: (i) the decision value must be the initial value of 

some process, and (ii) if a majority of initial values are 1, then the decision value 

must be 1. 

In our transactional context, the value 1 clearly corresponds to commit while 0 

corresponds to abort. As opposed to the C-Uniform-Validity property of Uniform 

Consensus, the C-Majority-Uniform-Validity property enables a participant in MD3PC to 

decide commit once it has received pre-commit messages from a majority of SetNB. Note 

that, just like Consensus and Uniform Consensus, the Majority Consensus problem can 

also be solved with any failure detector of class <>S [GLS96]. 
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Figure 4.8: The MD3PC protocol. 

Figure 4.8 illustrates the MD3PC protocol, assuming no participant votes no and no 

participant is ever suspected. Similarly to DNB-AC, during the first step of MD3PC, the 

coordinator sends a prepare message to all participants in the transaction. In step 2, 

however, participants’ votes are only sent to the members of SetNB. In Figure 4.8 for 

instance, f = 1 and SetNB = {P1, P2, P3} (i.e., | SetNB | = 3). In step 3, when a member of 

SetNB receives yes votes from all, it sends a pre-commit message to all. Finally, once a 

participant has received pre-commit from a majority of SetNB, it sends its decision to all 

other participants and decides commit. 

If, during step 1, a participant Pi either votes no or suspects the coordinator, then Pi 

takes a unilateral abort decision. The remaining failure suspicion cases can be reduced to a 

majority consensus protocol, which is only launched by the members of SetNB. More 

precisely, a failure suspicion that occurs during step 2 of the protocol leads a member Pi of 

SetNB to start a majority consensus with abort as its initial value, while a failure suspicion 

that occurs during step 3 leads Pi to start a majority consensus with commit as initial value. 

4.3.8 Performance Evaluation 

In this section, we examine the cost for non-blocking under DNB-AC and MD3PC. Figure 

4.9 summarizes the performances of both protocols in terms of latency and message 

complexity, assuming no participant votes no and no participant is ever suspected during 

the protocol execution. We denote by n the total number of participants, and by f the 

number of crash failures to be tolerated, where f < n / 2. 
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Message Complexity 
      point-to-point network               broadcast network  

Latency 
      Time complexity        Log Complexity 

DNB-AC n + 3n
2
  3n + 1 3 -- 

MD3PC n (4 f + 3)  + n
2
 2 (n + f + 1)  3 -- 

Figure 4.9: The cost of transaction commit under DNB-AC and MD3PC. 

As already pointed out, DNB-AC and MD3PC have the same basic structure and 

differ only in the number of messages that need to be exchanged during the protocol. More 

precisely, both protocols need, like 2PC, 3 communication steps until a decision is reached 

at every correct participant. In MD3PC, however, the resilience of the protocol can be 

traded against the number of messages exchanged . For instance, with n = 12, f = 2, and 

assuming a point-to-point network, DNB-AC requires 444 messages, while MD3PC 

requires 276 messages (compared to 36 in 2PC). In case of a broadcast network, DNB-

AC needs 37 messages whereas MD3PC needs 30 (compared to 14 in 2PC). 

Even though both protocols have the same latency, a participant in MD3PC is 

allowed to decide commit once it has received pre-commit from a majority of SetNB, 

whereas a participant in DNB-AC cannot decide commit until it receives pre-commit 

from all participants in the transaction. 

Based on Chandra and Toueg’s work on solving (Uniform) Consensus, DNB-AC 

and MD3PC achieve non-blocking in asynchronous systems assuming reliable 

communication, any unreliable failure detector of class <>S, and a maximum of f crash 

failures, where f < n / 2. If these assumptions are not satisfied, both protocols might 

block, but never lead two participants to decide on different outcomes. 

An important point to note is that both DNB-AC and MD3PC were devised 

assuming a crash-stop failure model, meaning that a process that crashes is not assumed 

to recover nor to inquire other participants about the transaction outcome. Consequently, 

no log force is performed and no acknowledgment of decision messages is needed, as 

these are usually required in order to support recovery. 
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4.4 Discussion 

In an attempt to provide transaction liveness guarantees, fault-tolerant (i.e., non-

blocking) commit protocols have emerged. As shown in Sections 4.2.4 and 4.3.8, 

however, fault-tolerance has a price, and this price is paid in terms of time complexity, 

message complexity, or both. Indeed, when compared to their blocking counterparts, the 

commit protocols discussed in this chapter trade performance for fault-tolerance. This is 

mainly due to the fact that most of the existing works on fault-tolerant commit protocols 

have, in a way, pushed performance issues into the background, and if not, the best they 

hoped for is to attain performances comparable to those of blocking 2PC variations.  

Another major problem has to do with participants’ prepared states. Indeed, all the 

protocols discussed in this chapter are extensions of basic 2PC. Therefore, they all 

require that the participating local sites provide a prepared state for each transaction they 

execute, thus inheriting all the problems associated with the support of that state (cf. 

Sections 1.2 and 2.6). 

Finally, and as already pointed out, solutions to the NB-AC problem depend on the 

underlying system and failure assumptions, and on the knowledge about the occurrence 

of failures in the system. Whereas this knowledge can be precise under a synchronous 

system, asynchronous systems render any such knowledge imprecise, and thus any 

solution to the NB-AC problem impossible. By considering a slightly weaker variation of 

NB-AC, fault-tolerant commit protocols have started to emerge in the context of 

asynchronous systems (cf. Sections 3.4.6 and 3.4.7). These protocols essentially build on 

the work of Chandra and Toueg on solving Consensus in asynchronous systems, and 

hence assume, just like consensus protocols, a failure model in which process crashes are 

permanent. Whereas this assumption indeed makes sense in environments where process 

decisions are used to trigger some real-time actions, i.e., there is no time to take into 

account process recovery and hence the decision of faulty processes, it is definitely 

unacceptable in a transactional context where participants’ recovery is an intrinsic 

feature, and where the decision of faulty processes must be taken into account if 

transaction atomicity is to be guaranteed. 
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Chapter 5 

Non-Blocking Dictatorial Atomic 
Commitment 

As we have shown in the previous chapter, existing non-blocking commit protocols 

impose high costs on distributed transaction processing, which results in a significant 

increase in transaction response times. Furthermore, given the assumptions they make 

about the underlying system model, notably in the context of asynchronous systems, their 

practical utility in real-world transactional systems becomes questionable. Based on the 

observation that all these protocols are extensions of 2PC, an important question is then 

whether non-blocking protocols can rather be derived from 1PC, hence reconciling high 

performance and fault-tolerance. In this chapter, we answer this question positively, and 

propose several non-blocking solutions to the Dictatorial Atomic Commitment problem. 

In order to do so, we first discuss the issue of blocking in 1PC, and define the Non-

Blocking Dictatorial Atomic Commitment (NB-DAC) problem. We then give a protocol, 

called NB-CLL, that solves the problem in a synchronous system, while maintaining the 

cost of distributed transaction commit below that of all existing non-blocking protocols 

proposed in this context. 

We point out the fact that, just like the NB-AC problem, NB-DAC is unattainable in 

asynchronous systems. By refining the NB-DAC specification, and following the 

approach proposed in [Gue95], we introduce the Non-Blocking Weak Dictatorial Atomic 

Commitment (NB-WDAC) problem that is better suited to asynchronous environments. 

We then propose a protocol, called ANB-CLL, which solves NB-WDAC in an 
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asynchronous system augmented with an unreliable failure detector. In contrast with 

existing non-blocking protocols previously proposed in this context, our protocol 

achieves non-blocking in systems in which processes may crash and later recover (i.e., 

crash-recovery failure model), making it more suitable for real-world transactional 

systems where process recovery is an intrinsic feature. 

The NB-CLL and ANB-CLL protocols can be viewed as non-blocking extensions of 

CLL, our 1PC variation (cf. Section 3.5). Consequently, they both blend the advantages of 

CLL with fault-tolerance. We show through performance analysis that our protocols are 

more efficient than all other non-blocking protocols proposed in their respective contexts. 

5.1 The Window of Vulnerability to Blocking of 1PC 

To better illustrate the blocking problem in 1PC, let us go back over this issue in 2PC. In 

2PC, blocking can occur if the coordinator crashes after the participants have sent a yes 

vote. This period of time is called the window of vulnerability to blocking of the 

protocol. 

In a 1PC protocol, the window of vulnerability is much larger than in a 2PC 

protocol. This is because the only period during which a participant has the freedom to 

unilaterally abort a transaction is after receiving an operation from the coordinator and 

before acknowledging this operation. Otherwise, the participant is at the coordinator's 

mercy, and the latter acts as a dictator for choosing the transaction outcome. In other 

words, whenever it has acknowledged an operation and unless it receives another 

operation or the final decision, a participant in 1PC enters the window of vulnerability to 

blocking. If the coordinator crashes while all participants have acknowledged the 

operations submitted to them, they are all blocked until the coordinator recovers from its 

crash. In comparison, unless it has sent back a yes vote, a participant in a 2PC can at any 

time unilaterally abort a transaction. 

The above observation raises a crucial issue and suggests that non-blocking 

solutions to the DAC problem are indispensable if dictatorial transaction processing is to 

be used in today’s systems and applications. 
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5.2 The Non-Blocking Dictatorial Atomic Commitment 
Problem 

We define the Non-Blocking Dictatorial Atomic Commitment (NB-DAC) problem by the 

DAC-Uniform-Agreement, DAC-Uniform-Integrity, and DAC-Termination properties of 

the DAC problem (cf. Sections 3.1.2 and 3.5.2), and the following DAC-Uniform-Validity, 

and DAC-Non-Blocking properties: 

−−−− DAC-Uniform-Validity: If the coordinator does not crash, the decision value is 

the coordinator’s proposed value.  

−−−− DAC-Non-Blocking: Every correct participant eventually decides. 

Just like AC-Non-Blocking, the DAC-Non-Blocking property is expressed in terms of 

correct participants and not operational ones. This is mainly due to the fact that, in a 

transactional context, operational participants that have crashed and later recovered should 

decide through the associated recovery protocol rather than the commit protocol. As we 

shall see later, it is precisely this feature that enables us to extend the applicability field of 

Chandra & Toueg’s unreliable failure detectors model so as to solve the distributed commit 

problem in asynchronous systems based on a crash-recovery model of computation. 

5.3 NB-DAC in Synchronous Systems 

Based on the system model described in Section 4.2.1, we propose in this section a 

protocol, called Non-Blocking Coordinator Logical Log (NB-CLL), which solves the 

NB-DAC problem in synchronous systems [AbP98a, AbP98b]. We then prove the 

correctness of our protocol and compare its performances with existing non-blocking 

protocols proposed in this context. 

5.3.1 The NB-CLL Protocol  

Failure-Free Execution 

NB-CLL has exactly the same basic structure as the CLL protocol (cf. Section 3.5), and 

differs only in the way decision messages are disseminated by the coordinator of the 

transaction. To illustrate, recall that CLL (as well as all other 1PC variations) exploits a 

basic 1PC protocol, which we defined in terms of the terminate() function in Figure 3.1. 
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P4

P5
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     S-broadcast (commit)

decide

  S-broadcast (commit)

 

P1

P2

P3

P4

P5

P6

R-broadcast (commit)

decide

 
 

Figure 5.1: (a) The CLL protocol, and (b) the NB-CLL protocol. 

During this function, the coordinator disseminates its decision message by 

sequentially sending this message to each participant in the transaction. Once a 

participant receives the coordinator’s decision, it immediately decides accordingly and 

returns. This message diffusion corresponds exactly to the Simple Broadcast (SB) 

primitive discussed in Section 4.2.3. For the sake of clarity, Figure 5.1(a) illustrates the 

CLL protocol behavior based on SB, and assuming no failures occur during the protocol 

execution. The set of participants is {P1, P2, P3, P4, P5, P6}, and the coordinator is P1.  

Thus, just like 2PC, 1PC protocols (including CLL) lead to blocking situations 

because of the unreliability of SB that allows faulty participants to deliver the 

coordinator’s decision (and then crash), while all correct participants never deliver that 

decision. If failures occur such that all correct participants are uncertain, they cannot 

decide on the transaction even if they know that participants they cannot communicate 

with have crashed. Indeed, any such decision might contradict the decision another 

participant might have reached before crashing. Unlike 2PC, however, such blocking 

scenarios are much more likely to occur in a 1PC protocol given that the uncertainty 

period of a 1PC participant lasts all along the transaction execution. 

CLL can thus be made non-blocking by substituting the SB primitive by a Uniform 

Timed Reliable Broadcast (UTRB) that achieves uniform agreement on decision delivery 

among participants [BaT93, HaT94] (cf. Section 4.2.3). Using UTRB guarantees that if 

any participant, whether correct or not, delivers a decision message, then all correct 

(a) (b) 
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participants will deliver that message within ∆=(F + 1)δ time units after the time the 

coordinator has initiated the broadcast18. Figure 5.1(b) illustrates the resulting protocol, 

which we call Non-Blocking CLL (NB-CLL) [AbP98a, AbP98b], assuming no failures 

occur during the protocol execution. 

Dealing with Failures 

Recall that in CLL, if a participant Pi times out while waiting for a transaction’s 

operation or the final decision from the coordinator, it cannot unilaterally decide on the 

transaction. In this case, Pi starts a termination protocol during which it tries to consult 

with other participants that might have reached a decision or can unilaterally do so. If, 

however, all the participants with which Pi can communicate are uncertain, Pi is blocked 

inside the termination protocol.  

By exploiting the properties of the UTRB primitive, NB-CLL eliminates such 

undesirable scenarios. The idea is inspired from the ACP-UTRB protocol, and consists 

on substituting the (blocking) termination protocol executed in response to the timeout 

with an action that always enables a consistent decision to be reached at Pi. For this to 

work, however, Pi needs a reliable and accurate detection of the crash of the coordinator 

before it engages in the associated timeout action (otherwise, transaction atomicity would 

be compromised).  Whereas this issue is rather straightforward in 2PC − a participant 

that times out waiting for the coordinator’s decision in response to its vote can safely 

conclude that the coordinator has crashed 19 − it is less obvious in our 1PC context given 

that a 1PC participant does not wait for the decision (or a transaction’s operation) as a 

response to a message it has sent to the coordinator. Therefore, there is no mean by 

which the participant can tell the moment at which the coordinator is supposed to 

terminate the transaction and broadcast its decision. As a consequence, the timeout of a 

1PC participant cannot be relied on to detect a coordinator crash: the coordinator can be 

simply busy executing operations on other participants. 

                                                           
18 Recall that F denotes the maximum number of participants that may crash during the execution of the 

commit protocol, while δ represents the upper bound on message processing and transport delay over a link. 

19 Recall that in our model of synchronous system and reliable communication, if a 2PC participant does 

not deliver the decision message within δ+ ∆  time units after sending its vote (where the value of ∆ depends 

on the particular broadcast primitive that is used), it can safely conclude that the coordinator is faulty. 
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To overcome this problem, we propose to augment our synchronous system model 

with an external failure detector mechanism by which crash failures are reliably detected 

and reported to operational sites. In other words, each process Pi has access to a reliable 

failure detector module RFDi, which maintains a list of those processes that have 

crashed. Given our model of synchronous system and reliable communication, reliable 

failure detectors can be easily implemented by means of timeouts. For instance, each failure 

detector module RFDi can periodically query other processes in the system. If a process Pj 

does not respond by the specified timeout, RFDi can safely conclude that Pj has crashed. In 

the notations, Pj ∈ RFDi means that process  Pi has detected the crash of process Pj. 

In this context, our NB-CLL protocol, defined by the terminate() function in Figure 

5.2, works as follows [AbP98a, AbP98b]. When a participant Pi detects a coordinator 

crash, it sets its timeout to ∆= (F + 1)δ, which represents the upper bound on the time 

delay needed for the decision message to reach every correct participant under UTRB. 

On timeout, Pi takes a unilateral abort decision, safe in its knowledge that no other 

participant could have received (and decided) commit. 

To complete our discussion on failures, note that NB-CLL exploits our Coordinator 

Logical Logging recovery mechanism described in Section 3.4.3. Therefore, participant’s 

recovery is achieved in exactly the same way as in CLL, that is, using CLL’s recovery 

procedure of Figure 3.2 (cf. Section 3.5.2). 

5.3.2 Protocol Correctness 

In this section, we show that our NB-CLL protocol presented in Figure 5.2 is correct and 

non-blocking. This amounts to proving that it satisfies all of the five properties of the 

NB-DAC problem.  

Theorem 5.1. NB-CLL achieves the DAC-Uniform-Agreement property. 

PROOF.  For contradiction, assume that a participant Pi decides commit, while 

another participant Pk decides abort. In NB-CLL, Pi can decide commit only at lines 

7 and 13 following the delivery of a commit decision message. By the Uniform-

Integrity property of UTRB, the coordinator must have broadcast a commit decision 
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function terminate () 

 Only the coordinator executes: 

 1 decision: = proposition;   // proposition ∈ {commit, abort} 

2 R-broadcast (decision, participants); 

 

 

 Every participant Pi executes: 

3 wait until [R-deliver (decision) or coordinator ∈ RFDi] 

4 if (coordinator ∈ RFDi) then 
5 set time-out to ∆; 
6 wait until [R-deliver (decision)] 
7 decide (decision); 

8 return; 

9 on-timeout 
10 decide (abort); 

11 return; 

12 else 
13 decide (decision); 

14  return; 

 

Figure 5.2: The NB-CLL protocol. 

message at line 2, say at real-time t
R-broadcast

. Participant Pk can decide abort at lines 

7, 10, and 13. Since we have a single coordinator per transaction and since the 

coordinator broadcasts only one decision for each transaction (at line 2), participant 

Pk could not have delivered an abort decision, and hence, could not have decided 

abort at lines 7 or 13. Therefore, Pk must have decided abort at line 10 following the 

time-out expiration. In this case, Pk must have detected a coordinator crash. Assuming 

that this detection occurs at real-time tcrash, the time-out expiration occurs at real-

time tcrash+∆. Since participant Pi has delivered a commit decision, this means that the 

coordinator had broadcast a commit decision before it crashed. Thus, t
R-broadcast

< tcrash. 

Furthermore, by the Uniform-Agreement and ∆-timeliness properties of UTRB, Pk 

eventually delivers a commit decision as well, and it does so at most by real-time 

t
R-broadcast

+∆. Since t
R-broadcast

< tcrash, Pk must have received the commit decision before 

timing out. This contradicts the fact that Pk has executed line 10.   
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Theorem 5.2. NB-CLL achieves the DAC-Uniform-Validity property. 

PROOF.  Assume that the coordinator is correct. Since we consider a reliable failure 

detector, then no participant could have detected a coordinator crash, and therefore, 

no participant could have decided at line 7 or at line 10. Consequently, all participants 

must have decided at line 13 following the delivery of the decision message, and this 

message must have been broadcast by the coordinator at line 2 (by the Uniform-

Integrity property of UTRB). From lines 1 and 2 of the protocol, it is obvious that 

the decision value broadcast by the coordinator is nothing but its proposition. 

Consequently, the decision value of all participants is the coordinator’s proposed value.  

Theorem 5.3. NB-CLL achieves the DAC-Uniform-Integrity property. 

PROOF.  From the structure of the protocol, it is obvious that every participant 

decides at most once.   

Theorem 5.4. NB-CLL achieves the DAC-Non-Blocking property. 

PROOF.  In NB-CLL, if the coordinator does not crash, then it eventually broadcasts 

its decision to all participants by executing line 2. Consequently, every correct 

participant eventually decides at line 13 following the delivery of the coordinator’s 

decision message. On the other hand, if the coordinator crashes, then every 

undecided (correct) participant will eventually detect the coordinator crash, in which 

case, the participant executes the associated wait statement at line 6 after having set 

its timeout. If the decision message being waited for is not received by the specified 

time, the timeout expires and the participant decides abort at line 10; otherwise, the 

participant decides on line 7 following the delivery of the decision message. 

Therefore, every correct participant eventually decides.  

Theorem 5.5. NB-CLL achieves the DAC-Termination property. 

PROOF. To show that DAC-Termination is satisfied, we must consider participants’ 

recovery. Given that NB-CLL exploits the same recovery procedure as CLL, the 

proof remains the same for both protocols (cf. Section 3.5.3). 
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Message Complexity 
     point-to-point network              broadcast network  

Latency 
        Time complexity    Log Complexity 

3PC 5n  2n + 3 5 2n + 1 

ACP-UTRB 2n+n
2
 2n + 1 3 2n + 1 

NB-CLL n
2
 n  1 n + 1  

Figure 5.3: The cost of transaction commit under 3PC, ACP-UTRB, and NB-CLL. 

5.3.3 Performance Evaluation 

In this section, we examine the cost for non-blocking under the NB-CLL protocol, and 

compare its performances with previously discussed non-blocking protocols proposed in 

the same context, namely 3PC and ACP-UTRB. Figure 5.3 summarizes the performances 

of the protocols in terms of latency and message complexity needed to commit a 

transaction . We denote by n the total number of participants in the transaction. 

By sharing the same basic structure with CLL, NB-CLL drastically reduces the time 

and log complexities of both 3PC and ACP-UTRB, thereby reducing transaction 

response times. Furthermore, we note that although NB-CLL achieves non-blocking at 

the expense of a quadratic number of messages exchanged under a point-to-point 

network, it still maintains message complexity far below that of ACP-UTRB, and with a 

reasonable number of participants (i.e., n < 5) or in the case of a broadcast network, even 

below that of 3PC, thus providing the best tradeoff between performance and fault-

tolerance. 

5.4 NB-DAC in Asynchronous Systems 

Our NB-CLL protocol described in the previous section provides both safety and liveness 

guarantees, assuming a synchronous system and reliable communication. Just like 3PC 

and ACP-UTRB, however, NB-CLL may lead participants to reach inconsistent decisions 

if either of these assumptions is not satisfied, thus compromising transaction safety. To 

avoid such inconsistencies, and based on the asynchronous system model defined in 

Section 4.3.1, we study in this section the NB-DAC problem in asynchronous 

environments. In particular, we propose a new non-blocking extension to CLL, called 
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Asynchronous Non-Blocking Coordinator Logical Log (ANB-CLL), which always 

guarantees transaction safety, while providing liveness guarantees in asynchronous 

systems with reliable communication and unreliable failure detectors [AbP99]. 

In contrast with existing fault-tolerant protocols proposed in this context, ANB-CLL 

achieves non-blocking in asynchronous environments in which processes may crash and 

later recover. Indeed, by exploiting the recovery semantics of the distributed commit 

problem, we show that the previous results of Chandra & Toueg on solving (Uniform) 

Consensus in asynchronous systems assuming a crash-stop failure model [Cha93, 

ChT96] can be adapted to a transactional context so as to provide fault-tolerant solutions 

to the distributed commit problem in asynchronous systems based on a crash-recovery 

failure model of computation. 

5.4.1 On the Solvability of NB-DAC  

Recall from Section 5.2 that the NB-DAC problem is defined by the DAC-Uniform-

Agreement, DAC-Uniform-Integrity, DAC-Termination and DAC-Non-Blocking 

properties, and the following DAC-Uniform-Validity property: 

−−−− DAC-Uniform-Validity: If the coordinator does not crash, then the decision 

value is the coordinator’s proposed value. 

This property is of particular importance as it reflects the dictatorial aspect of the 

NB-DAC problem as opposed to the classical NB-AC problem  unless the coordinator 

crashes, the decision value must only be determined by the coordinator. Clearly, this 

property is too strong in the context of asynchronous systems since it requires a precise 

knowledge about the occurrence of a coordinator crash, thus making the NB-DAC 

problem rather unattainable. 

To illustrate, assume that the coordinator crashes before sending its decision to the 

participants. In this case, participants can neither wait indefinitely for the coordinator’s 

decision (otherwise, DAC-Non-Blocking would be violated), nor can they take a 

unilateral decision unless they know that the coordinator is indeed faulty (otherwise, 

DAC-Uniform-Validity would be compromised). Since unreliable failure detectors can 



5.4.    NB-DAC IN ASYNCHRONOUS SYSTEMS 

  

   91 

never provide participants with such a precise knowledge about the crash of the 

coordinator, it follows that NB-DAC cannot be solved in asynchronous systems with 

unreliable failure detectors. 

However, by weakening the DAC-Uniform-Validity condition, and following the 

approach proposed in [Gue95], we define in the next section the Non-Blocking Weak 

Dictatorial Atomic Commitment (NB-WDAC) problem that is better suited to 

asynchronous environments. 

5.4.2 The Non-Blocking Weak Dictatorial Atomic Commitment 

Problem  

We define the Non-Blocking Weak Dictatorial Atomic Commitment (NB-WDAC) 

problem by the DAC-Uniform-Agreement, DAC-Uniform-Integrity, DAC-Termination, and 

DAC-Non-Blocking properties of the DAC problem, and the following DAC-Weak-

Uniform-Validity property: 

−−−− DAC-Weak-Uniform-Validity: If the coordinator is not suspected, then the 

decision value is the coordinator’s proposed value. 

Note that, although weaker than its original version (i.e., participants are allowed to 

decide unilaterally on the transaction if the coordinator is suspected to have crashed), this 

new property still maintains the dictatorial aspect of NB-DAC, while making the NB-

WDAC problem solvable in asynchronous systems with unreliable failure detectors. 

5.4.3 NB-(WD)AC in the Crash-Recovery Model 

As we have seen in the previous chapter, the results of Chandra & Toueg on solving 

(Uniform) Consensus with unreliable failure detectors [Cha93, CT96] have constituted 

the bases for the construction of fault-tolerant solutions to the distributed commit 

problem in asynchronous environments. Indeed, by encapsulating failure suspicions 

scenarios within a uniform consensus protocol, non-blocking commit protocols have 

started to emerge in this context [GuS95, GLS96] (cf. Sections 4.3.6 and 4.3.7). 
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However, given that the consensus protocols proposed in [Cha93, CT96] have been 

devised assuming a crash-stop failure model, existing non-blocking commit protocols 

that build on these works follow the same assumption, and hence do not support process 

recovery. Whereas this assumption indeed makes sense in environments where process 

decisions are used to trigger some actions within a critical real-time deadline20 (i.e., 

there is no time to wait for crashed processes to recover and decide, so faulty processes 

are simply ignored) [Had90], it is definitely unacceptable in a transactional context 

where process recovery is an inherent feature, and where the decision of faulty processes 

must be taken into account if transaction atomicity is to be preserved. This requirement is 

even intrinsic to the specification of the distributed commit problem and is expressed in 

terms of the (D)AC-Termination property (cf. Sections 2.3.2 and 3.5.2), which states that 

once a crash failure is repaired, the recovering participant must attempt to reach a 

consistent decision    if not immediately, then once enough failures are repaired. 

In light of the above discussion, a fundamental question is then whether Chandra & 

Toueg’s results on solving Consensus in asynchronous systems assuming a crash-stop 

failure model [Cha93, CT96] can be exploited to devise non-blocking solutions to the 

distributed commit problem (in its various forms) in asynchronous systems in which 

processes may crash and later recover. 

In contrast with initial intuition, and based on the (D)AC-Non-Blocking property, we 

show that the answer to this question is “Yes” [AbP99]. To illustrate, recall that (D)AC-

Non-Blocking requires that “every correct participant eventually decides”. The fact that 

this property is expressed in terms of correct participants and not operational ones 

means that an operational participant that has crashed and later recovered is not allowed 

to participate again in the execution of the commit protocol. Instead, recovering 

participants have to decide through the associated recovery protocol rather than the 

commit protocol. 

Seen in this light, the following idea for exploiting the results in [Cha93, CT96] in 

our transactional context while taking into account participants’ recovery suggests itself. 

When failure suspicions occur during the execution of the commit protocol, a uniform 

                                                           
20 Examples are process control systems for power plants, air traffic control, etc. 
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consensus protocol is launched in order to terminate the transaction in a non-blocking 

way at all correct participants. If, however, a participant Pi crashes while executing the 

uniform consensus protocol, it will not be allowed to participate again in the protocol 

execution in case it recovers from its crash. Instead, Pi will try to decide on the transaction 

inside its recovery procedure. Therefore, upon recovering, Pi informs all other participants 

in the transaction that, although operational, it is faulty and hence has to be excluded from 

any consensus protocol execution. As far as uniform consensus is concerned, this approach 

reduces the problem to the case where process crashes are permanent. 

We conclude that the uniform consensus protocols described in [Cha93, CT96] can 

be adapted to our transactional context so as to provide non-blocking solutions to the 

distributed commit problem, while taking into account participants’ recovery. 

5.4.4 The ANB-CLL protocol 

Based on the above results, we propose in this section the Asynchronous Non-Blocking 

Coordinator Logical Log (ANB-CLL) protocol, which solves the NB-WDAC problem in 

asynchronous systems assuming any unreliable failure detector of class <>S and a 

majority of correct participants [AbP99]. 

ANB-CLL: Overview 

Just like NB-CLL, ANB-CLL can be viewed as a non-blocking extension to CLL. Unlike 

NB-CLL, however, ANB-CLL necessitates an additional communication step so that a 

commit decision can be reached at every correct participant. As illustrated in Figure 5.4, 

ANB-CLL operates in two communication steps. During the first step of the protocol, if the 

coordinator’s proposition is commit 21, the coordinator sends a start-pre-commit message to 

all participants. In step 2, when a participant receives start-pre-commit from the 

coordinator, it sends a pre-commit message to all. Finally, when a participant receives pre-

commit from all, it decides commit. Note that a participant that decides on the transaction 

                                                           
21 Recall that the coordinator’s proposition is commit if (1) it has received acknowledgment messages for 

all the transaction’s operations, and (2) it has succeeded in saving these operations on stable log. 
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needs to forward its decision to all other participants. This actually ensures that if a correct 

participant reaches a decision, then all correct participants also reach a decision.  

This describes the protocol assuming the coordinator proposes commit, and no 

participant is suspected to have crashed during the protocol execution. If, during step 1, 

the coordinator proposes abort, then it sends an abort decision to all participants in the 

transaction and decides abort. All failure suspicion scenarios are handled within a 

uniform consensus protocol used as a termination protocol, enabling a consistent 

decision to be reached at every correct participant in a non-blocking way. More 

precisely, if during step 1, a participant Pi suspects the coordinator, Pi starts a uniform 

consensus protocol with abort as its initial value (at this point, the participant does not 

know whether the transaction has been successfully executed, i.e. all the transaction’s 

operations have been acknowledged and the coordinator has force-written its log on 

stable storage). In step 2, if a participant Pi suspects any other participant, it starts a 

uniform consensus protocol with commit as its initial value (at this point, Pi knows that 

the transaction has been successfully executed). 

ANB-CLL: Detailed Description 

The ANB-CLL protocol is defined by the terminate() function described in Figure 5.5. 

This function consists of two concurrent tasks, Task 1 and Task 2, and terminates by the 

execution of a return (decision) statement, by which the participant decides the value 

“decision” (and stops). To deal with failure suspicions, a uniform consensus protocol 

defined by the uniform-consensus() function is employed as a termination protocol. We 

assume that every participant Pi has access to a local failure detector module FDi that 

informs it of the list of participants that it currently suspects to have crashed. In the 

notations, Pj ∈ FDi means that participant Pi suspects participant Pj. Task 1 implements 

the main protocol, while Task 2 is used in order to ensure that if a correct participant 

receives the decision message, then all correct participants eventually receive this 

message. The main protocol operates in two steps as follows (Task 1): 
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P4 
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     start-p re-commit          commit 

 decide 

     pre-commit 

 
 

Figure 5.4: The ANB-CLL protocol. 

During step1 (lines 1-10), if the coordinator’s proposition is abort (line 1), then the 

coordinator sends an abort decision message to all (line 2), and decides abort (line 3); 

otherwise, the coordinator sends a start-pre-commit message to all (line 4). Each 

participant Pi waits until (i) it receives a start-pre-commit message from the coordinator, 

or (ii) it suspects the coordinator (line 5). In case (ii), Pi asks all other participants to start 

a uniform consensus protocol by sending a start-consensus message to all (line 7), then 

Pi starts a uniform consensus with abort as its initial value (line 8). When the uniform 

consensus protocol returns a decision, Pi decides accordingly (line 9); In case (i), Pi sends 

a pre-commit message to all (line 10), and proceeds to step 2 of the protocol. 

During step 2 (lines 11-17), each participant Pi waits until (i) it receives a pre-

commit message from all, or (ii) it receives a start-consensus message, or (iii) it suspects 

another participant (line 12). In case (i) Pi sends a commit decision message to all (line 

16), and decides commit (line 17). In cases (ii) and (iii) (line 13), Pi starts a uniform 

consensus protocol with commit as its initial value (line 14). When the uniform 

consensus protocol returns a decision, Pi decides accordingly (line 15). 

During Task 2 (lines 18-20), a participant Pi waits until it receives a decision 

message (line 18), sends the decision to all (line 19), and decides upon this decision (line 

20). 
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function terminate() 

 

// Task1 

Only the coordinator executes: 

1 If proposition = abort then 
2 send (abort) to all participants; 

3 return (abort);  // decide abort 

4 send (start-pre-commit) to all participants;  // proposition = commit 

 

// Every participant Pi executes: 

5  wait until [received (start-pre-commit) from coordinator or coordinator ∈ FDi]; 

6 if coordinator ∈ FDi then 

7   send (start-consensus) to all participants; 

8   decision := uniform-consensus(abort);  

9   return (decision); // decide decision 

10 send (pre-commit) to all participants; 

 

11 for every participant Pj in the transaction: 

12 wait until [received ((pre-commit) or (start-consensus)) from Pj or Pj ∈ FDi]; 

13   if received (start-consensus) from Pj or Pj ∈ FDi then 

14   decision := uniform-consensus(commit); 

15   return (decision); // decide decision 

16 send (commit) to all participants; 

17 return (commit); // decide commit 

 

// Task2 

18 wait until [received (decision) from any Pj]; 

19 send (decision) to all participants; 

20 return (decision); // decide decision 

 

Figure 5.5: The ANB-CLL protocol. 
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5.4.5 Protocol Correctness 

In this section, we show that our ANB-CLL protocol presented in Figure 5.5 is correct 

and non-blocking. This amounts to proving that it satisfies all of the five properties of the 

NB-WDAC problem.  

Theorem 5.6. ANB-CLL achieves the DAC-Uniform-Validity property. 

PROOF. Assume that no participant suspects the coordinator during the protocol 

execution. Since a participant can decide commit (resp., abort) in Task 2 only if 

some participant has decided commit (resp., abort) in Task 1, we only need to show 

that (i) if the coordinator’s proposition is commit, then no participant can decide 

abort in Task 1, and (ii) if the coordinator’s proposition is abort, then no participant 

can decide commit in Task 1.  

Case (i): For contradiction, assume that a participant Pi decides abort in Task 1. 

In Task 1, a participant can decide abort only at lines 3, 9, and 15. Since no 

participant suspects the coordinator, then Pi could not have decided abort at line 9. 

To decide abort at line 3, Pi must be the coordinator of the protocol. For the 

coordinator to reach line 3, its proposition must be abort: a contradiction. To decide 

abort at line 15, Pi must have gotten abort as the outcome of the uniform consensus 

of line 14. By the C-Uniform-Validity property of uniform consensus, some 

participant Pj must have started uniform consensus with abort as its initial value at 

line 8. For Pj to reach line 8, Pj must have suspected the coordinator at line 5: a 

contradiction with the assumption that no participant suspects the coordinator. 

Therefore, no participant can decide abort in Task 1. 

Case (ii): For contradiction, assume that a participant Pi decides commit in 

Task 1. In Task 1, Pi can decide commit only at lines 9, 15, or 17. Since no 

participant suspects the coordinator, then Pi could not have decided commit at line 9. 

Hence, Pi must have decided commit at lines 15 or 17. For Pi to reach lines 15 or 17, 

Pi must have received a start-pre-commit message from the coordinator (line 5). 

This means that the coordinator must have executed line 4. For the coordinator to 
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execute line 4, the coordinator’s proposition must be commit: a contradiction. Thus, 

no participant can decide commit in Task 1. 

Theorem 5.7. ANB-CLL achieves the DAC-Uniform-Agreement property. 

PROOF.  A participant can decide commit (resp. abort) in Task 2 only if some 

participant has decided commit (resp. abort) in Task 1. We show that no two 

participants can decide differently in Task 1. In Task 1, a participant can only decide 

at lines 3, 9, 15, and 17. We have to consider two cases: (i) the coordinator decides 

(abort) at line 3, or (ii) the coordinator does not decide at line 3. 

Case (i): In this case, the coordinator does not execute line 4, and hence does 

not send start-pre-commit to all. Therefore, no participant decides at lines 15 or 17. 

Thus, every participant (that decides) decides at line 9 following the execution of 

the uniform consensus (of line 8) with abort as initial value. By the C-Uniform-

Validity property of uniform consensus, every participant (that decides) decides abort. 

Case (ii): There are two sub-cases to consider: (a) no participant suspects the 

coordinator during step 1, or (b) at least one participant Pi suspects the coordinator 

during step 1. In (b), Pi starts a uniform consensus with abort as its initial value 

(line 8), and thus, does not send a pre-commit message to all. This means that no 

participant can decide at line 17, since the pre-commit message of Pi is missing. 

Consequently, every participant (that decides) decides either at line 9 or at line 15 

following the execution of the uniform consensus (started either at line 8 or at line 

14). By the C-Uniform-Agreement property of the uniform consensus, no two 

participants decide differently. In (a), no uniform consensus is started (at line 8) 

with abort as initial value. By the C-Uniform-Validity condition of uniform 

consensus, no participant decides abort at line 15. Hence, every participant (that 

decides) decides commit, either at line 15 or at line 17. 

Theorem 5.8. ANB-CLL achieves the DAC-Non-Blocking property (assuming a 

failure detector of class <>S, and a majority of correct participants). 

PROOF.  We consider two cases: (i) at least one correct participant does not execute 

step 2, and (ii) all correct participants execute step 2. 
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Case (i): Assume that the coordinator crashes. By the strong completeness 

property of <>S, every correct participant eventually suspects the coordinator. If, 

however, the coordinator is correct, then it eventually sends either (a) a start-pre-

commit message to all (line 4) or (b) an abort decision message to all (line 2). In (a), 

if the coordinator sends a start-pre-commit message to all (line 4), then every 

correct participant executing the wait statement at line 5 eventually receives this 

message (by the reliable communication assumption). Therefore, if a participant Pi 

does not execute step 2, then Pi must have suspected the coordinator in step 1, in 

which case, Pi sends a start-consensus message to all participants (line 7) and starts 

uniform consensus (line 8). Since Pi does not execute line 10, correct participants that 

have reached step 2 do not receive the pre-commit of Pi. Hence, either they receive the 

start-consensus message of Pi (reliable communication), or they suspect another 

participant. In both cases, every correct participant in step 2 eventually starts uniform 

consensus (line14). Since we assume a majority of correct participants, and by the C-

Non-Blocking property of uniform consensus, every correct participant eventually 

decides. In (b), if the coordinator sends an abort decision message to all (line 2), then 

every correct participant that has not decided yet eventually receives this message 

(reliable communication), and decides accordingly (at line 20 of Task 2). 

Case (ii): In this case, either some correct participant receives pre-commit from 

all, or no correct participant receives pre-commit from all. If some correct 

participant in step 2 receives pre-commit from all, then this participant sends commit 

to all (line 16), and decides commit (line 17). Hence, every correct participant that 

has not decided yet eventually receives the commit decision message (by the reliable 

communication assumption) and decides commit (at line 20 of Task 2). The case 

where no correct participant receives pre-commit from all is subtler: all correct 

participants execute step 2 means that all correct participants sent their pre-commit 

to all. If all participants are correct, then all correct participants receive pre-commit 

from all due to reliable communication: a contradiction. It follows that some 

participants are not correct. By the strong completeness property of <>S, all correct 

participants eventually suspect another participant (line 12). Thus, every correct 

participant in step 2 eventually starts uniform consensus (line 14). Since we assume 

a majority of correct participants, then a majority of correct participants eventually 
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start uniform consensus. Again, by the C-Non-Blocking property of uniform 

consensus, every correct participant eventually decides. 

Theorem 5.9. ANB-CLL achieves the DAC-Uniform-Integrity property. 

PROOF.  From the structure of the protocol, it is clear that every participant decides 

at most once (either in Task 1 or in Task 2).  

Theorem 5.10. ANB-CLL achieves the DAC-Termination property. 

PROOF.  To show that DAC-Termination is satisfied, we must consider participants’ 

recovery. Given that ANB-CLL exploits the same recovery procedure as CLL (and 

NB-CLL), the proof remains the same for both protocols (cf. Section 3.5.3).  

5.4.6 Performance Evaluation 

In this section, we examine the cost for non-blocking under the ANB-CLL protocol, and 

compare it with existing non-blocking protocols proposed in the same context, namely 

DNB-AC and MD3PC. Figure 5.6 summarizes the performances of the protocols in terms 

of latency and message complexity needed to commit a transaction . We denote by n the 

number of participants in the transaction and by f the number of crash failures to be 

tolerated, where  f < n / 2. 

By exploiting the 1PC approach to distributed transaction commit, ANB-CLL 

reduces the time complexity of both DNB-AC and MD3PC from 3 communication steps 

to 2, thus reducing transaction response times. 

Regarding message complexity, we distinguish two cases: (1) with a broadcast 

network, and (2) without a broadcast network. In case (1), with 6 participants (n = 6) and 

a resiliency rate of 1 ( f  = 1), DNB-AC requires 114 messages, whereas both MD3PC 

and ANB-CLL require 78 messages. In case (2), DNB-AC requires 19 messages, MD3PC 

requires 16 messages, and ANB-CLL requires 13 messages. To illustrate further, assume 

now that n = 12 and f  = 2. In case (1), DNB-AC requires 444 messages, MD3PC 

requires 276 messages, while ANB-CLL requires 300 messages. In case (2), DNB-AC 

requires 37 messages, MD3PC requires 30 messages, and ANB-CLL requires 25 messages. 
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Message Complexity 
      point-to-point network               broadcast network  

Latency 
      Time complexity        Log Complexity 

DNB-AC n + 3n
2
  3n + 1 3 -- 

MD3PC n (4 f + 3)  + n
2
 2 (n + f + 1)  3 -- 

ANB-CLL n + 2n
2
 2n+ 1 2 n+ 1 

Figure 5.6: The cost of transaction commit under DNB-AC, MD3PC, and ANB-CLL. 

To summarize, we note that, independently of the number of participants in a 

transaction, ANB-CLL reduces the message complexity of DNB-AC under both types of 

networks, and that of MD3PC when a broadcast network is used. In case of a point-to-

point network, if the number of participants exceeds 6 (i.e., n > 6), more messages need 

to be exchanged in ANB-CLL than in MD3PC. This is rather not surprising given that in 

MD3PC, the sub-protocol required for non-blocking is executed only by a subset of the 

participants in the transaction, and the cardinality of this subset depends on the number 

of failures to be tolerated. Although in real-world transactional applications the number of 

participants rarely exceeds 6, we can perfectly apply this optimization to ANB-CLL so as to 

trade the resiliency of the protocol with the number of messages exchanged, thus making its 

message complexity always below that of MD3PC: in this case, (n+1) + (2 f+1) + n
2
  (resp. 

n + 2f + 2) messages would be needed assuming a point-to-point network (resp. a broadcast 

network), making a total of 209 (resp. 18) messages, with n = 12 and f  = 2. This gives 

ANB-CLL the best overall performances among the three discussed protocols.  

Like DNB-AC and MD3PC, our ANB-CLL protocol achieves non-blocking in 

asynchronous systems assuming reliable communication, any unreliable failure detector of 

class <>S, and a majority of correct participants. If these assumptions are not satisfied, our 

protocol might block, but never leads two participants to decide on different outcomes. 

5.5 Discussion 

The work presented in this chapter originated from the observation that, in today’s 

transactional systems and applications, high performance and fault-tolerance are crucial 

requirements of equal importance. 
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Based on this observation, and given the high efficiency of the 1PC approach to 

distributed transaction commit, we were prompted to investigate fault-tolerant solutions 

to the Dictatorial Atomic Commitment problem. This led us to propose two non-blocking 

extensions to CLL, our 1PC variation, which provide transaction liveness guarantees 

under the two extremes of a spectrum of possible system models, namely synchronous 

and asynchronous systems. The resulting protocols, which we called NB-CLL and ANB-

CLL, blend the efficiency of 1PC with fault-tolerance. The importance of this work is 

further emphasized by the fact that, compared to 2PC, 1PC increases the probability to 

blocking of the participating sites in case of failures. 

The advantages of NB-CLL and ANB-CLL over other non-blocking protocols 

proposed in the literature are not only performance issues. By combining the 1PC 

approach with our CLL’s recovery mechanism, our protocols are able to cope with 

existing systems without violating their autonomy  be they or not 2PC compliant. 

Furthermore, by adapting Chandra & Toueg’s consensus protocols [Cha93, CT96] 

to the transactional context, and based on the recovery semantics of the distributed 

commit problem, ANB-CLL achieves non-blocking in asynchronous systems assuming a 

crash-recovery failure model. To the best of our knowledge, it is the first time that fault-

tolerant solutions to the distributed commit problem have been devised for asynchronous 

systems in which processes may crash and later recover. With all these features, ANB-

CLL is able to meet the fundamental requirements of today’s real-world transactional 

systems and applications. 
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Chapter 6 

The ANB-CLL Prototype 

In this chapter, we show how to put our theoretical results into practice by presenting a 

way by which 1PC can be exploited in current transactional standards and products, 

initially designed with 2PC in mind. To do so, we first give an overview of well-

established TP standards promoted by ISO, X/Open, and OMG, which have gained 

widespread acceptance and commercial product support. We then show how our ANB-

CLL protocol, discussed in the previous chapter, can be smoothly integrated into these 

standards through a prototype design and implementation achieved in the context of this 

thesis. 

6.1 Transactional Standards 

This section recalls some background related to the ISO OSI-TP protocol, X/Open DTP 

model, and OMG’s OTS service. 

6.1.1 The ISO OSI-TP Protocol 

OSI-TP (Open Systems Interconnection - Transaction Processing) [ISO92a] is a 

transactional protocol defined by ISO (International Standardization Organization), which 

guarantees interoperability between different transactional components (e.g., TP 

monitors) involved in the commitment of a distributed transaction. More precisely, OSI-

TP defines (i) a standard communication protocol for establishing and managing dialogs 

between participants in a transaction, (ii) a standard two-phase commit (2PC) protocol, 

and (iii) a standard failure management and recovery protocol. 
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As far as atomic commitment is concerned, OSI-TP integrates several optimizations 

of basic 2PC, namely the Presumed Abort (PrA) (cf. Section 2.4.1), Read-Only (cf. 

Section 2.4.4), and One Phase Commit optimizations. We caution the reader that the 

latter is not to be confused with our 1PC concept as it has totally different semantics  it 

is rather intended to optimize the cost of commit processing in case of mono-site 

transactions, i.e., when there is only one participant in the transaction. 

Given that 2PC is a blocking protocol, a heuristic decision concept has been also 

adopted in order to resolve blocking situations that may arise in case of failures. More 

precisely, if a coordinator crash occurs, an uncertain participant can unilaterally commit 

or abort the transaction rather than waiting for the coordinator to recover. Upon 

recovery, if the coordinator’s final decision contradicts the participant’s heuristic 

decision, a manual procedure is launched to reestablish a global consistent state. Thus, 

non-blocking is obtained at the expense of data consistency. 

6.1.2 The X/Open DTP Model 

The DTP (Distributed Transaction Processing) model [X/Open93] is a transactional 

standard promoted by X/Open, which aims at providing standard interfaces between 

transactional components so as to make them portable. This model distinguishes four 

software entities that participate in the execution of a transaction: (i) an Application 

Program (AP) is an arbitrary program that implements the desired function of the end-

user application, and accesses shared resources within the scope of a transaction, (ii) a 

Resource Manager (RM), (e.g., a Database Management System, or simply DBMS), 

manages shared resources and guarantees the consistency of data it is in charge of, (iii) a 

Transaction Manager (TM) (e.g., a TP-Monitor) coordinates atomic transaction 

completion at all RMs accessed by a transaction, and manages failure recovery, and (iv) a 

Communication Resource Manager (CRM) facilitates interoperability between different 

instances of the DTP model by managing communication between distributed and 

potentially heterogeneous TMs located in different domains, and provides portable APIs 

for DTP communication between several APs. 
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Figure 6.1: X/Open DTP model. 

Figure 6.1 illustrates the functional components of a local instance of a DTP system. 

Typically, an AP accesses the TM through the TX interface in order to begin/commit/abort 

a transaction, and accesses RMs through their native interface (e.g., SQL). When the AP 

requests the TM to commit a transaction, the latter acts as the coordinator of the commit 

protocol during which it directs the different participating RMs for a commit or an abort 

through their XA interface. As defined in OSI-TP, the commit protocol adopted in the 

X/Open DTP model is the PrA 2PC protocol, together with the Read-Only and One Phase 

Commit optimizations. 

In case several distributed (possibly) heterogeneous TMs are involved in the 

execution of the same transaction, they communicate through their respective CRMs 

using the OSI-TP protocols in order to exchange DTP information and application data 

(Figure 6.1). Thus, X/Open DTP ensures the portability of transactional components 

while OSI-TP ensures their interoperability. 

6.1.3 The OMG Object Transaction Service 

Oriented towards the object world, OMG (Object Management Group) has specified a 

transactional standard, named OTS (Object Transaction Service) [OMG00a], based on 

the CORBA architecture ratified by the members of OMG [OMG00b]. 
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Figure 6.2.  OMG’s OTS architecture. 

Simply stated, CORBA provides a distributed object-oriented infrastructure that 

allows objects to communicate across boundaries such as the network, the specific 

language in which they were written or the platform on which they are deployed. The 

communication heart of the CORBA architecture is the Object Request Broker (ORB) 

that acts as the object bus over which objects transparently interact with other remote 

objects. OTS brings the notion of distributed transactions to the CORBA world. 

OTS Architecture  

As illustrated in Figure 6.2, the CORBA OTS model distinguishes six main entities that 

participate in the execution of a transaction: (i) a Transactional Client (TC) is an 

arbitrary program that invokes operations on transactional objects within the scope of a 

transaction, (ii) a Transactional Object (TO) is an application object whose behavior is 

affected by being invoked within the scope of a transaction, (iii) a Recoverable Object 

(RO) is an application object that directly manages persistent data whose state is subject 

to change during the course of a transaction, and thus must participate in the 2PC 

protocol defined by OTS22, (iv) a Transactional Server is a collection of one or more 

transactional (but not recoverable) objects, (v) a Recoverable Server is a collection of 

                                                           
22 In accordance with OSI-TP and X/Open DTP, the commit protocol defined in OTS is the PrA 

variation of basic 2PC, together with the Read-Only and One Phase Commit optimizations. 
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objects, at least one of which is recoverable, and (vi) the Transaction Service coordinates 

all the transactions in the system, and drives the 2PC protocol. 

A Recoverable Object participates in the 2PC protocol by registering an object 

called Resource with the Transaction Service. The Resource object implements the 2PC 

protocol as a participant on behalf of the Recoverable Object in order to update the 

Recoverable Object’s data resources in accordance with the transaction outcome. At 

transaction end, the Transaction Service drives the 2PC protocol by issuing requests to 

all the resources registered for the transaction. 

Note that even though a Recoverable Object is by definition a Transactional Object, 

an object can be Transactional but not Recoverable, in which case it does not directly 

manage persistent data, but rather, it invokes operations on some other Recoverable 

Object(s). Consequently, Transactional objects that are not Recoverable do not 

participate in the 2PC protocol; however, they may force the rollback of the transaction. 

Principal OTS Interfaces 

In OTS, a transaction is managed by a set of CORBA objects, each having a standard 

interface defined in terms of the OMG’s Interface Definition Language (IDL). Figure 6.3 

illustrates the key interfaces defined in OTS together with the major components using 

them. These interfaces are discussed below: 

• Current interface: provides application objects with a transparent access to the 

Transaction Service. It can be used to begin, commit, or rollback a transaction, and 

to get information about the current transaction. 

• Transaction Factory interface: allows the Transactional Client to begin a transaction. 

• Control interface: can be viewed as the handle to the transaction. More precisely, 

it provides access to two other interfaces that control the transaction life cycle, 

namely the Coordinator and the Terminator interfaces, thus enabling the 

application to interact directly with the Transaction Service objects. 

• Coordinator interface: provides operations used by participants in a transaction, and 

supports mechanisms to coordinate transaction termination at these participants.  

• Terminator interface: provides operations to commit or rollback a transaction. 
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Figure 6.3.  Key interfaces in OTS. 

• Resource interface: defines the operations invoked by the Transaction Service to 

complete a transaction on a resource following the 2PC protocol. This interface 

can be used to wrap non-CORBA resources to the CORBA domain so that they 

can participate in a CORBA transaction. 

• Recovery Coordinator interface: is used by Recoverable Objects to drive the 

recovery process in case of failures. 

• Subtransaction Aware Resource interface: is a specialization of the Resource 

interface, used by Recoverable Objects that support the nested transaction behavior. 

It is very important to note that one of the major goals of the OTS specification is to 

allow legacy TP-based systems to participate in an OTS transaction. In particular, OTS is 

designed to interact with X/Open DTP-compliant Resource Managers, or simply RMs 

(Figure 6.3). This actually means that OTS Recoverable Objects can use X/Open RMs 

interfaces (e.g., SQL) and access the data resources they manage within the scope of an 

OTS transaction. In this case, the registered Resource object represents the accessed RM 

as a participant in the transaction completion. Recall that X/Open RMs can participate in 

a distributed transaction by allowing their 2PC protocol to be controlled via the XA 

interface (cf. Section 6.2). Therefore, to complete a transaction, the Transaction Service 

drives the commit protocol by issuing 2PC requests on the registered Resource, while the 

Resource drives the RM through its XA interface as we further detail in the following. 
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Figure 6.4: OTS execution flows using direct transaction management. 

Typical Usage 

In OTS, client applications manage their transactions either directly or indirectly. 

• With direct transaction management, the client application directly accesses and 

manipulates the Transaction Service objects that represent the transaction (i.e., 

Transaction Factory, Control, Terminator, Coordinator, etc.). Figure 6.4 

illustrates a typical OTS transaction execution using the direct mode. The 

Transactional Client starts a transaction using a Transaction Factory object. A 

Control object is returned, which provides access to a Terminator and a 

Coordinator. Then, the client starts sending requests to the Recoverable Server, 

and includes in each of its requests the transaction context23, which can be 

obtained from the Coordinator object. On receipt of a service request, the 

Recoverable Server registers a Resource object with the Coordinator. At 

transaction end, the client uses the Terminator object to commit or rollback the 

transaction. On a commit request, the Transaction Service starts the 2PC protocol 

by issuing requests to all the Resources registered with the Coordinator. 

                                                           
23 An OTS transaction context generally contains the object reference to the transaction Coordinator 

together with a unique global transaction identifier.  
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Figure 6.5: Indirect transaction management mode. 

• With indirect transaction management, the set of OTS interfaces are hidden by the 

Current pseudo object, which provides a fully transparent access to OTS. Figure 

6.5 illustrates the role of the Current object and its relation with application 

objects and the Transaction Service objects. Requests from the application object 

to the Current pseudo object are local requests. The Current interacts with the 

Transaction Service objects through the ORB as an application object using direct 

transaction management mode. Thus, the Current can be viewed as a high level 

API that hides the location of the Transaction Service and the set of its interfaces. 

6.1.4 OTS and DTP Compared 

OTS can be seen as an object redefinition of the X/Open DTP model. It brings the 

transaction paradigm and the object paradigm together, thus promoting reliable, 

modular, reusable and evolutionary object-based software components. Most 

importantly, OTS has been designed to be compatible with well-established transactional 

standards, thus enabling the integration and interoperability of legacy TP based systems 

with the CORBA domain. In particular, OTS is fully compatible with X/Open DTP-

compliant software, which allows a single (X/Open or OTS) transaction to be shared by 

both object and procedural code. 
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Fully based on the CORBA architecture, inter-component communications in OTS 

are all in the form of object requests sent via the ORB, which enables access and location 

transparency of remote objects. This is compared to the X/Open DTP model where a 

Communication Resource Manager (CRM) is required to process transactions that are 

distributed over several TMs. 

6.2 ANB-CLL in Standard Platforms 

Given that the transactional models presented in the previous section are well-established 

TP standards that have gained widespread acceptance and commercial product support, it 

is important to show how our ANB-CLL protocol, described in the previous chapter 

(Section 5.4.4), can be exploited in an OTS/DTP environment. 

To do so, we first show how our (blocking) CLL protocol (cf. Section 3.5) can be 

embedded within a fully OTS-compliant Transaction Service, named MAAO-OTS 

[LSG98], while maintaining the interoperability of DTP-compliant systems with the 

CORBA domain. We then describe how to achieve non-blocking by exploiting a CORBA 

compliant service, called OGS [Fel98], which defines an object-oriented framework of 

CORBA components for reliable distributed systems. 

6.2.1 Prototype Context 

The ANB-CLL prototype has been performed in the context of OpenDREAMS-II 24, an 

ESPRIT project financed by the European Union (December 1997 -- May 2000). 

OpenDREAMS-II (henceforth called “OD-II”) aims at designing and building a CORBA 

compliant platform dedicated to industrial Supervision and Control Systems (SCS). The 

OD-II platform is augmented with several components and services specifically tailored 

to answer SCS requirements, including a Transaction Service designed and implemented 

by the PRiSM laboratory [ABG98]. 

The project platform is experimented and validated through two industrial SCS 

applications, namely a Condition Monitoring and Diagnostics of Thermal Power Plants 

                                                           
24 OpenDREAMS is the acronym for “Open Distributed Reliable Environment, Architecture & 

Middleware for Supervision”. 
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application, as well as an Advanced Surface Movement Guidance & Control Systems (A-

SMGCS) application for managing all moving vehicles in an airport environment. Both 

applications showed the effectiveness of our protocol in meeting SCS requirements in 

terms of performance, fault-tolerance, and compliance with commercial transactional 

systems. 

6.2.2 Major Objectives 

When defining the overall project goal, we have set out the following major objectives 

for our ANB-CLL prototype: 

• To show the applicability of the 1PC idea in general, and our protocol in 

particular, to real-world transactional systems and standards. 

• To enable application portability from the OD-II Transaction Service to other OTS 

implementations by following the standard OTS interfaces defined by OMG. 

• To enable the integration of X/Open DTP-compliant transactional systems in the 

OD-II Transaction Service by directing them through their standard XA interface. 

6.2.3 Integrating CLL into OTS  

In this section, we show how the (blocking) CLL protocol can be embedded within a 

fully OTS compliant Transaction Service, named MAAO-OTS [LSG98], developed by the 

TRANSREP project members headed by Simone Sédillot at INRIA 25. The CLL prototype 

components have been fully designed, and implemented in C++ using Orbix 2.3 MT 

[ION97], a commercial CORBA implementation. 

Transactional Client 

In the OD-II Transaction Service, the support of the CLL protocol is totally transparent 

to the client application. More precisely, a client of the OD-II Transaction Service still 

accesses the standard OTS interfaces as defined by OMG to begin (resp. commit) its 

transaction by calling the standard begin() (resp. commit()) operation on the Current 

                                                           
25 INRIA is the acronym for “Institut National de Recherche en Informatique et Automatique”. 
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object (indirect mode), or the Factory (resp. Terminator) object (direct mode). The call 

to commit() on either object launches the CLL protocol implemented by the OD-II 

Transaction Service, and commits the transaction in a single phase on the participating 

resources.  

Transaction Service 

The integration of the CLL protocol within the OD-II Transaction Service has been 

realized thanks to the collaboration of the TRANSREP project members at INRIA. This 

integration consisted in modifying the MAAO-OTS coordinator automaton so as to 

follow the 1PC approach rather than the traditional 2PC approach. The necessary 

modification is rather straightforward, and is achieved by simply having the coordinator 

ask the registered Resource objects to commit the transaction without first asking them to 

prepare. 

It is very important to note that eliminating the voting phase from the commit 

protocol does not require any modification/extension to the Resource interface as defined 

by OMG. Instead, we exploit the standard commit_one_phase() operation (traditionally 

offered by the Resource interface and employed by the transaction coordinator in case of 

mono-site transactions) for our 1PC purpose. Clearly, a call to commit_one_phase() on 

each participating resource is mapped to a call to xa_commit(TMONEPHASE) on the 

corresponding X/Open DTP-compliant RM. 

Recoverable Server 

Recall from Chapter 3 (Section 3.5.2) that the concept of Agent has been associated with 

each transactional system (typically, RMs) participating in the CLL protocol. The role of 

the Agent is to determine the exact state (i.e., committed or aborted) of every transaction 

branch for which its local site did not acknowledge the commit decision due to a failure. 

This is important in order to identify those branches that need to be locally re-executed. 

In the OD-II Transaction Service, we have integrated the Agent role within the 

Resource object. Obviously, this is the most natural and straightforward way to do since 

the Resource object is the entity that acts as intermediary between the Transaction 

Service and the underlying participating RMs. 
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Figure 6.6: 1PC_lib in the OD-II Transaction Service architecture. 

Achieving Commit-resiliency 

Recall that to overcome the need for on-line commit-resiliency at the participants while 

preserving their autonomy, the coordinator of CLL guarantees the commit-resiliency 

property of transactions by maintaining in its log the list of operations invoked within the 

scope of a transaction. In addition, the CLL coordinator forces its log on stable storage 

before sending the commit decision to the different participants. In case a participant 

crashes during the CLL protocol execution, the coordinator re-executes the transaction 

branch on the failed participant. 

In an OTS architecture, the difficulty in meeting this requirement lies in the fact that 

a Transactional Client sends its service requests directly to Recoverable Objects. Thus, at 

commit time, the Coordinator object has no knowledge of the list of requests invoked 

within the scope of a transaction. 

To deal with this problem, our solution consists in keeping the list of a transaction’s 

requests in a log maintained on the Transactional Client side. This log is kept transparent to 

the client application by means of a library, called 1PC_lib, dedicated to CLL’s specific 

mechanisms and to which the client application should be linked. More precisely, 
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Figure 6.7: OD-II Transaction Service execution flows. 

1PC_lib manages the requests’ log via a new object that we introduce, called Replay. 

The Replay interface defines operations that allow to (i) write the transaction’s requests 

on the log (register_op() operation), (ii) force the log on stable storage (flush() 

operation), and (iii) re-execute the requests of a transaction branch in the event of a 

participant crash during the CLL protocol execution (re_execute() operation). 

Detailed Description 

1PC_lib is implemented using Orbix Per-Process Filters 26. Per-Process filters monitor 

all incoming and outgoing operation and attribute requests to and from an address space. 

Figure 6.6 illustrates the role of 1PC_lib in the OD-II Transaction Service architecture. A 

typical transaction execution is described in Figure 6.7. 

When a client application begins a transaction by calling begin() on the Factory 

object (or the Current object), the client filter associates a Replay object with the new 

transaction. During the transaction, the Transactional Client invokes service requests on 

                                                           
26 The filter concept has been first introduced in IONA’s Orbix ORB, but has been since normalized in 

CORBA 2.2 under the Interceptors concept. 
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Recoverable Objects. The client filter intercepts each of these requests, registers the 

request in the log by calling register_op() on the Replay object, and continues the call 

normally. 

When the Transactional Client calls commit() on the transaction Terminator object 

(or the Current object), the client filter intercepts the call to commit(), force-writes the 

log (i.e., the transaction’s requests) on stable storage by calling flush() on the Replay, and 

continues the call normally. The call to commit() launches the CLL protocol and commits 

the transaction in a single phase, while ensuring the transaction commit-resiliency 

property at the client side. 

In case a participant crashes during the CLL protocol execution, the Coordinator 

“replays” the failed transaction branch by calling the re_execute() operation on the 

transaction’s Replay object with the corresponding Resource object reference as a 

parameter. Note that the Replay object reference can be made available to the 

Transaction Service by having it piggybacked to the commit() request message by the 

client filter, and extracted by a receiving filter on the Transaction Service side. 

6.2.4 Achieving Non-Blocking  

This section briefly presents the design of a non-blocking extension to our CLL 

prototype, following the ANB-CLL protocol described in Section 5.4.4. The solution we 

propose exploits some of the facilities provided by a CORBA Object Group Service 

(OGS) [Fel98], designed and implemented at the Operating Systems Laboratory (LSE) 

directed by Professor André Schiper at the Swiss Federal Institute of Technology 

(EPFL). 

Roughly, OGS provides object group support for CORBA environments by 

combining several distinct CORBA services, each providing a separate facility and can 

be exploited in isolation. Of particular importance for our purpose, an Object Monitoring 

Service that provides a distributed failure detection mechanism based on Chandra & 

Toueg’s model of unreliable failure detectors [ChT96], and an Object Consensus Service 

that allows several CORBA objects to solve the Consensus problem based on Chandra & 

Toueg’s Consensus algorithm, and using a failure detector of class <>S  [ChT96]. 
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Figure 6.8: Non-Blocking components of the OD-II Transaction Service. 

Components and Interactions 

The non-blocking extension we propose is totally encapsulated within a library, called 

NB_lib, to which the Recoverable Server and the Transaction Service are linked. NB_lib 

manages all the non-blocking mechanisms introduced by ANB-CLL by defining new 

components, and by exploiting some of the services provided by OGS’s library (OGSL). 

These mechanisms include a pre-commit phase, a Uniform Consensus algorithm, and a 

failure detection mechanism. Figure 6.8 presents a simplified high-level view of the non-

blocking extension components.  

On the Recoverable Server side, NB_lib introduces a new object, called ResourceNB, 

which acts as intermediary between the transaction Coordinator and the Recoverable 

Object’s Resource, and implements the ANB-CLL protocol (cf. Figure 5.5) as a 
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participant on behalf of the Recoverable Object. From the transaction Coordinator 

viewpoint, the ResourceNB object becomes the actual participant in transaction 

completion. To achieve its role, the ResourceNB interface extends the standard Resource 

interface by defining, in addition to the commit-one-phase() operation, new operations 

required for non-blocking, namely pre-commit(), and start-consensus(). 

To deal with the failure detection problem, NB_lib exploits OGS’s Object 

Monitoring Service by creating a failure detector object (FD) at the Recoverable Server, 

and the Transaction Service. Each local FD object monitors a subset of the processes in 

the system (roughly, by communicating with FDs local to these processes), and maintains 

a list of those processes that it currently suspects to have crashed. Given that in ANB-

CLL, failure suspicions are handled within a Uniform Consensus protocol, NB_lib makes 

use of OGS’s Object Consensus Service by creating a consensus manager object (CM) at 

each Recoverable Server. CM objects implement the consensus protocol and reach 

agreement with each other. 

In this context, a ResourceNB object acts as a client of its co-located FD and CM in 

order to get information about failure suspicions of other participating ResourceNB 

objects, and to reach a consistent decision through the execution of a consensus protocol. 

Typical Execution 

When the Recoverable Object calls the register_resource() operation on the transaction 

Coordinator with a Resource object reference as a parameter, NB_lib intercepts the call 

by means of an Interceptor (or Filter), creates a new ResourceNB object, and registers it 

with the Coordinator by modifying the value of the operation parameter to include the 

ResourceNB object reference instead of that of the Recoverable Object’s Resource. 

To commit the transaction, the Coordinator performs the commit-one-phase() 

operation on every registered ResourceNB. This call initiates ANB-CLL’s pre-commit 

phase between the different participating ResourceNB objects through their respective 

pre-commit() operation. In the absence of failure suspicions, a commit decision is 

reached, in which case, the ResourceNB performs commit-one-phase() on the 

Recoverable Object’s Resource. In case of failure suspicions, the ResourceNB asks the 
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CM object to start a uniform consensus protocol, and decides on the transaction (in a 

non-blocking way) according to the uniform consensus protocol outcome. Finally, note 

that if a failure suspicion occurs during the pre-commit phase, the ResourceNB needs also 

to perform start-consensus() on the other participating ResourceNB objects, as defined in 

ANB-CLL. 

6.3 Discussion 

In this chapter, we studied the integration of our ANB-CLL protocol into well-

established TP standards that have gained widespread acceptance and commercial 

product support. Our primary objective here was to show the applicability of the 1PC 

concept in general, and our ANB-CLL protocol in particular, to real-world transactional 

systems and standards, namely OMG’s OTS [OMG00a] and X/Open DTP [X/Open93].  

This integration has been achieved following the same modular approach by which 

ANB-CLL has been designed. This consisted first in embedding the basic 1PC protocol 

(cf. Section 3.2) within an OTS architecture, and then encapsulating all CLL’s specific 

mechanisms on the one hand and non-blocking facilities on the other within two separate 

libraries, named 1PC_lib and NB_lib, respectively.  

Our CLL prototype has been implemented in C++ using Orbix 2.3MT [ION97] 

based on a fully OTS-compliant transaction service, named MAAO-OTS [LSG98]. This 

enabled us to prove the practical validity of the 1PC concept, and to show the 

compatibility of our protocol with existing transactional standards and commercial 

database systems. As far as fault-tolerance is concerned, our non-blocking solution has 

been fully designed following a CORBA-compliant approach, but has not yet been 

implemented and integrated to the prototype due to timing and organizational constraints 

related to the OD-II project. It would be thus important to complete the present work, and 

study the cost for non-blocking through an actual implementation of the proposed 

solution in the context of real-world transactional systems based on a CORBA architecture. 

Some issues related to the CLL prototype remain open for further investigations, 

notably concerning performance measurements. Although the performance gain of 1PC 
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over 2PC is obvious, it would be important to quantify this gain not only in terms of 

message and log complexities, but also in terms of overall transaction processing metrics, 

such as transaction (peak) throughput or transaction (mean) response time. 

�� 
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Chapter 7 

Conclusion 

Over the past two decades, distributed systems have become the norm for the 

organization of computing facilities. From common daily life activities to mission critical 

computing industries, everything shows evidence that we depend more and more heavily 

on distributed systems and applications, making the reliability of these more critical than 

it has ever been before. 

Originated from the field of databases, the transaction abstraction has been widely 

acknowledged as the basic building block by which distributed systems and applications 

can be reliably structured and implemented. Reliability guarantees are provided despite 

concurrency and failures through transaction ACIDity (i.e., atomicity, consistency, 

isolation, and durability), where atomicity is ensured through an atomic commitment 

protocol, enabling a distributed agreement to be reached among participating processes 

concerning the faith of the transaction. Given their great impact on distributed 

transaction processing, a plethora of atomic commitment protocols has been proposed. 

These protocols, however, usually compel a trade-off between high-performance and fault-

tolerance (i.e., non-blocking), making them inadequate for many of today’s distributed 

systems and applications in which it becomes hardly acceptable to sacrifice one 

requirement for the other. 

In this thesis, we have considered this issue through the discussion of the details 

involved in the design of a distributed commit protocol that reconciles high-performance 

and fault-tolerance, while being applicable to most transactional standards and products. 

This protocol was the final result of a series of contributions that rely on a novel 

paradigm for distributed transaction commit proposed in the context of this research. 
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7.1 Research Assessment 

Divided into three parts, this thesis has led to six major contributions. The first part 

tackled performance issues, and introduced the Dictatorial Atomic Commitment problem, 

defined On-line Serializability and On-line Commit-Resiliency, and proposed a highly 

efficient commit protocol, named Coordinator Logical Log (CLL). The second part 

extended the previous results to cover fault-tolerance issues, and proposed two non-

blocking extensions to CLL, which provide liveness guarantees under the two extremes 

of a spectrum of possible system models, namely synchronous and asynchronous 

systems. The third and final part addressed practical issues by describing a way by which 

the asynchronous non-blocking CLL variation can be integrated into existing 

transactional standards and products.  

7.1.1 Performance Issues 

Dictatorial Atomic Commitment. We have discussed some serious drawbacks of the 

traditional Two-Phase Commit (2PC) approach to the distributed commit problem, and 

argued that although it ensures transaction atomicity, 2PC introduces a substantial delay 

in the system, leading to a significant increase in transaction execution times. To meet 

the strong efficiency requirements of today’s advanced and critical applications, and 

through a careful look into the characteristics of real-world transactional systems, we 

have identified the conditions under which a One-Phase Commit (1PC) approach can be 

used. Our research led us to define the Dictatorial Atomic Commitment (DAC) problem, 

a novel paradigm for distributed transaction termination, which overcomes the need for 

2PC in most practical situations. Based on the pragmatic observation that, in most real 

settings, participants’ votes can turn out to be more than necessary, the Dictatorial 

Atomic Commitment problem resulted from removing veto rights from the traditional 

Atomic Commitment problem. 

In addition to defining Dictatorial Atomic Commitment, we have also proposed a 

simple algorithm that solves it based on a 1PC approach. This algorithm corresponds 

exactly to a 2PC without the voting phase, which explains why 1PC is much more 

efficient than 2PC. A crucial feature of our algorithm is that it constitutes the basic 

building block around which all existing 1PC variations are designed, thus promoting 

modularity. 
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On-line Serializability & On-line Commit-Resiliency. To characterize transactional 

systems that are compatible with dictatorial transaction processing, we have studied the 

impact of dictatorship on concurrency control and recovery protocols employed by the 

participants in a transaction. In particular, we have defined three necessary and sufficient 

conditions to ensure the correctness of transactional systems with no participant veto 

right: on-line serializability, cascadelessness, and on-line commit-resiliency. These 

conditions are strictly stronger than the usual correctness metrics for transactional 

systems, namely serializability, recoverability and resiliency, respectively. We have also 

addressed practical considerations related to those conditions, and have shown that, 

whereas on-line serializability and cascadelessness are realistic in most real settings, on-

line commit-resiliency turned out to be very expensive in practice. 

Coordinator Logical Log. To overcome the high cost imposed by on-line commit-

resiliency, we have considered a “non-classical” atomic commitment scheme that allows 

participants to delegate part of their transactional responsibilities to the coordinator of 

the commit protocol. Through a deep analysis of existing 1PC variations that follow this 

scheme, we have pointed out their practical limitations when it comes to meeting 

autonomy requirements of today’s distributed environments. In order to combine the 

high-efficiency of 1PC with practical utility, we have proposed a new 1PC variation, 

called Coordinator Logical Log (CLL), which preserves site autonomy based on a logical 

logging recovery mechanism. The advantages of CLL are not only performance issues. 

By eliminating participants’ votes, and maintaining logical operations instead of physical 

log records at the coordinator site, CLL seems to be the sole protocol that can cope with 

all existing transactional systems, be they or not 2PC compliant. 

7.1.2 Fault-tolerance Issues 

Non-blocking Coordinator Logical Log. Although more efficient than the 2PC 

approach, 1PC increases the probability of blocking of transaction participants in case of 

failures, making the window of vulnerability to blocking last all along the transaction 

execution. While this might be acceptable in some standard applications, there are 

mission critical applications for which high-performance and fault-tolerance are crucial 

requirements of equal importance. The above observation constituted our starting point 
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for investigating solutions to the Non-Blocking Dictatorial Atomic Commitment (NB-

DAC) problem. The first result of this study has been a variation of our CLL protocol, 

named Non-Blocking CLL (NB-CLL), which achieves non-blocking in the context of 

synchronous systems based on a Uniform Timed Reliable Broadcast (UTRB) primitive, 

and assuming reliable communication and reliable failure detection. 

Asynchronous Non-blocking Coordinator Logical Log. Given that synchrony 

assumptions and reliable failure detectors are not always realistic in practice, we have 

extended our work on fault-tolerance and proposed a variation of CLL, called 

Asynchronous Non-Blocking CLL (ANB-CLL), which guarantees non-blocking assuming 

an asynchronous system with reliable communication and unreliable failure detectors. A 

crucial feature of ANB-CLL is that it achieves non-blocking based on a crash-recovery 

failure model. To the best of our knowledge, it is the first time that fault-tolerant 

solutions to the distributed commit problem have been designed in the context of 

asynchronous systems in which processes may crash and later recover. Furthermore, 

ANB-CLL blends the advantages of CLL in terms of efficiency and autonomy 

requirements with fault-tolerance, making it the best candidate for distributed transaction 

commit in the context of today’s systems and applications. 

7.1.3 Prototype Design & Implementation 

Through a prototype design and implementation, we have shown how our ANB-CLL 

protocol can be integrated into well-known transactional standards. This prototype has 

served as a proof of concept, which shows the validity of our theoretical study, and the 

compliance of our protocol with current transactional standards and products. 

Following a “compositional methodology” of protocol integration, the (blocking) 

CLL protocol has been first embedded into an OTS/DTP environment. We have then 

designed a non-blocking extension to the CLL prototype as a separate construct that can 

be added on top of it. At the time of writing of this thesis, the non-blocking extension has 

not yet been implemented and integrated into the prototype, and thus remains at its 

design stage.  
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7.2 Future Directions and Open Issues 

In addition to the contributions presented in the previous section, several extensions to 

our work need to be explored, allowing plenty of scope for interesting research. In the 

following, we describe some future directions and open questions. 

Towards a Higher Resiliency During Recovery. The Coordinator Logical Logging 

recovery mechanism associated with the different CLL variations preserves site 

autonomy, and overcomes the high cost introduced by on-line commit-resiliency at the 

expense, however, of a coordinator-dependent recovery protocol. An important future 

work would be to explore new coordination schemes that enable to increase the resilience 

of the recovery protocol by decreasing its dependency level. One intuitive way of 

achieving this would consist in replicating the coordinator’s log at some other sites, 

which number depends on the desired resiliency rate. This actually lays the basis for 

further investigations related to the cost this might introduce in the system.  

Deferred Consistency Constraints. One consequence of removing veto rights from 

transaction participants is that integrity constraints are checked after each update 

operation, and thus deferred integrity validation is excluded. An open question is then 

whether it is possible to circumvent this assumption so as to widen the applicability field 

of dictatorial transaction processing. This would probably consist in exploring 

intermediate schemes between veto rights for all and no veto right at all.   

ANB-CLL for Mobile and Disconnected Computing. Mobile and disconnected 

computing is clearly one of the most challenging areas for future distributed 

environments. The growing number of applications using mobile and disconnected 

facilities, supported by the emerging world of lightweight intelligent devices, raises new 

issues in terms of transaction management and introduces new requirements that the 

traditional transaction processing paradigm cannot meet. For instance, a traditional (i.e., 

2PC-like) commit protocol leads to the abort of a transaction after it has been 

successfully processed if any of its participants disconnects during the voting phase. This 

situation is rather intolerable in a mobile environment where (accidental or voluntary) 

disconnections are very frequent. Furthermore, by forcing participants in a transaction to 
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externalize local prepared states, traditional protocols consume valuable system 

resources on data servers hosted by lightweight devices. 

In this context, our ANB-CLL protocol seems to cope effectively with these issues, 

and it would be very interesting to study its adaptation to mobile and disconnected 

computing environments. Indeed, by eliminating participants’ votes and local prepared 

states, ANB-CLL provides a very suitable way of dealing with disconnections, and 

allows saving critical resources on lightweight servers. Although not yet totally 

conclusive, a preliminary study showed the appropriateness of our protocol in bringing 

answers to these issues through three typical mobile/disconnected computing 

applications [BPA00], but this still needs further investigation. 
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