

Université de Versailles St-Quentin en Yvelines – Laboratoire PRiSM

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE VERSAILLES

Spécialité

INFORMATIQUE

Présentée par

Maha ABDALLAH

Pour obtenir le titre de

DOCTEUR DE L’UNIVERSITÉ DE VERSAILLES

Sujet de la thèse

DICTATORIAL TRANSACTION PROCESSING:
FROM HIGH-PERFORMANCE TO FAULT-TOLERANCE

Soutenue le 27 mars 2001 devant le jury composé de

Pr. Amr EL ABBADI University of California at Santa Barbara Examinateur

Pr. Jean FERRIÉ Université de Montpellier II Rapporteur

Pr. Georges GARDARIN e-XMLmedia Examinateur

Pr. Rachid GUERRAOUI EPFL Président

Pr. Philippe PUCHERAL Université de Versailles St-Quentin Directeur

Pr. Patrick VALDURIEZ Université Pierre & Marie Curie - INRIA Rapporteur

Acknowledgements

I am deeply grateful to several people who contributed in various ways to this

work. First and foremost, I wish to express my gratitude to my advisor, Prof. Philippe

Pucheral, for guiding my first steps through the research world, for sharing with me

his research enthusiasm, for his patience and friendliness, and for expressing his

confidence in me through a great freedom of action.

I am also very grateful to Prof. Georges Gardarin for accepting me in his research

group, and for sharing with me his teaching experience by giving me the opportunity

to work as a teaching assistant in his database courses.

Special thanks go to Prof. Rachid Guerraoui for the great interest he has shown in

my work. Through his continuous help, and the invaluable scientific discussions we

had, Rachid was involved in almost every part of this work. Without his contributions,

Chapter 3 would probably not have existed.

I wish to express my gratitude to Prof. Jean Ferrié, and Prof. Patrick Valduriez, for

the time they have spent applying their expert knowledge to examining and reporting

on this thesis. I am also deeply grateful to Prof. Amr El Abbadi for accepting to serve

on my thesis committee, and for giving me the opportunity to pursue a postdoctoral

work in his research group at the Department of Computer Science, University of

California, Santa Barbara.

My sincere thanks go to the TransRep project members at INRIA, in particular Dr

Simone Sédillot and Dr Malik Saheb, for their contributions to the integration of the

1PC idea into OTS, and for helping me understand the different facets of MAAO-

OTS.

My warm thanks go to Khaled Boussetta, Catherine Blirando, and Mourad

Guerroui for their friendship, and for lending me a sympathetic ear each time I needed

someone to talk to. I am also extremely thankful to Thierry and Yvette, my French

family, for their faithful and loving support that helped me carry through this

research.

Finally, I am grateful to my brother, Nizar, and my sister, Hitaf, for being my

greatest source of strength, and such a positive influence on my life. There is much of

your love and caring support behind these pages.

Last, but definitely not least, I wish to express my deepest gratitude to my parents

for just being the great persons they are. This thesis is simply the result of their

unconditional love and devotion. The rest cannot be put into words !

To the one who taught me how to think,

to Bassima…

CONTENTS I

Contents

1 INTRODUCTION 1

1.1 Research Context.. 1

1.1.1 Transaction Processing ... 2

1.1.2 Atomic Commitment .. 2

1.2 Research Motivations ... 3

1.3 Research Contributions .. 4

1.3.1 Atomic Commitment: Performance.. 5

1.3.2 Atomic Commitment: Fault-Tolerance... 7

1.3.3 Pragmatic Implementation .. 8

1.4 Thesis Organization.. 8

PERFORMANCE ISSUES 11

2 ATOMIC COMMITMENT - BACKGROUND 13

2.1 Distributed Transactional System Model ... 13

2.1.1 Sites and Processes ... 14

2.1.2 Transactions.. 14

2.2 The Atomic Commitment Problem .. 16

2.3 The Basic Two-Phase Commit Protocol .. 16

2.3.1 Failure-Free Execution ... 17

2.3.2 Dealing with Failures.. 17

2.4 2PC Optimizations.. 20

2.4.1 Presumed Abort (PrA) .. 21

2.4.2 Presumed Commit (PrC)... 22

2.4.3 Decentralized 2PC (D2PC)... 23

 II

2.4.4 Read-Only... 23

2.5 Performance Evaluation ... 24

2.6 Discussion... 25

3 DICTATORIAL ATOMIC COMMITMENT 27

3.1 The Dictatorial Atomic Commitment Problem .. 28

3.1.1 Informal Description... 28

3.1.2 Problem Definition ... 28

3.2 The Basic One-Phase Commit Protocol ... 29

3.2.1 Protocol Description ... 29

3.2.2 Protocol Correctness... 30

3.2.3 Assumptions on the Transactional Systems ... 31

3.3 The Impact of Dictatorship on Concurrency Control... 32

3.3.1 Veto Right Free Schedulers .. 32

3.3.2 On-line Serializability and Cascadelessness... 33

3.3.3 Examples of VR-free Schedulers.. 35

3.3.4 Practical Considerations ... 36

3.4 The Impact of Dictatorship on Recovery ... 38

3.4.1 Veto Right Free Data Managers ... 38

3.4.2 On-line Commit-resiliency ... 39

3.4.3 Practical Considerations ... 40

3.5 The CLL Protocol... 42

3.5.1 Failure-Free Execution ... 42

3.5.2 Dealing with Failures.. 43

3.5.3 Recovery Correctness ... 46

3.5.4 Performance Evaluation.. 49

3.6 Discussion... 53

CONTENTS III

FAULT-TOLERANCE ISSUES 55

4 NON-BLOCKING ATOMIC COMMITMENT – BACKGROUND 57

4.1 The Non-Blocking Atomic Commitment Problem... 58

4.2 NB-AC in Synchronous Systems.. 59

4.2.1 System Model ... 59

4.2.2 The Three-Phase Commit Protocol .. 59

4.2.3 The ACP-UTRB Protocol... 63

4.2.3 Performance Evaluation.. 67

4.3 NB-AC in Asynchronous Systems ... 69

4.3.1 System Model ... 69

4.3.2 Properties of Failure Detectors ... 70

4.3.3 A Story of Consensus ... 72

4.3.4 On the Solvability of NB-AC ... 73

4.3.5 The Non-Blocking Weak Atomic Commitment Problem..................... 73

4.3.6 The DNB-AC protocol.. 74

4.3.7 The Modular Decentralized 3PC Protocol.. 76

4.3.8 Performance Evaluation.. 77

4.4 Discussion... 79

5 NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT 81

5.1 The Window of Vulnerability to Blocking of 1PC .. 82

5.2 The Non-Blocking Dictatorial Atomic Commitment Problem 83

5.3 NB-DAC in Synchronous Systems... 83

5.3.1 The NB-CLL Protocol .. 83

5.3.2 Protocol Correctness... 86

5.3.3 Performance Evaluation.. 89

5.4 NB-DAC in Asynchronous Systems .. 89

5.4.1 On the Solvability of NB-DAC .. 90

5.4.2 The Non-Blocking Weak Dictatorial Atomic Commitment Problem .. 91

 IV

5.4.3 NB-(WD)AC in the Crash-Recovery Model .. 91

5.4.4 The ANB-CLL protocol.. 93

5.4.5 Protocol Correctness... 97

5.4.6 Performance Evaluation.. 100

5.5 Discussion... 101

PRAGMATIC IMPLEMENTATION 103

6 THE ANB-CLL PROTOTYPE 105

6.1 Transactional Standards ... 105

6.1.1 The ISO OSI-TP Protocol... 105

6.1.2 The X/Open DTP Model .. 106

6.1.3 The OMG Object Transaction Service ... 107

6.1.4 OTS and DTP Compared.. 112

6.2 ANB-CLL in Standard Platforms ... 113

6.2.1 Prototype Context ... 113

6.2.2 Major Objectives .. 114

6.2.3 Integrating CLL into OTS... 114

6.2.4 Achieving Non-Blocking .. 118

6.3 Discussion... 121

7 CONCLUSION 123

7.1 Research Assessment.. 124

7.1.1 Performance Issues ... 124

7.1.2 Fault-tolerance Issues ... 125

7.1.3 Prototype Design & Implementation .. 126

7.2 Future Directions and Open Issues... 127

BIBLIOGRAPHY 129

PERSONAL PUBLICATIONS 135

 1

Chapter 1

Introduction

1.1 Research Context

Over the past two decades, distributed systems have become commonplace in several

computing domains. With the recent advances in communication systems, the explosion

of the Internet, and the now ubiquitous World-Wide Web (WWW), not only is the

computing infrastructure changing, but also the user community is underlying a similar

revolution. Distributed systems seem to be everywhere in our daily life activities, making

them a concern of almost every individual.

As we depend more and more heavily on distributed systems and applications, the

reliability of these becomes increasingly critical. Reliability is particularly difficult to

tackle in a distributed environment since we have to deal with some of the intrinsic

characteristics of distribution, notably partial failures or unreliable communication.

Reliability generally connotes two fundamental properties: safety and liveness [Lam77,

AlS85, Gue96]1. Roughly speaking, a safety property stipulates that “bad things do not

occur” during execution. In information systems, for instance, the proscribed “bad thing”

would be the violation of data consistency. In this context, the safety of an application

expresses its ability to maintain the consistency of accessed data objects even in the

event of failures or concurrent executions. A liveness property stipulates that “eventually

good things do occur” during execution. The desirable “good thing” can express

requirements like state progress, program termination, or service availability.

1 Safety and liveness properties were first introduced by Lamport in [Lam77], and have been since

adopted as the usual metrics to evaluate the reliability degree of distributed systems.

CHAPTER 1. INTRODUCTION 2

1.1.1 Transaction Processing

In all information systems, as for database management systems, telecommunication

systems, industrial control systems, finance, or even electronic commerce, preserving

data consistency (i.e., applications’ safety) in the presence of failures or concurrent data

accesses relies on the transaction concept. Transactions are powerful abstractions that

enable the structuring of distributed systems in a reliable manner, while relieving the

programmer from dealing with the complexity of concurrent programming or failures.

A transaction is an atomic set of operations updating shared data objects and

satisfying the so-called ACID properties [GrR93, BCF97], namely atomicity,

consistency, isolation, and durability. In a distributed transactional system, a transaction

may access shared data objects residing at multiple sites. A distributed transaction is

decomposed into one transaction branch per accessed site. Even though it is generally

assumed that each site where a distributed transaction executed ensures the local ACID

properties of its transaction branch, the atomicity and isolation of a distributed

transaction can be jeopardized in the absence of a global control. Therefore, some

additional measures must be taken so that global atomicity and global isolation of

distributed transactions are guaranteed.

1.1.2 Atomic Commitment

This thesis deals with the global atomicity problem, which requires that either all the

updates performed by the transaction on the different accessed sites are made permanent, or

all of them are obliterated. Since each local site participating in the transaction execution

ensures the local ACID properties of its transaction branch, the task of ensuring the global

atomicity of a distributed transaction reduces to ensuring that the transaction either commits

at all the sites, or it aborts at all the sites. To solve this distributed agreement problem,

known as the Atomic Commitment (AC) problem [BHG87], every participant expresses

through a vote its ability to make its updates permanent, and all participants need to agree

on a unique outcome (commit or abort) for the transaction. A protocol that achieves this

kind of agreement is called an Atomic Commitment Protocol (ACP).

1.2. RESEARCH MOTIVATIONS 3

1.2 Research Motivations

This work originated from the firm conviction that although the atomic commitment

problem has been intensively studied in the last two decades, it remains in perpetual

mutation to adapt to today’s new environments and applications. As this thesis testifies,

existing solutions to the problem suffer from their lack of flexibility with respect to the

distributed computing technology revolution in the sense that they can no longer meet the

requirements of today’s distributed systems and applications. Indeed, the simplest and

best-known ACP on which rely existing systems to coordinate transaction commitment is

the Two-Phase Commit (2PC) protocol [Gra78, BHG87]. Although widely used and de

facto standard [OMG00a, X/Op91, ISO92a], 2PC suffers from three major drawbacks

when employed in the context of today’s distributed systems and applications:

• It is quite inefficient in terms of both time delay and message complexity. This is

mainly due to the number of communication steps and forced log writes needed in order

to commit a transaction even in the absence of failures. This inefficiency not only makes

2PC inadequate to today’s highly reliable distributed platforms, but also is particularly

unacceptable in advanced and critical applications, such as Supervision and Control

Systems' applications (SCS)2 [ABG98], with strong performance requirements.

• It may lead to blocking situations in which operational sites are prevented from

terminating the transaction due to failures in other components of the system

[Ske81]. During these blocking periods, operational sites are also prevented from

releasing valuable system resources they may have acquired for exclusive use on

behalf of the transaction (otherwise transaction safety would be compromised),

thereby compromising transaction liveness, and hence system availability. Although

this situation might be acceptable for some standard applications, in mission critical

applications however (e.g., SCS applications), for which a short response time is a

crucial factor, some liveness guarantees are indispensable. Similar requirements

2 Typical examples of SCS are command and control systems in the field of transport (air, railway and

road) including traffic management and fleet management systems, technical management systems for large

equipment infrastructures such as telecommunication networks or electricity and water distribution networks.

CHAPTER 1. INTRODUCTION 4

arise in applications involving an important number of sites (e.g., Internet

applications) where it would be completely unconceivable to block the entire system

due to the crash of one single site. Protocols that provide liveness guarantees despite

concurrency and failures are called non-blocking protocols (also known as fault-

tolerant protocols).

• It forces participants in a transaction to externalize a local prepared state. The

consequence of this is threefold. First, it violates site autonomy3, precluding the

integration of legacy systems [ShL90] in distributed transactions. Second, it

consumes valuable system resources on data servers hosted by lightweight

intelligent devices with very limited resources, such as palmtops, cellular phones, or

even smart cards [BPA00, BBP00]. Third, it leads to the abort of a transaction after it

has been successfully processed if any of its participants is unreachable during the first

phase of the protocol. The impact of this behavior is exacerbated in mobile environments

in which (accidental or voluntary) disconnections are very frequent [BPA00].

Several optimized variations and non-blocking alternatives to 2PC have been proposed in

the literature [Ske81, Ske82, MLO86, StC90, StC93, LaL93, BaT93, KeD94, AlC95, GuS95,

GLS95, AlC96, GLS96]. However, none of these protocols is able to combine efficiency

during normal processing with fault-tolerance (i.e., non-blocking), or to consider the issue of

local site autonomy. Given these limitations, the need for a novel solution to the distributed

commit problem that is capable of reconciling such crucial yet antagonistic requirements

becomes an unquestionable fact. In this thesis, we have sought to address this issue.

1.3 Research Contributions

The major objective of this work is to bridge the gap between performance and fault-

tolerance of atomic commitment protocols, while considering the challenging and key

aspect of today’s large distributed environments, namely local site autonomy. Another

3 Site autonomy means that (1) participants’ local information (e.g., log records or lock tables) cannot be

externalized, and (2) no changes can be made to the participating sites to accommodate the distributed

system.

1.3. RESEARCH CONTRIBUTIONS

5

important objective is the compliance of the proposed solutions with current transactional

standards, initially designed with 2PC in mind.

1.3.1 Atomic Commitment: Performance

As its name indicates, 2PC (and its variations) is made out of two phases. In the first phase,

called the voting phase, the participants are given an ultimate right to abort the transaction

(i.e., the veto right), and in the second phase, called the decision phase, the participants

need to agree on the same decision (commit or abort). Whereas the decision phase is

indeed necessary to ensure transaction atomicity (otherwise the participants might disagree

on the transaction’s outcome), one might wonder whether the voting phase can (sometimes)

be eliminated. This would drastically reduce the cost of commitment (two communication

steps together with their associated forced log writes would be gained), and participants

would not need to externalize a local prepared state anymore. Roughly speaking, to commit

a transaction, the coordinator of the commit protocol would simply need to force-write the

decision and send one message to the participants.

The idea of One-Phase Commit (1PC) is not new: it was informally discussed by

Gray in [Gra78, Gra90] as well as by Stonebraker in [Sto79]. More recently, several 1PC

variations have been suggested in the literature [StC90, StC93, AlC95, AlC96]. Despite

their efficiency, 1PC protocols have been completely ignored in the implementation of

distributed transactional systems. We believe that the reason for this is due to some

(strong) assumptions made by 1PC protocol designers about the underlying transactional

systems without any statement on the necessity of those assumptions. This gives the

impression, from a practical point of view, that 1PC is just an exotic concept with

unrealistic underlying assumptions and, from the theoretical point of view, that 1PC does

not make any sense as it contradicts proven lower bounds on the cost of solving the atomic

commitment problem in distributed systems [DwS83].

This work started with the broad objective of identifying the assumptions under which

1PC can be used. To our knowledge, none of the previous works that were devoted to 1PC

either defines the abstract properties of the problem that is solved or gives a precise

description of the impact of eliminating the voting phase on transaction processing. In this

CHAPTER 1. INTRODUCTION 6

context, the present thesis provides three major contributions: it introduces the

Dictatorial Atomic Commitment problem, defines On-line Serializability and On-line

Commit-Resiliency, and proposes the Coordinator Logical Log mechanism.

Dictatorial Atomic Commitment. We point out the fact that removing the veto right

from atomic commitment comes down to an agreement problem that is different from the

traditional atomic commitment problem solved by a 2PC [BHG87]. In light of this

observation, we give a precise abstract specification of the resulting problem, which we

baptize the Dictatorial Atomic Commitment (DAC) problem, and propose a simple

algorithm that solves it. A crucial feature of this algorithm is that it can be seen as the

basic building block around which all existing 1PC variations are designed. The lack of

the veto right explains why 1PC is actually more efficient than any of the well-known

optimized variations of 2PC [MLO86].

On-line Serializability & On-line Commit-Resiliency. Given the abstract specification

of the DAC problem, we investigate its impact on the concurrency control and recovery

protocols employed by the participants in a transaction. In particular, we define three

conditions that are necessary and sufficient to ensure the correctness of transactional

systems with no participant veto right: on-line serializability, cascadelessness and on-

line commit-resiliency. These conditions are strictly stronger than the usual correctness

metrics for transactional systems, namely serializability, recoverability and resiliency,

respectively [Had88]. We also discuss the practical impact of those conditions on real

transactional systems, and show that unlike on-line serializability and cascadelessness,

on-line commit-resiliency is however rarely realistic in practice.

Coordinator Logical Log. Given the above limitation, we investigate techniques

employed by existing 1PC protocols to circumvent the need for on-line commit-resiliency

by considering “non-classical” atomic commitment schemes in which participants in a

transaction are allowed to delegate part of their transactional responsibilities to the

coordinator of the protocol. We point out the fact that although the existing techniques

overcome on-line commit-resiliency, they come however at a very high cost as they

1.3. RESEARCH CONTRIBUTIONS

7

violate site autonomy, which compromises their use in existing commercial systems. We

then study an adaptation of those techniques and propose a new 1PC variation, named

Coordinator Logical Log (CLL), which preserves site autonomy, making 1PC indeed

realistic and useful in practice.

1.3.2 Atomic Commitment: Fault-Tolerance

The second major part of this research deals with the non-blocking dictatorial atomic

commitment problem. This problem is of major importance given that, compared to 2PC,

1PC increases the probability to blocking of participants in case of failures. Indeed, by

removing veto rights from atomic commitment, the window of vulnerability to blocking

of the protocol lasts all along the transaction. In this context, our work provides two

major contributions: it proposes the Non-Blocking Coordinator Logical Log protocol, and

the Asynchronous Non-Blocking Coordinator Logical Log protocol.

Non-Blocking Coordinator Logical Log. We propose a solution to the non-blocking

dictatorial atomic commitment problem in the context of synchronous systems. The

resulting protocol can be seen as a straightforward extension of CLL, called Non-

Blocking CLL (NB-CLL), that achieves non-blocking based on a Uniform Timed Reliable

Broadcast (UTRB) primitive and assuming reliable failure detection.

Asynchronous Non-Blocking Coordinator Logical Log. Obviously, the assumption

of a synchronous system and a reliable failure detector is not always realistic in practice

since variable or unexpected workloads are sources of asynchrony. Therefore, we

propose a new non-blocking extension to CLL, called Asynchronous NB-CLL (ANB-

CLL), that achieves non-blocking in an asynchronous system augmented with an

unreliable failure detector, and in which processes may crash and recover. To our

knowledge, it is the first time that the non-blocking atomic commitment problem is

studied in the context of asynchronous systems based on a crash-recovery model of

computation. An interesting feature of our non-blocking solutions is that they can be

directly applied to any existing 1PC protocol. Performance analysis shows that NB-CLL

and ANB-CLL are more efficient in terms of time delay, message complexity and

CHAPTER 1. INTRODUCTION 8

number of forced log writes than all other non-blocking commit protocols proposed in

the literature. Furthermore, they appear to be the sole protocols that can cope with

existing transactional systems without violating their autonomy.

1.3.3 Pragmatic Implementation

We are currently finalizing the implementation of the ANB-CLL protocol in the context of the

OpenDREAMS-II project (Esprit-VI R&D project n° 25262) in which I have been

participating since 1997. The project is financed by the European Union and aims at designing

and building a CORBA compliant platform dedicated to industrial Supervision and Control

Systems (SCS). The OpenDREAMS-II platform is augmented with several components and

services specifically tailored to answer SCS requirements, including a Transaction Service

designed and implemented by the PRiSM laboratory of the University of Versailles.

The project platform is experimented and validated through two industrial

applications, namely a Condition Monitoring and Diagnostics of Thermal Power Plants

application, as well as an Advanced Surface Movement Guidance & Control Systems (A-

SMGCS) application for managing all moving vehicles in an airport environment. Both

applications showed the effectiveness of our protocol in meeting SCS requirements in

terms of performance and fault-tolerance. The implementation of the ANB-CLL

prototype is at a far advanced stage that enables us to prove the validity of our theoretical

study, and to show the compatibility of our protocol with existing transactional standards

(OTS/CORBA, XA/DTP) and commercial database systems.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapters 2 and 3, which constitute

the first major part of this work, tackle performance issues related to distributed commit

protocols. In Chapter 2, we define a general model of a distributed transactional system

that we follow throughout the thesis. We then give some background about the Atomic

Commitment problem, and recall the Two-Phase Commit approach to the problem

through a description of the most well-known 2PC variations commonly found in the

1.4. THESIS ORGANIZATION

9

literature. We finally point out 2PC limitations in terms of performance and applicability

to existing transactional systems.

In Chapter 3, we present proposals to overcome those limitations. We first introduce

the Dictatorial Atomic Commitment (DAC) problem, resulting from removing veto rights

from the traditional Atomic Commitment problem, and propose a highly efficient

algorithm that solves it based on a One-Phase Commit (1PC) approach. We next define

three necessary and sufficient conditions to ensure the correctness of transactional systems

with no participant veto right: on-line serializability, cascadlessness, and on-line commit-

resiliency, and discuss the practical impact of those conditions on concurrency control and

recovery protocols. Based on this discussion, we draw an interesting parallel between

existing 1PC variations, and point out their practical limitations. We finally propose the

Coordinator Logical Log (CLL) protocol, a new 1PC variation that capitalizes on the

existing ones so as to keep the best of the 1PC approach while being useful and practical.

Chapters 4 and 5, which constitute the second major part of this thesis, extend the work

presented in the previous chapters on distributed commit protocols to tackle fault-tolerant

issues. In Chapter 4, we recall the issue of blocking in 2PC, and define the Non-Blocking

Atomic Commitment problem. We then present a survey of existing non-blocking commit

protocols commonly found in the literature. In order to do so, we refine the general system

model described in Chapter 2 in order to reflect different assumptions about failures and

failure detections, and focus on the two extremes of a spectrum of possible models, namely

synchronous and asynchronous systems. Each protocol is then described in the context of the

underlying system model it assumes. We finally point out the limitations of the discussed

protocols in terms of both performance and compliance with existing transactional systems.

In Chapter 5, we provide solutions to those limitations by extending our results on

dictatorial transaction processing to cover fault-tolerance issues. We first discuss the blocking

problem in 1PC and refine the Dictatorial Atomic Commitment problem specification to

include the non-blocking property. We then propose the NB-CLL and ANB-CLL protocols

that solve the problem in the context of synchronous and asynchronous systems, respectively.

These protocols blend the efficiency of the One-Phase Commit approach with non-blocking,

without compromising their practical applicability to existing commercial systems.

CHAPTER 1. INTRODUCTION 10

Chapter 6 constitutes the third and final part of this thesis. It briefly surveys existing

distributed transaction processing standards, and discusses a practical prototype

implementation of ANB-CLL in the context of the OMG’s Object Transaction Service

(OTS). Finally, Chapter 7 summarizes the major contributions of this thesis, and

discusses some future research directions and open issues around this work.

Part I

Performance Issues

13

Chapter 2

Atomic Commitment:
Background

A significant body of literature is available on distributed commit protocols. In order to

put our work into perspective, we give in this chapter an overview of some of these

protocols. The chapter is not intended to provide a complete survey on the matter but

rather to highlight the essential by concentrating on well-established protocols that have

received the most attention in the transactional world. In order to do so, we first define a

general model of a distributed transactional system. We then recall some background

about the Atomic Commitment (AC) problem, and discuss the basic Two-Phase Commit

(2PC) protocol together with its best-known optimizations. We finally point out the

limitations of the Two-Phase Commit approach in answering the needs of today’s

distributed systems and applications.

2.1 Distributed Transactional System Model

Distributed computing problems have been studied in a variety of computational models.

In this section, we define a general model of a distributed transactional system that we

follow throughout this thesis. In Chapters 4 and 5, we refine our model and make it more

precise in order to reflect the different assumptions we make on the environment, and

also on the failures and the failure detection mechanisms we consider.

CHAPTER 2. ATOMIC COMMITMENT: BACKGROUND

14

2.1.1 Sites and Processes

We consider a distributed system composed of a finite set of sites Π = {S1, S2, …, Sn}

completely connected through a set of communication channels4. Each site has a local

memory and executes one or more processes. For the sake of simplicity, we assume only

one process per site. We consider the so-called message-passing communication model in the

sense that processes (sites) communicate with each other by exchanging messages. To

simplify the subsequent discussion, when a process disseminates a message to every other

process, we will speak as if the process sends the message to itself (and reacts accordingly).

At any given time, a process may be operational or down. While operational, a

process is assumed to follow exactly the actions specified by the algorithm it is running.

Operational processes may go down due to crash failures [LaF82], i.e., we do not consider

Byzantine failures in which processes can behave arbitrarily [LSP82, Fis83]. A process is

said to be correct if it has never crashed; otherwise, the process is said to be faulty 5.

We consider a crash-recovery failure model in the sense that a process can be down

(crash) and later become operational again. When it does so, we say that the process

recovers, in which case it executes a specific recovery protocol. A process that is down

stops all its activities, including sending messages to other processes, until it recovers.

Each process has access to a stable storage (i.e., that sustains crash failures) in which it

maintains information necessary for the recovery protocol. During recovery, a process

restores its local state based on the information it wrote on stable storage.

2.1.2 Transactions

A transaction is an atomic set of operations updating shared data objects and satisfying

the so-called ACID properties [GrR93, BGS92, BCF97], namely atomicity, consistency,

isolation, and durability. The atomicity property, also called all-or-nothing property,

means that either the transaction successfully executes to completion and the effects of

all of its operations are recorded in the accessed objects (the transaction is said to be

4 Note that although the physical network is not always completely connected, virtual links between

every pair of processes can be provided by network layer protocols.
5 Note that the period of interest of these definitions is the duration of the commit protocol, i.e., a process

is correct if it never crashes during the execution of the commit protocol.

2.1. DISTRIBUTED SYSTEM MODEL

15

committed), or it fails and it has no effect at all (the transaction is aborted). In other word,

all the transaction’s operations are treated as a single, indivisible, atomic unit. Consistency

means that the transaction does not violate the integrity constraints of accessed shared

objects, while isolation means that the intermediate effects of a transaction are not visible

to concurrent transactions. Durability means that the updates of a committed transaction are

permanent (i.e., stored on a stable storage that sustains failures).

The atomicity and durability properties have been formalized through the resiliency

theory [BHG87, Had88], and are usually ensured using a set of protocols known as

recovery protocols. Isolation has been formalized through the serializability and

recoverability theories [BHG87, Had88], and is ensured using a set of protocols referred

to as concurrency control protocols. Consistency is generally assumed to be the

responsibility of the transaction programmer (i.e., users are required to write transactions

such that each takes the database from one consistent state to another) and can be

enforced by some semantic integrity mechanisms built into the system.

A distributed transaction (henceforth called a “transaction”) accesses shared objects

residing at multiple sites. For each transaction, the processes that perform operations on

its behalf are called transaction participants. The portion of a transaction executed at one

participant is called a transaction branch. In the following, we assume the “classical”

distributed transactional scheme in the sense that each participant ensures the ACID

properties of every transaction branch it executes. We also assume that for every

transaction, there is one specific participant, called the transaction coordinator, which

manages the transaction processing and termination6.

The coordinator forwards every transaction operation to the participant hosting the object

involved by the operation. If a participant succeeds in processing an operation, it replies by

sending back an acknowledgment message; otherwise, the participant aborts the transaction

and sends back a negative acknowledgment. To conclude the transaction, the coordinator

triggers an Atomic Commitment Protocol (ACP) whose aim is to ensure that a logical atomic

commit or abort action is consistently carried out at all participants despite failures. In the

following, we recall the abstract formulation of the underlying agreement problem.

6 This is generally the site where the transaction originated.

CHAPTER 2. ATOMIC COMMITMENT: BACKGROUND

16

2.2 The Atomic Commitment Problem

The Atomic Commitment (AC) problem is a distributed agreement problem that is

concerned with bringing all participants in a transaction to agree on a unique

outcome (commit or abort) for that transaction. This problem was formally defined in

[BHG87]. Each participant has exactly one of two votes: yes or no, and can reach exactly

one of two decisions: commit or abort, such that the following properties are satisfied:

−−−− AC-Uniform-Agreement: No two participants reach different decisions.

−−−− AC-Uniform-Validity: commit is decided only if all participants vote yes.

−−−− AC-Uniform-Integrity: No participant can reverse its decision after it has reached one.

−−−− AC-Non-Triviality: If all participants vote yes and no failures occur, then all

participants must decide commit.

The vote of a participant reflects its ability to commit its transaction branch. A

participant votes yes only if the local execution of its transaction branch was successful

and it is ready and willing to make its updates permanent even in the presence of failures.

This actually means that the participant can locally guarantee the ACID properties of its

transaction branch. A no vote (or abort) indicates that due to some local problems (integrity

constraint violation, concurrency control problem, memory fault or storage problem), the

participant is not able to guarantee some of the ACID properties of its transaction branch. An

ACP is an algorithm that satisfies all of the four properties of the AC problem.

The AC-Uniform-Agreement, AC-Uniform-Validity and AC-Uniform-Integrity

conditions are safety conditions in the sense that they ensure the atomicity property of

the transaction. The AC-Non-Triviality condition excludes from consideration trivial

solutions to the problem in which participants always decide abort.

2.3 The Basic Two-Phase Commit Protocol

All 2PC variations can be regarded as optimizations to the basic 2PC protocol. In this

section, we recall the principle of the Two-Phase Commit approach in general, and

discuss the details of the basic 2PC protocol in particular.

2.3. THE BASIC TWO-PHASE COMMIT PROTOCOL

17

2.3.1 Failure-Free Execution

The basic Two-Phase Commit (2PC) protocol [Gra78, BHG87] (together with its

variations) solves the AC problem by performing a voting phase and a decision phase. In

the voting phase, the coordinator sends a request-for-vote message (also called a prepare

message) to all the participants in the transaction. Each participant replies by sending its

vote. If a participant votes yes, it enters a prepared state during which it can neither

commit nor abort the transaction unless it receives the final decision from the

coordinator. The period of time from the moment a participant votes yes and until it

receives the final decision is called the uncertainty period for that participant. If, on the

other hand, a participant votes no, it can unilaterally abort its transaction branch.

During the decision phase, the coordinator decides on the transaction depending on

the votes it receives from the participants. If all participants have voted yes, the

coordinator decides commit, and sends its decision to all the participants in the

transaction. Otherwise, the coordinator decides abort, and sends its decision (only) to the

participants that are in the prepared state, i.e., those participants that voted yes. When a

participant receives the final decision, it complies with this decision and sends back an

acknowledgment message. This acknowledgment is a promise from the participant that it will

never ask the coordinator about the outcome of the transaction. Finally, after receiving

acknowledgments from all the prepared participants, the coordinator can forget about the

transaction. This describes 2PC assuming no failures occur during the protocol execution. It is

easy to see that 2PC satisfies all of the four properties of the AC problem.

2.3.2 Dealing with Failures

In order to exclude uninteresting protocols that allow participants to remain undecided

forever once some failures have occurred during the protocol execution, the following

AC-Termination property has to be added to the specification of the AC problem [BHG87].

−−−− AC-Termination: If all failures are repaired, then unless a new failure

occurs, every participant eventually reaches a decision.

CHAPTER 2. ATOMIC COMMITMENT: BACKGROUND

18

R
P

Prepare

Prepare

Yes

Yes

 Ack

C P1 P2

Commit
Commit C

 C
Ack C

 Y

 Y

 E

 : Force-Write

: Non-Force Write

C : Commit
A : Abort
Y : Yes
N : No
E : End transaction

R
P

Prepare

Prepare

No
Yes

Abort

C P1 P2

 A

Ack A

Y

 E

A

Figure 2.1: The basic 2PC protocol

To satisfy AC-Termination, specific actions that deal with site and communication

failures must be supplied. First, failures may prevent one site from communicating with

another, leading a process to wait indefinitely for a message that may never arrive. To

avoid such a situation, special timeout actions must be associated with each point in the

protocol where a process is waiting for a message. Furthermore, since we consider a crash-

recovery failure model, participants can be down and later become operational again. In

this case, a recovering process must attempt to reach a decision consistent with the

decision operational processes may have reached. In the following, we consider these

two issues in turn.

Timeout Actions

There are three cases to consider: (1) a participant is waiting for the prepare message

from the coordinator, (2) the coordinator is waiting for participants’ votes, and (3) a

participant is waiting for the coordinator’s decision.

Case (1): If a participant Pi times out waiting for the prepare message from the

coordinator, Pi can unilaterally decide abort since it has not voted yet.

Case (2): If the coordinator times out waiting for a participant vote, it can safely

decide abort. This is because at this point, the coordinator has not reached any decision

yet, and no participant can have decided commit.

 Voting

 Phase

 Decision

 Phase

Voting

Phase

Decision

Phase

(a) Commit Case (b) Abort Case

2.3. THE BASIC TWO-PHASE COMMIT PROTOCOL

19

Case (3): If a participant Pi times out waiting for the decision message (i.e., while in

its uncertainty period), it cannot decide on its own. In this case, Pi starts a termination

protocol during which it tries to find out what to decide by contacting another participant

that either (i) knows the decision, or (ii) can unilaterally decide on the transaction. If,

however, all participants with which Pi can communicate neither satisfy (i) nor (ii), Pi

remains blocked until it can communicate with at least one such participant. When used

with 2PC, this termination protocol satisfies the AC-Termination property. Indeed, if all

failures are repaired, and no new failures occur, Pi will eventually be able to

communicate with a participant for which either (i) or (ii) holds, namely the coordinator.

Crash Recovery

Recovery is made possible by recording the progress of the protocol during normal

processing (i.e., in the absence of failures) in the logs of the coordinator and the

participants. Since failures can occur at any time, some of the information stored in the

logs must be force-written, i.e., written immediately to a stable (nonvolatile) storage that

sustains failures. For instance, the coordinator force-writes its decision before sending it

to the different participants. Each participant force-writes (1) its vote before sending it to

the coordinator, and (2) the final decision before acknowledging the coordinator.

Usually, a participant that votes yes force-writes its vote together with all the updates

performed on behalf of the transaction. This ensures that the participant’s updates are

permanent even if it crashes (i.e., to ensure transaction resiliency). Force-writing a

decision record in the log is the act by which a process decides on the transaction. When

the coordinator receives acknowledgments from all participants, it writes a non-forced

end record, indicating that the information pertaining to the transaction can be garbage

collected from its log. Finally, it is important to note that forcing a log record implies that

the forced log record and all preceding (non-forced) ones are moved immediately from

main memory buffers to stable storage. Figure 2.1 describes the protocol execution

between a coordinator C, and two participants P1 and P2.

Consider a participant Pi recovering from a crash. A failed participant returns to the

operational state by executing a recovery protocol. During this protocol, Pi first restores

a consistent local state using the information it stored in its stable log. Then, it tries to

CHAPTER 2. ATOMIC COMMITMENT: BACKGROUND

20

decide on the transactions that were active at the time the crash occurred (i.e.,

transactions for which no decision record exists in the log). For each of these

transactions, if Pi does not find a yes record in its log, it can unilaterally decide abort. If,

on the other hand, a yes record is found, this means that Pi failed while in its uncertainty

period, and therefore, Pi is exactly in the same state as if it had timed out waiting for the

decision message. Thus, the termination protocol described above can be used to decide

on the transaction.

2.4 2PC Optimizations

The efficiency of an atomic commitment protocol is usually measured following three

performance metrics [BHG87, MLO86, AbP97]: (1) message complexity, which

corresponds to the number of coordination messages that need to be exchanged between

the participants in the transaction, (2) time complexity, which corresponds to the number

of communication steps or rounds required until a decision is reached at every

participant, and (3) log complexity, which corresponds to the number of forced log writes

performed by the participants in order to support recovery. The latter is of particular

importance since it determines the number of blocking I/O required for a good behavior

of the protocol.

As already mentioned in Chapter 1, 2PC introduces a considerable latency in the

system even in the absence of failures. Assuming that n is the total number of

participants in the transaction, 2PC requires 3 communication steps (request-for-vote,

vote and decision) and 2n+1 forced log writes until a decision is reached at every

participant7. The higher the latency of an ACP, the longer the length of time a transaction

may be holding shared objects, preventing other transactions from accessing these

objects. Furthermore, 2PC has a high message complexity due to 4n messages (including

the acknowledgement of the decision) exchanged during the protocol execution. These

significant overheads have motivated many researchers to propose several optimizations

to the basic 2PC.

7 Note that in all our evaluations, and in accordance with Section 2.1.1, we assume that when the

coordinator sends a message to all participants in the transaction, it also sends the message to itself, and acts,

just like any other participant, accordingly.

2.4. 2PC OPTIMIZATIONS

21

R
P

Prepare

Prepare

No
Yes

Abort

 C P1 P2

 A

 Y
 A

 A

Figure 2.2: The Presumed Abort protocol (Abort Case)

2.4.1 Presumed Abort (PrA)

The basic 2PC protocol requires information to be explicitly exchanged and logged whether the

transaction is to be committed or aborted. This is why it is often referred to as the Presumed

Nothing 2PC (PrN) protocol. However, if after having failed and recovered, the coordinator of

PrN gets an inquiry about the outcome of a transaction for which no information is found in its

stable log, the coordinator (implicitly) presumes that the transaction is aborted.

The Presumed Abort optimization (PrA) [MLO86] exploits further this property in order

to reduce the message and logging overhead associated with aborting transactions by making

the implicit abort presumptions of PrN explicit. As illustrated in Figure 2.2, the coordinator of

PrA does not log information nor wait for acknowledgments regarding aborted transactions.

Consequently, participants do not acknowledge abort decisions nor log information about

such decisions. To abort a transaction, the coordinator simply informs the participants of the

abort decision and forgets about the transaction. In the absence of information about a

transaction, the coordinator presumes that the transaction has been aborted. Regarding

committing transactions, PrA behaves in exactly the same way as PrN.

It should be noted that PrA is now part of the ISO OSI-TP [ISO92a], X/Open DTP

[X/Op91, X/Op93], and OMG OTS [OMG00a] distributed transaction processing

standards, and has been implemented in a number of commercial products, such as IBM

Almaden Research Center’s R* [MLO86], Transarc’s Encina [She93], and Unix System

Laboratories’ TUXEDO [Pri94].

Voting

Phase

Decision

Phase

CHAPTER 2. ATOMIC COMMITMENT: BACKGROUND

22

R
P

Prepare

Prepare

Yes
Yes

Commit

 C P1 P2

 C
Commit

 Y
 Y

 I

 C C

R
P

Prepare

Prepare

No
Yes

Abort

Ack

 C P1 P2

 A

 Y

 E

 I

 A

 A

 : Initiation Record I

Figure 2.3: The Presumed Commit protocol

2.4.2 Presumed Commit (PrC)

The Presumed Commit protocol (PrC) [MLO86] is the counterpart of PrA in the sense

that it reduces the cost associated with committing transactions. It is based on the

observation that, in general, transactions are most likely to commit than to abort. In PrC,

the coordinator interprets missing information about transactions as commit decisions.

Unlike PrA, however, the coordinator of PrC has to force-write a membership log

record, and that, before starting the voting phase of the protocol. This is to ensure that an

undecided transaction is not (erroneously) presumed as committed when the coordinator

recovers from a crash. Furthermore, the membership record is exploited in order to

record the identities of all the participants in the transaction, which, in the case of PrN

and PrA, are recorded in the decision record.

As illustrated in Figure 2.3 (a), to commit a transaction, the coordinator of PrC

force-writes a commit log record before sending the commit decision to the participants.

This is actually needed so as to “logically” erase the membership record, since lack of

information means a commit. When a participant receives the commit decision, it simply

writes a non-forced commit record without acknowledging the decision. Figure 2.3 (b)

illustrates the protocol behavior for aborting transactions. The coordinator writes a non-

Voting

Phase

Decision

Phase

Voting

Phase

Decision

Phase

(a) Commit Case (b) Abort Case

2.4. 2PC OPTIMIZATIONS

23

forced abort record, and sends the abort decision only to those participants that voted

yes. When a participant receives the abort decision from the coordinator, it force-writes an

abort log record and then acknowledges the decision.

Although most transactions are expected to commit in the absence of failures, the

argument usually goes in favor of PrA. Clearly, this is due to the extra logging activities

associated with the membership record in PrC. Mechanisms for reducing the logging overhead

of the original PrC and making its cost comparable to that of PrA have been proposed

[ACL97, LaL93].

2.4.3 Decentralized 2PC (D2PC)

The Decentralized 2PC (D2PC) protocol [BHG87, Ske81] has been proposed in an

attempt to reduce the time complexity of the basic 2PC. Instead of communicating

through the coordinator, participants in D2PC communicate directly with one another.

Similarly to PrN, the coordinator of D2PC initiates the protocol by sending a prepare

message to all participants in the transaction. Unlike PrN, however, a participant that

receives the prepare message responds by sending its vote to all participants in the

transaction (rather than only to the coordinator). When a participant receives the votes

from all participants, it decides on the transaction. If all votes are yes and the

participant’s own vote is yes, it decides commit; otherwise, it decides abort. Compared to

the basic 2PC, D2PC eliminates one message round at the expense, however, of a

quadratic message complexity assuming a point-to-point communication network (n + 2n
2

messages, where n denotes the total number of participants in the transaction).

2.4.4 Read-Only

The Read-Only optimization [MLO86] has been proposed based on the observation that a

transaction branch that performs only read operations cannot violate transaction

atomicity. Since no local update has been performed on behalf of the transaction, a read-

only participant does not care about the transaction outcome. When such a participant

receives the prepare message, it sends a read-only vote (instead of a yes vote) and then

immediately releases all the read locks it has acquired on behalf of its transaction branch.

CHAPTER 2. ATOMIC COMMITMENT: BACKGROUND

24

Message Complexity
 point-to-point network broadcast network

Latency
 Time complexity Log Complexity

PrN 4n 2n + 2 3 2n + 1

PrA 4n 2n + 2 3 2n + 1

PrC 3n n + 2 3 n + 2

D2PC n + 2n
2
 2n + 1 2 2n

Figure 2.4 : The cost of transaction commit under the different 2PC variations.

The read-only vote has a dual role: it informs the coordinator that the transaction

branch has read consistent data, and also tells it that the participant does not need to be

involved in the second phase of the protocol. In short, a read-only participant does not

perform any log write and sends only one message.

2.5 Performance Evaluation

The latency of an ACP is determined by the number of forced log writes and

communication steps performed during the execution of the protocol, and until a decision is

reached at every participant. Figure 2.4 shows the performances of 2PC together with its

optimized variations in terms of latency and message complexity needed in order to commit

a transaction (this actually corresponds to the most frequent case since most transactions

are expected to commit in the absence of failures). Regarding message complexity, we

distinguish two cases: (a) using a point-to-point network, and (b) using a broadcast

network.

When compared to PrN (i.e., basic 2PC), PrA does not reduce the cost of

committing transactions. Concerning PrC, we observe that although it reduces the

number of messages and forced log writes, it does not reduce the number of

communication steps required to commit a transaction. Furthermore, the force-writes that

are saved at each participant in PrC are executed in parallel by the participants in PrN.

Thus, PrC does not considerably reduce the overall latency of PrN given that it incurs an

additional force-write associated with the membership log record at the coordinator site.

D2PC reduces the time complexity of its centralized counterparts from three

communication steps to two, which decreases the transaction response time.

2.6. DISCUSSION

25

Furthermore, D2PC requires one forced log-write less than the other 2PC variations due

to the fact that, from the moment the coordinator of D2PC starts the protocol, it assumes

exactly the same role as the other participants. As we have already pointed out, this gain

in D2PC comes, however, at the expense of a quadratic number of messages exchanged

during the protocol execution if a point-to-point communication network is used.

2.6 Discussion

In the light of the above study, it follows that, from a performance perspective, 2PC

optimizations do not provide substantial benefits over basic 2PC. Thus, although adapted

to the classical distributed environments and applications of their time, 2PC variations

are far from being satisfactory when employed in today’s highly reliable distributed

platforms, and fail in meeting the strong performance requirements of advanced and

critical applications, such as SCS applications [ABG98].

Beside this inefficiency, all 2PC variations require that the participating sites provide a

local prepared state, which, as already mentioned in Chapter 1, violates site autonomy,

precluding the integration of pre-existing legacy systems in distributed transactions

[ShL90]. Although one might argue that this issue is no longer of topical interest as 2PC

is now standardized, and hence all transactional systems are expected to become 2PC

compliant, the actual situation shows that this is still not the case. Furthermore, and from

a cost perspective, it would certainly be unreasonable to require that modifications be made

to all existing transactional systems to support the standard protocol.

We believe that all these limitations constitute a strong argument towards a serious

reconsideration of the two-phase commit approach, and explain the renewed interest in

the atomic commitment problem.

��

CHAPTER 2. ATOMIC COMMITMENT: BACKGROUND

26

27

Chapter 3

Dictatorial Atomic Commitment

The traditional transaction processing paradigm relies on a Two-Phase Commit approach

to coordinate transaction termination. While Two-Phase Commit is indeed sufficient to

guarantee transaction atomicity, one might wonder whether it is always necessary. This

suggests that there might be room for a One-Phase Commit approach. In this chapter, we

introduce the Dictatorial Atomic Commitment (DAC) problem, a novel paradigm for

distributed transaction commit, which overcomes the need for Two-Phase Commit in

most practical situations. The intuition behind Dictatorial Atomic Commitment is that the

votes of the participants in a transaction introduce a high cost, and in most existing

transactional systems, participants’ votes can turn out to be more than necessary.

We first give a precise abstract specification of the Dictatorial Atomic Commitment

problem, resulting from removing veto rights from the traditional Atomic Commitment

problem, and describe a basic One-Phase Commit (1PC) algorithm that solves it. We

then characterize transactional systems that are compatible with the DAC specification in

terms of three necessary and sufficient conditions on concurrency control and recovery

protocols. We also discuss the practical impacts of those conditions through an in-depth

analysis of existing 1PC protocols. From this analysis, we point out some severe drawbacks

related to the discussed protocols, which make them inapplicable to today’s distributed

systems. We finally propose a new 1PC variation that capitalizes on the existing ones so as to

broaden the applicability of dictatorial transaction processing to meet the requirements of

today’s distributed environments and applications, and point out some interesting

performance tradeoffs.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

28

3.1 The Dictatorial Atomic Commitment Problem

3.1.1 Informal Description

Variations of 2PC solve the classical Atomic Commitment problem (specified in

[BHG87]) by performing a voting phase and a decision phase. The possibility of a

participant to vote no reflects its ability to reject a transaction a posteriori, i.e., after the

transaction’s operations are processed. In particular, a participant might need to vote no

if it detects a risk of violating any of the local ACID properties of its transaction branch.

Obviously, if we remove the veto right from participants in atomic commitment, the

coordinator will not need to ask the participants for their votes and the voting phase of a

2PC becomes useless (cf. Figure 2.1).

Based on this idea, several authors have proposed the use of One-Phase Commit

(1PC) protocols [StC90, StC93, AlC95, AlC96]. The basic assumption underlying 1PC is

that a participant “does not need” to vote. This actually means that, before triggering the

commit protocol, the coordinator of a 1PC makes sure that the ACID properties of all the

local transaction branches are already ensured. In other words, the coordinator of a 1PC

acts as a “nice dictator” and makes sure that no participant can have any reasonable

reason to vote no. Obviously, this introduces some assumptions on the way participants

manage their transactions as will be detailed later in the chapter.

3.1.2 Problem Definition

In light of the above discussion, we point out the fact that, by eliminating participants’ votes,

the problem solved by 1PC is no longer the classical Atomic Commitment problem solved by

2PC. This would contradict well-known lower bounds on the cost of solving atomic

commitment in distributed transactional systems [DwS83]. In the following, we introduce the

Dictatorial Atomic Commitment (DAC) problem, a distributed agreement problem resulting

from removing veto rights from the traditional Atomic Commitment problem.

In Dictatorial Atomic Commitment, participants do not have the veto right. At commit

time, the coordinator proposes one of two values: commit or abort. If the coordinator does

3.2. THE BASIC ONE-PHASE COMMIT PROTOCOL

29

not crash, it forces the participants to accept its proposed value so that either they all

commit the transaction or they all abort it. We formalize these notions as a set of

properties that together define the Dictatorial Atomic Commitment problem [AGP00].

−−−− DAC-Uniform-Agreement: No two participants reach different decisions.

−−−− DAC-Uniform-Validity: The decision value is the coordinator’s proposed value.

−−−− DAC-Uniform-Integrity: No participant can reverse its decision after it has

reached one.

The DAC-Uniform-Validity property clearly expresses the coordinator’s dictatorship.

The proposed value of the coordinator depends on whether or not the transaction has been

successfully processed. A transaction is considered as successfully processed if all of its

operations have been successfully executed and acknowledged by all participants. In this

case, the coordinator proposes commit; otherwise, it proposes abort.

3.2 The Basic One-Phase Commit Protocol

In this section, we give a basic 1PC algorithm that solves the DAC problem, prove its

correctness, and identify the different assumptions underlying it. An interesting feature of

our algorithm is that it can be seen as the basic building block around which all existing 1PC

variations are designed. Indeed, all 1PC protocols that were proposed in the literature share

the same basic structure and differ only in the way recovery is managed (cf. Section 3.4.3).

3.2.1 Protocol Description

The simplest way to solve the DAC problem defined above is through the terminate()

function described in Figure 3.1. During this function, the coordinator decides on the

transaction depending on its proposition value, and sends its decision to all participants

in the transaction. When a participant receives the decision from the coordinator, it

decides on the transaction. Note that force-writing a decision record in the log is the act

by which a participant decides on a transaction. The protocol corresponds exactly to a

2PC without the voting phase (see Figure 2.1). Clearly, one can apply various well-

known optimizations of 2PC (e.g., PrA, or PrC) to 1PC.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

30

function terminate ()

 Only the coordinator executes:

 1 decision: = proposition; // proposition ∈ {commit, abort}

 2 decide (decision);

3 send (decision) to all other participants;

4 return;

 Every participant Pi executes:

5 wait until [received (decision) from coordinator]

 6 decide (decision);

 7 return;

Figure 3.1: The basic 1PC protocol

3.2.2 Protocol Correctness

In this section, we prove the correctness of our basic 1PC algorithm presented in Figure

3.1. This amounts to proving that it satisfies all of the three properties of the DAC

problem.

Theorem 3.1. 1PC achieves the DAC-Uniform-Agreement property.

PROOF. For contradiction, assume that a participant Pi decides commit, while

another participant Pk decides abort. In 1PC, a participant can only decide at line 6

following the receipt of the decision message from the coordinator (line 5). This

means that the coordinator has sent two different decisions to participants Pi and Pk.

This contradicts the fact that the coordinator sends the decision only once at line 3

of the protocol. Furthermore, it is clear that the decision sent by the coordinator at

line 3 is nothing but the value it has decided at line 2. Thus, all participants

(including the coordinator) reach the same decision. �

Theorem 3.2. 1PC achieves the DAC-Uniform-Validity property.

PROOF. From lines 1 and 2 of the protocol, it is obvious that the coordinator’s

decision value is its proposed value. By the DAC-Uniform-Agreement property, the

decision value of all participants is the coordinator’s proposed value. �

3.2. THE BASIC ONE-PHASE COMMIT PROTOCOL

31

Theorem 3.3. 1PC achieves the DAC-Uniform-Integrity property.

PROOF. From the structure of the protocol, it is obvious that the coordinator decides

at most once by executing line 2, while the other participants decide at most once by

executing line 6. �

3.2.3 Assumptions on the Transactional Systems

By interpreting acknowledgement messages as yes votes, the coordinator of 1PC verifies

whether or not the ACID properties of the local transaction branches are already ensured

at commit time. This obviously introduces some assumptions on the way participants

manage their transactions. In the following, we give a precise identification of the

different assumptions underlying 1PC, and usually made (explicitly or implicitly) by 1PC

variations [AGP98]:

1. 1PC assumes that every transaction operation is acknowledged. Consequently, if

the coordinator receives the acknowledgement messages for all the transaction operations

before the protocol is launched, the atomicity of all the local transaction branches (i.e., local

atomicity) will be already ensured at commit time.

2. 1PC assumes that integrity constraints are checked after each update operation

and before acknowledging the operation. Thus, if all operations are acknowledged,

consistency of all the local transaction branches will be already ensured at commit time

(e.g., the possibility of discovering, at commit time, that there is not enough money for a

bank account withdrawal is excluded).

3. 1PC assumes that a transaction that executes successfully all of its operations can

no longer be aborted due to a serialization problem. Consequently, if all operations are

acknowledged, serializability (isolation) of all the local branches will be already ensured

at commit time (e.g., concurrency control protocols that check serializability at commit

time are excluded).

4. Finally, 1PC assumes that once all operations are acknowledged, and before the

protocol is launched, the effects of all the local transaction branches are already logged

on stable storage, and hence, the durability property will be ensured at commit time.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

32

 We believe that assuming every operation to be acknowledged before the ACP is

launched is not a strong requirement as most transactional standards like DTP from X/Open

[X/Op93] and OTS from OMG [OMG00a] assume the same behavior. The second

assumption means that deferred integrity constraints validation is excluded. However, the

consequences of the last two assumptions are clearly less obvious. In the following two

sections, we dissect these two assumptions and study their impact on the concurrency

control and recovery protocols employed by participants in dictatorial atomic commitment.

3.3 The Impact of Dictatorship on Concurrency Control

In this section, we characterize schedulers that are correct without the need for a veto

right at commit time. We give two necessary and sufficient correctness properties of

such schedulers. The first property is an extension of serializability, which we named on-

line serializability [AGP00], and the second is the well-known cascadelessness property

[BHG87]. We show for instance that either strict Two-Phase Locking or strict Timestamp

Ordering is sufficient to ensure on-line serializability and cascadelessness.

3.3.1 Veto Right Free Schedulers

The correctness of a scheduler is usually captured through two properties: serializability

and recoverability [BHG87]. That is, a scheduler S is correct if only histories that are

serializable and recoverable are acceptable for S. Roughly speaking, a scheduler does

not need a veto right if it does not rely on a distributed voting phase to ensure either of

these properties. For instance, the scheduler cannot optimistically authorize conflicts and

decide to abort transactions at their termination time if the conflicts persist. In other

words, an optimistic certifier does need a veto right. To capture these intuitive ideas, we

first introduce the notion of committed extension of a history.

Definition 3.1. Let H be any history. A committed extension of H is any history

obtained by extending H with the commit operations of all active transactions in H.

Consider for example the following history8:

8 In the notations, Ri[x] and Wi[x] denote respectively a Read (resp. Write) operation on object x

performed by transaction Ti, while Ci and Ai denote the commit (resp. abort) of Ti.

3.3. THE IMPACT OF DICTATORSHIP ON CONCURRENCY CONTROL

 33

H = W1[x] R1[y] W2[z] A1 W3[x] R3[x] W4[z] C2

Both histories H1 and H2 below are committed extensions of H.

H1 = W1[x] R1[y] W2[z] A1 W3[x] R3[x] W4[z] C2 C3 C4

H2 = W1[x] R1[y] W2[z] A1 W3[x] R3[x] W4[z] C2 C4 C3

The following definition expresses the fact that a scheduler making use of 1PC (i.e.,

with no veto right at commit time) does not control the commitment of a transaction after

its operations have been performed.

Definition 3.2. A scheduler S is commit-expanded if, whenever a history H is

acceptable for S, any committed extension of H is also acceptable for S.

It is easy to see that a scheduler might be correct but not commit expanded. Let S be any

correct scheduler (e.g., an optimistic certifier) for which the following history is acceptable:

H = W1[x] R2[y] W2[x] R1[x]

Now consider the following committed-extension of H:

H’ = W1[x] R2[y] W2[x] R1[x] C1 C2

The serialization graph of H’ contains the cycle T1 → T2 →T1, which means that H’

is not serializable. The history H’ is not recoverable either because transaction T1 reads x

from transaction T2 and yet T1 commits before T2 (C1 < C2). As a consequence, H is

acceptable for S whereas H’ is not. In other words, S is not commit-expanded.

Definition 3.3. We say that a scheduler is VR-free (veto right free) if it is correct and

commit-expanded.

3.3.2 On-line Serializability and Cascadelessness

The example above shows that serializability and recoverability are not sufficient for VR-

freedom. In the following, we introduce a property, that we call on-line serializability

[AGP00], which is stronger than serializability. Then we show that on-line serializability

and cascadelessness (a history H is cascadeless if no transaction in H reads from values

written by uncommitted transactions) [BHG87] are necessary and sufficient for VR-freedom.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

34

To define on-line serializability, we introduce the notation E-SG(H) (Expanded

Serialization Graph). Given a history H over a set of transactions T = {T1, T2, …Tn), E-

SG(H) denotes the directed graph whose nodes are the transactions in T that are either

committed or active in H and whose edges are all Ti → Tj (i ≠ j) such that one of Ti’s

operations precedes and conflicts with one of Tj’s operations in H. Note that E-SG(H) is

a super-graph of SG(H) (the serialization graph of H) as the latest contains only

committed transactions of H.

Definition 3.4. We say that a history H is on-line serializable iff E-SG(H) is acyclic.

Theorem 3.4. Let S be any commit-expanded scheduler. S is correct iff S ensures

on-line serializability and cascadelessness.

PROOF.

(IF) Let S be any commit-expanded scheduler and assume that every history that is

acceptable for S is on-line serializable and cascadeless. As for any history H, E-

SG(H) is a super-graph of SG(H), any cycle in SG(H) appears in E-SG(H) as well.

Hence, any history that is not serializable is not on-line serializable. Furthermore, it

was shown in [BHG87] that any history that is cascadeless is recoverable. Hence S

is correct.

(ONLY IF) We show now that if a commit-expanded scheduler does not ensure

either on-line serializability or cascadelessness, then it cannot be correct. Assume

by contradiction that there is a history H in S that is either (1) not on-line

serializable or (2) not cascadeless. Case (1) means that there is a cycle in E-SG(H).

Let H’ be any committed-extension of H. As S is commit-expanded, then H’ is

acceptable for S. As E-SG(H) = SG(H’), then SG(H’) also contains a cycle, a

contradiction with the assumption that S is correct, i.e., S ensures serializability.

Case (2) means that in H some transaction T1 reads from values written by an

uncommitted transaction T2. Let H’ be any committed-extension of H where T1

commits before T2. As S is commit-expanded, then H’ is acceptable for S. Since H’

contains all read and write operations of H, then in H’, T1 reads from values written

by T2, and T1 commits before T2 in H’. A contradiction with the fact that S is

correct, i.e., S ensures recoverability. �

3.3. THE IMPACT OF DICTATORSHIP ON CONCURRENCY CONTROL

 35

Corollary 3.1. On-line serializability and cascadelessness are necessary and

sufficient conditions for a scheduler to be VR-free.

3.3.3 Examples of VR-free Schedulers

We show below that a scheduler based either on strict Two-Phase Locking (2PL) or on

strict Timestamp Ordering (TO) is VR-free.

Theorem 3.5. Strict 2PL is sufficient but not necessary to ensure on-line

serializability and cascadelessness.

PROOF.

(a) It has been shown in [BHG87] that any strict history is cascadeless. Assume H

is also a 2PL history and assume by contradiction that H is not on-line

serialisable, i.e., there is a cycle T1 → T2 →…→ Tn → T1 in E-SG(H).

However, since 2PL is a lock-based scheduler, a dependency cycle would have

led to a deadlock, and H could not have been generated: a contradiction.

(b) The following history H shows that strict 2PL is not necessary to ensure on-line

serialisability and cascadelessness:

H = W1[x] W2[x] C2 C1

The history H cannot be generated by a 2PL scheduler: transaction T2 could not

have accessed x before the termination of T1. However, H is on-line

serializable and cascadeless. �

Theorem 3.6. Strict TO is sufficient but not necessary to ensure on-line serializability and

cascadelessness.

PROOF.

(a) Similar to (a) of Theorem 3.5 above: assuming H is a TO history, the presence

of a cycle T1 → T2 →…→ Tn → T1 in E-SG(H) would mean that ts(T1) <

ts(T1), where ts(T) denotes T’s timestamp. A contradiction.

(b) The following simple history H shows that strict TO is not necessary to ensure

on-line serializability and cascadelessness

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

36

H = W1[x] W2[x] C1 C2

Whatever the timestamp order is, H cannot be generated by a strict TO

scheduler. Indeed, either ts(T1) < ts(T2) and W2[x] will be delayed until C1 is

performed, or ts(T2) < ts(T1) and T2 will be aborted because it arrives late.

However, H is on-line serialisable and cascadeless. �

In contrast, a certifier cannot ensure on-line serializability. A certifier typically

prevents cycles by aborting transactions (a posteriori). However, on-line serializability

requires that no cycle (even if involving only active transactions) be ever generated. The

following history can be produced by a certifier and is obviously not on-line serializable.

H = R1[x] W2[x] W2[y] W1[y]

3.3.4 Practical Considerations

Strict 2PL is the most widely used serialization protocol. Hence, participants of most

transactional systems exhibit the VR-free property and thus, are 1PC compliant.

However, commercial database systems are likely to use isolation levels standardized by

SQL2 [ISO92b] in combination with 2PL. We recall below the SQL2 isolation levels and

analyze the extent to which 1PC protocols can accommodate them.

• Serializable: Transactions running at this level are fully isolated.

• Repeatable Read: Transactions running at this level are no longer protected against

phantoms. More precisely, successive reads of the same object give always the same

result but successive SQL queries selecting a group of objects may give different

results if concurrent insertions occur.

• Read Committed: Transactions running at this level read only committed data but

Repeatable Read is no longer guaranteed. In a lock-based protocol, this means that

read locks are relaxed before transaction end (in practice, as soon as they are granted).

• Read Uncommitted: Transactions running at this level may do dirty reads. For this

reason, they are not allowed to update the database. In a lock-based protocol, this

means that Read Uncommitted transactions do not request locks at all.

3.3. THE IMPACT OF DICTATORSHIP ON CONCURRENCY CONTROL

 37

Isolation levels are widely exploited because they allow faster executions, increase

transaction parallelism and reduce the risk of deadlocks. For example, a transaction Ti

computing statistics on a large population of objects can take benefit of the Read

Uncommitted level. This transaction will never be blocked by concurrent writing

transactions (that may affect Ti’s result but in a non significant way) and will never block

other transactions.

If we refer to definition 3.3, it is clear that schedulers implementing isolation levels,

which we call IL-schedulers, are not VR-free simply because they are not correct: they do

not ensure serializability. Consequently, they do not ensure on-line serializability either.

However, isolation levels have been actually introduced to relax serializability, and non-

serializable schedules that may be produced are considered as semantically correct.

Hence, new correctness criteria that accommodate isolation levels need to be defined in

order to characterize “correct” IL-schedulers. To this end, we introduce in the following

a new property, which we call IL-serializability.

Consider a history H over a set of transactions T = {T1, T2, …, Tn). Let IL-SG(H) be

the sub-graph of SG(H) containing all dependencies in H except those incurred by

conflicts ignored by the isolation levels under which transactions in T are running. We

say that H is IL-serializable iff IL-SG(H) is acyclic. An IL-scheduler is said to be correct

if it ensures IL-serializability and recoverability.

Similarly to Section 3.3.2, we introduce a new property, which we call on-line IL-

serializability, to characterize IL-schedulers that are correct with no veto right at commit

time. Let E-IL-SG(H) denote the expanded IL-SG(H). We say that a history H is on-line IL-

serializable iff E-IL-SG(H) is acyclic. We can show that on-line IL-serializability and

cascadelessness are necessary and sufficient conditions for an IL-scheduler to be veto right

free. The proof is very similar to that of Theorem 3.4 and hence omitted. We show below that

IL-2PL (2PL based IL-scheduler) satisfies both cascadelessness and on-line IL-serializability.

• Cascadelessness: conventionally, the cascadelessness property precludes the

occurrence of dirty reads. In IL-2PL, dirty reads are allowed only at the Read

Uncommitted level, which is restricted to Read-Only transactions. However, the

semantics of Read-Only transactions contradict the fact that they can be subject to

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

38

cascading aborts. Consequently, cascadelessness is still ensured in IL-2PL

schedulers.

• On-line IL-serialisability: Assume H is an IL-2PL history, and assume by

contradiction that H is not on-line IL-serialisable, i.e., there is a cycle T1 → T2

→…→ Tn → T1 in E-IL-SG(H). Note that any dependency edge in E-IL-SG(H)

translates a conflict not ignored by the IL-2PL scheduler. Since IL-2PL is based

on locking, a dependency cycle would have led to a deadlock and H could not

have been generated: a contradiction.

As a conclusion, IL-2PL schedulers can still be considered as veto right free, and

hence they comply with 1PC.

3.4 The Impact of Dictatorship on Recovery

A data manager must ensure the atomicity and durability properties of every transaction.

More precisely, the data manager must guarantee that there is enough information on stable

storage so that if a failure occurs (and the information in the volatile storage is lost), (1) the

updates of aborted transactions are undone from the database and (2) the updates of

committed transactions are correctly reported on the database. Following the terminology of

[Had88], we call the first property abort-resiliency and the second property commit-

resiliency (these correspond to undo and redo rules respectively in [BHG87]). A data

manager is said to be correct if it guarantees both abort-resiliency and commit-resiliency

[Had88].

3.4.1 Veto Right Free Data Managers

In a centralized system, abort-resiliency is for example ensured by having the data

manager store before images in its log (this technique relies on the assumption that a

strict concurrency control is used), and commit-resiliency is ensured by force-writing the

transaction updates on stable storage at commit time [BHG87].

In a distributed database system, the same technique is used to guarantee abort-

resiliency. To ensure commit-resiliency, participants in a transaction must guarantee that,

3.4. THE IMPACT OF DICTATORSHIP ON RECOVERY

39

if the transaction commits at any participant, there is enough information on stable

storage to redo the effects of the transaction at all participants. With a 2PC, this is

guaranteed using the notion of prepared state. A participant P enters the prepared state

for a transaction only if the commit-resiliency property is guaranteed for the transaction

branch that accessed P. To commit a transaction, its coordinator makes sure that all

updated participants have entered the prepared state of that transaction: this test is

included in the voting phase of the 2PC. A participant does only vote yes if it has entered

the prepared state. If it cannot enter that state (e.g., if the disk is full), the participant

simply votes no and the transaction is aborted.

Removing the veto right has no impact on abort-resiliency. Nevertheless, the

participants must anticipate the commit and make sure the commit-resiliency property is

ensured a priori. As for schedulers, we introduce the following definitions to capture the

idea of a VR-free data manager [AGP00].

Definition 3.5. We say that a data manager D is commit-expanded if whenever an

operation has been performed on behalf of a transaction T, the corresponding

transaction branch can commit.

The definition above captures the idea that, just like for a scheduler, the only way to

abort a transaction is by not performing one of its operations. If a transaction’s operation

has been acknowledged (i.e., performed), the corresponding transaction branch is able to

commit.

Definition 3.6. We say that a data manager is VR-free if it is correct and commit-

expanded.

3.4.2 On-line Commit-resiliency

We introduce the following property to characterize the behavior of data managers that

are VR-free.

Definition 3.7. We say that a data manager ensures on-line commit-resiliency if

every update operation executed on that data manager is commit-resilient.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

40

Theorem 3.7. Let D be any commit-expanded data manager. D is correct iff it

ensures abort-resiliency and on-line commit-resiliency.

PROOF.

(IF) Let D be any commit-expanded data manager that ensures abort-resiliency

and on-line commit-resiliency. In other words, before acknowledging any update

operation, the participant force-writes its effects on stable storage. As we assume

that this participant cannot commit its transaction branch before all of its operations

have been acknowledged (cf. Sections 3.1 and 3.2), this means that it cannot commit

its transaction branch if the effects of any of its operations are not on stable storage,

i.e., the transaction is commit-resilient at D’s site. Hence, D is correct.

(ONLY IF) Assume by contradiction that there is an execution where D does not

ensure on-line commit-resiliency, i.e., D does not ensure the commit-resiliency of

some update operation op for a transaction T. If the transaction commits exactly

after receiving the acknowledgement from the participant about the operation op,

and the participant crashes immediately after sending back that acknowledgment,

then the effects of op are lost and T is not commit-resilient at D’s site: a

contradiction with the fact that D is correct. �

Corollary 3.2. Abort-resiliency and on-line commit-resiliency are necessary and

sufficient conditions for a data manager to be VR-free.

3.4.3 Practical Considerations

Participant Logging

To achieve the on-line commit-resiliency property, participants in a transaction must

force-write the effects of every update operation on stable storage, and that before

acknowledging the operation. The Early Prepare (EP) processing scheme of Stamos and

Cristian does ensure that property [StC90, StC93]. Although Early Prepare can make

direct use of 1PC (as described in Section 3.2.1) and alleviates the need for an expensive

2PC, it requires a forced-write at every update operation of the transaction. The cost of

transaction commitment is hence traded with the cost of transaction processing.

3.4. THE IMPACT OF DICTATORSHIP ON RECOVERY

41

Coordinator Physical Logging

To avoid the prohibitive cost of on-line commit-resiliency, one might deviate from the

“classical” atomic commitment scheme that requires every participant to ensure all of the

ACID properties of its transaction branches. Consider for instance a less classical scheme

that consists in having the coordinator itself ensure the commit-resiliency property before

committing a transaction. To delegate this responsibility, participants need however to

make sure that the coordinator has enough information on its local stable log about all

committed transactions (unless it has the adequate information, the coordinator aborts the

transaction). Coordinator Log (CL) [StC90, StC93] and Implicit Yes-Vote (IYV) [AlC95,

AlC96] do follow this scheme.

In Coordinator Log, participants do not maintain their updates in a local stable log.

Instead, they send back within the acknowledgment message of every update operation

all the log records (undo and redo log records) generated during the execution of the

operation. The coordinator is thus in charge of logging the transaction’s update

information before performing the commit protocol. If we refer to the basic 1PC protocol

described in Section 3.2.1, this would mean that the coordinator of CL calls the terminate()

function with commit as its proposition value only if it succeeds in storing the transaction’s

log records on stable storage. To recover from a crash, a participant asks the coordinator for

the undo/redo log records it needs to reestablish a consistent state of its database.

The Implicit Yes-Vote scheme is similar to Coordinator Log, except that logging is a

more distributed task. The idea is to allow failed participants to perform part of the

recovery procedure (the undo phase) independently of the coordinator, and to resume the

execution of transactions that are still active in the system (i.e., transactions for which no

decision was made yet) instead of aborting them. Participants send back their redo log

records together with a Log Sequence Number (LSN) [GrR93] whenever they

acknowledge an update operation. To recover from a crash, a participant performs the

undo phase of the recovery procedure and part of the redo phase using its local log. Then,

the participant asks the coordinator for all redo log records whose LSNs are greater than

its own highest LSN, and for all read locks acquired by active transactions. This allows

the participant to reinstall the updates pertaining to globally committed transactions and

continue the execution of transactions that are still active in the system.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

42

Coordinator Logical Logging

Although Coordinator Log and Implicit Yes-Vote circumvent the need for on-line

commit-resiliency, they violate site autonomy by forcing participants in a transaction to

externalize their local log information. This certainly compromises their use in existing

transactional systems. To solve this problem, we propose to maintain in the log of the

coordinator the list of operations submitted to each participant instead of the physical

redo log records sent back by these participants. In case a participant crashes during the

1PC protocol execution, the failed transaction branches that make part of a globally

committed transaction will be re-executed using the operations registered in the

coordinator's log.

This mechanism, which we call Coordinator Logical Log (CLL) [AbP98], provides

three main advantages. First, it preserves site autonomy since no internal information has

to be externalized by the participants. This feature is of primary importance if the commit

protocol is to be used in today’s large and autonomous distributed environments. Second,

it can be applied to heterogeneous transactional systems using different local recovery

schemes, which is not the case in Coordinator Log or Implicit Yes-Vote. Finally, it does

not increase the communication cost during normal processing since log records are not

piggybacked in the messages.

3.5 The CLL Protocol

3.5.1 Failure-Free Execution

As introduced before, our logical logging mechanism consists in having the coordinator

register in its log every transaction operation before sending it to the participant hosting

the object involved by the operation. Note that this registration is done by a non-forced

write. Non-forced writes are buffered in main memory and do not generate blocking I/O.

Operations are then sent to and locally executed by the different participants.

As is the case in CL and IYV, the coordinator of CLL is in charge of ensuring the

commit-resiliency property before committing a transaction. Thus, when all

acknowledgments are received, the coordinator force-writes the transaction operations on

3.5. THE CLL PROTOCOL

43

stable storage and calls the terminate() function with commit as its proposition value.

Recall that during this function, the coordinator decides on the transaction by force-

writing its decision value on disk. In order to improve performances, the transaction

operations together with the decision log record can be forced on stable storage at the

same time, thereby generating a single blocking I/O. If, on the other hand, the coordinator

receives a negative acknowledgement from some participant or fails in storing the

transaction operations on stable storage, it simply discards all the transaction’s log

records and calls the terminate() function by proposing abort.

3.5.2 Dealing with Failures

Similarly to the AC problem, the following DAC-Termination property has to be added to the

specification of the DAC problem in order to exclude protocols that allow participants to

remain undecided forever once some failures have occurred during the protocol execution.

−−−− DAC-Termination: If all failures are repaired, then unless a new failure

occurs, every participant eventually reaches a decision.

To satisfy DAC-Termination, we must supply timeout actions for each point in the

1PC protocol in which a participant is waiting for a message. Timeout actions define

what a participant should do in case an expected message does not arrive. We must also

describe how a recovering participant attempts to reach a decision consistent with the

decision other participants may have reached in the meanwhile. In the following, we

consider these two issues in turn9.

Timeout Actions

In 1PC, the only point where a participant can unilaterally abort a transaction is by

negatively acknowledging an operation. If, however, the participant has no pending

acknowledgement for any of the transaction’s operations, it enters its uncertainty period

until it receives either a new operation or the final decision from the coordinator. When a

participant times out while in its uncertainty period, it executes a termination protocol

9 For details on how crash recovery and timeout actions are handled in CL and IYV, please refer to

[StC90, StC93, AlC95, AlC96].

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

44

during which it tries to decide on the transaction. The termination protocol presented in

Section 2.3.2 can be perfectly used here so that DAC-Termination is guaranteed. Note

that although the participant may be blocked during the execution of the termination

protocol due to failures in other parts of the system, it eventually reaches a consistent

decision once these failures are repaired.

Crash Recovery

We now describe how a recovering participant can reach a decision consistent with the

decision operational processes may have reached. Consider a participant Pk recovering

from a crash. Figure 3.2 details the recovery algorithm associated with CLL and executed

by Pk. In the following, Tik denotes the local branch of transaction Ti executed at participant

Pk. For the sake of clarity, step numbers correspond here to step ordering.

Step 1 and Step 2 represent the standard local recovery procedure executed by a

crashed participant Pk. To preserve site autonomy, we make no assumptions whatsoever on

the way these steps are handled. Step 3 is necessary to determine if the kth branch (i.e., Tik)

of some globally committed transactions Ti has to be locally re-executed by the crashed

participant. In Step 4, the coordinator aborts all active transactions in which Pk participates.

Step 5 checks if there exists some committed transaction Ti for which Pk did not

acknowledge the commit decision. This may happen in two situations. Either the participant

crashed before the commit of Tik was achieved and Tik has been undone during Step 1, or

Tik is locally committed but the crash occurred before the acknowledgment was sent to the

coordinator. Note that these two situations must be carefully differentiated. Re-executing

Tik in the latter case may lead to inconsistencies if Tik contains non-idempotent operations.

To simplify the presentation, we assume for the moment that the coordinator can query a

participant to learn the exact state of Tik (Step 6). We detail afterwards the way we achieve

this without violating site autonomy. The participant answers during Step 7. If Tik has been

successfully committed, the coordinator does nothing. Otherwise, Tik has been undone

during Step 1 and must be entirely re-executed. This re-execution is performed by exploiting

the coordinator's log (Step 8). Once the recovery procedure is completed, new distributed

transactions are accepted by the coordinator (Step 9) and the participant (Step 10).

3.5. THE CLL PROTOCOL

45

Participant's algorithm

1- undo the transactions that were active at the time the crash occurred

2- redo transactions that have reached their commit state before the crash

occurred

3- contact the coordinator

7- answer the queries that may be sent by the coordinator during step 6

10- accept new transactions

Coordinator's algorithm

If contacted by participant Pk during step 3, do:

for each transaction Ti in which Pk participates

 4- if (commiti) ∉ coordinator's log, then

 send (aborti) to all other Ti participants and forget Ti

 5- if (commiti) ∈ coordinator's log, then
 if ackk(commiti) ∉ coordinator's log, then
 6- query Pk to determine the exact status of Tik

 (i.e., either locally committed or aborted)

 8- if Tik has not been locally committed, then

 restart a new transaction T'ik on Pk

 re-execute all Tik operations within T’ik

9- accept new distributed transactions

 Figure 3.2. Recovering a participant crash

We now explain how the coordinator can query a participant about the state of its

local transaction branches. Our solution relies on a local Agent (called Agentk) associated

with each participant Pk. The Agent does not violate site autonomy as the existing

interface of the participant is preserved, and does not increase the communication cost,

as it is co-located with its participant. Every message is submitted to the participant

through its local Agent, which acts as a liaison between the coordinator and the

participant. The exact role of the Agent is to determine, during the recovery procedure,

those local transaction branches that need to be re-executed. The mechanism works as

follows. When the coordinator sends the commit decision to each participant, the

participant’s Agent issues an additional operation "write record <commiti>" on behalf of

the local transaction branch it is in charge of (e.g., Tik), and before submitting the commit

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

46

decision to the participant 10. This creates at Pk a special local record containing the

commit decision for Ti. This operation will be treated by Pk in exactly the same manner

as the other operations belonging to Tik, that is, either all committed or all aborted

atomically. Once the Agent receives the acknowledgment of this write operation, it asks

Pk to commit the local transaction branch.

Steps 6 and 7 of the recovery algorithm are now straightforward. To get the status of

a local transaction branch Tik, the coordinator checks, through Agentk, the existence of

record <commiti> at Pk (this can be done by a regular select operation). If the record is

found, this proves that Tik has been successfully committed at Pk before the crash, since

write<commiti> is performed on behalf of Tik. Otherwise, Tik has been backward

recovered during Step 2 and must be re-executed.

3.5.3 Recovery Correctness

In this section, we show that the CLL’s recovery procedure described in the previous

section is correct. This amounts to proving that a recovering participant eventually

reaches a decision consistent with that reached by the other participants once all failures

are repaired so that DAC-Termination is satisfied. However, since the recovery procedure

may lead to a decision through the re-execution of a transaction branch, we also need to

show that re-executing the logical operations registered in the coordinator’s log will

produce exactly the same local state at the recovering participant as the one produced

during the initial execution. In the following, we consider these two issues in turn.

• Decision Consistency: Let Pk be the recovering participant. If, during its local

recovery procedure, Pk finds in its log a decision record for a transaction branch, say Tik,

then it has already decided during the 1PC protocol execution. If, however, no decision

record is found, Pk undoes the effects of Tik (Step 1). Note that the only non-trivial case

to consider here is the case where Tik is part of a globally committed transaction Ti. This

may happen if the coordinator has sent the commit decision to all participants, but Pk

crashed before committing Tik. By the algorithm of Figure 3.2, when Pk establishes a

10 Note that this operation never generates a dependency cycle (i.e., deadlock) since it is the last

operation executed in any transaction that has to be committed.

3.5. THE CLL PROTOCOL

47

consistent local state, it contacts the coordinator (Step 3). In this case, once the

coordinator has verified, through Agentk, that Tik has been locally aborted, it re-executes

all Tik operations within a new transaction branch T’ik. If a failure should occur during

the re-execution process, it will be retried until Tik (T’ik) commits at Pk. Note that

although Pk may be blocked during its recovery (in case the coordinator is down), Pk

eventually reaches a consistent decision once the coordinator recovers from its crash.

Hence, the recovery procedure associated with CLL satisfies DAC-Termination.

• Determinism: Here, we show that the re-execution of Tik within T’ik produces

the same local state at Pk as the one produced during the initial execution. Note that in

CL and IYV, the coordinator's log contains physical redo records, making the recovery

algorithm rather straightforward. The redo records are re-installed at the failed

participant during the recovery of a local transaction branch, thereby producing the same

local state as the one produced during the initial execution. By exploiting logical logging

rather than physical logging, CLL’s recovery procedure must face two new problems:

- operations may be non-idempotent: an operation op is said to be non-idempotent if

(op(op(x)) ≠ op(x)). Non-idempotent operations must be executed exactly once in

any failure situation.

- operations may be non-commutative: two operations op1 and op2 are said to

be non-commutative if (op1(op2(x)) ≠ op2(op1(x))). Non-commutative operations

must be executed at recovery time in the same order as during the initial execution.

Consider first the management of non-idempotent operations. Assume the coordinator

has decided to commit Ti and has sent its decision to the participants. Assume also that Pk

crashed immediately after. By the undo rule, if Pk crashed before committing Tik, Tik will be

undone during Step 1 of the recovery algorithm and the record <commiti> will be

discarded11. Otherwise (i.e., Pk crashed after the commit of Tik was successfully

performed), the redo rule guarantees the presence of the <commiti> record at Pk. These two

situations are differentiated during Step 6 of the recovery algorithm. Step 8 forward

recovers only transaction branches that have been locally aborted. This means that no

transaction branch, and hence no operation (whether idempotent or not) is executed twice.

11 We recall that the operation write record <commiti> is performed on behalf of Tik.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

48

Consider now non-commutative operations. If these operations belong to the same

transaction, no problem can occur. Indeed, the recovery algorithm re-executes the

operations of a failed transaction branch following the order in which they were logged

on the coordinator, i.e., in the order of their initial execution. The case where two or

more local transaction branches (e.g., Tik, Tjk) have to be forward recovered is trickier

since most transactional systems execute transactions in parallel through several threads

of control. Thus, even if the coordinator re-submits to Pk all operations that belong to

different local transaction branches in the order of their initial execution, the result is

non-deterministic. We demonstrate below that the local database state produced by the

recovery algorithm is the same as the one produced during the initial execution. Let ϕ denote

the set of all local transaction branches that have to be forward recovered by Pk during Step 8.

ϕ = {Tik / commiti ∈ coordinator's log ∧∧∧∧ ackk(commiti) ∉ coordinator's log ∧∧∧∧
<commiti> ∉ Pk‘s state}

First, Step 2 of the recovery algorithm guarantees that all resources accessed by any

Tik ∈ ϕ are restored to their initial state (i.e., the state before Tik execution), according to

the atomicity property. Second, since Step 8 precedes Step 9 and Step 10, new

transactions that may modify Tik resources are executed only after the re-execution of Tik.

Consequently, at Step 8, all Tik ∈ ϕ are guaranteed to re-access the initial database state.

The sole problem may come from the parallel re-execution of all Tik ∈ ϕ if these

transactions themselves compete on the same resources.

Assume first that Pk uses a locking based VR-free serialization protocol, such as

strict 2PL (i.e., the general case). In this case, ∀Tik, Tjk ∈ ϕ, ¬∃(Tjk → Tik), where →

represents a precedence in the serialization order. Otherwise, Tik would have been

blocked during its initial execution, waiting for the termination of Tjk, and would not

have completed all its operations, which contradicts Tik ∈ ϕ. This means that Tik and Tjk

cannot compete on the same resources. If however, Pk uses another VR-free serialization

protocol, such as strict TO, the former assumption is no longer valid. Indeed, strict TO

accepts some Read/Write conflicts (those produced in the timestamp order) without

blocking. To deal with this case, Step 8 must execute each Tik ∈ ϕ in their initial

serialization order, one after the other (i.e., without parallelism).

3.5. THE CLL PROTOCOL

49

Ack

 C P1 P2

Commit
Commit

 Y

Ack Y

 +P1

 C C

 +P2

opj

Ack Y

opi

opk

 C

Ack

Ack

 C P1 P2

Ack Y

 +P1

 +P2

opj

Ack Y

opi

opk

Ack

Abort

 Y

 E

 A

 A A

Figure 3.3: The EP protocol.

3.5.4 Performance Evaluation

In this section, we investigate the performance of One-Phase Commit, and compare the

CLL protocol with existing 1PC variations, namely EP, CL and IYV. In our evaluations,

we denote by n the total number of participants in a transaction, and we assume failure-free

executions.

As opposed to the basic 2PC, which requires 3 communication steps, 2n+1 log forces,

and 4n messages in order to commit/abort a transaction (cf. Section 2.5), the basic 1PC

protocol (described in Section 3.2) only requires one communication step, n+1 log forces, and

2n messages. The absence of the veto right explains why 1PC is much more efficient than 2PC.

While basic 1PC treats all transactions uniformly, whether they are to be committed

or aborted, one can clearly apply various well-known optimizations of 2PC (e.g., PrA and

PrC) to 1PC. The EP protocol combines the 1PC idea with PrC in the sense that it

reduces the message and logging overheads associated with committing transactions.

Consequently, commit decisions are neither acknowledged nor force-written by the

participants. However, since the coordinator of PrC must record the identities of the

transaction participants on stable storage as part of a forced membership log record, and

that, before sending prepare messages to the participants (cf. Section 2.4.2), the

(a) Commit Case (b) Abort Case

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

 50

 C P1 P2

undo-redo log

opj

opi

undo-redo log

Commit

 C

Commit

undo-redo log

opk

Abort+undo log

 C P1 P2

undo-redo log

opj

opi

undo-redo log

 A

opk

Ack

Ack
 E

Abort+undo log

undo-redo log

Figure 3.4: The CL protocol.

coordinator of EP may have to force-write multiple membership log records, because the

transaction membership may grow as the transaction execution progresses. Furthermore,

by achieving on-line commit resiliency (cf. Section 3.4.3), EP generates one force-write for

each update operation. This makes a total of 1+ n+op log forces for the commit case, and

2n+op log forces for the abort case, where op denotes the number of update operations

performed by a transaction. Figure 3.3 illustrates the protocol behavior for committing as

well as aborting transactions.

Another 1PC variation that is based on PrC is the CL protocol (Figure 3.4). Unlike

EP, however, CL eliminates the forced membership log record of PrC by requiring a

recovering coordinator to communicate with every possible participant in the system in

order to determine all the transactions that were active at the time of the crash, and to

abort them instead of wrongly presuming commit. This means, however, that

coordinators in CL cannot independently recover, and must wait for all participants in the

system in order to resume execution. Furthermore, as discussed in Section 3.4.3, CL

overcomes the high cost of on-line commit resiliency by implementing distributed write-

ahead logging (DWAL) in order to give up any logging activity at the participants. The

combination of this mechanism with PrC results in a severe problem since transactions’

updates must be remembered forever, and hence, the coordinator’s log can never be garbage

collected!

(a) Commit Case (b) Abort Case

Write non-forced

undo/redo log records

Write non-forced

undo/redo log records

Write non-forced

undo/redo log records

Write non-forced

undo/redo log records

Write non-forced

undo/redo log records

Write non-forced

undo/redo log records

3.5. THE CLL PROTOCOL

51

 C P1 P2

Ack+redo log

opi

opj

Commit
Commit

 C

 C C

Ack
Ack

 E

Ack+redo log

 C P1 P2

Ack+redo log

opi

opj

Abort
Abort

Ack+redo log

 A

 A A

Figure 3.5: The IYV protocol.

Ack

P1 P2 P3

Ack

 opi opi

opj
 opj

Commit
Commit

 C

 C C

Ack
Ack

 E

 P1 P2 P3

Ack

Ack

opi

opj
 opj

Abort
Abort

 A

 A A

 opi

Figure 3.6: The CLL protocol.

From the above discussion, it follows that the implications of the combination of 1PC

with PrC are severe. Consequently, unlike EP and CL, the IYV protocol (Figure 3.5) and

the CLL protocol (Figure 3.6) exploit the PrA optimization by adopting abort presumptions.

Thus, for committing transactions, both protocols have the same performances as basic

1PC, and reduce the message and logging overheads for aborting ones. Similarly to CL,

IYV and CLL eliminate the high logging cost of on-line commit resiliency. In IYV,

however, this is achieved by implementing a replicated write-ahead logging mechanism

(RWAL), whereas in CLL by implementing a coordinator logical logging mechanism.

(a) Commit Case (b) Abort Case

Write non-forced

redo log records

Write non-forced

redo log records

Write non-forced

redo log records

Write non-forced

redo log records

(a) Commit Case (b) Abort Case

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

52

Message Complexity
 point-to-point network broadcast network

Latency
 Time complexity Log Complexity

EP n 1 1 n + op + 1

CL n 1 1 1

IYV 2n n + 1 1 n + 1

CLL 2n n + 1 1 n + 1

Figure 3.7: The cost of transaction commit under the different 1PC variations.

Message Complexity
 point-to-point network broadcast network

Latency
 Time complexity Log Complexity

EP 2n n + 1 1 2n + op

CL 2n n + 1 1 0

IYV n 1 1 0

CLL n 1 1 0

Figure 3.8: The cost of transaction abort under the different 1PC variations.

Figure 3.7 and Figure 3.8 summarize the cost of the different 1PC variations in

terms of latency and message complexity needed in order to commit and abort a

transaction, respectively. Regarding message complexity, we distinguish two cases: (a)

using a point-to-point network, and (b) using a broadcast network. We recall that n

denotes the total number of participants in the transaction, while op stands for the

number of update operations performed by a transaction.

For the commit as well as the abort case, the cost associated with EP is highly

dependent on the number of participants in a transaction and on the number of update

operations performed by the transaction. This makes EP quite inefficient when used in

today’s large distributed systems, where transactions are most likely to span several sites,

and to execute an important number of operations at these sites. Thus, unless every

transaction performs at most one update operation at every site, or the sites are equipped

with electronic stable storage (i.e., free log forces), the cost of EP can turn out to be far

more prohibitive than the cost of a 2PC.

3.6. DISCUSSION

53

By combining PrC with DWAL, CL outperforms the other variations in the commit

case as far as log forces are concerned, and shares with EP the lowest message

complexity. However, as already stated before, the price of this efficiency is a set of

severe drawbacks resulting, on one hand, from a coordinator’s log that can never be

garbage collected (a rather unrealistic assumption), and on the other hand, from a

coordinator recovery procedure that totally depends on every possible participant in the

system. Furthermore, participants in CL cannot locally handle aborted transactions, not

to mention unilateral aborts! This is because the undo records are maintained only at the

coordinator site. Hence, undoing a transaction has to be completely performed over the

network, and local resources held by an aborted transaction cannot be released by a

participant before getting the necessary undo records from the coordinator. This leads to

a quick degradation in CL’s performances, making it much more suitable for parallel

architectures rather than geographically distributed systems.

For the abort case, IYV and CLL have the best overall performances, and share with

CL the lowest logging overhead. Even though, by combining RWAL with PrA, IYV

overcomes the abovementioned problems introduced by CL, both protocols require that

participants in a transaction externalize their local log information. This means that

major modifications should be made to existing transactional systems in order to support

CL or IYV, which is definitely unacceptable in today’s large distributed environments in

which local site autonomy is of key importance. By combining a logical logging

mechanism with PrA, CLL capitalizes on both CL and IYV. This leads to the conclusion

that, among all the discussed protocols, CLL offers the best tradeoff between

performance and compliance with existing transactional systems. Therefore, it appears to

be the best candidate for distributed transaction termination in today’s distributed

environments and applications.

3.6 Discussion

One-Phase Commit is a highly efficient approach to distributed transaction commit that is

based on a Dictatorial Atomic Commitment paradigm. The intuition behind 1PC is that veto

rights in the traditional 2PC introduce a high cost, and this cost should only be paid when

necessary.

CHAPTER 3. DICTATORIAL ATOMIC COMMITMENT

54

The advantages of 1PC over 2PC are not only performance issues. By eliminating

participants’ votes, 1PC overcomes the various problems incurred by the local prepared

state required in 2PC. Obviously, the appealing features of 1PC have a price, which we

expressed in terms of three necessary and sufficient conditions on concurrency control

and recovery protocols employed by the participants in a transaction. When adequately

exploited, however, we have shown that 1PC offers a highly efficient approach to

distributed transaction commit that is applicable to most practical situations. In

particular, we proposed a new 1PC protocol that exploits a Coordinator Logical Logging

mechanism in order to achieve correct recovery without compromising site autonomy,

making it the sole protocol that can cope with all existing transactional systems  be

they or not 2PC compliant.

��

Part II

Fault-Tolerance Issues

 57

Chapter 4

Non-Blocking Atomic
Commitment: Background

Although the atomic commitment protocols we have discussed thus far guarantee

transaction atomicity, which is a safety condition, they do not provide liveness

guarantees, i.e., they may lead to blocking situations in which participants are unable to

decide on the transaction due to failures in other parts in the system. Consequently, a

transaction can hold valuable system resources for an unbounded period, making these

unavailable to other transactions that in turn become blocked, which may eventually block

the entire system.

The impact of indefinite blocking and long-duration delays is particularly

aggravated in mission critical applications (e.g., SCS) or applications involving an

important number of sites (e.g., Internet). Furthermore, in today’s large distributed

environments in which the various sites participating in the system may belong to several

autonomous, and possibly competing business organizations, it would be unconceivable

to allow a remote transaction belonging to a competing organization from blocking local

resources. An atomic commitment protocol is said to be non-blocking if it allows a

decision to be reached at every correct participant despite failures of others.

This chapter gives some background about the Non-Blocking Atomic Commitment

(NB-AC) problem, and presents a survey of non-blocking commit protocols commonly

found in the literature. In order to do so, we refine the general system model described in

Section 2.1 in order to reflect different assumptions made about failures and failure

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

58

detection. Each protocol is then described in the context of the underlying system model

it assumes. We finally point out the limitations of the discussed protocols in terms of the

different evaluation metrics we have used so far, namely, performance and compliance

with existing commercial systems.

4.1 The Non-Blocking Atomic Commitment Problem

The Non-Blocking Atomic Commitment (NB-AC) problem [BHG87, Had90, BaT93] is a

fault-tolerant agreement problem that, in addition to transaction atomicity, aims at

providing transaction liveness guarantees. Formally, the NB-AC problem is defined by the

AC-Uniform-Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, AC-Non-Triviality,

and AC-Termination properties of the AC problem (cf. Sections 2.2 and 2.3), and the

following AC-Non-Blocking property:

−−−− AC-Non-Blocking: Every correct participant eventually decides.

The AC-Non-Blocking condition is a liveness condition in the sense that it ensures

progress at correct participants despite failures of others. Note that this property is

expressed in terms of correct participants and not operational ones. This is because an

operational participant might be faulty, i.e., it has crashed and then recovered, in which

case, it must decide through the associated recovery protocol rather than the commit

protocol [BaT93]. An atomic commitment protocol is said to be non-blocking (also

called fault-tolerant) if it satisfies all of the six properties of the NB-AC problem.

Just like other fault-tolerant agreement problems, the solvability of the NB-AC

problem totally depends on the nature of “admissible” faults and the ability to detect

them. The latter issue is of particular importance as it is tightly dependent on the

underlying system that is considered. More precisely, the ability to have a (more or less)

precise knowledge about the occurrence of faults depends on the synchrony guarantees

that the underlying system can provide. Solutions to the NB-AC problem can thus be

categorized according to whether liveness guarantees are achieved assuming (1) a

synchronous system or, on the other extreme, (2) a totally asynchronous system.

4.2. NB-AC IN SYNCHRONOUS SYSTEMS

 59

4.2 NB-AC in Synchronous Systems

As already stated before, solutions to fault-tolerant agreement problems in general, and to

the NB-AC problem in particular, depend heavily on the assumptions made about the

computational model and the kind of failures to which it is prone. In this section, we

refine the general model described in Section 2.1, and consider a synchronous model of

computation. We then discuss well-known non-blocking atomic commitment protocols

that have been proposed in this context.

4.2.1 System Model

The model of synchronous computation we consider in the present and the following

chapter is closely patterned after the one in [BaT93]. Synchrony is actually an attribute

of both processes and communication links. A system is said to be synchronous if there is

a known upper bound on both message transfer delays and process relative speeds.

Since it is well known that distributed systems with unreliable communication do

not admit non-blocking solutions to the atomic commitment problem [Gra78, Had90,

HaM90], we also assume reliable communication between the processes in the following

sense: if a process Pi sends a message to a process Pk, then unless Pk is down, the

message is received by Pk within δ time units after being sent, i.e., no link failures occur.

The parameter δ includes the message transfer delay as well as the time required to

process it at the sending and receiving processes. In such a model, site failures can be

reliably detected and reported to any operational site by means of timeouts. For instance,

if a process Pi does not receive an answer to a message it has sent to Pk within 2δ time

units after sending the message, it can safely deduce that Pk is faulty.

4.2.2 The Three-Phase Commit Protocol

Assuming that communication is failure-free, several non-blocking atomic commitment

protocols have been proposed, the most well known of which is the Three-Phase Commit

(3PC) protocol [Ske81].

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

60

Failure-Free Execution

The 3PC protocol can be seen as a straightforward extension of 2PC. One way to

understand 3PC is to understand why 2PC is blocking. In 2PC, blocking can occur

because some participants may commit the transaction following the receipt of a commit

decision while others are still uncertain about the transaction outcome12. Consequently, if

crash failures happen in such a way that all correct participants are uncertain, these

participants are blocked (cf. Section 2.3.2). Indeed, they cannot decide abort without

risking a violation of the AC-Agreement property because some failed participants could

have decided commit.

The idea underlying 3PC is to prevent this situation by ensuring that if any correct

participant is uncertain about the transaction, then no participant (whether correct or not)

could have decided commit. This is achieved by inserting an extra phase, called the pre-

commit phase, in between the two phases of the 2PC protocol. During this phase, a

preliminary decision is reached before the final decision is made.

More precisely, when the coordinator of 3PC finds that all participants’ votes are

yes, it sends a pre-commit message to all participants. When a participant receives pre-

commit, it sends a pre-commit acknowledgment to the coordinator. By receiving the pre-

commit message, a participant learns that all votes were yes, and thus, moves outside its

uncertainty period. Once the coordinator has received the pre-commit acknowledgments

from all, it decides commit and sends its decision to all participants. Finally, when a

participant receives the commit decision from the coordinator, it decides commit (at this

point, the participant knows that all other participants are outside their uncertainty

period) . This describes 3PC assuming no participant votes no, and no participant crashes

during the protocol 13. Figure 4.1 illustrates the 3PC protocol execution between six

participants, P1, P2, P3, P4, P5, and P6, where P1 acts as the coordinator of the protocol .

12 Recall that an uncertain participant does not know whether or not the remaining participants have voted

yes.
13 Note that, to simplify the subsequent discussion and concentrate on the non-blocking feature of the

described protocols, we henceforth omit from our discussion and evaluations decision acknowledgment

messages.

4.2. NB-AC IN SYNCHRONOUS SYSTEMS

 61

 prepare pre-commit commit yes
P1

P2

P3

P4

P5

P6

Ack

decide

Figure 4.1: The 3PC protocol.

Dealing with Failures

In order to deal with failures, special timeout actions that describe what a process should

do if an expected message does not arrive must be supplied. Furthermore, a recovering

participant must be able to reach a decision consistent with the decision operational

processes may have reached.

There are five cases to consider: (1) a participant is waiting for the prepare message,

(2) the coordinator is waiting for votes, (3) a participant is waiting for pre-commit, (4)

the coordinator is waiting for pre-commit acknowledgments, and (5) a participant is

waiting for commit. Cases (1) and (2) are handled in exactly the same way as in 2PC (cf.

Section2.3.2). Case (4) means that a participant failed before sending a pre-commit

acknowledgment. However, since the failed participant has already voted yes, the

coordinator ignores its failure and decides commit as if no failure has taken place.

In cases (3) and (5), however, participants cannot decide on their own14. Therefore,

they start a termination protocol during which they communicate with other participants

to find out what to decide. In order to satisfy AC-Non-Blocking, the termination protocol

associated with 3PC must enable all correct participants to reach a consistent decision

without waiting for failures to be repaired. The basic idea of this protocol is to elect a

new coordinator, called backup coordinator, from the set of correct participants. Once

14 Although in case (5) participants are outside their uncertainty period, they cannot decide commit

because some other participants might be still uncertain about the transaction outcome.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

62

elected, the backup will direct all the correct participants toward a commit or an abort

depending on its own local state. A participant is in an ABORT state if (i) it has already

decided abort, or (ii) it can unilaterally decide so. It is in an UNCERTAIN state if it is in its

uncertainty period. It is in a COMMITTABLE state if it has received the pre-commit

message but not the commit decision. Finally, a participant is in a COMMIT state if it has

already decided commit. The backup coordinator decides abort when its local state is (1)

ABORT, or (2) UNCERTAIN, and decides commit when its local state is (3) COMMITTABLE,

or (4) COMMIT:

Case (1) indicates that the backup (i) has not voted yet, or (ii) has voted no, or (iii)

has already received an abort decision before the invocation of the termination protocol.

In (i) and (ii), it is clear that no participant could have previously decided commit, while

(iii) means that the 3PC coordinator had started to send abort decisions before it crashed.

Since the coordinator sends the same decision to all participants, no participant could

have received a commit decision, and hence, no participant could have decided commit.

In case (2), since the pre-commit phase of 3PC prevents any participant from deciding

commit once some correct participant is still uncertain, a backup with an UNCERTAIN

local state is sure that no participant could have decided commit.

Case (3) indicates that the backup has already received a pre-commit message from

the 3PC coordinator. This means that (i) all participants must have voted yes, i.e., no

participant could have unilaterally decided abort, and (ii) no participant could have

received an abort decision from the 3PC coordinator given that the latter had already

initiated the pre-commit phase before it crashed, i.e., no participant could have decided

abort. Finally, case (4) implies that the backup has received a commit decision from the

3PC coordinator, meaning that (i) all participants must have voted yes, i.e., no unilateral

abort, and (ii) no participant could have received an abort decision from the 3PC

coordinator, as the latter sends the same decision to all participants. Hence, no

participant could have decided abort.

Since failures may occur during the termination protocol execution, a backup asks

all participants to move to its local state, and waits for an acknowledgment of their state

transition before sending them its final decision. This actually ensures that, in the event

4.2. NB-AC IN SYNCHRONOUS SYSTEMS

 63

of a backup crash, subsequent backups will make the same decision. From the above

discussion, it follows that 3PC (and its termination protocol) satisfies the AC-Uniform-

Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, AC-Non-Triviality, and AC-

Non-Blocking conditions of the NB-AC problem.

We now turn our attention to recovering participants. To satisfy AC-Termination, a

recovering participant is required to reach a decision consistent with the decision reached

by correct ones. As in 2PC, a failed participant returns to the operational state using the

information it stored in its stable log. During recovery, the participant tries to decide on the

transactions that were active at the time the crash occurred. This is actually achieved in

exactly the same way as in 2PC. Therefore, we will not discuss the issue any further 15.

Finally, note that in an attempt to reduce the time complexity of 3PC, a decentralized

3PC variation has been also discussed in [Ske81]. Similarly to decentralized 2PC,

decentralized 3PC reduces the time complexity of 3PC from 5 communication steps to 3 at

the expense of a higher message complexity.

4.2.3 The ACP-UTRB Protocol

Although non-blocking, the 3PC protocol requires 5 communication steps so that a

decision can be reached at every correct participant. In order to reduce the time

complexity of 3PC, Babaoglu and Toueg have proposed the ACP-UTRB protocol

[BaT93]. ACP-UTRB has the same basic structure as 2PC, and achieves non-blocking by

exploiting the properties of the communication primitive it uses to disseminate decision

messages to the participants in a transaction. The primitive that achieves this

dissemination is called broadcast, and has a corresponding action at the destination,

called deliver. Broadcast and deliver are usually implemented using multiple send and

receive operations that the underlying network provides.

15 Note, however, that if the participant had failed after voting yes but before receiving the decision, the

participant needs to communicate with other processes asking them what to decide, whether or not it has

already received pre-commit.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

64

// for the broadcaster, S-broadcast (m, ϕ) occurs as follows:
 send(m) to all processes in ϕ ;

// for each process in ϕ, S-deliver (m) occurs as follows:
 when receive(m)
 S-deliver(m);

Figure 4.2: A Simple Broadcast primitive.

Failure-Free Execution

In order to understand ACP-UTRB, let us first examine how the coordinator of a 2PC

disseminates decision messages to the participants in a transaction. In 2PC, the

dissemination of decision messages is achieved using a broadcast primitive, called Simple

Broadcast (SB), which satisfies the following three properties (with ∆ = δ) [BaT93]:

−−−− Validity: If a correct process broadcasts a message m to the members of set ϕ,
then all correct processes in ϕ eventually deliver m.

−−−− Uniform-Integrity: For any message m, every correct process in ϕ delivers m at
most once, and only if m was previously broadcast by some process.

−−−− Uniform-∆∆∆∆-Timeliness: There exists a known constant ∆ such that if the
broadcast of a message m is initiated at real-time t, then no process in ϕ receives
m after real-time t + ∆.

SB is defined in terms of two primitives, S-broadcast(m, ϕ) and S-deliver(m), where

m is the message broadcast to all the members of set ϕ. Figure 4.2 illustrates a Simple

Broadcast algorithm [BaT93]. Note that SB is unreliable, i.e., if the broadcaster crashes

while broadcasting a message m, some processes might deliver m while some correct

processes never do so. Recall that 2PC leads to blocking situations because it allows

faulty participants to decide on the transaction following the delivery of the coordinator’s

decision, while all correct participants never deliver that decision. Consequently, if all

correct participants are uncertain, they are blocked. They cannot decide abort because

some failed participants could have decided commit.

4.2. NB-AC IN SYNCHRONOUS SYSTEMS

 65

// for the broadcaster, R-broadcast(m, ϕ) occurs as follows:
 send(m) to all processes in ϕ ;

// for each process P in ϕ , R-deliver(m) occurs as follows:
 when receive(m) for the first time

 if P ≠ broadcaster then send(m) to all processes in ϕ ;
 R-deliver(m);

Figure 4.3: A Uniform Timed Reliable Broadcast primitive.

In ACP-UTRB, such blocking scenarios are prevented by using a different broadcast

primitive, called Uniform Timed Reliable Broadcast (UTRB), which guarantees, in

addition to the Validity, Uniform-Integrity, and Uniform-∆-Timeliness properties of

Simple Broadcast, the following Uniform-Agreement property:

−−−− Uniform-Agreement: if any participant, correct or not, delivers a message m,

then all correct participants in ϕ eventually deliver m.

UTRB is defined in terms of two primitives, R-broadcast(m, ϕ) and R-deliver(m),

where m is the message broadcast to all the members of set ϕ. Figure 4.3 describes a

possible UTRB algorithm [BaT93, HaT94]. Every process relays every message it

receives for the first time to all other processes, and then delivers the message. Thus, if a

process delivers a message m, then it has already achieved relaying it. This guarantees

that all correct processes will eventually deliver m. It is clear that this primitive satisfies

Uniform-Agreement even if the initial broadcaster (or the relayer) subsequently crashes.

Furthermore, in [BT93], the authors show that there exists a constant delay ∆ = (F + 1)δ,

by which the delivery of m occurs, where F denotes the maximum number of processes

that may crash during the execution of the atomic commitment protocol.

Figure 4.4 illustrates the ACP-UTRB protocol, assuming no participant votes no and

no participant crashes during the protocol execution. The set of participants is {P1, P2,

P3, P4, P5, P6}, and the coordinator is P1. The protocol is directly obtained from 2PC by

replacing the SB primitive with the UTRB primitive in order to disseminate decision

messages.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

66

 prepare yes
P1

P2

P3

P4

P5

P6

R-broadcast (commit)

decide

Figure 4.4: The ACP-UTRB protocol.

Dealing with Failures

Recall from Section 2.3.2 that the only place in 2PC where a participant cannot

unilaterally decide on the transaction is when it times out waiting for the decision

message. In this case, the participant starts a termination protocol during which it tries to

find out what to decide by consulting with other participants in the transaction. This

termination protocol may, however, lead to blocking situations if all correct participants

are uncertain about the transaction outcome.

By exploiting the UTRB primitive to disseminate decision messages, ACP-UTRB

eliminates the blocking scenarios of 2PC. More precisely, once a participant in ACP-

UTRB has sent a yes vote following the receipt of prepare, it sets its timeout to δ + ∆,

where δ represents the upper bound on the time delay needed for its vote to reach the

coordinator, while ∆ represents the upper bound on the time delay needed for the

decision message to reach every correct participant. If, due to a coordinator crash, the

participant times out while waiting for the decision message, it can unilaterally decide

abort, safe in its knowledge that no other participant could have received commit (by the

Uniform- Agreement and Uniform-∆-Timeliness properties of UTRB). Thus, by

substituting the termination protocol of 2PC with a unilateral abort decision, ACP-UTRB

eliminates the only potential source of indefinite wait.

To complete our discussion on failures, note that in ACP-UTRB, participants’

recovery is achieved in exactly the same way as in 2PC so that AC-Termination is satisfied.

4.2. NB-AC IN SYNCHRONOUS SYSTEMS

 67

Message Complexity
 point-to-point network broadcast network

Latency
 Time complexity Log Complexity

3PC 5n 2n + 3 5 2n + 1

ACP-UTRB 2n+n
2
 2n + 1 3 2n + 1

Figure 4.5: The cost of transaction commit under 3PC and ACP-UTRB.

4.2.3 Performance Evaluation

In this section, we examine the cost for non-blocking under the 3PC and ACP-UTRB

protocols. Figure 4.5 summarizes the performances of both protocols in terms of latency

and message complexity needed to commit a transaction. We denote by n the total

number of participants in the transaction, and assume failure-free executions in which

every participant votes yes.

By introducing a pre-commit phase, 3PC achieves non-blocking at the expense of 5

communication steps needed until a decision is reached at every correct participant,

compared to 3 steps needed in blocking 2PC. Concerning message complexity, 3PC

requires up to 5n messages (resp. 2n+3 messages), assuming a point-to-point network

(resp. a broadcast network), while 3n (resp. n+2) messages are exchanged under 2PC16.

This high cost is paid even during normal processing, i.e., when no crash failures occur

during the protocol execution, which is definitely unacceptable in today’s highly reliable

distributed platforms.

By sharing the same basic structure with 2PC, ACP-UTRB reduces the time

complexity of 3PC, as it requires 3 communication steps so that a commit decision is

reached at every correct participant. This comes, however, at the expense of a quadratic

number of messages required by the UTRB primitive (n
2
) in case of a point-to-point

network, making a total of 2n+n
2
 messages exchanged during the protocol execution.

However, in case of a broadcast network, ACP-UTRB outperforms 3PC in both time and

message complexity.

16 Recall that decision acknowledgment messages are not considered.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

68

Finally, it is noteworthy that while 3PC and ACP-UTRB achieve non-blocking

assuming a synchronous system and reliable communication (cf. Section 4.2.1), both

protocols may result in participants reaching inconsistent decisions if either of these

assumptions is not satisfied. In ACP-UTRB, for instance, unreliable communication

(resp. unbounded message processing and transmission delays) renders the Uniform-

Agreement property (resp. the Uniform-∆-Timeliness property) of UTRB unattainable,

leading participants to decide inconsistently in response to timeouts. Similar

inconsistencies might arise under 3PC and its associated termination protocol if either of

the above mentioned conditions does not hold.

To illustrate, consider a transaction involving three participants P1, P2 and P3, where

P1 is the transaction coordinator. Consider the following scenario: all participants vote

yes. P1 receives the yes votes, sends pre-commit to all, and waits for pre-commit

acknowledgments. Assume that, due to communication failures or arbitrary (i.e.,

unbounded) message transmission delays, P3 times out waiting for the coordinator’s pre-

commit message. P1 and P2, on the other hand, do receive and acknowledge this message.

According to the timeout actions associated with 3PC (cf. Section 4.2.2), P3 invokes a

termination protocol during which a backup coordinator, say P3 itself, is elected. Since

P3’s local state is UNCERTAIN, it decides abort according to the decision rule of the

termination protocol. On the other hand, when P1 times out (within the 3PC protocol)

waiting for the pre-commit acknowledgment from P3, it decides commit, given that P3 has

voted yes.

To avoid such inconsistencies, new 3PC variations that exploit a quorum (or

majority) based termination protocol have been proposed [Ske82, KeD94]. More

precisely, the protocols discussed in [Ske82, KeD94] guarantee that, even if the

abovementioned system assumptions are not satisfied, no two participants can decide

differently. Unfortunately, these protocols do not completely eliminate blocking, but they

cause blocking less frequently than 2PC. However, there is no precise characterization of

the conditions under which these protocols provide liveness guarantees in systems where

no timing assumptions can be made whatsoever.

4.3. NB-AC IN ASYNCHRONOUS SYSTEMS

 69

4.3 NB-AC in Asynchronous Systems

Based on the general system model described in Section 2.1, we define in this section an

asynchronous model of computation. We then overview the most well known atomic

commitment protocols that have been proposed in this context.

4.3.1 System Model

The model of asynchronous computation we consider in this and the following chapter is

patterned after the one in [Cha93, ChT96]. Informally, a system is said to be asynchronous

if there is no bound on message transfer delays or process relative speeds. The

asynchronous model of computation is very attractive and compelling because distributed

algorithms designed and implemented in this context bring general solutions to distributed

problems, which are very easy to port. Furthermore, today’s large distributed systems are

often subject to variable or unexpected workloads that are sources of asynchrony.

Although asynchronous systems are very attractive in practice, Fischer, Lynch, and

Paterson have shown that distributed agreement problems are impossible to solve in a

deterministic and fault-tolerant (i.e., non-blocking) way in an asynchronous system that

is subject to even a single crash failure [FLP85]. This theoretical result, known as the

Fischer-Lynch-Paterson impossibility result (FLP, for short), applies to a variety of well-

known agreement problems, notably the Consensus problem (cf. Section 4.3.3), and the

NB-AC problem. This result translates the fact that, in an environment where no timing

assumptions can be made whatsoever, it is impossible to distinguish a crashed process

from a process that is only “very slow”. Therefore, crash failures cannot be reliably

detected and reported to correct processes.

To circumvent this impossibility result, Chandra and Toueg have augmented the

asynchronous model of computation with the notion of unreliable failure detectors for

systems with crash failures [Cha93, CT96]. More precisely, each process Pi has access to

a local failure detector module FDi, which informs it of the list of processes that it

currently suspects to have crashed. A failure detector can make mistakes by providing

incorrect information, i.e., it may suspect a correct process, or never suspect a failed one.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

70

Furthermore, at any given time, the failure detector modules at two different processes

may provide inconsistent information, i.e., they do not have the same list of suspects.

Although a failure detector can make mistakes, it must, however, follow a certain

behavior pattern so that it can be useful. This behavior is captured through two abstract

properties that the failure detector must satisfy, namely completeness and accuracy.

These properties are detailed in the next section.

It is important to note that the model of unreliable failure detectors proposed in

[Cha93, CT96], and which has formed the bases for the construction of existing solutions

to the NB-AC problem in the context of asynchronous systems, only considered systems

in which process crashes are permanent (henceforth called a crash-stop failure model). In

Chapter 5, we show how to exploit the results presented in [Cha93, CT96] to solve the

distributed commit problem in asynchronous systems in which processes may crash and

later recover (henceforth called a crash-recovery failure model).

While processes may crash, the communication subsystem is assumed to be reliable

in the following sense: if a process Pi sends a message to a process Pk, then unless one of

them crashes after the message is sent, the message is eventually received by Pk
17.

4.3.2 Properties of Failure Detectors

As stated earlier, failure detectors are characterized by completeness and accuracy

properties. The completeness property characterizes the degree to which a failure

detector can suspect crashed processes, while the accuracy property restricts the false

suspicions that a failure detector can make. Two completeness properties and four

accuracy properties have been defined:

• COMPLETENESS:

� Strong Completeness: Eventually, every process that crashes is

permanently suspected by every correct process.

� Weak Completeness: Eventually, every process that crashes is permanently

suspected by some correct process.

17 Note that this does not exclude link failures, assuming that these are eventually repaired so as to allow

retransmission of lost or corrupted messages.

4.3. NB-AC IN ASYNCHRONOUS SYSTEMS

 71

ACCURACY

COMPLETENESS Strong Weak Eventually Strong Eventually

Weak

Strong Perfect

P

Strong

S

Eventually Perfect

<>P

Eventually Strong

<>S

Weak

Q

Weak

W

<>Q

Eventually Weak

<>W

Figure 4.6: Failure detector classes.

• ACCURACY:

� Strong Accuracy: No process is suspected before it crashes.

� Weak Accuracy: Some correct process is never suspected.

� Eventual Strong Accuracy: There is a time after which correct processes

are not suspected by any correct process.

� Eventual Weak Accuracy: There is a time after which some correct process

is never suspected by any correct process.

A failure detector is characterized by the completeness property and the accuracy

property that it satisfies. By combining the two completeness properties with the four

accuracy properties, eight different classes of failure detectors can be defined. These are

summarized in Figure 4.6. In [Cha93, ChT96], it has been shown that Strong

Completeness can be emulated out of Weak Completeness, meaning that any failure

detector of class Q (resp. W, <>Q,, <>W) can be transformed into a failure detector of

class P (resp. S, <>P, <>S). Note that failure detectors satisfying Strong Accuracy are

reliable, i.e., they never make false suspicions, whereas all other failure detectors are

unreliable, i.e., they can make an infinite number of false suspicions.

The fundamental result of Chandra and Toueg’s work on failure detectors states that

the Consensus problem, an abstract form of agreement, can be solved deterministically in

an asynchronous system augmented with an unreliable failure detector. The relevance of

this result to our transactional context lies in the similarity between the Consensus

problem and the NB-AC problem given that both problems entail fault-tolerant

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

72

agreement among processes. In [ChT96], the authors describe several solutions to the

Consensus problem using each one of the eight failure detector classes. Of particular

interest is an algorithm that solves Consensus using any failure detector of class <>S and

assuming a majority of correct processes, i.e., the algorithm tolerates up to f crash

failures, where f < n / 2. The importance of class <>S resides in the fact that it is the

weakest class of failure detectors that allows solving the Consensus problem in an

asynchronous system [ChT96, CHT96]. With a stronger failure detector class, notably

class S, the resilience of the algorithm can be increased up to n - 1.

4.3.3 A Story of Consensus

The Consensus problem can be viewed as a general form of agreement in distributed

systems. In this problem, each process Pi proposes a binary initial value vi (vi ∈ {0, 1})

and the processes must agree on some binary decision value v (v ∈ {0, 1}) such that the

following properties are satisfied [Fis83]:

−−−− C-Agreement: No two correct processes decide differently.

−−−− C-Uniform-Validity: The decision value must be the initial value of some process.

−−−− C-Uniform-Integrity: Every process decides at most once.

−−−− C-Non-Blocking: Every correct process eventually decides.

Interestingly, the algorithms proposed in [ChT96] actually solve a stronger form of

Consensus, called Uniform Consensus. The Uniform Consensus problem is defined by

the C-Uniform-Validity, C-Uniform-Integrity, and C-Non-Blocking properties of

Consensus, and the following C-Uniform-Agreement property:

−−−− C-Uniform-Agreement: No two processes decide differently.

Whereas the Consensus problem allows two processes to decide differently as long

as at least one of them crashes, Uniform Consensus forbids any two processes from ever

deciding differently whether they crash or not. This uniform agreement on the decision

value is crucial for maintaining decision consistency if we consider that crashed

processes may become operational again by executing a recovery protocol. This issue

will be further discussed in the next chapter.

4.3. NB-AC IN ASYNCHRONOUS SYSTEMS

 73

4.3.4 On the Solvability of NB-AC

The fundamental results of Chandra and Toueg on solving Consensus have constituted

the cornerstone of several research works around fault-tolerant agreement problems in

the context of asynchronous systems. Given these results, an interesting question is then

whether the NB-AC problem can also be solved in asynchronous systems with unreliable

failure detectors.

In [Gue95], Guerraoui answers this question negatively. More precisely, the author

shows that NB-AC is impossible to solve in an asynchronous system with unreliable

failure detectors, which is rather not surprising given that NB-AC was proved harder than

Consensus [Had90]. This actually explains why NB-AC has been mostly studied under

the assumption of reliable failure detection. With this impossibility, one is naturally

tempted to go one step further and find out the real reason behind it.

A key result of the work presented in [Gue95] is a clear identification of the reason

why NB-AC cannot be solved using unreliable failure detectors. This result states that

the difficulty in solving NB-AC stems from its AC-Non-Triviality condition (if all

participants vote yes and “no failures occur”, then all participants must decide commit),

which requires precise, i.e., reliable, knowledge about failures that unreliable failure

detectors cannot provide. By weakening the AC-Non-Triviality condition, however,

Guerraoui defines a weaker problem than NB-AC, called NB-WAC (Non-Blocking Weak

Atomic Commitment), which is sufficient in most real transactional systems. A

fundamental characteristic of NB-WAC is its reducibility to Consensus, i.e., whenever

Consensus is solvable, NB-WAC is also solvable [Gue95].

4.3.5 The Non-Blocking Weak Atomic Commitment Problem

The Non-Blocking Weak Atomic Commitment (NB-WAC) problem is defined by the AC-

Uniform-Agreement, AC-Uniform-Validity, AC-Uniform-Integrity, and AC-Non-Blocking of

the NB-AC problem, and by the following AC-Weak-Non-Triviality condition [Gue95]:

−−−− AC-Weak-Non-Triviality: If all participants vote yes and no participant is ever

suspected, then all participants must decide commit.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

74

The importance of this new condition lies in the fact that, although weaker than its

original version (i.e., transactions are allowed to abort in case of failure suspicions), it

still eliminates trivial solutions to the problem where participants always decide abort.

As stated before, a fundamental characteristic of NB-WAC is that it is reducible to

Consensus, and therefore, is solvable in asynchronous systems augmented with

unreliable failure detectors. The main significance of this result is in defining a rigorous

framework in which atomic commitment with some liveness guarantees can be achieved.

Note, however, that although solvable in the context of asynchronous systems, NB-

WAC was proposed assuming a crash-stop failure model, i.e., once a process crashes, it

does not recover. This assumption is translated by the absence of the AC-Termination

property from the set of properties that define the NB-WAC problem.

4.3.6 The DNB-AC protocol

Based on the above results, several protocols that solve the NB-WAC problem were

devised and are typified by the Decentralized Non-Blocking Atomic Commitment (DNB-

AC) protocol [GuS95]. In the absence of failure suspicions, DNB-AC has the same basic

structure as the decentralized 3PC protocol discussed by Skeen in the context of

synchronous systems [Ske81] (cf. Section 4.2.2). As opposed to decentralized 3PC,

however, the termination protocol of DNB-AC is encapsulated within a uniform

consensus protocol, enabling a precise characterization of its liveness in an asynchronous

system augmented with any unreliable failure detector of class <>S.

As illustrated in Figure 4.7, the DNB-AC protocol has three communication steps. During

the first step, the coordinator initiates the protocol by sending a prepare message to all

participants in the transaction. In step 2 of the protocol, a participant that votes yes sends its

vote to all other participants. In step 3, when a participant receives yes votes from all, it

sends a pre-commit message to all. Finally, once a participant has received pre-commit

from all, it decides commit. Note, however, that a participant that decides on the transaction

needs to forward its decision to all other participants. This is required in order to ensure

that if a correct participant reaches a decision, then all correct participants also reach a

decision.

4.3. NB-AC IN ASYNCHRONOUS SYSTEMS

 75

P1

P2

P3

P4

P5

P6

 yes pre-comm it prepare

step 1 step 2 step 3

 comm it

 decide

Figure 4.7: The DNB-AC protocol.

This describes the protocol assuming no participant votes no, and no participant is

suspected to have crashed during the protocol execution. If, during the first step of the

protocol, a participant Pi either suspects the coordinator or votes no, then Pi takes a

unilateral abort decision, and sends abort to all other participants. During step 2,

however, a participant Pi that suspects any other participant cannot unilaterally decide.

Therefore, Pi asks all other participants to start a uniform consensus protocol by sending

them a start-consensus message, and then starts the uniform consensus with abort as its

initial value. This value translates the fact that at this point, Pi does not know yet the

votes of all participants. The outcome of the uniform consensus protocol defines the

transaction outcome for Pi. During step 3 of the protocol, if a participant Pi suspects any

other participant or receives a start-consensus message, then Pi starts a uniform

consensus with commit as its initial value (at this point, Pi knows that all votes are yes),

and the outcome of the consensus protocol becomes the transaction outcome for Pi.

In the absence of failure suspicions, it is clear that DNB-AC preserves transaction

atomicity as it reduces to a classical decentralized 3PC protocol. In the event of failure

suspicions, DNB-AC exploits a uniform consensus protocol as a termination protocol,

which guarantees a unique outcome for the transaction in a fault-tolerant way. It follows

that the resilience (to blocking) of DNB-AC depends on the resilience of the uniform

consensus protocol, and hence on the underlying failure detector class that is considered.

More precisely, based on a failure detector of class <>S, DNB-AC tolerates up to f crash

failures, where f < n / 2, i.e., at least (n + 1) / 2 participants are correct.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

76

4.3.7 The Modular Decentralized 3PC Protocol

While DNB-AC needs the same number of communication steps to commit as blocking

2PC protocols (i.e., 3 steps), 3n
2
+n (resp. 3n+1) messages need to be exchanged during

the protocol execution assuming a point-to-point (resp. a broadcast) network. It is in an

attempt to reduce the message complexity associated with DNB-AC that the Modular

Decentralized 3PC (MD3PC) protocol has been proposed [GLS96].

The key idea underlying MD3PC is to have the sub-protocol required for non-

blocking performed by only a subset noted SetNB of the participants in the transaction,

and the cardinality of this subset depends on the number of crash failures to be tolerated.

As a consequence, the resilience of the protocol is traded against the number of messages

exchanged during its execution. More precisely, to be resilient to f crash failures, given

that f < n / 2 and the failure detector is <>S, the protocol requires that SetNB contain

2 f+1 members (i.e., | SetNB | = 2f + 1). Another fundamental difference with DNB-AC

relates to the termination protocol used in case of failure suspicions. Whereas DNB-AC

requires a uniform consensus protocol as a termination protocol, MD3PC is based on a

majority consensus.

The Majority Consensus problem is defined by the C-Uniform-Agreement, C-

Uniform-Integrity, and C-Non-Blocking properties of Uniform Consensus, and the

following C-Majority-Uniform-Validity property:

−−−− C-Majority-Uniform-Validity: (i) the decision value must be the initial value of

some process, and (ii) if a majority of initial values are 1, then the decision value

must be 1.

In our transactional context, the value 1 clearly corresponds to commit while 0

corresponds to abort. As opposed to the C-Uniform-Validity property of Uniform

Consensus, the C-Majority-Uniform-Validity property enables a participant in MD3PC to

decide commit once it has received pre-commit messages from a majority of SetNB. Note

that, just like Consensus and Uniform Consensus, the Majority Consensus problem can

also be solved with any failure detector of class <>S [GLS96].

4.3. NB-AC IN ASYNCHRONOUS SYSTEMS

 77

P1

P2

P3

P4

P5

P6

 yes prepare pre-comm it

 s tep 1 s tep 2 s tep 3

 comm it

 decide

Figure 4.8: The MD3PC protocol.

Figure 4.8 illustrates the MD3PC protocol, assuming no participant votes no and no

participant is ever suspected. Similarly to DNB-AC, during the first step of MD3PC, the

coordinator sends a prepare message to all participants in the transaction. In step 2,

however, participants’ votes are only sent to the members of SetNB. In Figure 4.8 for

instance, f = 1 and SetNB = {P1, P2, P3} (i.e., | SetNB | = 3). In step 3, when a member of

SetNB receives yes votes from all, it sends a pre-commit message to all. Finally, once a

participant has received pre-commit from a majority of SetNB, it sends its decision to all

other participants and decides commit.

If, during step 1, a participant Pi either votes no or suspects the coordinator, then Pi

takes a unilateral abort decision. The remaining failure suspicion cases can be reduced to a

majority consensus protocol, which is only launched by the members of SetNB. More

precisely, a failure suspicion that occurs during step 2 of the protocol leads a member Pi of

SetNB to start a majority consensus with abort as its initial value, while a failure suspicion

that occurs during step 3 leads Pi to start a majority consensus with commit as initial value.

4.3.8 Performance Evaluation

In this section, we examine the cost for non-blocking under DNB-AC and MD3PC. Figure

4.9 summarizes the performances of both protocols in terms of latency and message

complexity, assuming no participant votes no and no participant is ever suspected during

the protocol execution. We denote by n the total number of participants, and by f the

number of crash failures to be tolerated, where f < n / 2.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

78

Message Complexity
 point-to-point network broadcast network

Latency
 Time complexity Log Complexity

DNB-AC n + 3n
2
 3n + 1 3 --

MD3PC n (4 f + 3) + n
2
 2 (n + f + 1) 3 --

Figure 4.9: The cost of transaction commit under DNB-AC and MD3PC.

As already pointed out, DNB-AC and MD3PC have the same basic structure and

differ only in the number of messages that need to be exchanged during the protocol. More

precisely, both protocols need, like 2PC, 3 communication steps until a decision is reached

at every correct participant. In MD3PC, however, the resilience of the protocol can be

traded against the number of messages exchanged . For instance, with n = 12, f = 2, and

assuming a point-to-point network, DNB-AC requires 444 messages, while MD3PC

requires 276 messages (compared to 36 in 2PC). In case of a broadcast network, DNB-

AC needs 37 messages whereas MD3PC needs 30 (compared to 14 in 2PC).

Even though both protocols have the same latency, a participant in MD3PC is

allowed to decide commit once it has received pre-commit from a majority of SetNB,

whereas a participant in DNB-AC cannot decide commit until it receives pre-commit

from all participants in the transaction.

Based on Chandra and Toueg’s work on solving (Uniform) Consensus, DNB-AC

and MD3PC achieve non-blocking in asynchronous systems assuming reliable

communication, any unreliable failure detector of class <>S, and a maximum of f crash

failures, where f < n / 2. If these assumptions are not satisfied, both protocols might

block, but never lead two participants to decide on different outcomes.

An important point to note is that both DNB-AC and MD3PC were devised

assuming a crash-stop failure model, meaning that a process that crashes is not assumed

to recover nor to inquire other participants about the transaction outcome. Consequently,

no log force is performed and no acknowledgment of decision messages is needed, as

these are usually required in order to support recovery.

4.4. DISCUSSION

 79

4.4 Discussion

In an attempt to provide transaction liveness guarantees, fault-tolerant (i.e., non-

blocking) commit protocols have emerged. As shown in Sections 4.2.4 and 4.3.8,

however, fault-tolerance has a price, and this price is paid in terms of time complexity,

message complexity, or both. Indeed, when compared to their blocking counterparts, the

commit protocols discussed in this chapter trade performance for fault-tolerance. This is

mainly due to the fact that most of the existing works on fault-tolerant commit protocols

have, in a way, pushed performance issues into the background, and if not, the best they

hoped for is to attain performances comparable to those of blocking 2PC variations.

Another major problem has to do with participants’ prepared states. Indeed, all the

protocols discussed in this chapter are extensions of basic 2PC. Therefore, they all

require that the participating local sites provide a prepared state for each transaction they

execute, thus inheriting all the problems associated with the support of that state (cf.

Sections 1.2 and 2.6).

Finally, and as already pointed out, solutions to the NB-AC problem depend on the

underlying system and failure assumptions, and on the knowledge about the occurrence

of failures in the system. Whereas this knowledge can be precise under a synchronous

system, asynchronous systems render any such knowledge imprecise, and thus any

solution to the NB-AC problem impossible. By considering a slightly weaker variation of

NB-AC, fault-tolerant commit protocols have started to emerge in the context of

asynchronous systems (cf. Sections 3.4.6 and 3.4.7). These protocols essentially build on

the work of Chandra and Toueg on solving Consensus in asynchronous systems, and

hence assume, just like consensus protocols, a failure model in which process crashes are

permanent. Whereas this assumption indeed makes sense in environments where process

decisions are used to trigger some real-time actions, i.e., there is no time to take into

account process recovery and hence the decision of faulty processes, it is definitely

unacceptable in a transactional context where participants’ recovery is an intrinsic

feature, and where the decision of faulty processes must be taken into account if

transaction atomicity is to be guaranteed.

CHAPTER 4. NON-BLOCKING ATOMIC COMMITMENT: BACKGROUND

80

 81

Chapter 5

Non-Blocking Dictatorial Atomic
Commitment

As we have shown in the previous chapter, existing non-blocking commit protocols

impose high costs on distributed transaction processing, which results in a significant

increase in transaction response times. Furthermore, given the assumptions they make

about the underlying system model, notably in the context of asynchronous systems, their

practical utility in real-world transactional systems becomes questionable. Based on the

observation that all these protocols are extensions of 2PC, an important question is then

whether non-blocking protocols can rather be derived from 1PC, hence reconciling high

performance and fault-tolerance. In this chapter, we answer this question positively, and

propose several non-blocking solutions to the Dictatorial Atomic Commitment problem.

In order to do so, we first discuss the issue of blocking in 1PC, and define the Non-

Blocking Dictatorial Atomic Commitment (NB-DAC) problem. We then give a protocol,

called NB-CLL, that solves the problem in a synchronous system, while maintaining the

cost of distributed transaction commit below that of all existing non-blocking protocols

proposed in this context.

We point out the fact that, just like the NB-AC problem, NB-DAC is unattainable in

asynchronous systems. By refining the NB-DAC specification, and following the

approach proposed in [Gue95], we introduce the Non-Blocking Weak Dictatorial Atomic

Commitment (NB-WDAC) problem that is better suited to asynchronous environments.

We then propose a protocol, called ANB-CLL, which solves NB-WDAC in an

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 82

asynchronous system augmented with an unreliable failure detector. In contrast with

existing non-blocking protocols previously proposed in this context, our protocol

achieves non-blocking in systems in which processes may crash and later recover (i.e.,

crash-recovery failure model), making it more suitable for real-world transactional

systems where process recovery is an intrinsic feature.

The NB-CLL and ANB-CLL protocols can be viewed as non-blocking extensions of

CLL, our 1PC variation (cf. Section 3.5). Consequently, they both blend the advantages of

CLL with fault-tolerance. We show through performance analysis that our protocols are

more efficient than all other non-blocking protocols proposed in their respective contexts.

5.1 The Window of Vulnerability to Blocking of 1PC

To better illustrate the blocking problem in 1PC, let us go back over this issue in 2PC. In

2PC, blocking can occur if the coordinator crashes after the participants have sent a yes

vote. This period of time is called the window of vulnerability to blocking of the

protocol.

In a 1PC protocol, the window of vulnerability is much larger than in a 2PC

protocol. This is because the only period during which a participant has the freedom to

unilaterally abort a transaction is after receiving an operation from the coordinator and

before acknowledging this operation. Otherwise, the participant is at the coordinator's

mercy, and the latter acts as a dictator for choosing the transaction outcome. In other

words, whenever it has acknowledged an operation and unless it receives another

operation or the final decision, a participant in 1PC enters the window of vulnerability to

blocking. If the coordinator crashes while all participants have acknowledged the

operations submitted to them, they are all blocked until the coordinator recovers from its

crash. In comparison, unless it has sent back a yes vote, a participant in a 2PC can at any

time unilaterally abort a transaction.

The above observation raises a crucial issue and suggests that non-blocking

solutions to the DAC problem are indispensable if dictatorial transaction processing is to

be used in today’s systems and applications.

5.2. THE NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT PROBLEM

 83

5.2 The Non-Blocking Dictatorial Atomic Commitment
Problem

We define the Non-Blocking Dictatorial Atomic Commitment (NB-DAC) problem by the

DAC-Uniform-Agreement, DAC-Uniform-Integrity, and DAC-Termination properties of

the DAC problem (cf. Sections 3.1.2 and 3.5.2), and the following DAC-Uniform-Validity,

and DAC-Non-Blocking properties:

−−−− DAC-Uniform-Validity: If the coordinator does not crash, the decision value is

the coordinator’s proposed value.

−−−− DAC-Non-Blocking: Every correct participant eventually decides.

Just like AC-Non-Blocking, the DAC-Non-Blocking property is expressed in terms of

correct participants and not operational ones. This is mainly due to the fact that, in a

transactional context, operational participants that have crashed and later recovered should

decide through the associated recovery protocol rather than the commit protocol. As we

shall see later, it is precisely this feature that enables us to extend the applicability field of

Chandra & Toueg’s unreliable failure detectors model so as to solve the distributed commit

problem in asynchronous systems based on a crash-recovery model of computation.

5.3 NB-DAC in Synchronous Systems

Based on the system model described in Section 4.2.1, we propose in this section a

protocol, called Non-Blocking Coordinator Logical Log (NB-CLL), which solves the

NB-DAC problem in synchronous systems [AbP98a, AbP98b]. We then prove the

correctness of our protocol and compare its performances with existing non-blocking

protocols proposed in this context.

5.3.1 The NB-CLL Protocol

Failure-Free Execution

NB-CLL has exactly the same basic structure as the CLL protocol (cf. Section 3.5), and

differs only in the way decision messages are disseminated by the coordinator of the

transaction. To illustrate, recall that CLL (as well as all other 1PC variations) exploits a

basic 1PC protocol, which we defined in terms of the terminate() function in Figure 3.1.

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 84

P1

P2

P3

P4

P5

P6

 S-broadcast (commit)

decide

 S-broadcast (commit)

P1

P2

P3

P4

P5

P6

R-broadcast (commit)

decide

Figure 5.1: (a) The CLL protocol, and (b) the NB-CLL protocol.

During this function, the coordinator disseminates its decision message by

sequentially sending this message to each participant in the transaction. Once a

participant receives the coordinator’s decision, it immediately decides accordingly and

returns. This message diffusion corresponds exactly to the Simple Broadcast (SB)

primitive discussed in Section 4.2.3. For the sake of clarity, Figure 5.1(a) illustrates the

CLL protocol behavior based on SB, and assuming no failures occur during the protocol

execution. The set of participants is {P1, P2, P3, P4, P5, P6}, and the coordinator is P1.

Thus, just like 2PC, 1PC protocols (including CLL) lead to blocking situations

because of the unreliability of SB that allows faulty participants to deliver the

coordinator’s decision (and then crash), while all correct participants never deliver that

decision. If failures occur such that all correct participants are uncertain, they cannot

decide on the transaction even if they know that participants they cannot communicate

with have crashed. Indeed, any such decision might contradict the decision another

participant might have reached before crashing. Unlike 2PC, however, such blocking

scenarios are much more likely to occur in a 1PC protocol given that the uncertainty

period of a 1PC participant lasts all along the transaction execution.

CLL can thus be made non-blocking by substituting the SB primitive by a Uniform

Timed Reliable Broadcast (UTRB) that achieves uniform agreement on decision delivery

among participants [BaT93, HaT94] (cf. Section 4.2.3). Using UTRB guarantees that if

any participant, whether correct or not, delivers a decision message, then all correct

(a) (b)

5.3. NB-DAC IN SYNCHRONOUS SYSTEMS

 85

participants will deliver that message within ∆=(F + 1)δ time units after the time the

coordinator has initiated the broadcast18. Figure 5.1(b) illustrates the resulting protocol,

which we call Non-Blocking CLL (NB-CLL) [AbP98a, AbP98b], assuming no failures

occur during the protocol execution.

Dealing with Failures

Recall that in CLL, if a participant Pi times out while waiting for a transaction’s

operation or the final decision from the coordinator, it cannot unilaterally decide on the

transaction. In this case, Pi starts a termination protocol during which it tries to consult

with other participants that might have reached a decision or can unilaterally do so. If,

however, all the participants with which Pi can communicate are uncertain, Pi is blocked

inside the termination protocol.

By exploiting the properties of the UTRB primitive, NB-CLL eliminates such

undesirable scenarios. The idea is inspired from the ACP-UTRB protocol, and consists

on substituting the (blocking) termination protocol executed in response to the timeout

with an action that always enables a consistent decision to be reached at Pi. For this to

work, however, Pi needs a reliable and accurate detection of the crash of the coordinator

before it engages in the associated timeout action (otherwise, transaction atomicity would

be compromised). Whereas this issue is rather straightforward in 2PC − a participant

that times out waiting for the coordinator’s decision in response to its vote can safely

conclude that the coordinator has crashed 19 − it is less obvious in our 1PC context given

that a 1PC participant does not wait for the decision (or a transaction’s operation) as a

response to a message it has sent to the coordinator. Therefore, there is no mean by

which the participant can tell the moment at which the coordinator is supposed to

terminate the transaction and broadcast its decision. As a consequence, the timeout of a

1PC participant cannot be relied on to detect a coordinator crash: the coordinator can be

simply busy executing operations on other participants.

18 Recall that F denotes the maximum number of participants that may crash during the execution of the

commit protocol, while δ represents the upper bound on message processing and transport delay over a link.

19 Recall that in our model of synchronous system and reliable communication, if a 2PC participant does

not deliver the decision message within δ+ ∆ time units after sending its vote (where the value of ∆ depends

on the particular broadcast primitive that is used), it can safely conclude that the coordinator is faulty.

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 86

To overcome this problem, we propose to augment our synchronous system model

with an external failure detector mechanism by which crash failures are reliably detected

and reported to operational sites. In other words, each process Pi has access to a reliable

failure detector module RFDi, which maintains a list of those processes that have

crashed. Given our model of synchronous system and reliable communication, reliable

failure detectors can be easily implemented by means of timeouts. For instance, each failure

detector module RFDi can periodically query other processes in the system. If a process Pj

does not respond by the specified timeout, RFDi can safely conclude that Pj has crashed. In

the notations, Pj ∈ RFDi means that process Pi has detected the crash of process Pj.

In this context, our NB-CLL protocol, defined by the terminate() function in Figure

5.2, works as follows [AbP98a, AbP98b]. When a participant Pi detects a coordinator

crash, it sets its timeout to ∆= (F + 1)δ, which represents the upper bound on the time

delay needed for the decision message to reach every correct participant under UTRB.

On timeout, Pi takes a unilateral abort decision, safe in its knowledge that no other

participant could have received (and decided) commit.

To complete our discussion on failures, note that NB-CLL exploits our Coordinator

Logical Logging recovery mechanism described in Section 3.4.3. Therefore, participant’s

recovery is achieved in exactly the same way as in CLL, that is, using CLL’s recovery

procedure of Figure 3.2 (cf. Section 3.5.2).

5.3.2 Protocol Correctness

In this section, we show that our NB-CLL protocol presented in Figure 5.2 is correct and

non-blocking. This amounts to proving that it satisfies all of the five properties of the

NB-DAC problem.

Theorem 5.1. NB-CLL achieves the DAC-Uniform-Agreement property.

PROOF. For contradiction, assume that a participant Pi decides commit, while

another participant Pk decides abort. In NB-CLL, Pi can decide commit only at lines

7 and 13 following the delivery of a commit decision message. By the Uniform-

Integrity property of UTRB, the coordinator must have broadcast a commit decision

5.3. NB-DAC IN SYNCHRONOUS SYSTEMS

 87

function terminate ()

 Only the coordinator executes:

 1 decision: = proposition; // proposition ∈ {commit, abort}

2 R-broadcast (decision, participants);

 Every participant Pi executes:

3 wait until [R-deliver (decision) or coordinator ∈ RFDi]

4 if (coordinator ∈ RFDi) then
5 set time-out to ∆;
6 wait until [R-deliver (decision)]
7 decide (decision);

8 return;

9 on-timeout
10 decide (abort);

11 return;

12 else
13 decide (decision);

14 return;

Figure 5.2: The NB-CLL protocol.

message at line 2, say at real-time t
R-broadcast

. Participant Pk can decide abort at lines

7, 10, and 13. Since we have a single coordinator per transaction and since the

coordinator broadcasts only one decision for each transaction (at line 2), participant

Pk could not have delivered an abort decision, and hence, could not have decided

abort at lines 7 or 13. Therefore, Pk must have decided abort at line 10 following the

time-out expiration. In this case, Pk must have detected a coordinator crash. Assuming

that this detection occurs at real-time tcrash, the time-out expiration occurs at real-

time tcrash+∆. Since participant Pi has delivered a commit decision, this means that the

coordinator had broadcast a commit decision before it crashed. Thus, t
R-broadcast

< tcrash.

Furthermore, by the Uniform-Agreement and ∆-timeliness properties of UTRB, Pk

eventually delivers a commit decision as well, and it does so at most by real-time

t
R-broadcast

+∆. Since t
R-broadcast

< tcrash, Pk must have received the commit decision before

timing out. This contradicts the fact that Pk has executed line 10.

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 88

Theorem 5.2. NB-CLL achieves the DAC-Uniform-Validity property.

PROOF. Assume that the coordinator is correct. Since we consider a reliable failure

detector, then no participant could have detected a coordinator crash, and therefore,

no participant could have decided at line 7 or at line 10. Consequently, all participants

must have decided at line 13 following the delivery of the decision message, and this

message must have been broadcast by the coordinator at line 2 (by the Uniform-

Integrity property of UTRB). From lines 1 and 2 of the protocol, it is obvious that

the decision value broadcast by the coordinator is nothing but its proposition.

Consequently, the decision value of all participants is the coordinator’s proposed value.

Theorem 5.3. NB-CLL achieves the DAC-Uniform-Integrity property.

PROOF. From the structure of the protocol, it is obvious that every participant

decides at most once.

Theorem 5.4. NB-CLL achieves the DAC-Non-Blocking property.

PROOF. In NB-CLL, if the coordinator does not crash, then it eventually broadcasts

its decision to all participants by executing line 2. Consequently, every correct

participant eventually decides at line 13 following the delivery of the coordinator’s

decision message. On the other hand, if the coordinator crashes, then every

undecided (correct) participant will eventually detect the coordinator crash, in which

case, the participant executes the associated wait statement at line 6 after having set

its timeout. If the decision message being waited for is not received by the specified

time, the timeout expires and the participant decides abort at line 10; otherwise, the

participant decides on line 7 following the delivery of the decision message.

Therefore, every correct participant eventually decides.

Theorem 5.5. NB-CLL achieves the DAC-Termination property.

PROOF. To show that DAC-Termination is satisfied, we must consider participants’

recovery. Given that NB-CLL exploits the same recovery procedure as CLL, the

proof remains the same for both protocols (cf. Section 3.5.3).

5.4. NB-DAC IN ASYNCHRONOUS SYSTEMS

 89

Message Complexity
 point-to-point network broadcast network

Latency
 Time complexity Log Complexity

3PC 5n 2n + 3 5 2n + 1

ACP-UTRB 2n+n
2
 2n + 1 3 2n + 1

NB-CLL n
2
 n 1 n + 1

Figure 5.3: The cost of transaction commit under 3PC, ACP-UTRB, and NB-CLL.

5.3.3 Performance Evaluation

In this section, we examine the cost for non-blocking under the NB-CLL protocol, and

compare its performances with previously discussed non-blocking protocols proposed in

the same context, namely 3PC and ACP-UTRB. Figure 5.3 summarizes the performances

of the protocols in terms of latency and message complexity needed to commit a

transaction . We denote by n the total number of participants in the transaction.

By sharing the same basic structure with CLL, NB-CLL drastically reduces the time

and log complexities of both 3PC and ACP-UTRB, thereby reducing transaction

response times. Furthermore, we note that although NB-CLL achieves non-blocking at

the expense of a quadratic number of messages exchanged under a point-to-point

network, it still maintains message complexity far below that of ACP-UTRB, and with a

reasonable number of participants (i.e., n < 5) or in the case of a broadcast network, even

below that of 3PC, thus providing the best tradeoff between performance and fault-

tolerance.

5.4 NB-DAC in Asynchronous Systems

Our NB-CLL protocol described in the previous section provides both safety and liveness

guarantees, assuming a synchronous system and reliable communication. Just like 3PC

and ACP-UTRB, however, NB-CLL may lead participants to reach inconsistent decisions

if either of these assumptions is not satisfied, thus compromising transaction safety. To

avoid such inconsistencies, and based on the asynchronous system model defined in

Section 4.3.1, we study in this section the NB-DAC problem in asynchronous

environments. In particular, we propose a new non-blocking extension to CLL, called

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 90

Asynchronous Non-Blocking Coordinator Logical Log (ANB-CLL), which always

guarantees transaction safety, while providing liveness guarantees in asynchronous

systems with reliable communication and unreliable failure detectors [AbP99].

In contrast with existing fault-tolerant protocols proposed in this context, ANB-CLL

achieves non-blocking in asynchronous environments in which processes may crash and

later recover. Indeed, by exploiting the recovery semantics of the distributed commit

problem, we show that the previous results of Chandra & Toueg on solving (Uniform)

Consensus in asynchronous systems assuming a crash-stop failure model [Cha93,

ChT96] can be adapted to a transactional context so as to provide fault-tolerant solutions

to the distributed commit problem in asynchronous systems based on a crash-recovery

failure model of computation.

5.4.1 On the Solvability of NB-DAC

Recall from Section 5.2 that the NB-DAC problem is defined by the DAC-Uniform-

Agreement, DAC-Uniform-Integrity, DAC-Termination and DAC-Non-Blocking

properties, and the following DAC-Uniform-Validity property:

−−−− DAC-Uniform-Validity: If the coordinator does not crash, then the decision

value is the coordinator’s proposed value.

This property is of particular importance as it reflects the dictatorial aspect of the

NB-DAC problem as opposed to the classical NB-AC problem  unless the coordinator

crashes, the decision value must only be determined by the coordinator. Clearly, this

property is too strong in the context of asynchronous systems since it requires a precise

knowledge about the occurrence of a coordinator crash, thus making the NB-DAC

problem rather unattainable.

To illustrate, assume that the coordinator crashes before sending its decision to the

participants. In this case, participants can neither wait indefinitely for the coordinator’s

decision (otherwise, DAC-Non-Blocking would be violated), nor can they take a

unilateral decision unless they know that the coordinator is indeed faulty (otherwise,

DAC-Uniform-Validity would be compromised). Since unreliable failure detectors can

5.4. NB-DAC IN ASYNCHRONOUS SYSTEMS

 91

never provide participants with such a precise knowledge about the crash of the

coordinator, it follows that NB-DAC cannot be solved in asynchronous systems with

unreliable failure detectors.

However, by weakening the DAC-Uniform-Validity condition, and following the

approach proposed in [Gue95], we define in the next section the Non-Blocking Weak

Dictatorial Atomic Commitment (NB-WDAC) problem that is better suited to

asynchronous environments.

5.4.2 The Non-Blocking Weak Dictatorial Atomic Commitment

Problem

We define the Non-Blocking Weak Dictatorial Atomic Commitment (NB-WDAC)

problem by the DAC-Uniform-Agreement, DAC-Uniform-Integrity, DAC-Termination, and

DAC-Non-Blocking properties of the DAC problem, and the following DAC-Weak-

Uniform-Validity property:

−−−− DAC-Weak-Uniform-Validity: If the coordinator is not suspected, then the

decision value is the coordinator’s proposed value.

Note that, although weaker than its original version (i.e., participants are allowed to

decide unilaterally on the transaction if the coordinator is suspected to have crashed), this

new property still maintains the dictatorial aspect of NB-DAC, while making the NB-

WDAC problem solvable in asynchronous systems with unreliable failure detectors.

5.4.3 NB-(WD)AC in the Crash-Recovery Model

As we have seen in the previous chapter, the results of Chandra & Toueg on solving

(Uniform) Consensus with unreliable failure detectors [Cha93, CT96] have constituted

the bases for the construction of fault-tolerant solutions to the distributed commit

problem in asynchronous environments. Indeed, by encapsulating failure suspicions

scenarios within a uniform consensus protocol, non-blocking commit protocols have

started to emerge in this context [GuS95, GLS96] (cf. Sections 4.3.6 and 4.3.7).

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 92

However, given that the consensus protocols proposed in [Cha93, CT96] have been

devised assuming a crash-stop failure model, existing non-blocking commit protocols

that build on these works follow the same assumption, and hence do not support process

recovery. Whereas this assumption indeed makes sense in environments where process

decisions are used to trigger some actions within a critical real-time deadline20 (i.e.,

there is no time to wait for crashed processes to recover and decide, so faulty processes

are simply ignored) [Had90], it is definitely unacceptable in a transactional context

where process recovery is an inherent feature, and where the decision of faulty processes

must be taken into account if transaction atomicity is to be preserved. This requirement is

even intrinsic to the specification of the distributed commit problem and is expressed in

terms of the (D)AC-Termination property (cf. Sections 2.3.2 and 3.5.2), which states that

once a crash failure is repaired, the recovering participant must attempt to reach a

consistent decision  if not immediately, then once enough failures are repaired.

In light of the above discussion, a fundamental question is then whether Chandra &

Toueg’s results on solving Consensus in asynchronous systems assuming a crash-stop

failure model [Cha93, CT96] can be exploited to devise non-blocking solutions to the

distributed commit problem (in its various forms) in asynchronous systems in which

processes may crash and later recover.

In contrast with initial intuition, and based on the (D)AC-Non-Blocking property, we

show that the answer to this question is “Yes” [AbP99]. To illustrate, recall that (D)AC-

Non-Blocking requires that “every correct participant eventually decides”. The fact that

this property is expressed in terms of correct participants and not operational ones

means that an operational participant that has crashed and later recovered is not allowed

to participate again in the execution of the commit protocol. Instead, recovering

participants have to decide through the associated recovery protocol rather than the

commit protocol.

Seen in this light, the following idea for exploiting the results in [Cha93, CT96] in

our transactional context while taking into account participants’ recovery suggests itself.

When failure suspicions occur during the execution of the commit protocol, a uniform

20 Examples are process control systems for power plants, air traffic control, etc.

5.4. NB-DAC IN ASYNCHRONOUS SYSTEMS

 93

consensus protocol is launched in order to terminate the transaction in a non-blocking

way at all correct participants. If, however, a participant Pi crashes while executing the

uniform consensus protocol, it will not be allowed to participate again in the protocol

execution in case it recovers from its crash. Instead, Pi will try to decide on the transaction

inside its recovery procedure. Therefore, upon recovering, Pi informs all other participants

in the transaction that, although operational, it is faulty and hence has to be excluded from

any consensus protocol execution. As far as uniform consensus is concerned, this approach

reduces the problem to the case where process crashes are permanent.

We conclude that the uniform consensus protocols described in [Cha93, CT96] can

be adapted to our transactional context so as to provide non-blocking solutions to the

distributed commit problem, while taking into account participants’ recovery.

5.4.4 The ANB-CLL protocol

Based on the above results, we propose in this section the Asynchronous Non-Blocking

Coordinator Logical Log (ANB-CLL) protocol, which solves the NB-WDAC problem in

asynchronous systems assuming any unreliable failure detector of class <>S and a

majority of correct participants [AbP99].

ANB-CLL: Overview

Just like NB-CLL, ANB-CLL can be viewed as a non-blocking extension to CLL. Unlike

NB-CLL, however, ANB-CLL necessitates an additional communication step so that a

commit decision can be reached at every correct participant. As illustrated in Figure 5.4,

ANB-CLL operates in two communication steps. During the first step of the protocol, if the

coordinator’s proposition is commit 21, the coordinator sends a start-pre-commit message to

all participants. In step 2, when a participant receives start-pre-commit from the

coordinator, it sends a pre-commit message to all. Finally, when a participant receives pre-

commit from all, it decides commit. Note that a participant that decides on the transaction

21 Recall that the coordinator’s proposition is commit if (1) it has received acknowledgment messages for

all the transaction’s operations, and (2) it has succeeded in saving these operations on stable log.

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 94

needs to forward its decision to all other participants. This actually ensures that if a correct

participant reaches a decision, then all correct participants also reach a decision.

This describes the protocol assuming the coordinator proposes commit, and no

participant is suspected to have crashed during the protocol execution. If, during step 1,

the coordinator proposes abort, then it sends an abort decision to all participants in the

transaction and decides abort. All failure suspicion scenarios are handled within a

uniform consensus protocol used as a termination protocol, enabling a consistent

decision to be reached at every correct participant in a non-blocking way. More

precisely, if during step 1, a participant Pi suspects the coordinator, Pi starts a uniform

consensus protocol with abort as its initial value (at this point, the participant does not

know whether the transaction has been successfully executed, i.e. all the transaction’s

operations have been acknowledged and the coordinator has force-written its log on

stable storage). In step 2, if a participant Pi suspects any other participant, it starts a

uniform consensus protocol with commit as its initial value (at this point, Pi knows that

the transaction has been successfully executed).

ANB-CLL: Detailed Description

The ANB-CLL protocol is defined by the terminate() function described in Figure 5.5.

This function consists of two concurrent tasks, Task 1 and Task 2, and terminates by the

execution of a return (decision) statement, by which the participant decides the value

“decision” (and stops). To deal with failure suspicions, a uniform consensus protocol

defined by the uniform-consensus() function is employed as a termination protocol. We

assume that every participant Pi has access to a local failure detector module FDi that

informs it of the list of participants that it currently suspects to have crashed. In the

notations, Pj ∈ FDi means that participant Pi suspects participant Pj. Task 1 implements

the main protocol, while Task 2 is used in order to ensure that if a correct participant

receives the decision message, then all correct participants eventually receive this

message. The main protocol operates in two steps as follows (Task 1):

5.4. NB-DAC IN ASYNCHRONOUS SYSTEMS

 95

P1

P2

P3

P4

P5

P6

 start-p re-commit commit

 decide

 pre-commit

Figure 5.4: The ANB-CLL protocol.

During step1 (lines 1-10), if the coordinator’s proposition is abort (line 1), then the

coordinator sends an abort decision message to all (line 2), and decides abort (line 3);

otherwise, the coordinator sends a start-pre-commit message to all (line 4). Each

participant Pi waits until (i) it receives a start-pre-commit message from the coordinator,

or (ii) it suspects the coordinator (line 5). In case (ii), Pi asks all other participants to start

a uniform consensus protocol by sending a start-consensus message to all (line 7), then

Pi starts a uniform consensus with abort as its initial value (line 8). When the uniform

consensus protocol returns a decision, Pi decides accordingly (line 9); In case (i), Pi sends

a pre-commit message to all (line 10), and proceeds to step 2 of the protocol.

During step 2 (lines 11-17), each participant Pi waits until (i) it receives a pre-

commit message from all, or (ii) it receives a start-consensus message, or (iii) it suspects

another participant (line 12). In case (i) Pi sends a commit decision message to all (line

16), and decides commit (line 17). In cases (ii) and (iii) (line 13), Pi starts a uniform

consensus protocol with commit as its initial value (line 14). When the uniform

consensus protocol returns a decision, Pi decides accordingly (line 15).

During Task 2 (lines 18-20), a participant Pi waits until it receives a decision

message (line 18), sends the decision to all (line 19), and decides upon this decision (line

20).

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 96

function terminate()

// Task1

Only the coordinator executes:

1 If proposition = abort then
2 send (abort) to all participants;

3 return (abort); // decide abort

4 send (start-pre-commit) to all participants; // proposition = commit

// Every participant Pi executes:

5 wait until [received (start-pre-commit) from coordinator or coordinator ∈ FDi];

6 if coordinator ∈ FDi then

7 send (start-consensus) to all participants;

8 decision := uniform-consensus(abort);

9 return (decision); // decide decision

10 send (pre-commit) to all participants;

11 for every participant Pj in the transaction:

12 wait until [received ((pre-commit) or (start-consensus)) from Pj or Pj ∈ FDi];

13 if received (start-consensus) from Pj or Pj ∈ FDi then

14 decision := uniform-consensus(commit);

15 return (decision); // decide decision

16 send (commit) to all participants;

17 return (commit); // decide commit

// Task2

18 wait until [received (decision) from any Pj];

19 send (decision) to all participants;

20 return (decision); // decide decision

Figure 5.5: The ANB-CLL protocol.

5.4. NB-DAC IN ASYNCHRONOUS SYSTEMS

 97

5.4.5 Protocol Correctness

In this section, we show that our ANB-CLL protocol presented in Figure 5.5 is correct

and non-blocking. This amounts to proving that it satisfies all of the five properties of the

NB-WDAC problem.

Theorem 5.6. ANB-CLL achieves the DAC-Uniform-Validity property.

PROOF. Assume that no participant suspects the coordinator during the protocol

execution. Since a participant can decide commit (resp., abort) in Task 2 only if

some participant has decided commit (resp., abort) in Task 1, we only need to show

that (i) if the coordinator’s proposition is commit, then no participant can decide

abort in Task 1, and (ii) if the coordinator’s proposition is abort, then no participant

can decide commit in Task 1.

Case (i): For contradiction, assume that a participant Pi decides abort in Task 1.

In Task 1, a participant can decide abort only at lines 3, 9, and 15. Since no

participant suspects the coordinator, then Pi could not have decided abort at line 9.

To decide abort at line 3, Pi must be the coordinator of the protocol. For the

coordinator to reach line 3, its proposition must be abort: a contradiction. To decide

abort at line 15, Pi must have gotten abort as the outcome of the uniform consensus

of line 14. By the C-Uniform-Validity property of uniform consensus, some

participant Pj must have started uniform consensus with abort as its initial value at

line 8. For Pj to reach line 8, Pj must have suspected the coordinator at line 5: a

contradiction with the assumption that no participant suspects the coordinator.

Therefore, no participant can decide abort in Task 1.

Case (ii): For contradiction, assume that a participant Pi decides commit in

Task 1. In Task 1, Pi can decide commit only at lines 9, 15, or 17. Since no

participant suspects the coordinator, then Pi could not have decided commit at line 9.

Hence, Pi must have decided commit at lines 15 or 17. For Pi to reach lines 15 or 17,

Pi must have received a start-pre-commit message from the coordinator (line 5).

This means that the coordinator must have executed line 4. For the coordinator to

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 98

execute line 4, the coordinator’s proposition must be commit: a contradiction. Thus,

no participant can decide commit in Task 1.

Theorem 5.7. ANB-CLL achieves the DAC-Uniform-Agreement property.

PROOF. A participant can decide commit (resp. abort) in Task 2 only if some

participant has decided commit (resp. abort) in Task 1. We show that no two

participants can decide differently in Task 1. In Task 1, a participant can only decide

at lines 3, 9, 15, and 17. We have to consider two cases: (i) the coordinator decides

(abort) at line 3, or (ii) the coordinator does not decide at line 3.

Case (i): In this case, the coordinator does not execute line 4, and hence does

not send start-pre-commit to all. Therefore, no participant decides at lines 15 or 17.

Thus, every participant (that decides) decides at line 9 following the execution of

the uniform consensus (of line 8) with abort as initial value. By the C-Uniform-

Validity property of uniform consensus, every participant (that decides) decides abort.

Case (ii): There are two sub-cases to consider: (a) no participant suspects the

coordinator during step 1, or (b) at least one participant Pi suspects the coordinator

during step 1. In (b), Pi starts a uniform consensus with abort as its initial value

(line 8), and thus, does not send a pre-commit message to all. This means that no

participant can decide at line 17, since the pre-commit message of Pi is missing.

Consequently, every participant (that decides) decides either at line 9 or at line 15

following the execution of the uniform consensus (started either at line 8 or at line

14). By the C-Uniform-Agreement property of the uniform consensus, no two

participants decide differently. In (a), no uniform consensus is started (at line 8)

with abort as initial value. By the C-Uniform-Validity condition of uniform

consensus, no participant decides abort at line 15. Hence, every participant (that

decides) decides commit, either at line 15 or at line 17.

Theorem 5.8. ANB-CLL achieves the DAC-Non-Blocking property (assuming a

failure detector of class <>S, and a majority of correct participants).

PROOF. We consider two cases: (i) at least one correct participant does not execute

step 2, and (ii) all correct participants execute step 2.

5.4. NB-DAC IN ASYNCHRONOUS SYSTEMS

 99

Case (i): Assume that the coordinator crashes. By the strong completeness

property of <>S, every correct participant eventually suspects the coordinator. If,

however, the coordinator is correct, then it eventually sends either (a) a start-pre-

commit message to all (line 4) or (b) an abort decision message to all (line 2). In (a),

if the coordinator sends a start-pre-commit message to all (line 4), then every

correct participant executing the wait statement at line 5 eventually receives this

message (by the reliable communication assumption). Therefore, if a participant Pi

does not execute step 2, then Pi must have suspected the coordinator in step 1, in

which case, Pi sends a start-consensus message to all participants (line 7) and starts

uniform consensus (line 8). Since Pi does not execute line 10, correct participants that

have reached step 2 do not receive the pre-commit of Pi. Hence, either they receive the

start-consensus message of Pi (reliable communication), or they suspect another

participant. In both cases, every correct participant in step 2 eventually starts uniform

consensus (line14). Since we assume a majority of correct participants, and by the C-

Non-Blocking property of uniform consensus, every correct participant eventually

decides. In (b), if the coordinator sends an abort decision message to all (line 2), then

every correct participant that has not decided yet eventually receives this message

(reliable communication), and decides accordingly (at line 20 of Task 2).

Case (ii): In this case, either some correct participant receives pre-commit from

all, or no correct participant receives pre-commit from all. If some correct

participant in step 2 receives pre-commit from all, then this participant sends commit

to all (line 16), and decides commit (line 17). Hence, every correct participant that

has not decided yet eventually receives the commit decision message (by the reliable

communication assumption) and decides commit (at line 20 of Task 2). The case

where no correct participant receives pre-commit from all is subtler: all correct

participants execute step 2 means that all correct participants sent their pre-commit

to all. If all participants are correct, then all correct participants receive pre-commit

from all due to reliable communication: a contradiction. It follows that some

participants are not correct. By the strong completeness property of <>S, all correct

participants eventually suspect another participant (line 12). Thus, every correct

participant in step 2 eventually starts uniform consensus (line 14). Since we assume

a majority of correct participants, then a majority of correct participants eventually

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 100

start uniform consensus. Again, by the C-Non-Blocking property of uniform

consensus, every correct participant eventually decides.

Theorem 5.9. ANB-CLL achieves the DAC-Uniform-Integrity property.

PROOF. From the structure of the protocol, it is clear that every participant decides

at most once (either in Task 1 or in Task 2).

Theorem 5.10. ANB-CLL achieves the DAC-Termination property.

PROOF. To show that DAC-Termination is satisfied, we must consider participants’

recovery. Given that ANB-CLL exploits the same recovery procedure as CLL (and

NB-CLL), the proof remains the same for both protocols (cf. Section 3.5.3).

5.4.6 Performance Evaluation

In this section, we examine the cost for non-blocking under the ANB-CLL protocol, and

compare it with existing non-blocking protocols proposed in the same context, namely

DNB-AC and MD3PC. Figure 5.6 summarizes the performances of the protocols in terms

of latency and message complexity needed to commit a transaction . We denote by n the

number of participants in the transaction and by f the number of crash failures to be

tolerated, where f < n / 2.

By exploiting the 1PC approach to distributed transaction commit, ANB-CLL

reduces the time complexity of both DNB-AC and MD3PC from 3 communication steps

to 2, thus reducing transaction response times.

Regarding message complexity, we distinguish two cases: (1) with a broadcast

network, and (2) without a broadcast network. In case (1), with 6 participants (n = 6) and

a resiliency rate of 1 (f = 1), DNB-AC requires 114 messages, whereas both MD3PC

and ANB-CLL require 78 messages. In case (2), DNB-AC requires 19 messages, MD3PC

requires 16 messages, and ANB-CLL requires 13 messages. To illustrate further, assume

now that n = 12 and f = 2. In case (1), DNB-AC requires 444 messages, MD3PC

requires 276 messages, while ANB-CLL requires 300 messages. In case (2), DNB-AC

requires 37 messages, MD3PC requires 30 messages, and ANB-CLL requires 25 messages.

5.5. DISCUSSION

 101

Message Complexity
 point-to-point network broadcast network

Latency
 Time complexity Log Complexity

DNB-AC n + 3n
2
 3n + 1 3 --

MD3PC n (4 f + 3) + n
2
 2 (n + f + 1) 3 --

ANB-CLL n + 2n
2
 2n+ 1 2 n+ 1

Figure 5.6: The cost of transaction commit under DNB-AC, MD3PC, and ANB-CLL.

To summarize, we note that, independently of the number of participants in a

transaction, ANB-CLL reduces the message complexity of DNB-AC under both types of

networks, and that of MD3PC when a broadcast network is used. In case of a point-to-

point network, if the number of participants exceeds 6 (i.e., n > 6), more messages need

to be exchanged in ANB-CLL than in MD3PC. This is rather not surprising given that in

MD3PC, the sub-protocol required for non-blocking is executed only by a subset of the

participants in the transaction, and the cardinality of this subset depends on the number

of failures to be tolerated. Although in real-world transactional applications the number of

participants rarely exceeds 6, we can perfectly apply this optimization to ANB-CLL so as to

trade the resiliency of the protocol with the number of messages exchanged, thus making its

message complexity always below that of MD3PC: in this case, (n+1) + (2 f+1) + n
2
 (resp.

n + 2f + 2) messages would be needed assuming a point-to-point network (resp. a broadcast

network), making a total of 209 (resp. 18) messages, with n = 12 and f = 2. This gives

ANB-CLL the best overall performances among the three discussed protocols.

Like DNB-AC and MD3PC, our ANB-CLL protocol achieves non-blocking in

asynchronous systems assuming reliable communication, any unreliable failure detector of

class <>S, and a majority of correct participants. If these assumptions are not satisfied, our

protocol might block, but never leads two participants to decide on different outcomes.

5.5 Discussion

The work presented in this chapter originated from the observation that, in today’s

transactional systems and applications, high performance and fault-tolerance are crucial

requirements of equal importance.

CHAPTER 5. NON-BLOCKING DICTATORIAL ATOMIC COMMITMENT

 102

Based on this observation, and given the high efficiency of the 1PC approach to

distributed transaction commit, we were prompted to investigate fault-tolerant solutions

to the Dictatorial Atomic Commitment problem. This led us to propose two non-blocking

extensions to CLL, our 1PC variation, which provide transaction liveness guarantees

under the two extremes of a spectrum of possible system models, namely synchronous

and asynchronous systems. The resulting protocols, which we called NB-CLL and ANB-

CLL, blend the efficiency of 1PC with fault-tolerance. The importance of this work is

further emphasized by the fact that, compared to 2PC, 1PC increases the probability to

blocking of the participating sites in case of failures.

The advantages of NB-CLL and ANB-CLL over other non-blocking protocols

proposed in the literature are not only performance issues. By combining the 1PC

approach with our CLL’s recovery mechanism, our protocols are able to cope with

existing systems without violating their autonomy  be they or not 2PC compliant.

Furthermore, by adapting Chandra & Toueg’s consensus protocols [Cha93, CT96]

to the transactional context, and based on the recovery semantics of the distributed

commit problem, ANB-CLL achieves non-blocking in asynchronous systems assuming a

crash-recovery failure model. To the best of our knowledge, it is the first time that fault-

tolerant solutions to the distributed commit problem have been devised for asynchronous

systems in which processes may crash and later recover. With all these features, ANB-

CLL is able to meet the fundamental requirements of today’s real-world transactional

systems and applications.

��

Part III

Pragmatic Implementation

 105

Chapter 6

The ANB-CLL Prototype

In this chapter, we show how to put our theoretical results into practice by presenting a

way by which 1PC can be exploited in current transactional standards and products,

initially designed with 2PC in mind. To do so, we first give an overview of well-

established TP standards promoted by ISO, X/Open, and OMG, which have gained

widespread acceptance and commercial product support. We then show how our ANB-

CLL protocol, discussed in the previous chapter, can be smoothly integrated into these

standards through a prototype design and implementation achieved in the context of this

thesis.

6.1 Transactional Standards

This section recalls some background related to the ISO OSI-TP protocol, X/Open DTP

model, and OMG’s OTS service.

6.1.1 The ISO OSI-TP Protocol

OSI-TP (Open Systems Interconnection - Transaction Processing) [ISO92a] is a

transactional protocol defined by ISO (International Standardization Organization), which

guarantees interoperability between different transactional components (e.g., TP

monitors) involved in the commitment of a distributed transaction. More precisely, OSI-

TP defines (i) a standard communication protocol for establishing and managing dialogs

between participants in a transaction, (ii) a standard two-phase commit (2PC) protocol,

and (iii) a standard failure management and recovery protocol.

CHAPTER 6. THE ANB-CLL PROTOTYPE

 106

As far as atomic commitment is concerned, OSI-TP integrates several optimizations

of basic 2PC, namely the Presumed Abort (PrA) (cf. Section 2.4.1), Read-Only (cf.

Section 2.4.4), and One Phase Commit optimizations. We caution the reader that the

latter is not to be confused with our 1PC concept as it has totally different semantics  it

is rather intended to optimize the cost of commit processing in case of mono-site

transactions, i.e., when there is only one participant in the transaction.

Given that 2PC is a blocking protocol, a heuristic decision concept has been also

adopted in order to resolve blocking situations that may arise in case of failures. More

precisely, if a coordinator crash occurs, an uncertain participant can unilaterally commit

or abort the transaction rather than waiting for the coordinator to recover. Upon

recovery, if the coordinator’s final decision contradicts the participant’s heuristic

decision, a manual procedure is launched to reestablish a global consistent state. Thus,

non-blocking is obtained at the expense of data consistency.

6.1.2 The X/Open DTP Model

The DTP (Distributed Transaction Processing) model [X/Open93] is a transactional

standard promoted by X/Open, which aims at providing standard interfaces between

transactional components so as to make them portable. This model distinguishes four

software entities that participate in the execution of a transaction: (i) an Application

Program (AP) is an arbitrary program that implements the desired function of the end-

user application, and accesses shared resources within the scope of a transaction, (ii) a

Resource Manager (RM), (e.g., a Database Management System, or simply DBMS),

manages shared resources and guarantees the consistency of data it is in charge of, (iii) a

Transaction Manager (TM) (e.g., a TP-Monitor) coordinates atomic transaction

completion at all RMs accessed by a transaction, and manages failure recovery, and (iv) a

Communication Resource Manager (CRM) facilitates interoperability between different

instances of the DTP model by managing communication between distributed and

potentially heterogeneous TMs located in different domains, and provides portable APIs

for DTP communication between several APs.

6.1. TRANSACTIONAL STANDARDS

107

Application
Program (AP)

Transaction
Manager (TM) Resource

Manager (RM)

Native Interface
(ex. SQL)

TX

XA

tx_begin,
tx_commit,
tx_rollback,
... ,

xa_start,
xa_prepare,
xa_commit,
xa_rollback,
xa_recover,
...

Communication Resource
Manager (CRM)

XA+

XATMI
TxRPC
CPI-C

Communication Facility

OSI-TP

Xap-Tp

Figure 6.1: X/Open DTP model.

Figure 6.1 illustrates the functional components of a local instance of a DTP system.

Typically, an AP accesses the TM through the TX interface in order to begin/commit/abort

a transaction, and accesses RMs through their native interface (e.g., SQL). When the AP

requests the TM to commit a transaction, the latter acts as the coordinator of the commit

protocol during which it directs the different participating RMs for a commit or an abort

through their XA interface. As defined in OSI-TP, the commit protocol adopted in the

X/Open DTP model is the PrA 2PC protocol, together with the Read-Only and One Phase

Commit optimizations.

In case several distributed (possibly) heterogeneous TMs are involved in the

execution of the same transaction, they communicate through their respective CRMs

using the OSI-TP protocols in order to exchange DTP information and application data

(Figure 6.1). Thus, X/Open DTP ensures the portability of transactional components

while OSI-TP ensures their interoperability.

6.1.3 The OMG Object Transaction Service

Oriented towards the object world, OMG (Object Management Group) has specified a

transactional standard, named OTS (Object Transaction Service) [OMG00a], based on

the CORBA architecture ratified by the members of OMG [OMG00b].

CHAPTER 6. THE ANB-CLL PROTOTYPE

 108

Transactional Server

Transaction Service

 Transactional
Client

beginTrans,
Commit,
Rollback

may force
Rollback

register resource,
may force rollback,

recovery actions
 2PC actions

Trans. op.

Recoverable Server

 Trans. op.

Distributed Client/Server Application

RO

Resource

 TO

Figure 6.2. OMG’s OTS architecture.

Simply stated, CORBA provides a distributed object-oriented infrastructure that

allows objects to communicate across boundaries such as the network, the specific

language in which they were written or the platform on which they are deployed. The

communication heart of the CORBA architecture is the Object Request Broker (ORB)

that acts as the object bus over which objects transparently interact with other remote

objects. OTS brings the notion of distributed transactions to the CORBA world.

OTS Architecture

As illustrated in Figure 6.2, the CORBA OTS model distinguishes six main entities that

participate in the execution of a transaction: (i) a Transactional Client (TC) is an

arbitrary program that invokes operations on transactional objects within the scope of a

transaction, (ii) a Transactional Object (TO) is an application object whose behavior is

affected by being invoked within the scope of a transaction, (iii) a Recoverable Object

(RO) is an application object that directly manages persistent data whose state is subject

to change during the course of a transaction, and thus must participate in the 2PC

protocol defined by OTS22, (iv) a Transactional Server is a collection of one or more

transactional (but not recoverable) objects, (v) a Recoverable Server is a collection of

22 In accordance with OSI-TP and X/Open DTP, the commit protocol defined in OTS is the PrA

variation of basic 2PC, together with the Read-Only and One Phase Commit optimizations.

6.1. TRANSACTIONAL STANDARDS

109

objects, at least one of which is recoverable, and (vi) the Transaction Service coordinates

all the transactions in the system, and drives the 2PC protocol.

A Recoverable Object participates in the 2PC protocol by registering an object

called Resource with the Transaction Service. The Resource object implements the 2PC

protocol as a participant on behalf of the Recoverable Object in order to update the

Recoverable Object’s data resources in accordance with the transaction outcome. At

transaction end, the Transaction Service drives the 2PC protocol by issuing requests to

all the resources registered for the transaction.

Note that even though a Recoverable Object is by definition a Transactional Object,

an object can be Transactional but not Recoverable, in which case it does not directly

manage persistent data, but rather, it invokes operations on some other Recoverable

Object(s). Consequently, Transactional objects that are not Recoverable do not

participate in the 2PC protocol; however, they may force the rollback of the transaction.

Principal OTS Interfaces

In OTS, a transaction is managed by a set of CORBA objects, each having a standard

interface defined in terms of the OMG’s Interface Definition Language (IDL). Figure 6.3

illustrates the key interfaces defined in OTS together with the major components using

them. These interfaces are discussed below:

• Current interface: provides application objects with a transparent access to the

Transaction Service. It can be used to begin, commit, or rollback a transaction, and

to get information about the current transaction.

• Transaction Factory interface: allows the Transactional Client to begin a transaction.

• Control interface: can be viewed as the handle to the transaction. More precisely,

it provides access to two other interfaces that control the transaction life cycle,

namely the Coordinator and the Terminator interfaces, thus enabling the

application to interact directly with the Transaction Service objects.

• Coordinator interface: provides operations used by participants in a transaction, and

supports mechanisms to coordinate transaction termination at these participants.

• Terminator interface: provides operations to commit or rollback a transaction.

CHAPTER 6. THE ANB-CLL PROTOTYPE

 110

 Transactional
Client

RO

Recoverable Server

Transaction

Context

Transaction Service Transaction

Context

TransactionFactory

Control

Coordinator

Terminator

Current

Control

Coordinator

Recovery-

Coordinator
Current

Resource

Subtransaction-

AwareResource

Distributed Client/Server Application

Resource XA

 SQL/OQL
DBMS

X/Open RM

Figure 6.3. Key interfaces in OTS.

• Resource interface: defines the operations invoked by the Transaction Service to

complete a transaction on a resource following the 2PC protocol. This interface

can be used to wrap non-CORBA resources to the CORBA domain so that they

can participate in a CORBA transaction.

• Recovery Coordinator interface: is used by Recoverable Objects to drive the

recovery process in case of failures.

• Subtransaction Aware Resource interface: is a specialization of the Resource

interface, used by Recoverable Objects that support the nested transaction behavior.

It is very important to note that one of the major goals of the OTS specification is to

allow legacy TP-based systems to participate in an OTS transaction. In particular, OTS is

designed to interact with X/Open DTP-compliant Resource Managers, or simply RMs

(Figure 6.3). This actually means that OTS Recoverable Objects can use X/Open RMs

interfaces (e.g., SQL) and access the data resources they manage within the scope of an

OTS transaction. In this case, the registered Resource object represents the accessed RM

as a participant in the transaction completion. Recall that X/Open RMs can participate in

a distributed transaction by allowing their 2PC protocol to be controlled via the XA

interface (cf. Section 6.2). Therefore, to complete a transaction, the Transaction Service

drives the commit protocol by issuing 2PC requests on the registered Resource, while the

Resource drives the RM through its XA interface as we further detail in the following.

6.1. TRANSACTIONAL STANDARDS

111

(1) create

(2) Service Invocation

 (4) commit
Factory

Coordinator Terminator

Transactional
Client

Recoverable Server

Recoverable

Transaction Service

D
B
M
S

 (6) xa_prepare

Resource (7) XA_OK

(10) xa_commit /
 xa_rollback

(5) prepare

(3) register_resource
(8) VoteCommit

(9) commit/
 rollback

Control

Figure 6.4: OTS execution flows using direct transaction management.

Typical Usage

In OTS, client applications manage their transactions either directly or indirectly.

• With direct transaction management, the client application directly accesses and

manipulates the Transaction Service objects that represent the transaction (i.e.,

Transaction Factory, Control, Terminator, Coordinator, etc.). Figure 6.4

illustrates a typical OTS transaction execution using the direct mode. The

Transactional Client starts a transaction using a Transaction Factory object. A

Control object is returned, which provides access to a Terminator and a

Coordinator. Then, the client starts sending requests to the Recoverable Server,

and includes in each of its requests the transaction context23, which can be

obtained from the Coordinator object. On receipt of a service request, the

Recoverable Server registers a Resource object with the Coordinator. At

transaction end, the client uses the Terminator object to commit or rollback the

transaction. On a commit request, the Transaction Service starts the 2PC protocol

by issuing requests to all the Resources registered with the Coordinator.

23 An OTS transaction context generally contains the object reference to the transaction Coordinator

together with a unique global transaction identifier.

CHAPTER 6. THE ANB-CLL PROTOTYPE

 112

ORB

Transaction Service

Factory
Control

Terminator

Coordinator

Current

Current

Application object

Figure 6.5: Indirect transaction management mode.

• With indirect transaction management, the set of OTS interfaces are hidden by the

Current pseudo object, which provides a fully transparent access to OTS. Figure

6.5 illustrates the role of the Current object and its relation with application

objects and the Transaction Service objects. Requests from the application object

to the Current pseudo object are local requests. The Current interacts with the

Transaction Service objects through the ORB as an application object using direct

transaction management mode. Thus, the Current can be viewed as a high level

API that hides the location of the Transaction Service and the set of its interfaces.

6.1.4 OTS and DTP Compared

OTS can be seen as an object redefinition of the X/Open DTP model. It brings the

transaction paradigm and the object paradigm together, thus promoting reliable,

modular, reusable and evolutionary object-based software components. Most

importantly, OTS has been designed to be compatible with well-established transactional

standards, thus enabling the integration and interoperability of legacy TP based systems

with the CORBA domain. In particular, OTS is fully compatible with X/Open DTP-

compliant software, which allows a single (X/Open or OTS) transaction to be shared by

both object and procedural code.

6.2. ANB-CLL IN STANDARD PLATFORMS

113

Fully based on the CORBA architecture, inter-component communications in OTS

are all in the form of object requests sent via the ORB, which enables access and location

transparency of remote objects. This is compared to the X/Open DTP model where a

Communication Resource Manager (CRM) is required to process transactions that are

distributed over several TMs.

6.2 ANB-CLL in Standard Platforms

Given that the transactional models presented in the previous section are well-established

TP standards that have gained widespread acceptance and commercial product support, it

is important to show how our ANB-CLL protocol, described in the previous chapter

(Section 5.4.4), can be exploited in an OTS/DTP environment.

To do so, we first show how our (blocking) CLL protocol (cf. Section 3.5) can be

embedded within a fully OTS-compliant Transaction Service, named MAAO-OTS

[LSG98], while maintaining the interoperability of DTP-compliant systems with the

CORBA domain. We then describe how to achieve non-blocking by exploiting a CORBA

compliant service, called OGS [Fel98], which defines an object-oriented framework of

CORBA components for reliable distributed systems.

6.2.1 Prototype Context

The ANB-CLL prototype has been performed in the context of OpenDREAMS-II 24, an

ESPRIT project financed by the European Union (December 1997 -- May 2000).

OpenDREAMS-II (henceforth called “OD-II”) aims at designing and building a CORBA

compliant platform dedicated to industrial Supervision and Control Systems (SCS). The

OD-II platform is augmented with several components and services specifically tailored

to answer SCS requirements, including a Transaction Service designed and implemented

by the PRiSM laboratory [ABG98].

The project platform is experimented and validated through two industrial SCS

applications, namely a Condition Monitoring and Diagnostics of Thermal Power Plants

24 OpenDREAMS is the acronym for “Open Distributed Reliable Environment, Architecture &

Middleware for Supervision”.

CHAPTER 6. THE ANB-CLL PROTOTYPE

 114

application, as well as an Advanced Surface Movement Guidance & Control Systems (A-

SMGCS) application for managing all moving vehicles in an airport environment. Both

applications showed the effectiveness of our protocol in meeting SCS requirements in

terms of performance, fault-tolerance, and compliance with commercial transactional

systems.

6.2.2 Major Objectives

When defining the overall project goal, we have set out the following major objectives

for our ANB-CLL prototype:

• To show the applicability of the 1PC idea in general, and our protocol in

particular, to real-world transactional systems and standards.

• To enable application portability from the OD-II Transaction Service to other OTS

implementations by following the standard OTS interfaces defined by OMG.

• To enable the integration of X/Open DTP-compliant transactional systems in the

OD-II Transaction Service by directing them through their standard XA interface.

6.2.3 Integrating CLL into OTS

In this section, we show how the (blocking) CLL protocol can be embedded within a

fully OTS compliant Transaction Service, named MAAO-OTS [LSG98], developed by the

TRANSREP project members headed by Simone Sédillot at INRIA 25. The CLL prototype

components have been fully designed, and implemented in C++ using Orbix 2.3 MT

[ION97], a commercial CORBA implementation.

Transactional Client

In the OD-II Transaction Service, the support of the CLL protocol is totally transparent

to the client application. More precisely, a client of the OD-II Transaction Service still

accesses the standard OTS interfaces as defined by OMG to begin (resp. commit) its

transaction by calling the standard begin() (resp. commit()) operation on the Current

25 INRIA is the acronym for “Institut National de Recherche en Informatique et Automatique”.

6.2. ANB-CLL IN STANDARD PLATFORMS

115

object (indirect mode), or the Factory (resp. Terminator) object (direct mode). The call

to commit() on either object launches the CLL protocol implemented by the OD-II

Transaction Service, and commits the transaction in a single phase on the participating

resources.

Transaction Service

The integration of the CLL protocol within the OD-II Transaction Service has been

realized thanks to the collaboration of the TRANSREP project members at INRIA. This

integration consisted in modifying the MAAO-OTS coordinator automaton so as to

follow the 1PC approach rather than the traditional 2PC approach. The necessary

modification is rather straightforward, and is achieved by simply having the coordinator

ask the registered Resource objects to commit the transaction without first asking them to

prepare.

It is very important to note that eliminating the voting phase from the commit

protocol does not require any modification/extension to the Resource interface as defined

by OMG. Instead, we exploit the standard commit_one_phase() operation (traditionally

offered by the Resource interface and employed by the transaction coordinator in case of

mono-site transactions) for our 1PC purpose. Clearly, a call to commit_one_phase() on

each participating resource is mapped to a call to xa_commit(TMONEPHASE) on the

corresponding X/Open DTP-compliant RM.

Recoverable Server

Recall from Chapter 3 (Section 3.5.2) that the concept of Agent has been associated with

each transactional system (typically, RMs) participating in the CLL protocol. The role of

the Agent is to determine the exact state (i.e., committed or aborted) of every transaction

branch for which its local site did not acknowledge the commit decision due to a failure.

This is important in order to identify those branches that need to be locally re-executed.

In the OD-II Transaction Service, we have integrated the Agent role within the

Resource object. Obviously, this is the most natural and straightforward way to do since

the Resource object is the entity that acts as intermediary between the Transaction

Service and the underlying participating RMs.

CHAPTER 6. THE ANB-CLL PROTOTYPE

 116

ORB

Transactional Client

Current

Resource
Subtransaction-
AwareResource

Current

Filter

Replay

register_op()

flush()

Transaction Service

Transaction
Context

1PC_lib

Factory
Control
Coordinator

Stable
Log

Replay

re_execute()

Terminator

commit()

commit_1PC()

rollback()

Recoverable Server

XA

SQL/OQL

DBMS

RM

Recoverable

OTS X/Open

Resource

Replay

Figure 6.6: 1PC_lib in the OD-II Transaction Service architecture.

Achieving Commit-resiliency

Recall that to overcome the need for on-line commit-resiliency at the participants while

preserving their autonomy, the coordinator of CLL guarantees the commit-resiliency

property of transactions by maintaining in its log the list of operations invoked within the

scope of a transaction. In addition, the CLL coordinator forces its log on stable storage

before sending the commit decision to the different participants. In case a participant

crashes during the CLL protocol execution, the coordinator re-executes the transaction

branch on the failed participant.

In an OTS architecture, the difficulty in meeting this requirement lies in the fact that

a Transactional Client sends its service requests directly to Recoverable Objects. Thus, at

commit time, the Coordinator object has no knowledge of the list of requests invoked

within the scope of a transaction.

To deal with this problem, our solution consists in keeping the list of a transaction’s

requests in a log maintained on the Transactional Client side. This log is kept transparent to

the client application by means of a library, called 1PC_lib, dedicated to CLL’s specific

mechanisms and to which the client application should be linked. More precisely,

6.2. ANB-CLL IN STANDARD PLATFORMS

117

Factory

Coordinator

Control

Terminator

Transactional Client

Transaction Service

Recoverable Server

Recoverable Resource
(13) xa_commit(TMONEPHASE)

(3) begin()

(8) Commit()

(9) flush()

(12) commit_one_phase()

1PC_lib D

B

M

 S

(6) request

Stable
Log

(7) register_ressource()

(5) register_op()

Replay

(11) commit()

(1) begin()

(4) request

 (10) save log

(2) create replay

Figure 6.7: OD-II Transaction Service execution flows.

1PC_lib manages the requests’ log via a new object that we introduce, called Replay.

The Replay interface defines operations that allow to (i) write the transaction’s requests

on the log (register_op() operation), (ii) force the log on stable storage (flush()

operation), and (iii) re-execute the requests of a transaction branch in the event of a

participant crash during the CLL protocol execution (re_execute() operation).

Detailed Description

1PC_lib is implemented using Orbix Per-Process Filters 26. Per-Process filters monitor

all incoming and outgoing operation and attribute requests to and from an address space.

Figure 6.6 illustrates the role of 1PC_lib in the OD-II Transaction Service architecture. A

typical transaction execution is described in Figure 6.7.

When a client application begins a transaction by calling begin() on the Factory

object (or the Current object), the client filter associates a Replay object with the new

transaction. During the transaction, the Transactional Client invokes service requests on

26 The filter concept has been first introduced in IONA’s Orbix ORB, but has been since normalized in

CORBA 2.2 under the Interceptors concept.

CHAPTER 6. THE ANB-CLL PROTOTYPE

 118

Recoverable Objects. The client filter intercepts each of these requests, registers the

request in the log by calling register_op() on the Replay object, and continues the call

normally.

When the Transactional Client calls commit() on the transaction Terminator object

(or the Current object), the client filter intercepts the call to commit(), force-writes the

log (i.e., the transaction’s requests) on stable storage by calling flush() on the Replay, and

continues the call normally. The call to commit() launches the CLL protocol and commits

the transaction in a single phase, while ensuring the transaction commit-resiliency

property at the client side.

In case a participant crashes during the CLL protocol execution, the Coordinator

“replays” the failed transaction branch by calling the re_execute() operation on the

transaction’s Replay object with the corresponding Resource object reference as a

parameter. Note that the Replay object reference can be made available to the

Transaction Service by having it piggybacked to the commit() request message by the

client filter, and extracted by a receiving filter on the Transaction Service side.

6.2.4 Achieving Non-Blocking

This section briefly presents the design of a non-blocking extension to our CLL

prototype, following the ANB-CLL protocol described in Section 5.4.4. The solution we

propose exploits some of the facilities provided by a CORBA Object Group Service

(OGS) [Fel98], designed and implemented at the Operating Systems Laboratory (LSE)

directed by Professor André Schiper at the Swiss Federal Institute of Technology

(EPFL).

Roughly, OGS provides object group support for CORBA environments by

combining several distinct CORBA services, each providing a separate facility and can

be exploited in isolation. Of particular importance for our purpose, an Object Monitoring

Service that provides a distributed failure detection mechanism based on Chandra &

Toueg’s model of unreliable failure detectors [ChT96], and an Object Consensus Service

that allows several CORBA objects to solve the Consensus problem based on Chandra &

Toueg’s Consensus algorithm, and using a failure detector of class <>S [ChT96].

6.2. ANB-CLL IN STANDARD PLATFORMS

119

CONSENSUS

PROTOCOL

ANB-CLL
PROTOCOL

OGSL

FD3

Filter

Recoverable Server

start-consensus()

pre-commit()

NB_lib

CM1

ResourceNB

XA

commit_one_phase()

Resource

FD1

OGSL

Filter

Recoverable Server

start-consensus()

pre-commit()

NB_lib

CM1

Recoverable XA DBMS

commit_one_phase()

Resource

FD1

OGSL

ResourceNB

Transaction Service

OTS
objects Coordinator

commit_one_phase() commit_one_phase()

NB_lib Filter

DBMS Recoverable

Figure 6.8: Non-Blocking components of the OD-II Transaction Service.

Components and Interactions

The non-blocking extension we propose is totally encapsulated within a library, called

NB_lib, to which the Recoverable Server and the Transaction Service are linked. NB_lib

manages all the non-blocking mechanisms introduced by ANB-CLL by defining new

components, and by exploiting some of the services provided by OGS’s library (OGSL).

These mechanisms include a pre-commit phase, a Uniform Consensus algorithm, and a

failure detection mechanism. Figure 6.8 presents a simplified high-level view of the non-

blocking extension components.

On the Recoverable Server side, NB_lib introduces a new object, called ResourceNB,

which acts as intermediary between the transaction Coordinator and the Recoverable

Object’s Resource, and implements the ANB-CLL protocol (cf. Figure 5.5) as a

CHAPTER 6. THE ANB-CLL PROTOTYPE

 120

participant on behalf of the Recoverable Object. From the transaction Coordinator

viewpoint, the ResourceNB object becomes the actual participant in transaction

completion. To achieve its role, the ResourceNB interface extends the standard Resource

interface by defining, in addition to the commit-one-phase() operation, new operations

required for non-blocking, namely pre-commit(), and start-consensus().

To deal with the failure detection problem, NB_lib exploits OGS’s Object

Monitoring Service by creating a failure detector object (FD) at the Recoverable Server,

and the Transaction Service. Each local FD object monitors a subset of the processes in

the system (roughly, by communicating with FDs local to these processes), and maintains

a list of those processes that it currently suspects to have crashed. Given that in ANB-

CLL, failure suspicions are handled within a Uniform Consensus protocol, NB_lib makes

use of OGS’s Object Consensus Service by creating a consensus manager object (CM) at

each Recoverable Server. CM objects implement the consensus protocol and reach

agreement with each other.

In this context, a ResourceNB object acts as a client of its co-located FD and CM in

order to get information about failure suspicions of other participating ResourceNB

objects, and to reach a consistent decision through the execution of a consensus protocol.

Typical Execution

When the Recoverable Object calls the register_resource() operation on the transaction

Coordinator with a Resource object reference as a parameter, NB_lib intercepts the call

by means of an Interceptor (or Filter), creates a new ResourceNB object, and registers it

with the Coordinator by modifying the value of the operation parameter to include the

ResourceNB object reference instead of that of the Recoverable Object’s Resource.

To commit the transaction, the Coordinator performs the commit-one-phase()

operation on every registered ResourceNB. This call initiates ANB-CLL’s pre-commit

phase between the different participating ResourceNB objects through their respective

pre-commit() operation. In the absence of failure suspicions, a commit decision is

reached, in which case, the ResourceNB performs commit-one-phase() on the

Recoverable Object’s Resource. In case of failure suspicions, the ResourceNB asks the

6.3. DISCUSSION

121

CM object to start a uniform consensus protocol, and decides on the transaction (in a

non-blocking way) according to the uniform consensus protocol outcome. Finally, note

that if a failure suspicion occurs during the pre-commit phase, the ResourceNB needs also

to perform start-consensus() on the other participating ResourceNB objects, as defined in

ANB-CLL.

6.3 Discussion

In this chapter, we studied the integration of our ANB-CLL protocol into well-

established TP standards that have gained widespread acceptance and commercial

product support. Our primary objective here was to show the applicability of the 1PC

concept in general, and our ANB-CLL protocol in particular, to real-world transactional

systems and standards, namely OMG’s OTS [OMG00a] and X/Open DTP [X/Open93].

This integration has been achieved following the same modular approach by which

ANB-CLL has been designed. This consisted first in embedding the basic 1PC protocol

(cf. Section 3.2) within an OTS architecture, and then encapsulating all CLL’s specific

mechanisms on the one hand and non-blocking facilities on the other within two separate

libraries, named 1PC_lib and NB_lib, respectively.

Our CLL prototype has been implemented in C++ using Orbix 2.3MT [ION97]

based on a fully OTS-compliant transaction service, named MAAO-OTS [LSG98]. This

enabled us to prove the practical validity of the 1PC concept, and to show the

compatibility of our protocol with existing transactional standards and commercial

database systems. As far as fault-tolerance is concerned, our non-blocking solution has

been fully designed following a CORBA-compliant approach, but has not yet been

implemented and integrated to the prototype due to timing and organizational constraints

related to the OD-II project. It would be thus important to complete the present work, and

study the cost for non-blocking through an actual implementation of the proposed

solution in the context of real-world transactional systems based on a CORBA architecture.

Some issues related to the CLL prototype remain open for further investigations,

notably concerning performance measurements. Although the performance gain of 1PC

CHAPTER 6. THE ANB-CLL PROTOTYPE

 122

over 2PC is obvious, it would be important to quantify this gain not only in terms of

message and log complexities, but also in terms of overall transaction processing metrics,

such as transaction (peak) throughput or transaction (mean) response time.

��

 123

Chapter 7

Conclusion

Over the past two decades, distributed systems have become the norm for the

organization of computing facilities. From common daily life activities to mission critical

computing industries, everything shows evidence that we depend more and more heavily

on distributed systems and applications, making the reliability of these more critical than

it has ever been before.

Originated from the field of databases, the transaction abstraction has been widely

acknowledged as the basic building block by which distributed systems and applications

can be reliably structured and implemented. Reliability guarantees are provided despite

concurrency and failures through transaction ACIDity (i.e., atomicity, consistency,

isolation, and durability), where atomicity is ensured through an atomic commitment

protocol, enabling a distributed agreement to be reached among participating processes

concerning the faith of the transaction. Given their great impact on distributed

transaction processing, a plethora of atomic commitment protocols has been proposed.

These protocols, however, usually compel a trade-off between high-performance and fault-

tolerance (i.e., non-blocking), making them inadequate for many of today’s distributed

systems and applications in which it becomes hardly acceptable to sacrifice one

requirement for the other.

In this thesis, we have considered this issue through the discussion of the details

involved in the design of a distributed commit protocol that reconciles high-performance

and fault-tolerance, while being applicable to most transactional standards and products.

This protocol was the final result of a series of contributions that rely on a novel

paradigm for distributed transaction commit proposed in the context of this research.

CHAPTER 7. CONCLUSION

 124

7.1 Research Assessment

Divided into three parts, this thesis has led to six major contributions. The first part

tackled performance issues, and introduced the Dictatorial Atomic Commitment problem,

defined On-line Serializability and On-line Commit-Resiliency, and proposed a highly

efficient commit protocol, named Coordinator Logical Log (CLL). The second part

extended the previous results to cover fault-tolerance issues, and proposed two non-

blocking extensions to CLL, which provide liveness guarantees under the two extremes

of a spectrum of possible system models, namely synchronous and asynchronous

systems. The third and final part addressed practical issues by describing a way by which

the asynchronous non-blocking CLL variation can be integrated into existing

transactional standards and products.

7.1.1 Performance Issues

Dictatorial Atomic Commitment. We have discussed some serious drawbacks of the

traditional Two-Phase Commit (2PC) approach to the distributed commit problem, and

argued that although it ensures transaction atomicity, 2PC introduces a substantial delay

in the system, leading to a significant increase in transaction execution times. To meet

the strong efficiency requirements of today’s advanced and critical applications, and

through a careful look into the characteristics of real-world transactional systems, we

have identified the conditions under which a One-Phase Commit (1PC) approach can be

used. Our research led us to define the Dictatorial Atomic Commitment (DAC) problem,

a novel paradigm for distributed transaction termination, which overcomes the need for

2PC in most practical situations. Based on the pragmatic observation that, in most real

settings, participants’ votes can turn out to be more than necessary, the Dictatorial

Atomic Commitment problem resulted from removing veto rights from the traditional

Atomic Commitment problem.

In addition to defining Dictatorial Atomic Commitment, we have also proposed a

simple algorithm that solves it based on a 1PC approach. This algorithm corresponds

exactly to a 2PC without the voting phase, which explains why 1PC is much more

efficient than 2PC. A crucial feature of our algorithm is that it constitutes the basic

building block around which all existing 1PC variations are designed, thus promoting

modularity.

7.1. RESEARCH ASSESSMENT

 125

On-line Serializability & On-line Commit-Resiliency. To characterize transactional

systems that are compatible with dictatorial transaction processing, we have studied the

impact of dictatorship on concurrency control and recovery protocols employed by the

participants in a transaction. In particular, we have defined three necessary and sufficient

conditions to ensure the correctness of transactional systems with no participant veto

right: on-line serializability, cascadelessness, and on-line commit-resiliency. These

conditions are strictly stronger than the usual correctness metrics for transactional

systems, namely serializability, recoverability and resiliency, respectively. We have also

addressed practical considerations related to those conditions, and have shown that,

whereas on-line serializability and cascadelessness are realistic in most real settings, on-

line commit-resiliency turned out to be very expensive in practice.

Coordinator Logical Log. To overcome the high cost imposed by on-line commit-

resiliency, we have considered a “non-classical” atomic commitment scheme that allows

participants to delegate part of their transactional responsibilities to the coordinator of

the commit protocol. Through a deep analysis of existing 1PC variations that follow this

scheme, we have pointed out their practical limitations when it comes to meeting

autonomy requirements of today’s distributed environments. In order to combine the

high-efficiency of 1PC with practical utility, we have proposed a new 1PC variation,

called Coordinator Logical Log (CLL), which preserves site autonomy based on a logical

logging recovery mechanism. The advantages of CLL are not only performance issues.

By eliminating participants’ votes, and maintaining logical operations instead of physical

log records at the coordinator site, CLL seems to be the sole protocol that can cope with

all existing transactional systems, be they or not 2PC compliant.

7.1.2 Fault-tolerance Issues

Non-blocking Coordinator Logical Log. Although more efficient than the 2PC

approach, 1PC increases the probability of blocking of transaction participants in case of

failures, making the window of vulnerability to blocking last all along the transaction

execution. While this might be acceptable in some standard applications, there are

mission critical applications for which high-performance and fault-tolerance are crucial

requirements of equal importance. The above observation constituted our starting point

CHAPTER 7. CONCLUSION

 126

for investigating solutions to the Non-Blocking Dictatorial Atomic Commitment (NB-

DAC) problem. The first result of this study has been a variation of our CLL protocol,

named Non-Blocking CLL (NB-CLL), which achieves non-blocking in the context of

synchronous systems based on a Uniform Timed Reliable Broadcast (UTRB) primitive,

and assuming reliable communication and reliable failure detection.

Asynchronous Non-blocking Coordinator Logical Log. Given that synchrony

assumptions and reliable failure detectors are not always realistic in practice, we have

extended our work on fault-tolerance and proposed a variation of CLL, called

Asynchronous Non-Blocking CLL (ANB-CLL), which guarantees non-blocking assuming

an asynchronous system with reliable communication and unreliable failure detectors. A

crucial feature of ANB-CLL is that it achieves non-blocking based on a crash-recovery

failure model. To the best of our knowledge, it is the first time that fault-tolerant

solutions to the distributed commit problem have been designed in the context of

asynchronous systems in which processes may crash and later recover. Furthermore,

ANB-CLL blends the advantages of CLL in terms of efficiency and autonomy

requirements with fault-tolerance, making it the best candidate for distributed transaction

commit in the context of today’s systems and applications.

7.1.3 Prototype Design & Implementation

Through a prototype design and implementation, we have shown how our ANB-CLL

protocol can be integrated into well-known transactional standards. This prototype has

served as a proof of concept, which shows the validity of our theoretical study, and the

compliance of our protocol with current transactional standards and products.

Following a “compositional methodology” of protocol integration, the (blocking)

CLL protocol has been first embedded into an OTS/DTP environment. We have then

designed a non-blocking extension to the CLL prototype as a separate construct that can

be added on top of it. At the time of writing of this thesis, the non-blocking extension has

not yet been implemented and integrated into the prototype, and thus remains at its

design stage.

7.2. FUTURE DIRECTIONS AND OPEN ISSUES

127

7.2 Future Directions and Open Issues

In addition to the contributions presented in the previous section, several extensions to

our work need to be explored, allowing plenty of scope for interesting research. In the

following, we describe some future directions and open questions.

Towards a Higher Resiliency During Recovery. The Coordinator Logical Logging

recovery mechanism associated with the different CLL variations preserves site

autonomy, and overcomes the high cost introduced by on-line commit-resiliency at the

expense, however, of a coordinator-dependent recovery protocol. An important future

work would be to explore new coordination schemes that enable to increase the resilience

of the recovery protocol by decreasing its dependency level. One intuitive way of

achieving this would consist in replicating the coordinator’s log at some other sites,

which number depends on the desired resiliency rate. This actually lays the basis for

further investigations related to the cost this might introduce in the system.

Deferred Consistency Constraints. One consequence of removing veto rights from

transaction participants is that integrity constraints are checked after each update

operation, and thus deferred integrity validation is excluded. An open question is then

whether it is possible to circumvent this assumption so as to widen the applicability field

of dictatorial transaction processing. This would probably consist in exploring

intermediate schemes between veto rights for all and no veto right at all.

ANB-CLL for Mobile and Disconnected Computing. Mobile and disconnected

computing is clearly one of the most challenging areas for future distributed

environments. The growing number of applications using mobile and disconnected

facilities, supported by the emerging world of lightweight intelligent devices, raises new

issues in terms of transaction management and introduces new requirements that the

traditional transaction processing paradigm cannot meet. For instance, a traditional (i.e.,

2PC-like) commit protocol leads to the abort of a transaction after it has been

successfully processed if any of its participants disconnects during the voting phase. This

situation is rather intolerable in a mobile environment where (accidental or voluntary)

disconnections are very frequent. Furthermore, by forcing participants in a transaction to

CHAPTER 7. CONCLUSION

 128

externalize local prepared states, traditional protocols consume valuable system

resources on data servers hosted by lightweight devices.

In this context, our ANB-CLL protocol seems to cope effectively with these issues,

and it would be very interesting to study its adaptation to mobile and disconnected

computing environments. Indeed, by eliminating participants’ votes and local prepared

states, ANB-CLL provides a very suitable way of dealing with disconnections, and

allows saving critical resources on lightweight servers. Although not yet totally

conclusive, a preliminary study showed the appropriateness of our protocol in bringing

answers to these issues through three typical mobile/disconnected computing

applications [BPA00], but this still needs further investigation.

��

BIBLIOGRAPHY

 129

Bibliography

[ABG98] M. Abdallah, C. Bobineau, R. Guerraoui, P. Pucheral, “Specification of

the Transaction Service”, Deliverable n°R13, Esprit Project

OpenDREAMS-II n°25262, July 1998.

[AbP97] M. Abdallah, P. Pucheral, “Validation Atomique: état de l’art et

perspectives”. Ingénierie des Systèmes d’Information (ISI), 5(6),

December 1997.

[AbP98a] M. Abdallah, P. Pucheral, “A Non-Blocking Single-Phase Commit

Protocol for Rigorous Participants”. Networking and Information

Systems Journal (NIS), 1(2-3), April 1998. A preliminary version of this

paper appeared in 13
èmes

 journées Bases de Données Avancées (BDA),

September 1997.

[AbP98b] M. Abdallah, P. Pucheral, “A Single-Phase Non-Blocking Commit

Protocol”. Proc. of the 9
th
 International Conference on Database and

Expert Systems Applications (DEXA), August 1998.

[AbP99] M. Abdallah, P. Pucheral, “A Low-Cost Non-Blocking Atomic

Commitment Protocol for Asynchronous Systems”. Proc. of the 11
th

International Conference on Parallel and Distributed Computing and

Systems (PDCS), November 1999.

[AGP98] M. Abdallah, R. Guerraoui, P. Pucheral, “One-Phase Commit: Does It

Make Sense?”. Proc. of the 6
th
 International Conference on Parallel and

Distributed Systems (ICPADS), December 1998.

[AGP00] M. Abdallah, R. Guerraoui, P. Pucheral, “Dictatorial Transaction

Processing: Atomic Commitment without Veto Right”. Technical Report

2000/6, PRiSM Laboratory, University of Versailles, April 2000.

[AlC95] Y. Al-Houmaily, P.K. Chrysanthis, “Two-phase Commit in Gigabit-

Networked Distributed Databases”, Proc. of the 8
th
 International

Conference on Parallel and Distributed Computing Systems (PDCS),

September 1995.

[AlC96] Y. Al-Houmaily, P.K. Chrysanthis, “The Implicit-Yes Vote Commit

Protocol with Delegation of Commitment”, Proc. of the 9
th
 International

Conference on Parallel and Distributed Computing Systems (PDCS),

September 1996.

BIBLIOGRAPHY

 130

[ACL97] Y. Al-Houmaily, P. Chrysanthis, S. Levitan, “An Argument in Favor of

the Presumed Commit Protocol”, Proc. of the 13
th
 IEEE International

Conference on Data Engineering (ICDE), April 1997.

[AlS85] B. Alpern, F.B. Schneider, “Defining liveness”, Information Processing

Letters, 21 (4), October 1985.

[BaT93] O. Babaoglu, S. Toueg, “Non-Blocking Atomic Commitment”,

Distributed Systems, ACM Press, 1993.

[BBP00] C. Bobineau, L. Bouganim, P. Pucheral, P. Valduriez, “PicoDBMS: Scaling

down Database Techniques for the Smartcard”, Proc. of the 26
th

International Conference on Very Large Data Bases (VLDB), September

2000.

[BCF97] J. Besancenot, M. Cart, J. Ferrié, R. Guerraoui, P. Pucheral, B.

Traverson, Les systèmes transactionnels: concepts, produits et normes,

Hermès, 1997.

[BGS92] Y. Breitbart, H. Garcia-Molina, A. Silbershatz, “Overview of

Multidatabase Transaction Management”. VLDB Journal, 1 (2), October

1992.

[BHG87] P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and

Recovery in Database Systems, Addison Wesley, 1987.

[BPA00] C. Bobineau, P. Pucheral, M. Abdallah, “A Unilateral Commit Protocol

for Mobile and Disconnected Computing”, Proc. of the 13
th
 International

Conference on Parallel and Distributed Computing Systems (PDCS),

August 2000.

[Cha93] T.D. Chandra, “Unreliable Failure Detectors for Asynchronous

Distributed Systems”, Ph.D. dissertation, Graduate School of Cornell

University, May 1993.

[CHT96] T.D. Chandra, V. Hadzilacos, S. Toueg, “The Weakest Failure Detector

for Solving Consensus”, Journal of the ACM, 43(4), July 1996.

[ChT96] T.D. Chandra, S. Toueg, “Unreliable Failure Detectors for Reliable

Distributed Systems”, Journal of the ACM, 43(2), March 1996.

[DwS83] C. Dwork, D. Skeen, “The Inherent Cost of Non-Blocking Commitment”,

Proc. of the 2
nd
 ACM Symposium on Principles of Distributed Computing

(PODC), August 1983.

[Fis83] M. J. Fischer, “The Consensus Problem in Unreliable Distributed

Systems (A Brief Survey)”, Technical Report 273, Department of

Computer Science, Yale University, June 1983.

BIBLIOGRAPHY

 131

[Fel98] P. Felber, “The CORBA Object Group Service: A Service Approach to

Object Groups in CORBA”, Ph.D. dissertation, Computer Science

Department, Swiss Federal Institute of Technology, 1998.

 [FLP85] M. J. Fischer, N. Lynch, M. Paterson, “Impossibility of Distributed

Consensus with One Faulty Process”, Journal of the ACM, 32(2), April

1985.

[GLS95] R. Guerraoui, M. Larrea, A. Schiper, “Non-Blocking Atomic

Commitment with an Unreliable Failure Detector”, Proc. of the 14
th

IEEE International Symposium on Reliable Distributed Systems (SRDS),

September 1995.

[GLS96] R. Guerraoui, M. Larrea, A. Schiper, “Reducing the Cost for Non-

Blocking in Atomic Commitment”, Proc. of the 16
th
 IEEE International

Conference on Distributed Computing Systems (ICDCS), May 1996.

[Gra78] J. Gray, “Notes on Database Operating Systems”, Operating Systems:

An Advanced Course, LNCS 60, Springer Verlag, 1978.

[Gra90] J. Gray, “A Comparison of the Byzantine Agreement Problem and the

Transaction Commit Problem”, Fault-Tolerant Distributed Computing,

LNCS 448, Springer Verlag, 1990.

[GrR93] J. Gray, A. Reuter, Transaction processing: Concepts and Techniques,

Morgan Kaufmann, 1993.

[Gue95] R. Guerraoui, “Revisiting the relationship between non-blocking atomic

commitment and consensus”, Proc. of the 9
h
 International Workshop on

Distributed Algorithms (WDAG), September 1995.

[Gue96] R. Guerraoui, “Distributed Transactions: Algorithms, Systems and

Languages”, Research Supervision Habilitation dissertation (HDR),

University of Grenoble, 1996.

[GuS95] R. Guerraoui, A. Schiper, “The Decentralized Non-Blocking Atomic

Commitment Protocol”, Proc. of the 7
h
 IEEE International Symposium

on Parallel and Distributed Processing (SPDP), October 1995.

[Had88] V. Hadzilacos, “A Theory of Reliability in Database Systems”, Journal

of the ACM, 35 (1), January 1988.

[Had90] V. Hadzilacos, “On the Relationship Between the Atomic Commitment

and Consensus Problems”, Fault-Tolerant Distributed Computing, LNCS

448, Springer Verlag, 1990.

[HaM90] J.Y. Halpern, Y. Moses, “Knowledge and Common Knowledge in a

Distributed Environment”, Journal of the ACM, 37 (3), July 1990.

BIBLIOGRAPHY

 132

[HaT94] V. Hadzilacos, S. Toueg, “A Modular Approach to Fault-tolerant

Broadcasts and Related Problems”, Technical Report TR 94-1425,

Department of Computer Science, Cornell University, May 1994.

[ION97] IONA, Orbix 2.3 Programmer’s Guide, IONA Technologies PLC, 1997.

[ISO92a] International Standardization Organization, Information Technology --

Open System Interconnection -- Distributed Transaction Processing --

Part 1/2/3: Model/ Service/Protocol, ISO/IEC 10026-1/2/3, 1992.

[ISO92b] International Standardization Organization, Information Processing

Systems -- Database Language SQL, ISO/IEC 9075, 1992.

[KeD94] I. Keidar, D. Dolev, “Increasing the Resilience of Atomic Commit at No

Additional Cost”, Technical Report CS94-18, Institute of Computer

Science, The Hebrew University of Jerusalem, October 1994.

[LaF82] L. Lamport, M. Fisher, “Byzantine generals and transaction commit

protocols”, Technical Report 62, SRI International, April 1982.

[LaL93] B. Lampson, D. Lomet, “A New Presumed Commit Optimization for

Two Phase Commit”, Proc. of the 19
h
 International Conference on Very

Large Data Bases (VLDB), August 1993.

[Lam77] L. Lamport, “Proving the correctness of multiprocess programs”, IEEE

Transactions on Software Engineering, 3 (2), March 1977.

[LSG98] J. Liang, M. Saheb, F. Giudice, “Maao OTS version2”, Deliverable

n°D2aa, ACTS Project ACTranS, 1998. Available at

http://www.actrans.org/Publications.html.

[LSP82] L. Lamport, R. Shostak, M. Pease, “The Byzantine Generals Problem”,

ACM Transactions on Programming Languages and Systems, 4 (3), July

1982.

[MLO86] C. Mohan, B. Lindsay, R. Obermarck, “Transaction Management in the

R* Distributed Database Management System”, ACM Transactions on

Database Systems, 11 (4), December 1986.

[OMG00a] Object Management Group, Object Transaction Service, Document 00-

06-28, Version 1.1, 2000.

[OMG00b] Object Management Group, The Common Object Request Broker:

Architecture and Specification, Version 2.4, Document 00-10-01, 2000.

[Pri94] F. Primatesta, TUXEDO: An Open Approach to OLTP, Prentice Hall,

1994.

BIBLIOGRAPHY

 133

[She93] M. Sherman, “Architecture of the Encina Distributed Transaction

Processing Family”, Proc. of the ACM SIGMOD International

Conference on Management of Data, May 1993.

[ShL90] A. Sheth, J. Larson, “Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases”, ACM

computing surveys, 22 (3), September 1990.

[Ske81] D. Skeen, “NonBlocking Commit Protocols”, Proc. of the ACM

SIGMOD International Conference on Management of Data, 1981.

[Ske82] D. Skeen, “A Quorum-Based Commit Protocol”, Proc. of the 6
th
 Berkeley

Workshop on Distributed Data Management and Computer Networks,

February 1982.

[StC90] J. Stamos, F. Cristian, “A Low-Cost Atomic Commit Protocol”, Proc. of

the 9
th
 IEEE International Symposium on Reliable Distributed Systems

(SRDS), October 1990.

[StC93] J. Stamos, F. Cristian, “Coordinator Log Transaction Execution

Protocol”, Journal of Distributed and Parallel Databases, 1 (4), October

1993.

[Sto79] M. Stonebraker, “Concurrency Control and Consistency of Multiple

Copies of Data in Distributed INGRES”, IEEE Transactions on Software

Engineering, 5 (3), May 1979.

[X/Op91] X/Open Company Ltd., X/Open CAE Specification -- Distributed

Transaction Processing: the XA Specification, C193, 1991.

[X/Op93] X/Open Company Ltd., X/Open Guide -- Distributed Transaction

Processing: Reference Model, Version 2, G307, 1993.

BIBLIOGRAPHY

 134

PERSONAL PUBLICATIONS

135

Personal Publications

Refereed Journal Papers

[AGP00] M. Abdallah, R. Guerraoui, P. Pucheral, “Dictatorial Transaction

Processing: Atomic Commitment without Veto Right”. Accepted for

publication in Distributed and Parallel Databases Journal (DAPD).

[AbP98a] M. Abdallah, P. Pucheral, “A Non-Blocking Single-Phase Commit

Protocol for Rigorous Participants”. Networking and Information

Systems Journal (NIS), 1(2-3), April 1998.

[AbP97] M. Abdallah, P. Pucheral, “Validation Atomique: état de l’art et

perspectives”. Ingénierie des Systèmes d’Information (ISI), 5(6),

December 1997.

Refereed Conference Papers

[AbP99] M. Abdallah, P. Pucheral, “A Low-Cost Non-Blocking Atomic

Commitment Protocol for Asynchronous Systems”. Proc. of the 11
th

International Conference on Parallel and Distributed Computing and

Systems (PDCS), November 1999.

[AbP98b] M. Abdallah, P. Pucheral, “A Single-Phase Non-Blocking Commit

Protocol”. Proc. of the 9
th
 International Conference on Database and

Expert Systems Applications (DEXA), August 1998.

 [AGP98] M. Abdallah, R. Guerraoui, P. Pucheral, “One-Phase Commit: Does It

Make Sense?”. Proc. of the 6
th
 International Conference on Parallel and

Distributed Systems (ICPADS), December 1998.

[AbP98] M. Abdallah, P. Pucheral, “A Non-Blocking Single-Phase Commit

Protocol for Rigorous Participants”. 13
èmes

 journées Bases de Données

Avancées (BDA), September 1997. This publication is a preliminary

version of [AbP98a].

[BPA00] C. Bobineau, P. Pucheral, M. Abdallah, “A Unilateral Commit Protocol

for Mobile and Disconnected Computing”, Proc. of the 13
th
 International

Conference on Parallel and Distributed Computing Systems (PDCS),

August 2000.

Reports

[ABG98] M. Abdallah, C. Bobineau, R. Guerraoui, P. Pucheral, “Specification of

the Transaction Service”, Deliverable n°R13, Esprit Project

OpenDREAMS-II n°25262, July 1998.

