Invariant Safety for Distributed Applications

Sreeja S Nair
Sorbonne Université—LIP6 & Inria,
Paris, France
sreeja.nair@lip6.fr

ABSTRACT

We study a proof methodology for verifying the safety of
data invariants of highly-available distributed applications
that replicate state. The proof is (1) modular: one can reason
about each individual operation separately, and (2) sequen-
tial: one can reason about a distributed application as if it
were sequential. We automate the methodology and illustrate
the use of the tool with a representative example.

KEYWORDS

Replicated data, Consistency, Automatic verification, Dis-
tributed application design, Tool support

ACM Reference Format:

Sreeja S Nair, Gustavo Petri, and Marc Shapiro. 2019. Invariant
Safety for Distributed Applications. In Proceedings of Principles and
Practice of Consistency for Distributed Data (PaPoC’19). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A distributed application often replicates its data to several
locations, and accesses the closest available replica. Exam-
ples include social networks, multi-user games, co-operative
engineering tools, collaborative editors, source control repos-
itories, or distributed file systems. To ensure availability,
an update must not synchronise across replicas; otherwise,
when a network partition occurs, the system will block. Asyn-
chronous updates may cause replicas to diverge or to violate
the data invariants of the application.

To address the first problem, Conflict-free Replicated Data
Types (CRDTs)[13] have mathematical properties to ensure
that all replicas that have received the same set of updates
converge to the same state [13]. To ensure availability, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PaPoC’19, March 25, Dresden, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6276-4...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Gustavo Petri
ARM Research, Cambridge, UK
gustavo.petri@arm.com

Marc Shapiro
Sorbonne Université—LIP6 & Inria,
Paris, France
marc.shapiro@acm.org

CRDT replica executes both queries and updates locally and
immediately, without remote synchronisation. It propagates
its updates to the other replicas asynchronously.

There are two basic approaches to update propagation: to
propagate operations, or to propagate states. In the former
approach, an update is first applied to some origin replica,
then sent as an operation to remote replicas, which in turn
apply it to update their local state. Operation-based CRDTs
require the the message delivery layer to deliver messages in
causal order, exactly once; the set of replicas must be known.

In the latter approach, an update is applied to some origin
replica. Occasionally, one replica sends its full state to some
other replica, which merges the received state into its own.
In turn, this replica will later send its own state to yet another
replica. As long as every update eventually reaches every
replica transitively, messages may be dropped, re-ordered or
duplicated, and the set of replicas may be unknown. Replicas
are guaranteed to converge if the set of states, as a result
of updates and merge, forms a monotonic semi-lattice [13].
Due to these relaxed requirements, state-based CRDTs have
better adoption [1]. They are the focus of this work.

As a running example, consider a simple auction system.
The state of an auction consists of status, a set of bids, and a
winner. This state is replicated at multiple servers; CRDTs en-
sures that all replicas eventually converge. Users at different
locations can start an auction, place bids, close the auction,
declare a winner, inspect the local replica, and observe if a
winner is declared and who it is. All replicas will eventually
agree on the same auction status, same set of bids and the
same winner.

However, the application may also require to maintain a
correctness property or invariant over the data. An invariant
is an assertion on application data that must evaluate to true
in every state of every replica. For instance, the auction’s
invariant is that: when the auction is closed, there is a winner;
there is a single winner; and the winner’s bid is the highest.

Such an invariant is easy to ensure in a sequential system,
but concurrent updates might violate it. In this case, the ap-
plication would need to synchronise some updates between
replicas, in order to maintain the invariant. For instance, in
the absence of sufficient synchronisation, a replica might
close the auction and declare a winner, while concurrently a
user at a different replica is placing a higher bid.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PaPoC’19, March 25, Dresden, Germany

This problem has been addressed before, by stating cor-
rectness rules and proof obligations; however, previous work
considers only the operation-based approach [6, 8, 10].

In this paper, we propose a proof methodology for applica-
tions that use state-based CRDTs. We exploit the properties
of state-based CRDTs to reason about a concurrent system in
a sequential manner. We have also developed a tool named
Soteria, to automate our proof rule. Soteria detects concur-
rency bugs and provides counterexamples.

2 SYSTEM MODEL

An application consists of state, some operations, a merge
function, and an invariant. The state is replicated at any
number of replicas. A client chooses any arbitrary replica
for its next operation, called the origin replica for that oper-
ation. A replica occasionally sends its state to some other
replica, which the receiving replica merges into its own state.
In summary, the state of any given replica changes, either
by executing an update operation for which it is the ori-
gin, or by merging the state received from a remote replica.
Each replica is sequential. A merge is the only point where
a replica observes concurrent operations submitted to other
replicas. Each replica executes sequentially, one local update
or merge at a time; equivalently, an update or merge oper-
ation executes atomically, even if it updates multiple data
items.

An application invariant is an assertion over state. The
invariant must evaluate true in every state of every replica.
Despite being evaluated against local state, an invariant is in
effect global, since it must be true at all replicas, and replicas
eventually converge.

Figure 1 depicts the evolution of state in our auction appli-
cation. Each line represents a replica, time progressing from
left to right. A box represents local state. A curved arrow
represents an update operation, labelled with the operation
name. A diagonal arrow shows propagation (labelled with
the propagated state), merged at the receiving replica.

We assume here that application state is a composition
of CRDTs. This is not a limitation, since many basic CRDT
types have been proposed, which extend familiar sequential
data types with a concurrency semantics [12].

The CRDT convergence rules, or lattice rules, are the fol-
lowing. The state of a replica progresses monotonically with
time. The set of states forms a semi-lattice, i.e., is equipped
with a partial order and a least-upper-bound function. A
state transition represents the execution of either an update
operation or merge. An update is an inflation, i.e., the result-
ing state is no less (in the partial order) than the previous
one. Merge computes a state which is the least-upper-bound
of the current local state and the received remote state.

Sreeja S Nair, Gustavo Petri, and Marc Shapiro

We write o for the current state of a replica, 0y, for the
new state after an operation or merge, and ¢’ for the incom-
ing state from a remote replica. In the Boogie specification
language (used by our tool, described in Section 4), we denote
operation execution with the keyword call, an assertion
with assert, and assumptions with assume. An operation
op executes only if its precondition is true. Thus, we can
write the above lattice conditions as follows:

e An update operation op is an inflation.

call opew =op(o)
assert opew =20

e Merge is a least upper bound
call opew =merge(o, o’)

assert Opew = 0 A Onpew =0’ #upper bound
assert Vo*, 0" 20 Ac* 20" = 0" > opew #least

Let us illustrate with the auction example (for simplicity
we consider a single auction). Its state is as follows:

e Status: the status of an auction can move from its
initial state, INVALID (under preparation), to ACTIVE
(can receive bids) and CLOSED (no more bids accepted),
such that INVALID < ACTIVE < CLOSED.

e Winner: The winner of the auction. It is either L, ini-
tially, or the bid with the highest amount. In case of
multiple bids with same amount, the bid with the low-
est id wins. It is ordered such that Vb € Bids, L < b.

e Bids: Set of bids placed (initially empty)

— BidId: A unique identifier for each bid placed

— Placed: A boolean flag to indicate whether the bid
has been placed or not, ordered TRUE > FALSE. It is
enabled once when the bid is placed. Once placed, a
bid cannot be withdrawn.

— Amount: An integer representing the amount of the
bid; this cannot be modified once the bid is created.

Figure 1 illustrates how the auction state evolves over time;
status, bids and winner are represented by a circle, rectangle
and a star respectively. The application state is geo-replicated
at data centres in Australia, Belgium and China.

We now specify the merge operation for an auction. We
denote the receiving replica state o = (status, winner, Bids);
the received state is denoted ¢’ = (status’, winner’, Bids’).

merge ((status,winner ,Bids),
(status’,winner’,Bids’)):

statuSpew := mMax(status,status’)

if winner’#L then winner,e. := winner’
else winnerpew := winner

Vb, if b € Bids N Bids’ then
BidSspew.b.placed := Bids.b.placed

V Bids’.b.placed
else if b € Bids’ then
BidSpew.b.placed := Bids’.b.placed
else Bidspew.b.placed := Bids.b.placed

Invariant Safety for Distributed Applications

o R

PaPoC’19, March 25, Dresden, Germany

R

Alice/ yrrmred
Australia auction

) __/v
Close

auction
/
’
r
|| I
Bob. N 7 £ >
Belgium P{ﬁge IV' m
Ny
/o x
S 1 s 7 ?
g g % -
P / s \
Vd
|| || || e, 277
Charlie/ 5
China b‘?ﬁe

O Status ‘ﬁ(Winner

|:| Bids

Figure 1: Evolution of state in an auction application

Vb, if b € Bids then
Bidspew.b.amount := Bids.b.amount

else Bids,esw .b.amount := Bids’.b.amount

In the absence of any extra synchronisation, it is possi-
ble to violate the invariant, as the following execution sce-
nario illustrates. Alice from Australia starts an auction, by
setting its status to ACTIVE (green in the figure) in the Aus-
tralian replica. Henceforth, the auction can receive bids. The
Australian replica sends its updated state to the other two
replicas, which merge it into their own states. Now Bob in
Belgium places a bid for $100 (blue). This update is sent to
other replicas. Charlie, in China, sees the auction and Bob’s
bid. He updates the China state with a higher bid of $105
(dotted blue), which is sent to both other replicas. However,
due to a network failure, the remote replicas do not receive
this update (red dotted lines). Meanwhile Alice, unaware of
Charlie’s bid, closes the auction and declares Bob’s bid as the
winner. Later when the network heals, the updated states are
sent and merged. The auction is new closed, and contains
Bob’s $100 bid and Charlie’s $105 bid. Unfortunately, Bob’s
bid is the winner, violating the application invariant.

In the next section, we can discuss how to ensure invari-
ants of applications build on top of the system model we

described.

3 PROVING INVARIANTS

As explained earlier, each replica executes a sequence of
state transitions, due either to a local update, or to a merge
incorporating remote updates. Thus, concurrency can be
observed only through merge.

Let us call safe state a replica state that satisfies the in-
variant. Assuming the current state is safe, any update (local

or merge) must result in a safe state. To ensure this, every
update is equipped with a precondition that disallows any
unsafe execution.! Thus, a local update executes only when,
at the origin replica, the current state is safe and its precon-
dition currently holds. Similarly, merge executes only with
two safe states that together satisfy a merge precondition.

Formally, an update u (an operation or a merge), mutates
the local state o, to a new state oye,y = u(0). To preserve the
invariant, Inv, we require that

o €Pre, = u(o) elnv

To illustrate local preconditions, consider an operation
close_auction(w: BidId), which sets auction status to
CLOSED and the winner to w. The developer may have written
a precondition such as status = ACTIVE, because closing an
auction doesn’t make sense otherwise. In order to ensure the
invariant that the winner has the highest amount, one needs
to strengthen it with the clause is_highest(Bids, w), de-
fined as Vb € Bids : b.Amount < w.Amount.

To illustrate merge precondition, consider a CRDT whose
state is the pair of integers, 0 = (n,m) € N x N. It has two
operations, incn and incm, that respectively increment n or
m by 1, and a merge function:

merge(o, o’) = (max(n, n’), max(m, m"))

We wish to maintain the invariant that their sum is no more
than 10:

Inv & (n+m) <10

! Technically, this is at least the weakest-precondition of the update for the
invariant. It strengthens any a priori precondition that the developer may
have set.

PaPoC’19, March 25, Dresden, Germany

The precondition of incn is Prejnen = (n+m) < 9; similarly
for incm. Starting from a safe state (4, 5), two replicas may in-
dependently increment to states (5, 5) and (4, 6) respectively.
Both are safe. However, merging them would violate the
invariant. Therefore, merge(o, o) must have precondition

Premerge = max(n,n’) + max(m, m’) < 10

Since merge can happen at any time, it must be the case
that its precondition is always true, i.e., it constitutes an
additional invariant. Now our global invariant consists of
two parts: first, the application invariant, and second, the
precondition of merge. We can now state our proof rule
informally as follows::?

STATE-BASED SAFETY RULE. Define the precondition of
merge to be the weakest-precondition of merge, for
the application invariant. The initial state must sat-
isfy, and each local update or merge operation must
preserve, the conjunction of: (i) the application invari-
ant, and (ii) the precondition of merge. O

In our Boogie notation, each operation can be verified as
follows:

assume Inv A Preperge A Pregp
call opew =op(o)
assert Inv A Preperge

The case of the merge function can be verified with the fol-
lowing condition:

assume Inv A Inv’ A Preperge
call opew =merge(o, o’)
assert Inv A Preperge

Note that there are two copies of state, the unprimed local
state of the replica applying the merge, and the primed state
received from a remote replica. Inv’ denotes that o’ preserves
the invariant Inv.

3.1 Applying the proof rule

Let us apply the proof methodology to the auction applica-
tion. Its invariant is the following conjunction:

(1) A bid is placed only when status is ACTIVE.

(2) And: Once a bid is placed, its amount does not change.

(3) And: There is no winner until status is CLOSED.

(4) And: There is a single winner, the bid with the highest
amount (breaking ties using the lowest identifier).

Computing the weakest-precondition of each update op-
eration, for this invariant, is obvious. For instance, as dis-
cussed earlier, close_auction(w: BidId) gets precondi-
tion is_highest(Bids, w), because of Invariant Term 4
above.

2 We omit the full formalisation and the proof of soundness for brevity.

Sreeja S Nair, Gustavo Petri, and Marc Shapiro

Despite local updates to each replica preserving the invari-
ant, Figure 1 showed that it is susceptible of being violated
by merging. This is the case if Bob’s $100 bid in Belgium
wins, even though Charlie concurrently placed a $105 bid in
China; this occurred because status became CLOSED in Bel-
gium while still ACTIVE in China. The weakest-precondition
of merge for Term 4 expresses that, if status in either states
is CLOSED, the winner should be the bid with the highest
amount in both the states. Therefore, merge(o, ¢”) must have
the following additional precondition:

status=CLOSED =— 1is_highest(Bids, winner)
A is_highest(Bids’, winner)
A status’=CLOSED — is_highest(Bids, winner’)
A is_highest(Bids’, winner’)

Furthermore, the code for merge uses Term 2, for which
its weakest-precondition is as follows:

Vb € BidsnBids’, Bids.b.amount = Bids’.b.amount

These two merge preconditions now strengthen the global
invariant, in order to preserve safety in concurrent execu-
tions. Let us now consider how this strengthening impacts
the local update operations. Since starting the auction doesn’t
modify any bids, this operation trivially preserves it. Placing
a bid might violate it, if the auction is concurrently closed
in some other replica; conversely, closing the auction could
violate it, if a higher bid is concurrently placed in a remote
replica. Thus, the auction application is safe when executed
sequentially, but is unsafe when updates are concurrent. This
indicates the specification has a bug, which we now proceed
to fix.

3.2 Concurrency Control for Invariant
Preservation

As we discussed earlier, the preconditions of operations and
merge are strengthened in order to preserve the invariant.
This provides a sequentially safe specification. An applica-
tion must also preserve the precondition of merge in order
to ensure concurrent safety. Violating this indicates the pres-
ence of a bug in the specification. In that case, the developer
needs to strengthen the application by adding appropriate
concurrency control mechanisms, ie., the operations that fail
to preserve the precondition of merge might need to syn-
chronise. The required concurrency control mechanisms are
added as part of the state in our model. The modified applica-
tion state is now composed of the CRDTs that represents the
state and the concurrency control mechanism. Together, it
behaves like a composition of state-based CRDTs. The whole
state should now ensure the lattice conditions described in
section 2.

Recall that in the auction example, placing bids and closing
the auction were not preserving the precondition of merge.

Invariant Safety for Distributed Applications

This requires strengthening the specification by adding a
concurrency control mechanism to restrict these operations.
We can enforce them to be strictly sequential, thereby avoid-
ing concurrency at all. But this will affect the availability of
the application.

A concurrency control can be better designed with the
workload characteristics in mind. For this particular applica-
tion, we know that placing bids are very frequent operations
than closing an auction. Hence we try to formulate a concur-
rency control like a readers-writer lock. In order to realise
this we distribute tokens to each replica. As long as a replica
has the token, it can allow placing bids. Closing the auction
requires recalling the tokens from all replicas. This ensures
that there are no concurrent bids placed and thus a winner
can be declared, respecting the application safety.

The entire specification of the auction application can be
seen in Figure 2. The shaded lines in blue indicate the effect
of adding concurrency control to the state.

An alternative approach to our treatment of concurrency
control could be to consider the invariant as a resource in the
style of Concurrent Separation Logic [11]. In this case, access
to the application state, described through a separation logic
invariant, is guarded by a concurrency control mechanism
(typically some form of a lock). However, this approach is
tied to separation logic reasoning, where assertions act as
resources, and allows one to distinguish local from global
resources. We consider that this was not essential for the kind
of proofs that we conduct, but it might be more promising
when verifying client programs of our data types.

4 AUTOMATING THE VERIFICATION

In this section we present a tool to automate the verification
of invariants as discussed in the previous sections. Our tool,
called Soteria is based on the Boogie [2] verification frame-
work. The input to Soteria is a specification of the application
written in Boogie, an intermediate verification language.

A specification in Soteria will consist of the following
parts:

e State: a declaration of the state. It can be a single CRDT
or a composition of CRDTs.

o Comparison function: The programmer provides a
comparison function (annotated with keyword @gteq)
that determines the partial order on states.

e Operations: The programmer provides the implemen-
tation of the operations and their respective precon-
ditions, Pre,,. Operations are encoded either impera-
tively as Boogie procedures or declaratively as post-
conditions.

e Merge function: The special merge operation is dis-
tinguished from the other operations (with annotation

PaPoC’19, March 25, Dresden, Germany

@merge). The programmer must provide a precondition
to merge that is strong enough to prove the invariant.
e Application Invariant: The programmer provides
the invariant (with keyword @invariant) to be veri-
fied by the tool as a Boogie assertion over the state.

In addition, Boogie often requires additional information
such as: ® User-defined data types, ® Constants to declare
special objects such as the origin replica me, or to bound the
quantifiers, ® Axioms for inductive functions over aggregate
data structures, for instance, to compute the maximum of a
set of values, e Loop invariants.

The specification of the auction application can be seen
in Figure 2.

Verification

The verification of a specification is performed in multiple
stages; in order:

(1) Syntactic checks: validates the specification for syn-
tactical errors and checks whether the pre/post condi-
tions are sound.

(2) Compliance check: checks whether the specification
provides all the elements explained earlier.

(3) Convergence check: checks whether the specifica-
tion respects the properties of a state-based CRDT, ie.,
each operation inflates the state and merge is the least
upper bound.

(4) Safety check: verifies the safety of the application in-
variant, as discussed in section 3. This stage is divided
further into two sub-stages:

o Sequential safety: whether each individual operation
(or merge) upholds the invariant. If not, the designer
needs to strengthen the precondition of the corre-
sponding operation (or merge)

e Concurrent safety: whether every operation (and
merge) upholds the precondition of merge. Note that,
while this check relates to the concurrent behaviour
of state-based CRDTs, the check itself is completely
sequential, ie., it does not require reasoning about
operations performed by other processes. This check
ensures that the invariant remains safe during con-
current operation. If this check fails, the application
needs stronger concurrency control.

Each check in Soteria ® generates counterexamples when
the verification fails. These counterexamples might guide
the developer in debugging the specification according to
the verification steps.

3The tool along with some sample specifications can be accessed at https:
//github.com/sreeja/soteria_tool.

https://github.com/sreeja/soteria_tool
https://github.com/sreeja/soteria_tool

PaPoC’19, March 25, Dresden, Germany

Initial state:
status = INVALID A winner = 1
A # b, Bids.b.placed
A Y r, Tokens.r = true

Comparison function:
status; > statusy; A (winner;#Ll V winner;=1)
AVYb, (Bidsj.b.placed VvV —-Bids,.b.placed)
A (¥r, —Tokensj.r V Tokensjy.r)

Invariant:
Vb, Bids.b.placed = status>ACTIVE
A Bids.b.amount >0
status<ACTIVE =— winner=L
status=CLOSED = Bids.winner.placed
A is_highest(Bids, winner)
status=CLOSED — Vr,-Tokens.r

{Premerge:
status=CLOSED =— 1is_highest(Bids, winner)
Ais_highest (Bids’, winner)
A status’=CLOSED — is_highest(Bids, winner’)
Ais_highest (Bids’, winner’)

A Yb, Bids.b.amount = Bids’.b.amount
A Vr, Tokens.r.me — Tokens’.r.me
A VYr,b, (=Tokens.r A —Bids.b.placed)

— —Bids’.b.placed
A Y r,b, (r#me A —-Tokens.r A —Bids.b.placed)
— -Bids’.b.placed
A Y r,-Tokens.r = winner’=winner V winner’=L1
A Y r, Tokens.r = winner=L A winner’=1}
merge ((status, winner, Bids, Tokens),
(status’,winner’,Bids’, Tokens’)):
<merge of status, winner, Bids as in section 2>
Vr, TokenSjnew.r := Tokens.rATokens’.r

{Prestart_auction: Status = INVALID A winner = L
A Vr, Tokens.r}
start_auction():

statuspew := ACTIVE
winnerjew := L

{Preplace_bid: —Bids.b_id.placed
A Bids.b_id.amount = value

A status = ACTIVE A winner = L
A Tokens.me}
place_bid(b_id, value):
BidsSpew.b_id.placed := true
Bidspew.b_id.amount := value
{Preciose_auction: status = ACTIVE A winner = L
A Bids.w.placed A is_highest(Bids, w)
A VYr, —Tokens.r}
close_auction(w):
status,ew := CLOSED
winnerpew = W

Figure 2: Specification of auction application

Sreeja S Nair, Gustavo Petri, and Marc Shapiro

5 RELATED WORK

Several works have concentrated on the formalisation and
specification of eventually consistent systems [3, 4, 14]. A
number of works concentrate on the specification and cor-
rect implementation of CRDTs [5, 7]. Our work also verifies
the CRDT (lattice) conditions, but additionally verifies an
arbitrary application invariant over a replica state.

Gotsman et al. [6] provides a proof methodology for prov-
ing invariants of CRDTs that propagate operations. The asso-
ciated tools [8, 10] performs the check using an SMT solver
as the backend and Nair and Shapiro [9] discusses some con-
currency control suggestions by using the counterexamples
generated by the failed proofs. Gotsman et al. [6] assume
that the underlying network ensures causal consistency, and
their methodology requires reasoning about concurrent be-
haviours. This requires checks for each pair of operations
in the application (reflected as stability verification condi-
tions). Gotsman et al. [6] uses an abstract notion of tokens
as concurrency control mechanisms. The operations acquire
tokens in order to preserve the application invariant.

In contrast, Soteria focuses on state-based CRDTs. We
check convergence by verifying the lattice conditions of sec-
tion 2 and that because of the rules shown in section 3, we
can reduce the problem of verifying the invariant to sequen-
tial proof obligations. This is reflected by the fact that all
of our proofs are standard pre/post conditions checks using
the Boogie framework. Boogie framework. In contrast with
Gotsman et al. [6], Soteria includes concrete specification of
concurrency control as part of the application state.

To the best of our knowledge, ours is the first attempt in
automated verification of invariants of state-based CRDTs.

6 CONCLUSION

We have presented a proof methodology to verify invariants
of state-based CRDT implementations guaranteeing: (1) that
the implementation satisfies the lattice conditions of state-
based CRDTs [1], and (2) that the implementation satisfies
programmer provided invariant reducing the problem to
checking that each operation of the data type satisfies a
precondition of the merge function of the state.

We implemented Soteria, a tool sitting on top of the Boogie
verification framework, to specify the implementation, its
invariant and validate it.

In future work, we plan to automate concurrency con-
trol synthesis. The synthesised concurrency control can be
analysed and adjusted dynamically to minimise the cost of
synchronisation. Another direction for future work can be
to decouple the update propagation mechanism of CRDT
from the proof rule resulting in a generic proof rule to verify
distributed systems.

Invariant Safety for Distributed Applications

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their comments which helped in improving this paper.
This research is supported in part by the RainbowFS project
(Agence Nationale de la Recherche, France, number ANR-
16-CE25-0013-01) and by European H2020 project 732 505
LightKone (2017-2020).

REFERENCES

(1]

C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira. Composition
in state-based replicated data types. Bulletin of the EATCS, 123, 2017.
URL http://eatcs.org/beatcs/index.php/beatcs/article/view/507.

M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Proceedings of the 4th International Conference on Formal Methods for
Components and Objects, FMCO’05, pages 364-387, Berlin, Heidelberg,
2006. Springer-Verlag. ISBN 3-540-36749-7, 978-3-540-36749-9. doi:
10.1007/11804192_17. URL http://dx.doi.org/10.1007/11804192_17.

S. Burckhardt. Principles of Eventual Consistency, volume 1 of Foun-
dations and Trends in Programming Languages. Now Publishers, Oct.
2014. doi: 10.1561/2500000011. URL http://research.microsoft.com/
pubs/230852/final-printversion-10-5-14.pdf.

S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: Specification, verification, optimality. pages 271-284, San
Diego, CA, USA, Jan. 2014. doi: 10.1145/2535838.2535848. URL http:
//doi.acm.org/10.1145/2535838.2535848.

V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. A
framework for establishing strong eventual consistency for conflict-
free replicated datatypes. Archive of Formal Proofs, 2017, 2017. URL
https://www.isa-afp.org/entries/CRDT.shtml.

A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro.
’Cause I'm Strong Enough: Reasoning about consistency choices in
distributed systems. pages 371-384, St. Petersburg, FL, USA, 2016.

7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

PaPoC’19, March 25, Dresden, Germany

doi: 10.1145/2837614.2837625. URL http://dx.doi.org/10.1145/2837614.
2837625.

R. Jagadeesan and J. Riely. Eventual consistency for CRDTs. In
A. Ahmed, editor, Programming Languages and Systems - 27th Eu-
ropean Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10801
of Lecture Notes in Computer Science, pages 968—995. Springer, 2018.
ISBN 978-3-319-89883-4. doi: 10.1007/978-3-319-89884-1_34. URL
https://doi.org/10.1007/978-3-319-89884-1_34.

G. Marcelino, V. Balegas, and C. Ferreira. Bringing hybrid consistency
closer to programmers. PaPoC ’17, pages 6:1-6:4, Belgrade, Serbia,
2017. ACM. doi: 10.1145/3064889.3064896. URL http://doi.acm.org/10.
1145/3064889.3064896.

S. Nair and M. Shapiro. Improving the “Correct Eventual Consistency”
tool. Rapport de recherche RR-9191, Paris, France, July 2018. URL
https://hal.inria.fr/hal-01832888.

M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro. The
CISE tool: Proving weakly-consistent applications correct. EuroSys
2016 workshops, London, UK, Apr. 2016. doi: 10.1145/2911151.2911160.
URL http://dx.doi.org/10.1145/2911151.2911160.

P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271-307, 2007. doi: 10.1016/j.tcs.2006.12.035.
URL https://doi.org/10.1016/j.tcs.2006.12.035.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A comprehen-
sive study of Convergent and Commutative Replicated Data Types.

Technical Report 7506, Jan. 2011.
M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. Conflict-free

replicated data types. volume 6976, pages 386-400, Grenoble, France,
Oct. 2011. doi: 10.1007/978-3-642-24550-3_29. URL https://doi.org/10.
1007/978-3-642-24550-3_29.

K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. Declarative pro-
gramming over eventually consistent data stores. PLDI ’15, pages
413-424, Portland, OR, USA, 2015. doi: 10.1145/2737924.2737981. URL
http://doi.acm.org/10.1145/2737924.2737981.

https://www.lightkone.eu/
https://www.lightkone.eu/
http://eatcs.org/beatcs/index.php/beatcs/article/view/507
http://dx.doi.org/10.1007/11804192_17
http://research.microsoft.com/pubs/230852/final-printversion-10-5-14.pdf
http://research.microsoft.com/pubs/230852/final-printversion-10-5-14.pdf
http://doi.acm.org/10.1145/2535838.2535848
http://doi.acm.org/10.1145/2535838.2535848
https://www.isa-afp.org/entries/CRDT.shtml
http://dx.doi.org/10.1145/2837614.2837625
http://dx.doi.org/10.1145/2837614.2837625
https://doi.org/10.1007/978-3-319-89884-1_34
http://doi.acm.org/10.1145/3064889.3064896
http://doi.acm.org/10.1145/3064889.3064896
https://hal.inria.fr/hal-01832888
http://dx.doi.org/10.1145/2911151.2911160
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
http://doi.acm.org/10.1145/2737924.2737981

	Abstract
	1 Introduction
	2 System Model
	3 Proving Invariants
	3.1 Applying the proof rule
	3.2 Concurrency Control for Invariant Preservation

	4 Automating the verification
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

