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Abstract—Consensus (agreeing on a sequence of commands)
is central to the operation and performance of distributed
systems. A well-known solution to consensus is Fast Paxos.
In a recent paper, Lamport enhances Fast Paxos by lever-
aging the commutativity of concurrent commands. The new
primitive, called Generalized Paxos, reduces the collision rate,
and thus the latency of Fast Paxos. However if a collision
occurs, Generalized Paxos needs four communication steps to
recover, which is slower than Fast Paxos. This paper presents
FGGC, a novel consensus algorithm that reduces recovery
delay when a collision occurs to one. FGGC tolerates f < n/2
replicas crashes, and during failure-free runs, processes learn
commands in two steps if all commands commute, and three
steps otherwise; this is optimal. Moreover, as long as no fault
occurs, FGGC needs only f + 1 replicas to progress.

I. INTRODUCTION

The consensus primitive enables a set of replicas to
agree on a common order of update commands to execute.
As consensus is so central to distributed fault-tolerance,
it is important to improve its performance. Generalized
consensus extends this problem to agreeing on equivalent
sequences, enabling speculative optimisations. For instance,
when commands commute, all orders are equivalent: a
replica may speculatively accept any command as the next
one, predicting that it commutes with concurrent ones. A
similar speculation is possible when the network usually
delivers commands in the same order to all replicas.

Almost all applications would benefit from these opti-
misations if they are successful. Typically, the majority of
operations commute: any read operation commutes with any
other; reads and writes to independent items commute; and
high-level operations such adding and removing items of
a set, commute logically (even though they might conflict
at a low level). Typical local-area networks, interconnection
networks and networks-on-chip usually deliver messages in
the same order to all destinations (in contrast to a WAN).

However, if replicas mis-predict, a so-called collision
occurs; the protocol must recover, which may be so costly
as to eclipse the above gains.

Thus, Lamport’s Generalized Paxos protocol [12] has a
latency of two communication steps, during “nice” runs,
when the algorithm predicts correctly (i.e., either the com-
mands are already ordered by the network or they commute).
However, recovery costs an extra four communication steps.

Our experimental evaluation confirms that previous gen-
eralized consensus algorithms suffer from a number of
performance issues. The optimisations of Fast Paxos [4]
and Generalized Paxos are overshadowed by the cost of

recovery from a collision, and by a high computational
overhead. Furthermore, Generalized Paxos is wasteful of
computational resources: to tolerate f faults, it requires
3f + 1 replicas and accesses at least 2f + 1 of them.

This paper describes Fast Genuine Generalized Consensus
(FGGC), a new generalized consensus algorithm that in-
cludes a number of improvements. FGGC recovers from col-
lisions in a single step. FGGC is genuine, i.e., it takes more
than two steps only when commands are non-commuting.
FGGC remains fault-tolerant and uses resources sparingly:
to tolerate f crashes, FGGC uses only 2f + 1 replicas
(the optimum), and accesses the same f + 1 replicas as
long as no fault occurs. Its decreased theoretical complexity
translates into actual performance gains: (1) On a LAN,
Paxos outperforms the other algorithms; however, FGGC
performs best of the alternatives and remains close to Paxos.
(2) In a WAN, the performance of FGGC is comparable
to Paxos when collisions are frequent, and outperforms
all other algorithms by a wide margin, when commands
commute even with low probability.

The general outline of our approach is the following:
(1) We distinguish read and write quorums, and define a
centered ballot (one where the coordinator alone forms a
read quorum). (2) If the coordinator of a centered ballot
remains the same at the next ballot, it can transfer informa-
tion between ballots and execute Phase 1 locally, reducing
recovery to two steps. (3) In addition, if centered ballots
contain a unique write quorum, this can be further reduced
to one step: When an acceptor detects a collision, it waits
until it receives a “2B message” from the ballot coordinator.
The acceptor then looks at the prefixes of the commands it
accepted by receiving commands from proposers, takes the
largest such prefix that is compatible with the “2B message”,
and picks their least upper bound. (4) Furthermore, we
propose a number of optimisations such as an improved
least-upper-bound computation, batching commands, and
avoiding redundant messages.

Technically, this requires relatively small changes to the
specification of Generalized Paxos. However, the reasoning
is far from trivial. To understand them and argue that they
are correct in the general case requires a rather subtle the-
oretical understanding. Therefore, in the first few sections,
we explain the theory and sketch the proofs (we refer to
Sutra’s PhD thesis [19] for the full proofs): basic definitions
in Section II; a detailed description of Generalized Paxos in
Section III; and finally, improvements to recover, first in two
steps, then in one (Section IV).



After this, we describe our implementation and further
optimisations (Section V), and evaluate the results experi-
mentally (Section VI).

We survey related work in Section VII. We conclude in
Section VIII.

II. THE GENERALIZED CONSENSUS PROBLEM

Consensus algorithms such as Paxos [11] agree on a single
sequence of commands. In contrast, generalized consensus
aims to agree on an equivalence class of sequences. In order
to reason about equivalence classes, Lamport defines a very
general abstraction, the command structure (CStruct). This
section recapitulates the main concepts from Lamport [12],
then defines the fast and genuine properties.

A. Command structures

Let Cmd be a set of operations or commands. A com-
mand sequence, or c-seq hereafter, is a finite sequence of
commands, e.g. σ = 〈C1, . . . , Cn≥0〉. We note ◦ the usual
concatenation operator. When a c-seq σ contains a command
C, we shall note it C ∈ σ. Given a set of commands
C, the set cseq(C) contains all the command sequences
constructed with commands from C. We shall write CSeq
the set cseq(Cmd).

A command structure set is a triple (CStruct , •,⊥) where
(i) CStruct is a set of command structures, or c-structs
hereafter, (ii) • is an operator from CStruct × Cmd to
CStruct that appends a command to a c-struct and produces
a new c-struct, and (iii) ⊥ is an element in CStruct called
the null c-struct. When it is clear from the context, we shall
write in the following CStruct instead of (CStruct , •,⊥).

We extend the operator • inductively to command se-
quences such that u • 〈C1, . . . , Cn≥0〉 equals u if n equals
0, and (u • C1) • 〈C2, . . . , Cn〉, otherwise.

A c-struct u contains a c-seq σ iff ⊥•σ equals u. By ex-
tension, u contains a command C if there exists a c-seq in u
that contains C. In the following, for some set of commands
C, we shall note Str(C) all the c-structs constructable with
commands in C, i.e., the set {⊥ • σ : σ ∈ cseq(C)}.

We write v the pre-order over CStruct induced by •, and
we say that u prefixes v when u v v holds, i.e., u v v =
∃ σ ∈ CSeq , u • σ = v.

Given a set of c-structs U ⊆ CStruct , a lower bound
of U is a c-struct v such that for all u in U , v prefixes u.
A c-struct w is the greatest lower bound (glb) of U if for
every lower bound v of U , v prefixes w. When the glb of U
exists, we write it u U . Similarly an upper bound of U is a
c-struct v such that for all u in U , u prefixes v. When there
exists an upper bound of U , we say that U is compatible.
A least upper bound (lub) of U is a c-struct w such that for
every upper bound v of U , w prefixes v. When the lub of U
exists, we note it t U . For the sake of simplicity, given two
c-structs u and v, we shall write u t v (respectively u u v)
instead of t {u,v} (resp. u {u,v}).

We make the following assumptions about CStruct :

CS1. CStruct = {⊥ • σ : σ ∈ CSeq}

CS2. v is a reflexive partial order over CStruct .

CS3. ∀C ⊆ Cmd ,∀U ⊆ Str(C),

• ∀v ∈ CStruct ,∀u ∈ U , v v u⇒ v ∈ Str(C)

• U compatible ⇒ t U ∈ Str(C)

• ∀u, v ∈ U , {u,v} compatible ⇒ U compatible

CS4. ∀C ∈ Cmd ,∀U ⊆ CStruct ,
(U compatible ∧ ∀u ∈ U , C ∈ u)⇒ C ∈ u U

B. Generalized consensus
Generalized consensus is a distributed system that consists

of two finite sets of processes: Proposers and Learners .
A proposer p holds a variable proposedp that contains
the commands p proposes to generalized consensus. It
repeatedly executes action propose(C) that adds a com-
mand C to proposedp. Hereafter, we note prpCmd the
set ∪p∈Proposersproposedp. A learner l holds a c-struct
learned l, and learns a new c-struct u by executing learn(u).
This action assigns u to learned l; we say that learner l learns
a command C when C ∈ u.

Processes may fail (crash) during a run; a process that
does not crash is said correct. Initially, for every proposer
p, variable proposedp equals {}, and for every learner l,
learned l equals ⊥. Runs of generalized consensus satisfy
the following properties:
• Non-triviality. For every learner l, learned l ∈
Str(prpCmd) always holds.

• Stability. It is always the case that learned l = v
implies v v learned l at all later times, for any learner
l and c-struct v.

• Consistency. The set {learned l : l ∈ Learners} is
always compatible.

• Liveness. For any command C and any learner l, if l
is correct and either (i) a correct proposer proposes C,
or (ii) some learner learns C, then eventually l learns
C.

Different definitions of (CStruct , •,⊥) correspond to
different distributed tasks. For instance, if c-struct is a set
of commands, and the operator u •C equals u∪{C} . This
is equivalent to uniform reliable broadcast [10]. If now a
command structure is a singleton or the empty set, and u•C
equals C if u is empty, or u otherwise, then we this is the
classical consensus problem. We construct uniform atomic
broadcast [10] when a c-struct is a c-seq and u•C equals u if
u contains C, and u◦C otherwise. To transform generalized
consensus into uniform generic broadcast [15] we instantiate
c-structs as Mazurkiewicz traces [5]: Let � be a binary,
symmetric and irreflexive relation over Cmd , modeling
that two commands are dependent or non-commuting. A
command history u is a digraph (Eu, <u) where Eu is a
subset of Cmd , and <u is a partial order over Eu. We let
⊥ be the empty graph. The cstruct v = u •C equals u if v
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contains C, otherwise, Ev equals Eu ∪ {C}, and <v equals
<u ∪{(D,C) : D ∈ Eu ∧D � C}.

C. Properties
Consider an algorithm A implementing generalized con-

sensus in a message-passing distributed system. A run ρ
of A is nice when no fault occurs during ρ, and the system
behaves synchronously. AlgorithmA is genuine when during
nice runs every command is learned in two communication
steps if CStruct is compatible. Algorithm A is fast when
during nice runs (i) if all the processes receive messages in
the same order, every command is learned in two steps and
(ii) every command is learned in at most three steps.

III. GPAXOS

This section describes GPaxos, an algorithm à la General-
ized Paxos [12] to solve generalized consensus in message-
passing distributed systems. GPaxos is identical to Gener-
alized Paxos, except that it distinguishes between read and
write quorums. The later sections will improve GPaxos to
ensure fast recovery.

We assume a partially-synchronous message-passing dis-
tributed system of deterministic processes. Links between
processes are unreliable, and processes may crash. Algo-
rithm 1 specifies GPaxos as a set of actions. A comment
in square brackets indicates the role of the process, either
a proposer (Proposers), an acceptor (Acceptors), a coordi-
nator (Coordinators), or learner (Learners). GPaxos makes
use of 2f+1 acceptors and f+1 coordinators where f > 0
is the maximum number of crashes GPaxos tolerates to be
live. A set of f + 1 acceptors is called a majority set.

A. Ballots and quorums
GPaxos executes an unbounded sequence of asynchronous

rounds, or ballots. We associate a ballot to a ballot number,
or balnum, picked in BalNum that uniquely identifies it.
Balnums are totally ordered by a relation <. Given a balnum
m, we assume the existence of a smallest balnum higher than
m, noted m++. and a highest balnum smaller than m, noted
m−−. In the remainder of this paper, we identify a ballot
by its balnum.

During a ballot, a learner attempts to learn one or more
c-structs containing proposed commands. GPaxos relies on
quorums of acceptors, i.e. non-empty subsets of Acceptors ,
to remember the c-structs learned during a ballot. Quorums
are constructed as follows: We map to each ballot m a set
of write quorums: wquor(k), and a set of read quorums:
rquor(k). An element in wquor(m) is a write quorum of
m, or for short a m-wquorum. Similarly an element in
rquor(m) is a read quorum of m, abbreviated in m-rquorum.
A ballot m is either fast or classic, and is associated with a
unique coordinator coord(m) in Coordinators . In addition,
we assume hereafter that:
Q1. Given a ballot m, two m-wquorums W and W ′ and a

m-rquorum R, it holds that: W∩W ′ 6= {} and R∩W 6=
{}.

Q2. Given a fast ballot m, two m-wquorums W and W ′,
and a m-rquorum R, W ∩W ′ ∩R 6= {}.

As in previous Paxonian algorithms, processes know a
priori the mapping of ballots to quorums and to coordinators.
For instance, if every process is at the same time an acceptor
and a coordinator, and a balnum is a natural integer, then
the following is a valid assignment: Ballot m is assigned to
the mth coordinator (modulo |Coordinators|). A ballot m
is fast iff m is even. For every ballot m, the read quorums
of m are all the majorities sets. If m is classic, the write
quorums of m are all the majorities sets; otherwise m is
fast, and the write quorums of m are the set Q of acceptors
such that |Q| > 3n

4 .

B. GPaxos details
To propose a command C, an acceptor executes

propose(C). This action sends a propose message to all the
acceptors and to all the coordinators in the system (line 3).

Acceptors constitute the stable memory of the system.
They successively join ballots, and vote during them. Each
acceptor a maintains three variables: its current ballot: bala,
the latest ballot during which it voted for, or accepted,
a c-struct: cbala, and the c-struct it accepted at bal-
lot cbala : cvala.

At the beginning of ballot m, coord(m) tries to convince
acceptors to join m. If enough acceptors participate in m,
coord(m) suggests one or more c-structs. To this goal, a
coordinator c stores the latest ballot it started: balc, and the
latest c-struct it has suggested at ballot balc: maxTriedc. If
no c-struct was suggested so far, maxTriedc equals none
(an element that is not in CStruct).

In the initial state, every acceptor has joined ballot 0
and accepted ⊥, and every learner has learned ⊥. In other
words: (i) for every acceptor a, both bala and cbala equal
0, and cvala equals ⊥, (ii) for every learner l, learned l
equals ⊥, (iii) for every coordinator c, maxTriedc equals 0;
and (iv) if c = coord(0), then maxTriedc = ⊥, otherwise
maxTriedc = none.

A c-struct u is chosen at some ballot m, when there exists
a m-wquorum of acceptors W , such that for every acceptor
a in W , u prefixes the c-struct accepted by a at ballot m.
A c-struct u is choosable at some ballot m, if it is chosen
at m, or it might later be chosen at m. Once a c-struct is
chosen, it might be learned by learners.

Two key invariants of GPaxos ensure that learners never
learn incompatible c-structs:
GPSafety-1 If two c-structs u1 and u2 are accepted at some

classic ballot m, then {u1,u2} is compatible.
GPSafety-2. If an acceptor a accepts a c-struct u at some

ballot m, then u is safe, i.e., for every c-struct v
choosable at some ballot n < m , c-struct v prefixes u.

We explain how GPaxos maintains these invariants by de-
tailing how it executes a classic ballot:

• phase1A(m): When it start a ballot m, the coordinator
of m, denoted hereafter c, sends a 1A message labelled
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Algorithm 1 GPaxos generalized consensus algorithm, as
executed by some process i
1: propose(C) [proposer]
2: pre: C ∈ Cmd
3: eff: send (propose,C) to Acceptors ∪ Coordinators
4:
5: phase1A(m) [coordinator]
6: pre: maxStarti < m
7: i = coord(m)
8: eff: maxTriedi := none
9: maxStarti :=m

10: send (1A,m) to Acceptors
11:
12: phase1B(m) [acceptor]
13: pre: bali < m
14: rcvcoord(m) (1A,m)
15: eff: bali :=m
16: send (1B,m,cbali, cvali) to coord(m)
17:
18: phase2Start(m,R,k) [coordinator]
19: pre: maxTriedi = none
20: maxStarti = m
21: ∀a ∈ R, rcva (1B,m,l,l)
22: k = max{n < m : ∃a ∈ R, rcva (1B,m,n,l)}
23: ∀n ∈ N, k ≤ n < m⇒ R ∈ rquor(n)

24: eff: W := {W ∈ wquor(k) : ∀a ∈ W ∩ R, rcva (1B,m,k,l)}
25: if W = {}
26: maxTriedi := u s.t. ∃a ∈ Acceptors, rcva (1B,m,k,u)
27: else
28: Let γ(W )

4
= u{u : ∃a ∈ R ∩W, rcva (1B,m,k,u)}

29: maxTriedi := t{γ(W ) : W ∈ W}
30: send (2A,m,maxTriedi) to Acceptors
31:
32: phase2AClassic(m,C) [coordinator]
33: pre: maxTriedi 6= none
34: maxStarti = m
35: ∃p ∈ Proposers, rcvp (propose,C)
36: ¬isFast(m)
37: eff: maxTriedi := maxTriedi • C
38: send (2A,m,maxTriedi) to Acceptors
39:
40: phase2BClassic(m,u) [acceptor]
41: pre: rcvcoord(m) (2A,m,u)
42: bali ≤ m
43: ∃W ∈ wquor(m), a ∈ W
44: cbali 6= bali ∨ cvali @ u
45: eff: cvali := u
46: bali :=m
47: cbali :=m
48: send (2B,m,cvali) to Learners
49:
50: phase2BFast(C) [acceptor]
51: pre: isFast(cbali)
52: bali = cbali
53: ∃p ∈ Proposers, rcvp (propose,C)
54: eff: cvali := cvali • C
55: send (2B,cbali,cvali) to Learners
56:
57: learn(m,W,u) [learner]
58: pre: W ∈ wquor(m)
59: ∀a ∈ W, ∃v ∈ CStruct, rcva (2B,m,v) ∧ u v v
60: eff: learnedi := t {learnedi, u}
61:

m to the acceptors (line 10).

• phase1B(m): When an acceptor a receives a 1A mes-
sage labelled m, and bala is strictly smaller than m, a
joins ballot m by setting bala to m. Then acceptor a
sends a 1B message labelled with m containing cbala
and cvala to the coordinator c (line 16).

• phase2Start(m,R,k): The coordinator c executes this
action once there exists a ballot k and a quorum R such
that (i) coord(m) has received a 1B message labelled

m from every acceptor in R, (ii) k is the highest ballot
coord(m) has heard of in the 1B messages it has
received from the acceptors in R, and (iii) for every
ballot n such that k ≤ n < m, R is a read quorum
of n. In Lamport [12] any two quorums intersect.
Because our assumptions on quorums are weaker than
Lamport’s (see Q1 and Q2), we need condition (iii). We
explain the reason why by proving that when coord(m)
executes either line 26 or 29, maxTriedcoord(m) is safe
at ballot m:

Proof (sketch). Assume that a c-struct v is choos-
able at some ballot n ≤ m, and suppose that
GPSafety-2 holds for every ballot prior to m. First,
observe that there exists an acceptor a in R such
that a has accepted some c-struct at ballot k, and
coord(m) received a 1B message from a (line 22).
Then consider the following cases:
Case n < k: By invariant GPSafety-2, every c-

struct accepted at ballot k by acceptors in R suf-
fixes v. If now W is empty (line 25), then u suf-
fixes v. Otherwise, for every quorum W , γ(W )
suffixes v (line 28). Hence, maxTriedcoord(m)

suffixes v.

Case k ≤ n < m: R is a read quorum of n
(line 23). Thus, for every n-wquorum W , as-
sumption Q1 tells us that W ∩R 6= {}. It follows
that at least one acceptor in R has accepted a c-
struct at ballot n. This contradicts the definition
of k.

�
Once coord(m) has extracted a c-struct that is safe at
ballot m and stored it in maxTriedcoord(m), coord(m)
suggests it to the acceptors in a 2A message (line 30).

• phase2AClassic(m,C): When maxTriedcoord(m) dif-
fers from none, by construction maxTriedcoord(m) is
safe at m. If m is classic, coord(m) appends newly
proposed commands to maxTriedcoord(m) and suggests
the resulting c-struct to the acceptors (line 38).

• phase2BClassic(m,u): When an acceptor a belonging
to a m-wquorum receives a 2A message containing a c-
struct u and a can join ballot m, or joined it previously,
a accepts u by assigning u to cvala (line 45). Acceptor
a then updates cbala and bala to the value of m
(lines 46 and 47), and sends a 2B message containing
cvala to the learners (line 48). Since c-struct u extends
maxTriedcoord(m), every c-struct accepted at ballot
m prefixes maxTriedcoord(m) (invariant GPSafety-1).
Moreover maxTriedm is safe at ballot m, thus very ac-
cepted c-struct is safe at ballot m (invariant GPSafety-
2).

• learn(m,W,u): A learner l learns a c-struct u, once
l knows that u is chosen at m (lines 58 and 59).
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To learn u, learner l assigns to learned l the value of
t {learned l,u}. This maintains the stability invariant
of generalized consensus.

At first glance, GPaxos has a latency of five steps in
a classic ballot, as this is the length of the causal path
between propose, 1A, 1B, 2A and 2B messages. However,
as long as coord(m) does not crash and no coordinator
starts a ballot higher than m, coord(m) may suggest new
commands within m. As a consequence, since coord(0) can
skip phase one of ballot 0 (⊥ is de facto safe at ballot
0), every command is learned in three communication steps
during a nice run.

C. Fast ballots, collisions and recovery
To further reduce latency, acceptors execute action

phase2BFast during fast ballots:

• phase2BFast(C): Once an acceptor a has joined a fast
ballot (line 51), and accepted the safe c-struct suggested
by the coordinator (line 52), a tries to extend it with
newly proposed commands. More precisely, when a
receives a propose message containing a command
C, it sets cvala to cvala • C (line 54), then sends a
2B message containing the new value of cvala to the
learners (line 55).

Commands accepted during a fast ballot are learned in two
steps: the causal path contains a propose message and a 2B
message. A fast ballot leverages both the spontaneous order-
ing of the messages by the network and the compatibility of
c-structs, as we illustrate below:

Example 1: Let a1 and a2 be two acceptors that
joined a fast ballot m. Suppose that a1 and a2 form
a m-wquorum, and note u the c-struct suggested by
coord(m) at ballot m. If a1 and a2 receive two
commands C and D in this order, i.e., the network
spontaneously orders C before D, then both a1 and
a2 extend u in v = (u • C) •D. As a consequence, v
is chosen at ballot m. If now C and D are received in
different orders, e.g. a1 extends u in v and a2 extends
u in w = (u • D) • C, then if C and D commute v
equals w, and v is still chosen at m. �

However, if the set of c-structs accepted by the acceptors is
not compatible, a collision occurs. A process i detects that a
collision occurs at a ballot m when the following predicate
holds at i:

collide(m)
4
= ∃W ∈ wquor(m),{

∀a ∈W, rcva (2B,m,l)
¬ ({u : ∃a ∈W, rcva (2B,m,u)} compatible)

When a collision occurs at ballot m, GPaxos starts a
higher ballot. We call this a recovery. The latency of GPaxos
equals six communication steps when a recovery occurs: two
messages during the fast ballot that collides (propose, 2B),
plus four messages to recover (1A, 1B, 2A, 2B). Reducing
this delay is the subject of the next section.

IV. FAST RECOVERY FROM COLLISIONS

Most of the time, when a collision occurs at some ballot
m, the coordinator of ballot m++ is also the coordinator
of ballot m, and after detecting the collision it starts ballot
m++. Lamport [14] observes that when this type of sit-
uation happens in Fast Paxos, if coord(m) receives a 2B
message at ballot m from an acceptor a, it knows the same
information as if it had received a 1B message from a at
ballot m++, i.e., (i) since there is no ballot between m and
m++, a will not join a ballot smaller than m++, and (ii)
m is the highest ballot at which a voted for some value. As
a consequence, we may apply the following optimization :
Coordinated recovery. We require that Coordinators ⊆

Acceptors . If a collision occurs at ballot m,
coord(m++) considers the 2B messages sent during
ballot m, as 1B messages for ballot m++.

With the coordinated recovery technique, coord(m++)
skips phase one of ballot m++. This saves two commu-
nication steps when a collision occurs in Fast Paxos.

An acceptor of GPaxos continuously accepts newly pro-
posed commands during fast ballots. This implies that when
a collision occurs at ballot m, coord(m++) cannot use the
2B messages it received at ballot m to pick a safe c-struct;
we illustrate this below:

Example 2: Consider three commands C, D and
E such that C and D are non-commuting, and E
commutes with both C and D. Let m be a fast ballot,
W = {a1,a2} be a m-wquorum, and suppose that a1
accepts u = (⊥•C) •D at ballot m, while a2 accepts
v = (⊥ • D) • C. Ballot m collides. If coord(m++)
starts ballot m++, then uuv, which equals ⊥, should
be safe. However, concurrently to the beginning of
ballot m++, acceptors a1 and a2 accept command E.
Hence, ⊥•E is now chosen at ballot m. This violates
invariant GPSafety-2. �

To maintain invariant GPSafety-2 coord(m++) must know
what was chosen at ballot m. Since acceptors accept at will
new commands, coord(m++) cannot skip phase one, and
thus we cannot employ the coordinated recovery technique.
In the remaining of this section we first present a simple
variant of GPaxos that reduces latency to four steps when a
collision occurs. Then, we depict our complete solution to
recover in one step.

A. Recovery in two steps

To recover in two steps we introduce the concept of a
centered ballot. We say that a ballot m is centered when
every m-wquorum contains coord(m), i.e., centered(m) =
∀W ∈ wquor(m), coord(m) ∈ W . If m is centered,
observe that {coord(m)} is by construction a read quorum
of m. Consider a ballot m that collides, and assume that the
coordinator of ballot m is the coordinator of ballot m++.
Then, the coordinator may execute phase one of ballot m++
locally:
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Two-step recovery. We require that Coordinators ⊆
Acceptors . For every fast ballot m, m is centered and
{coord(m)} is a m-rquorum.

We now further refine this recovery technique to recover in
one step when a collision occurs.

B. Recovery in one step
Algorithm 2 depicts the code of FGGC, a fast genuine

generalized consensus algorithm. It adds action recover to
the code of Algorithm 1. To recover in one step when a
collision occurs at ballot m, FGGC allows acceptors to
spontaneously accept, at ballot m++, a c-struct built from
what coord(m) accepted at ballot m. In more detail, our
algorithm works as follows:
One-step recovery. We assume that (FGGC1)

Coordinators ⊆ Acceptors and Acceptors ⊆
Learners , and that (FGGC2) every fast ballot is
centered and associated to a unique write quorum.
When acceptor a detects that ballot cbala collides
(line 4), a executes recover(u) provided that: ballot
cbala++ is fast (line 5), a belongs to some write
quorum of cbala++ (line 6), a did not join a higher
ballot than cbala (line 7), and a received a 2B message
from the coordinator of cbala containing u (line 8).
When acceptor a executes recover(u), it joins ballot
cbala++, and spontaneously accepts at this ballot the
least upper bound of the set consisting of u and the
greatest prefix of cvala compatible with u.

We prove informally below that executing action recover
maintains invariant GPSafety-2:

Proof (sketch). Note m the value of bala when a
executes recover(u), assume that GPSafety-2 holds for
ballots prior or equal to m. and let v be a c-struct
choosable at some ballot n ≤ m. Variable safe is the
c-struct initially accepted by a at ballot m++ (line 13),
hence to satisfy GPSafety-2 at ballot m++, we must
show that v prefixes safe . We first observe that c-struct
u prefixes cvalcoord(m) (line 8), then we consider the
following cases:
Case n < m: Since cvala is safe at ballot m, and
n < m, v prefixes cvala. By a similar reasoning, we
obtain that v prefixes cvalcoord(m) which implies that
{u,v} is compatible. Thus by construction V contains
v. We conclude that safe suffixes v.

Case n = m: If a accepted some c-struct at ballot m,
then a belongs to a m-wquorum (lines 43 and 52 in
Algorithm 1 and line 6 in Algorithm 2). Besides,
ballot m collides, thus it is fast. Our algorithm
requires that if m is fast, there is a single m-
wquorum (assumption FGGC2). As a consequence,
if v is chosen at m, v prefixes cvala. By a similar
reasoning we conclude that v prefixes cvalcoord(m).
This implies that {u,v} is compatible. Hence V
contains v, which implies that safe suffixes v.

�

Algorithm 2 Fast Genuine Generalized Consensus, as exe-
cuted at process i
1: // Actions propose , phase1B , phase2Start , phase2Start ,

phase2BClassic, phase2BFast and learn: unchanged from
Algorithm 1.

2:
3: recover(u) [acceptor]
4: pre: collide(cbali)
5: isFast(cbali++)
6: ∃W ∈ wquor(cbali++), a ∈ W
7: cbali = bali
8: ∃u ∈ CStruct , rcvcoord(cbali)

(2B,u,cbali)
9: eff: let V = {v ∈ CStruct : v v cvali ∧ {u,v} compatible}

10: let safe = t {u,t V}
11: bali := bali++
12: cbali := bali
13: cvali := safe
14: send (2B,cbali,cvali) to Learners
15:

Liveness: FGGC fulfills the liveness clause of gener-
alized consensus if for every correct learner l and every
command C, either proposed by some correct proposer or
learned by some learner, there exists a ballot m, a m-
wquorum W , and a c-struct u containing C, such that
l executes learn(m,W,u). This requires that at most f
acceptors crash, and some synchrony assumptions. In Sutra
[19], we provide a proof of progress in the unreliable failure
detector model.

Latency: To ensure that all commands are learned in
at most three steps, FGGC needs to continuously execute
fast ballots using the same m-wquorum W . Nevertheless,
if some crash occurs and W is not available anymore,
FGGC must be able to execute classic ballots. To satisfy
this requirement, we must construct BalNum carefully. We
give such a construction below:

Example 3: A balnum m is a couple m = (i,j)
where i ∈ {0,1} and j ∈ N. If i equals 0, m is
fast and coordinated by the first acceptor; otherwise
m is classic and coordinated by the jth acceptor
(modulo |Acceptors|). Ballot 0 equals (0,0). If m is
fast, the single write quorum of m is some majority
set containing the first coordinator. If m is classic,
every majority set is a write quorum of m. A majority
set is always a read quorum, and if ballot m is fast
{coord(m)} is also a read quorum of m. For some
ballot m = (i,j), m++ equals (i,j + 1). Relation <
over BalNum , is defined given two ballots m = (i,j)

and n = (k,l), by: m < n
4
= i < k ∨ (i = k ∧ j < l).

�

The definition above ensures that (i) FGGC executes fast
ballots (0,0), (0,1), . . ., switching from one ballot to a higher
ballot only if a collision occurs, and (ii) FGGC is able to
switch to a classic ballot if a crash occurs.

V. IMPLEMENTATION

We implemented FGGC in the Daisylib group communi-
cation library [2]. Our implementation is written in Java. It
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Algorithm CStruct FASTBALLOTS? Recovery
Paxos singleton false DEFAULT

Fast Paxosa singleton true TWOSTEP
[4] singleton true ONESTEP

Paxosb c-seq false DEFAULT
Fast Paxosb c-seq true TWOSTEP

[4]b c-seq true ONESTEP
GPaxos trace true DEFAULT

Section IV-A trace true TWOSTEP
FGGC trace true ONESTEP

aWith the coordinated recovery technique of Section IV
bRepeated in order to implement state machine replication

Table I
EXECUTION MODES

has 5,200 lines of code, of which 1,100 for the command
structure abstraction.

The core of our implementation is GPaxos with
Coordinators = Acceptors ⊆ Learners ⊆ Proposers .
The different blocks: proposer, acceptor, coordinator and
learner, are executed in isolation. They communicate via a
message-passing interface on top of TCP/IP. To track learned
c-structs and collisions, each block maintains the c-structs
accepted at each ballot, and updates it every time a 2B
message is received. When a c-struct u is learned at some
ballot m, ballots prior to m are removed to bound memory
consumption.

Coordinators use an eventual leader service and an even-
tual failure detector service running between acceptors to
time the start of a new ballot. More precisely, a coordinator
c starts a new ballot when c is the leader of Acceptors ,
and either (i) every write quorum of maxStart i contains a
faulty process, or (ii) maxStartc is fast, a collision happens
at that ballot and the recovery technique is set to DEFAULT
or TWOSTEP (these flags are explained shortly).

Our implementation is very flexible and allows multiple
execution modes. Three parameters defines an execution
mode:
• The definition of CStruct . A c-struct can be either a

singleton, a c-seq or a trace (see Section II-B).
• The mapping from balnums to read/write quorums.

When the flag FASTBALLOTS is false , every balnum
is classic; otherwise every balnum is fast.

• The recovery technique applied when a collision oc-
curs. The value DEFAULT indicates that the recovery
technique of GPaxos is used, TWOSTEP stands for
the technique covered in Section IV-A, and ONESTEP
indicates the technique described in Section IV-B.

Each execution mode corresponds to a particular Paxonian
algorithm. Table I summarizes the execution modes, and the
algorithm implemented by each mode.

To make our framework efficient, we also introduced
several optimizations that we describe below:

Computing with c-structs: When a c-struct is either a
c-seq or a trace, computing the glb (or the lub) of a set

of c-structs is expensive. For instance, if each c-struct is
a c-seq containing n commands, and there are m such c-
structs, computing the glb costs O(nm) operations. When c-
structs are traces, complexity raises to O(n2m). We applied
two techniques to reduce this complexity. First, we always
use a single write quorum per ballot. With a single write
quorum, there is no need to execute line 28 in Algorithm 1,
and only the computation of the lub is necessary. Our
second optimization is to cache the glb and to update it
incrementally when the process receives a 2B message.

Batching commands: When generalized consensus is
under high load, processing one command at a time is
expensive. To reduce this cost, we batch proposed com-
mands. More precisely, when a proposer proposes multiple
commands, we group them in a particular command, called
command array. Two command arrays commute if the
commands they contain commute.

Reducing redundancy: When a process sends a mono-
tonically growing c-struct, e.g., u, u • A, u • A • B, . . . ,
much of this information is redundant. To reduce redun-
dancy, we leverage First-In First-Out links. The first time
a process i sends a c-struct u, i sends it entirely. Then,
each time i appends a new command A to u, i sends only
A. This optimization is used when a coordinator executes
phase2AClassic, and when an acceptor executes actions
phase2BClassic and phase2BFast .

VI. EXPERIMENTAL EVALUATION

In this section, we compare Paxos, the improved Fast
Paxos of Charron-Bost and Schiper [4], GPaxos and FGGC.
We make our comparison using the workload of Mencius
[? ]. This workload consists of commands to randomly
read or write from a set of read/write registers. As the
number of register increases, so does the probability that
two commands will commute. A client submits commands
in closed loop, i.e., it submits a command, waits until it
returns, and immediately submits a new one.

A. Experimental settings
A command consists of the following fields: operation

type (read or write, 1 byte); register name (2 bytes); the
sequence number (2 bytes); and client ID (2 bytes).

We evaluated the protocols using a fully inter-connected
cluster of bi-processor AMD-64 computers, running at
2.4 Ghz with 2 GB of memory; each processor has two
cores. A gigabit Ethernet links the nodes. The bandwidth
and message delay of our local network, measured using
netperf and ping, are 940 Mbps and 0.05 ms respectively.

A physical node runs either all four roles, or a proposer,
a learner and a certain amount of clients. In the former case
we call it a server node, and in the latter a client node. We
always run three client nodes and three server nodes (f = 1).
The number of clients per client node varies from 10 to 400.

When a learner learns a command C, it executes C, sends
a reply to the client that submitted it, and logs the first
four fields of C. Upon receiving the reply from a learner, a
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Figure 1. LAN performance

client computes and logs the latency of the request. We use
the client-side log to analyze experiment results. During an
experiment, each client submits 3,000 commands. The first
and last 1,000 commands are not taken into account.

In our experiments, we vary the latency of links between
nodes to emulate both LAN and WAN topologies. For the
former, nodes use the underlying gigabit network directly. In
the WAN topology, we use the Linux traffic shaper to force
a one-way message delay of 50 ms, except in Section VI-C1
where latency varies from 10 to 100 ms. Bandwidth is
limited to 20 MB/s in all WAN experiments.

B. LAN performance

Figure 1 displays the throughput of Paxos, Fast Paxos,
FGGC and GPaxos in a LAN setting (higher is better).
Clients access 1,024 registers in this experiment.

Observe that the performance of GPaxos is an order of
magnitude worse than other algorithms. The explanation for
this result is that when a collision occurs in GPaxos, the
coordinator sends a 2A message and a priori we cannot
use fifoness of links to reduce the amount of transmitted
information.

The peak performance of Paxos is 72 KCmd/s. Under max
load, a command takes 15 ms to execute with a standard
deviation of 10 ms. The maximum throughput of FGGC and
Fast Paxos is 57 KCmd/s (around 80% of Paxos highest
throughput). When both algorithms reach their maximum
throughput, the latency of a command is on average 25 ms
with a standard deviation of 10 ms.

The most expensive operation in the critical path for
FGGC and Fast Paxos is to compute if a set of c-structs is
compatible or not. Recovery remains somewhat expensive
in our current implementation, as it requires copying two c-
structs, and computing the lower upper bound of a set of c-
structs. In a future version, we plan to compute incrementally
the result of recover each time a 2B message is received
from the coordinator.
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Figure 2. WAN performance

C. WAN performance

We now compare different algorithms in a simulated WAN
environment.

1) Latency: Figure 2(a) shows the latency to execute
commands as the one-hop message delay between nodes
varies (lower is better). In this experiment, we set the number
of registers to 1,024, and we run 360 clients.

Observe that the average latency of GPaxos and Paxos are
similar. Nevertheless, their variance is very different: Paxos
always delivers messages in three communication steps,
whereas GPaxos needs between two and six communication
steps. For instance, when the one-hop message delay equals
50 ms, Paxos needs 156 ms to execute a command with a
standard deviation of 4 ms, whereas GPaxos takes 175 ms
with a standard deviation of 130 ms. This shows that the
recovery technique of GPaxos is expensive.

As soon as latency is significant, FGGC outperforms
the other algorithms. For instance when message delay is
50 ms, FGGC executes commands in 120 ms, with a standard
deviation of 24 ms. Notice that, with 360 clients and 1,024
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Algorithm Time complexity optimal
everything spontaneous general resilience?
commutes order case

[7] 4n 4n 4n yes
[3] 4 4 4 yes

[11] 4 4 4 yes
[17] 3 3 3 yes
[1] 3 2 3 yes

[14] 3 2 6 yes
[4] 3 2 3 yes

[16] 2 3 3 no
[12] 2 2 6 yes
[20] 2 2 3 no

FGGC 2 2 3 yes

Table II
COMPLEXITY AND RESILIENCE OF CONSENSUS ALGORITHMS FOR

STATE-MACHINE REPLICATION

registers, collisions are not rare: during this experiment both
FGGC and GPaxos started around 1,600 ballots.

2) Leveraging commutativity: Figure 2(b) evaluates the
influence of commutativity on latency in FGGC (lower is
better). In this experiment, we set the message delay to
50 ms. For comparison purposes, we report the latency of
Paxos (top curve), and we vary both the number of clients
(x axis), and the number of registers (the other curves).

The figure shows that, even with a single register, taking
into account the commutativity of reads improves perfor-
mance with respect to Paxos by 13%. As more registers are
added, commutativity increases, which reduces the average
latency of FGGC. When fewer than 800 clients access the
system concurrently and there are at least 4 K registers,
ballots rarely collide, and FGGC is close to the theoretical
lower bound. As more clients are added, or fewer registers
are available, the performance of FGGC degrades.

The peak throughput of both algorithms is obtained
with 1,200 clients. In this setting, both Paxos and FGGC
deliver 7,200 commands/s when there is a single reg-
ister. When there are 16,384 registers, FGGC outputs
9,600 commmands/s with an average latency of 115 ms.

VII. RELATED WORK

State machine replication [18] is a fundamental technique
for implementing wait-free linearizable shared data in a
message-passing distributed system. This section briefly
reviews state machine replication and consensus algorithms
when processes may halt by crashing. Table II summarizes
our survey.

The classical approach to implement state machine repli-
cation is to execute successive instances of consensus. The
seminal FLP paper [8] shows that consensus cannot be
solved in an asynchronous system using a deterministic algo-
rithm when processes may crash. Fortunately, as real systems
behave synchronously most of the time, there has been major
progress in fault-tolerant consensus. Notably, both Dwork et
al. [7] and Paxos [11] solve consensus deterministically for
f < n/2 under weak synchrony assumptions.

Metrics for evaluating the performance of a consensus
algorithm include: (i) best-case time complexity, or latency,
and (ii) the number of failures it tolerates, or resiliency.
As most runs are “nice” , latency should remain low in this
common case. Both Paxos and Chandra et al.’s algorithm [3]
solve consensus in three communication steps. The early-
deciding algorithm of Schiper [17] improves this, solving
consensus in two steps, which is optimal in the general case
[13]. These algorithms have optimal resilience: they tolerate
f < n/2 faults.

Empirically, it is observed that the network often sponta-
neously delivers broadcast messages in the same order to all
receivers. Leveraging this, Brasileiro et al. [1] and Pedone
et al. [16] solve consensus in one step during nice runs
where all processes propose the same command. Deciding
in one step during stable runs requires f < n/3 [1].
Optimal resilience requires to decide in one step during
stable runs only if at most f < n/4 processes crash,
as in Lamport’s Fast Paxos [14]. Although FGGC decides
in one step with only a majority of processes, this does
not contradict Lamport’s result, as FGGC decides only if
a privileged set [9] of processes (precisely, the centered
quorum of ballot 0) is alive.

When a collision occurs during a fast ballot, Fast Paxos
may have higher latency than Paxos. A recent algorithm by
Charron-Bost and Schiper [4] improves Fast Paxos by ten-
tatively executing a fast ballot during a classic ballot. (This
is the variant of Fast Paxos used in our performance evalu-
ation.) During nice runs, this algorithm solves consensus in
one step if every process proposes the same command, and
two otherwise; it has optimal resilience. When a c-struct is a
singleton, ballot 0 is fast, the single write quorum of ballot
0 contains all acceptors, and every higher ballot is classic,
FGGC behaves similarly, with the subtle difference that,
where Charron-Bost and Schiper [4] picks the coordinator of
a ballot “on the fly,” FGGC assigns it a priori. This allows
Charron-Bost and Schiper [4] to be zero-degrading [6], i.e.,
to decide in at most two steps when all crashes occurs
initially and the system behaves synchronously (called a
stable run). It worth noticing nevertheless that properties of
generalized consensus during stable runs are of few interest
because this primitive is executed only once to implement
state machine replication.

Both Pedone et al. [15] and Lamport [12] observe that
since replicas might execute commuting commands in dif-
ferent orders, it is unnecessary to order all commands. The
algorithm of Pedone and Schiper [15] tolerates f < n/3
crashes and does not leverage the spontaneous ordering
of the network. More recently, Zieliński [20] proposed an
algorithm to solves generic broadcast in two steps when con-
current commands either commute or were spontaneously
ordered by the network, and three steps otherwise. As the
author himself concedes, his algorithm is not practical.

Multicoordinated Paxos of ? ] uses more than one co-
ordinator per ballot. During a multicoordinated ballot m,
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an acceptor accepts a c-struct u only if u prefixes the c-
structs received from some m-quorum of coordinators. A
collision may occur during a multicoordinated ballot m
when c-structs suggested by coordinators collide. In such
a case, a higher ballot is started. Multicoordinated Paxos
increases dependability at the cost of a higher probability
that collisions occur.

VIII. CONCLUSION

This paper presents FGGC, a fast genuine generalized
consensus algorithm. FGGC tolerates f < n/2 faults and
makes use of f + 1 processes to progress. During nice
runs, FGGC decides in two communication steps when
commands either commute or are spontaneously ordered
by the network, and three otherwise. Evaluation in a WAN
shows that (i) even if clients access the same objects, FGGC
achieves results comparable to Paxos, and (ii) if commands
commute with good probability, FGGC outperforms Paxos.
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