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Étude comparative de plusieurs approches optimistes

pour l’écriture collaborative de pages Wiki

Résumé : Les Wikis constituent aujourd’hui de formidables outils de partage de la connaissance. Il doivent
être considéré comme des systèmes d’édition collaborative, et ce, même si le support qu’ils offrent à l’écriture
coopérative reste limité. Malheureusement, ils supportent mal le passage à l’échelle du fait de leur architecture
qui repose le plus souvent sur un seul serveur central. Dans cet article, nous comparons l’architecture centralisé
du système MediaWiki avec plusieurs approches pair-à-pair adaptées à l’édition de pages Wiki : une approche
(MOT2) reposant sur les transformées opérationnelles, une approche (WOOTO) orientée commutativité, et une
approche (ACF) basée sur la résolution de conflits. Nous évaluons et comparons ces différentes approches de
manières qualitatives et quantitatives.

Mots-clés : Travail collaboratif, Écriture collaborative, Réplication optimiste, Wiki
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4 Ignat et al.

1 Introduction

In recent years, the Web has seen an explosive growth of massive collaboration tools, such as wiki and weblog
systems. By the billions, users may share knowledge and collectively advance innovation, in various fields of
science and art.

Existing tools, such as the MediaWiki system for wikis, are popular in part because they do not require any
specific skills. However, they are based on a centralised architecture and hence do not scale well. Moreover,
they provide limited functionality for collaborative authoring of shared documents.

At the same time, peer-to-peer (P2P) techniques have grown equally explosively. They enable massive
sharing of audio, video, data or any other digital content, without the need for a central server, and its attendant
administration and hardware costs. P2P systems provide availability and scalability by replicating data, and
by balancing workload among peers. However, current P2P networks are designed to distribute only immutable
documents.

A natural research direction is to use P2P techniques to distribute collaborative documents. This raises
the issue of supporting collaborative edits, and of maintaining consistency, over a massive population of users,
shared documents, and sites. The purpose of this article is to study a number of alternative P2P, decen-
tralised approaches, applied to collaborative wiki editing, contrasted with current centralised systems. Specif-
ically, we detail P2P broadcast techniques, and we compare the existing centralised approach (MediaWiki)
with several distributed, peer-to-peer approaches, namely: an operational transformation approach (MOT2),
a commutativity-oriented approach (WOOTO) and a serialisation and conflict resolution approach (ACF). We
evaluate each approach according to a number of specified qualitative and quantitative metrics.

The paper is organised as follows. In Section 2 we present both the basic concepts of optimistic collaborative
editing and our evaluation metrics. Section 3 presents our running example, concurrent editing scenario of a wiki
page. Next, Section 4 develops this scenario using MediaWiki. Section 5 overviews P2P broadcast mechanisms.
The next sections discuss and evaluate specific P2P concurrency and consistency techniques, under the same
scenario: the MOT2 operational transformation in Section 6; the WOOTO commutativity-oriented approach
in Section 7; and the ACF reconciliation approach in Section 8. A summary is presented in Section 9.

2 Optimistic Replication in Peer-to-Peer Systems

This section presents the main concepts in optimistic replication [12] and some evaluation criteria for the
comparison of various optimistic replication approaches.

2.1 Basic Concepts

A peer-to-peer collaborative editing system is composed of a set of peers (sites) that can dynamically join and
leave the system. Peers host replicas of the shared document. Users generate operations to modify the shared
data. An operation undergoes the following sequence of events:

1. The user submits it at some site.

2. It is executed against the local replica.

3. It is broadcast through the P2P network to the other peers.

4. In some systems, it is subjected to conflict detection and reconciliation with respect to concurrent opera-
tions.

5. Peer sites receive it and integrate it, i.e., they execute it against their own replica.

Operations are kept in a buffer, called a log or history. Peers synchronise with one another by exchanging
and merging logs, through epidemic propagation (see Section 5).

An operation is valid under some precondition. Preconditions can be implicitly built into the replication
algorithm, or can be written explicitly by users.

Additionally, an operation might contain a postcondition that should be satisfied after its execution. For
instance, consider a document represented as a linear sequence of characters, where each character is uniquely
identified. Operation insert(c, cp, cn) inserts character c between characters cp and cn. Its precondition is that
cp and cn exist and that cp is ordered before cn. A postcondition is that c is inserted after cp and before cn.

INRIA
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A common precondition is to maintain some relation with another operation. For instance, in many systems,
the order of execution of operations is compatible with the “happens-before” relation [7]. We say that op1

happens-before op2 if op2 was generated on some site, after op1 executed on the same site.
Conversely, op

1
and op

2
are said concurrent if neither op

1
happens-before op

2
nor op

2
happens-before op

1
.

Concurrent updates of different copies of the same document might generate conflicting changes. A conflict
occurs when an operation would fail to satisfy its precondition. Detected conflicts can be resolved automatically
by the system or manually by users.

The system should ensure eventual consistency, i.e., if all clients stop submitting operations, all sites even-
tually converge to the same (correct) state.

2.2 Evaluation Criteria

We will compare different approaches according to a large spectrum of metrics, some qualitative, some quanti-
tative. Parameters are: the number of sites m, the number of operations n, and the size of the edited document
l.

a) Communication Complexity: The number of messages exchanged for all sites to converge to the final state.

b) Time Complexity: This evaluates the time to convergence.

c) Space Complexity: The amount of memory required (per site).

d) First Site Convergence Latency: The minimal number of rounds necessary for the first site to reach its
final state. We define a round as a P2P round-trip of communication. Generally, each peer sends out
messages to all other peers, receives all messages sent to it at that round, and carries out some local
computation [8].

e) Convergence Latency: The number of rounds necessary for all sites to converge to the final state.

f) Semantic Expressiveness: We say a system is semantically expressive if it can capture a large spectrum
of operation semantics, and of preconditions and postconditions.

g) Determinism: An approach is said deterministic if the final document state is determined only by the set
of operations and their preconditions, and does not depend on order of message delivery.

3 Concurrent Editing Scenario of a Wiki Page

In this section we present an example of users concurrently editing a wiki page. We will use this example
throughout this paper to illustrate various optimistic replication approaches for maintaining consistency.

Consider three users collaboratively writing a wiki page about optimistic replication. Suppose the three
users concurrently edit the section “Detection and resolution of conflicts”, of the wiki page whose initial state
is illustrated in Figure 1.

Figure 1: Initial state of the section “Detection and resolution of conflicts”

Further suppose the three users perform the operations : User 1 inserts a new line as the 10th line, User 2
updates the 9th line, User 3 deletes the lines 8 to 10. The modifications of each user are shown in the same
figure, Figure 2.

Afterwards, all three users try to publish their versions of the document by exchanging their modifications.
Eventually all replicas should converge.

RR n° 6278



6 Ignat et al.

Figure 2: Overview of changes performed by users.

To ensure this property, a simple technique is the “Thomas Write Rule” approach [16], also called “Last-
Writer Wins” in replicated file systems. The successive versions of a file are timestamped or numbered; the
version with the highest number is retained, and other versions are thrown away. The drawback of course is
that concurrent updates are lost.

Instead, the literature on computer-supported co-operative work says that “user intention” should be pre-
served. Unfortunately, it is difficult to characterise user intention formally. The systems we review here differ,
in particular, in how they capture this concept. Operational Transformation specifies transformations between
pairs of concurrent operations, in order to combine their effects. The commutativity-oriented approach defines
operations that commute, in order to reach the same result even if operations execute in different orders. The
action-constraint framework maintains an explicit representation of semantic relations between operations, e.g.,
conflicts, in order to combine them optimally.

4 The co-operative editing scenario in Mediawiki

Step Actions of User 1 Actions of User 2 Actions of User 3

1 inserts a new line as the 10th line updates the 9th line deletes the lines 8–10
2 Save Save Save

3 → save is aborted → save is aborted → save succeeded
→ conflict is detected → conflict is detected → new version is published
(changes of User 1 and User 3
conflict)

(changes of User 2 and User 3
conflict)

→ both versions are presented → both versions are presented
4 reinserts his content reinserts his content
5 Save Save

6 → save is aborted → save succeeded
→ conflict is detected → new version is published
(changes of User 1 and User 2
conflict)
→ both versions are presented

7 manually merges both changes
8 Save

9 → save succeeded
→ new version is published

10 Reload Reload

Table 1: Summary of scenario with MediaWiki

In this section we run through the scenario of Section 3 when using Mediawiki, the system currently used
in Wikipedia. We evaluate Mediawiki according to the criteria presented in Section 2.2.

INRIA
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4.1 Revisiting Motivating Example

When users concurrently try to save their changes, the save of only one user succeeds and the other saves fail.
The changes of the user whose save succeeds are published. The other users will be presented with two versions
of the wiki page: the one that the user tried to publish and the last published version. Conflicts have to be
manually resolved by users by re-typing or copying and pasting the changes they performed in the last version
that was published. In Table 1 we illustrated a scenario where User 3, User 2 and User 1 succeed to save their
changes in this order. Users solve conflicts by maintaining their modifications in the version to be published
and possibly by canceling other concurrent changes. The final result obtained combines the changes of User 1
and User 2, but ignores the modifications performed by User 3.

4.2 Evaluation

Communication Complexity Generally if we consider m sites and we suppose that when changes are
performed in parallel by several users they all try to commit their changes, the total number of messages
exchanged is m(m + 1). At the beginning all m sites try to save their changes and therefore m messages are
sent. One site will receive an accept message, while m − 1 sites will receive an abort message. Therefore, in
this step 2m messages are exchanged. In the next step the m− 1 sites still have to publish their changes. After
merging their changes these m − 1 sites try to save their document versions. One site will succeed the save,
while the other m− 2 will fail. In this step 2(m− 1) messages are exchanged. The same process continues until
the last site saves its version. The total number of messages is m(m+1). After the last save succeeds, the other
m − 1 sites have to reload the latest version. As a reload action requires 2 messages to be exchanged between
client and repository, the total number of messages required to ensure convergence of all copies is m2 + 3m− 2.
In the scenario of Table 1 16 messages are exchanged.

Time Complexity In Mediawiki systems no merging is performed as users manually combine the parallel
modifications. However, differences between document versions are computed to help users in the merging
process.

Space complexity Each time a user saves his changes in the repository, the system creates a new version
of the document by storing the full content of the updated document version. Therefore the space complexity
can be evaluated as the sum of the sizes of all document versions. For instance, in our example there are stored
four versions of the document: the base version and three versions created by the three users.

First Site Convergence Latency In the general case where m sites perform concurrent changes and all try
to commit at the same time, 2m − 1 rounds are needed before one of the sites converges to the final document
state. During the round 1 all m sites try to save their changes. One site will receive an accept message, while
m − 1 sites will receive an abort message. Therefore, in round 2, m − 1 sites have to perform manual merging.
In round 3, these m − 1 sites try to save their versions. One site will succeed the save, while the other m − 2
will fail. The same process continues until the last site succeeds to save its version. In our scenario, 5 rounds
are needed in order that first user obtains the final state.

Convergence Latency In MediaWiki systems, once a site publishes the final document version, only one
additional round is needed in order that all sites receive this version by reloading the new version from the
server. Therefore the convergence latency is 2m rounds. In our example, 6 rounds are needed before all sites
obtain the final document version.

Semantic Expressiveness Since users manually perform merging, changes are not represented by means of
operations and therefore no issues concerning semantic expressiveness of operations are present. Since a user is
in charge of the merging process, the published document version can always be considered as coherent.

Determinism The approach is not deterministic since merging is performed manually and its result is not
predictable as it depends on the two versions presented to the user. One of these two versions results from a
previous manual merge.

RR n° 6278
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5 P2P communication: gossip protocols

Various mechanisms for the propagation of operations among sites can be used. Epidemic propagation is one
suitable mechanism for disseminating messages to the whole system. Epidemic or gossip protocols are simple
and extremely robust. They can be used to reliably disseminate data in large-scale systems [3]. By analogy with
the spread of rumors or epidemics among people, they rely on a continuous exchange of information between
peers. They have been applied to a large number of applications. In this paper, we focus on reliable data
dissemination to propagate updates among a set of replicas.

5.1 Properties of Gossip Dissemination

Gossip protocols have been introduced to reliably pass information among a large set of interconnected nodes
and turn out to be extremely robust in highly dynamic settings. The gossip protocols robustness relies on the
use of randomization to provide probabilistic guarantees and cope with dynamism.

Gossip protocols trade strong deterministic guarantees against probabilistic ones. When applied to gossip-
based group communication, we assume that ensuring a reliable dissemination with a high probability is rea-
sonable as long as this probability can be accurately defined. Probabilistic dissemination was first introduced
in Pbcast [1] as a back-up mechanism to recover messages lost using IP multicast. It has been shown that if a
peer gossips to k other peers chosen uniformly at random among all other peers, the probability that a given
peer gets the message is 1− e−πk and is actually independent of the system size.

In a later work [6], it has been shown that the probability of achieving an atomic broadcast (i.e., all nodes

get a message) is ee−c

if each node gossips a message once to k = log n + c other peers chosen uniformly at
random, n being the size of the system and c a parameter of the system. This property holds if k is on average
O(log n) regardless of the distribution.

These theoretical results can be used to parameterize a dissemination gossip protocol. As pointed out, gossip
protocols rely on some form of randomization and redundancy to ensure a reliable dissemination of messages in
a large set of nodes in peer to peer systems.

5.2 Random peer sampling

Peer to peer systems rely on a symmetric communication model where each peer may act both as a client
and a server and has a limited knowledge of the system. Therefore, it is unreasonable to consider that each
node knows every other node in the system. However, gossip protocols assume that each peer is able to choose
uniformly at random a set of f peers to forward a message to. A protocol providing each peer with a random
sample of the network is then required.

Although several approaches can be considered, that we can not survey for obvious space reason, to sample
a large network, we present here an overview of the peer sampling service [5], a generic substrate to provide
each peer with a uniform sample of the network. In this framework, a gossip protocol is executed as follows:
Periodically each peer picks a random target from its local view v of the system, exchanges some information
with it and processes the received information. If the information exchanged is about the nodes themselves, this
protocol builds an unstructured overlay network. The gossip protocol is characterized by the three following
parameters:

• Peer selection: each peer chooses periodically a gossip target from its current set of neighbors vi.

• State exchanged: the state exchanged between peers is membership information and consists of a list
of peers.

• State processing: upon receipt of the list, the receiving peer merges the list of peers received with its
own list to compose a new list of neighbors.

These parameters can actually be tuned so that the resulting graph exhibits properties which are extremely
close to those of a random graph and therefore provides each peer with a uniform random sample of the network
that can be used by the dissemination protocol.

INRIA
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6 Merge Based on Operational Transformation

6.1 Presentation of the MOT2 Approach

Operational Transformation (OT) [4] is a well accepted method for consistency maintenance in group editors. It
allows each site to execute local operations immediately. Concurrent and non-commutative remote operations,
received in arbitrary order, are transformed before execution in order to achieve convergence. MOT2 [2] is an
asynchronous merge algorithm using OT that enables divergent replicas to be reconciled pair-wise, at any time,
regardless of the pair, while achieving convergence of all replicas. An epidemic membership service can be used
for maintaining the group of sites that host replicas. MOT2 is fully symmetric and decentralised, and does not
require any external ordering mechanism (such as timestamps or vector clocks). Therefore, the size of the group
is not fixed, the peers being able to join and leave the network at any time. The MOT2 algorithm is based on
the ability, provided by the use of OT function, called forward transposition [14], to insert a remote operation
op inside the history of a site (see Figure 3) without having to undo and redo some operations. For this purpose
two conditions are required:

• op is defined from the state resulting from the execution of operations (op1 to opt−1) located before the
insert position t in the history;

• all operations located after the insert position t (sequence seq) are concurrent to op.

Figure 3: Integration of an operation in MOT2.

Insertion is achieved by a procedure called Integration(HS , t, 〈Sop , op〉, opseq) initially proposed in [17]. This
procedure receives as an input the history HS , the insert position t, the operation op to insert and its generator
site Sop . It delivers as a result the operation noted opseq . Along integration, the operation op is forward
transposed with each operation of seq; the resulting operation opseq will be executed on the current state of
the replica. During the calculation of opseq , each operation of seq is also transposed to take the insertion of op

into HS into account.
MOT2 assumes that an ordering relation is defined among replicas. This ordering relation is used by

MOT2 to serialize concurrent operations according to their generator sites. A unique global order between the
operations can thus be dynamically built without requiring a centralizing or ordering mechanism. As a result,
histories produced by MOT2 are such that the sequences of operations common to various histories appear in
the same order. Consequently the histories which have integrated the same operations are identical.

RR n° 6278
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procedure MOT2(Si , Hj);
// Find the prefix HC common to Hi and Hj and the index kS of its last operation
k := kS + 1;
while (k ≤ sizeofHi) and (k ≤ sizeofHj) loop

〈Sopi
, opi〉 := Hi(k);

〈Sopj
, opj〉 := Hj(k);

case Sopi
? Sopj

of

Sopj
= Sopi

: // operation is already present in Hi and Hj

Sopj
< Sopi

: // opj has to be integrated into Hi and executed

Integration(Hi, k, 〈Sopj
, opj〉, op

seq

j );

execute(opseq

j , Ri);

Sopi
< Sopj

: // opi has to be integrated into Hj

Integration(Hj , k, 〈Sopi
, opi〉, op

seq

i );
endcase;
k := k + 1;

endloop; // the end of Hi or Hj has been reached
while k ≤ sizeofHj loop // end of Hi:
〈Sopj

, opj〉 := Hj(k);

append(Hi, 〈Sopj
, opj〉); // append the remainder of Hj to Hi

execute(opj , Ri);
k := k + 1;

endloop;
end MOT2

In order to get reconciled, two sites need to transmit their history to each other and then each one has to
independently execute MOT2. So MOT2 may be executed by any site Si. It accepts any history Hj as input,
and reconciles its replica Ri with Rj by merging histories Hi and Hj . To simplify we assume that the whole
history Hj is available to Si. The possibility of transmitting to Si only the part of Hj following the prefix
common to Hi and Hj is not presented here.

In MOT2, two operations are considered concurrent when they immediately follow the prefix common to
both histories. MOT2 determines first the common prefix. Then, the generator sites of operations that follow
the common prefix in Hi and Hj are compared. If the compared operations op i and opj have the same generator
site (Sopi

= Sopj
), they are identical, meaning that the operation is common to both histories Hi and Hj . When

the compared operations op i and opj satisfy Sopj
< Sopi

, that means operation opj is missing in Hi; so it has to
be integrated into Hi and executed on the current state of the replica Ri after having been forward transposed
with operations following it in Hi. When the compared operations op i and opj satisfy Sopi

< Sopj
, that means

operation opi is missing in Hj . It has to be integrated into Hj in order that operations following it in Hj are
transposed. Finally the common prefix is augmented by one operation and the process is repeated until the end
of one of the histories. The remaining operations of Hj are then appended to Hi.

6.2 Revisiting Motivating Example

The actions performed by the users are expressed by the operations: insert(10), update(9) and delete(8 − 10).
Operations insert(10) and update(9) commute. Non-commutative operations are transformed as follows:

TransposeForward (delete(8 − 10), insert(10)) = null ,
TransposeForward (insert(10), delete(8 − 10)) = delete(8 − 11),
TransposeForward (delete(8 − 10), update(9)) = null ,
TransposeForward (update(9), delete(8 − 10)) = delete(8 − 10).

An operation (insert or update) concurrent with the delete operation is ignored. Another choice could
have been done in order to obtain other effects such as in the WOOT approach described in Section 7. Three
reconciliations are needed to obtain convergence of the replicas. The ordering relation is assumed to be: S3 <

S2 < S1.
After users perform the concurrent changes, a reconciliation between sites S1 and S2 is achieved. The

resulting histories are: H1 = H2 =update(9);insert(10). During reconciliation S1 executes operation update(9)
while S2 executes insert(10). Then, S2 and S3 decide to get reconciled. During reconciliation S2 has to execute

INRIA
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operation delete(8 − 11) (i.e., delete(8 − 10) forward transposed with the sequence update(9);insert(10)). The
resulting histories are: H2 = H3 =delete(8 − 10);null ;null . Indeed, the transformations of update(9) and
insert(10) with respect to delete(8 − 10) return the null operation. Finally, a reconciliation is achieved either
between S1 and S2 or between S1 and S3. Then S1 has to execute operation delete(8−11) and the final history
for all sites is: delete(8 − 10);null ;null . The final history depends on the ordering relation among sites. With
the site order S1 < S2 < S3, the final history is: insert(10);update(9);delete(8− 11). Note that the final replica
state is independent of the ordering relation.

6.3 Evaluation

Communication Complexity The number of messages exchanged between m sites depends on the number
of reconciliations. A reconciliation between two sites requires two messages for exchanging their histories. The
minimal number of reconciliations required in order that the two first sites converge to the final state is (m−1).
Then, (m−2) reconciliations are required to make all other sites converge. So, the total number of reconciliations
will be (m− 1) + (m − 2) = (2m− 3). Therefore, the total number of messages required to ensure convergence
of all replicas is 2(2m − 3).

Time Complexity Let us consider two histories to be merged : Hi = HC .seq i and Hk = HC .seqk. Assuming
that the sequences seq i and seqk respectively contain ni and nk operations, the number of operations to be
integrated by MOT2 is about (ni + nk). Besides, integrating an operation op i (resp. opk) belonging to seq i

(resp. seqk) into the history Hk (resp. Hi) results in executing the Integration procedure. This procedure has a
complexity of 2nk (resp. 2ni) due to a double scan of the sequence seqk (resp. seq i), first to shift the sequence,
then to forward transpose the operations. It results that the MOT2 algorithm executed on each site has a
complexity of O(nink). The total time complexity to obtain the first site convergence, in the worst case, is
O(n2), where n =

∑

i ni (with i = 1 . . .m) is the total number of concurrent operations to be reconciled. The
time complexity to propagate this final state is O(mn).

Space complexity Each site Si manages one replica Ri and the history Hi of operations executed on Ri.
Therefore, the space complexity is O(n).

First Site Convergence Latency As previously seen the minimal number of reconciliations required in
order that two sites converge towards the final state is (m − 1).

Convergence Latency The minimal number of reconciliations required in order that the m sites performing
concurrent changes converge towards the final state is (2m − 3).

Semantic Expressiveness The MOT2 algorithm is independent of the considered operations. Another set
of operations could have been chosen with more or less semantics. So, insert, update and delete (concerning
several lines) are semantically richer than insert and delete operations used in WOOT approach described in
Section 7. The constraints between operations appear when specifying the forward transposition functions. To
guarantee replica convergence, the forward transposition functions have to meet condition TP1 [11] which is
summed up by state equality: ∀state Ri, Ri · op1 · op

′
2

= Ri · op2 · op
′
1

with TransposeForward (op2, op1) = op ′
1

and TransposeForward (op1, op2) = op ′2.

Determinism The MOT2 approach is deterministic. Indeed, the final state of replicas is determined by
only considering concurrent operations and the forward transposition functions defined for the application.
In particular, the final state of replicas is independent of the order in which sites are reconciled; it is also
independent of the ordering relation used among the (generator) sites. However, the final history that is the
same on all sites depends on this ordering relation.

7 WOOTO Approach

In this section we present and evaluate the WOOTO framework, an optimised version of the WOOT approach [9],
and show how it is applied on the scenario described in Section 3.
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7.1 Model

A wiki system based on the WOOTO approach is composed of a set of servers hosting replicated wiki pages.
A wiki server is a WOOT site with a unique identifier. All WOOT site identifiers are totally ordered. A wiki
page is identified by a unique identifier pageid assigned when the page is created. A wiki page is composed of
a sequence of lines modeled as four-tuples 〈idl , content , degree, visibility 〉:

• idl is the unique identifier of the line represented as the pair (siteid , clock ), where siteid is the identifier
of the site that created the line and clock is the Lamport clock [7] of the site at the generation time of
the line;

• content represents the content of the wiki line;

• the degree of a line is an integer computed by the WOOTO algorithm when the line is generated. Its
computation will be explained later on in this section;

• the visibility of a line is represented as a boolean. In the WOOT approach lines are not physically deleted,
they are just marked as invisible.

Editing wiki pages is achieved by means of two operations:

• insert(pageid , line , lP , lN ) inserts a new line line = 〈idl , content , degree , visibility〉 in a page identified by
pageid between the lines identified by lP and lN .

• delete(pageid , idl ) sets the visibility of the line identified by idl to false in the wiki page identified by
pageid . Optionally, the content of the deleted line can be garbage collected.

When a new page is created, the page is initialized as a sequence of two sentinel lines LB and LE indicating
the begin and the end of a page, respectively. When site x generates an insert operation on page p, between
lineA and lineB , it generates the operation insert(p, 〈(x,++clockx), content , d, true〉, idl (lineA),
idl (lineB )) where d = max (degree(lineA), degree(lineB)) + 1. By definition, LB and LE have a degree of 0.

7.2 Algorithm

Every generated operation is disseminated by using epidemic propagation (see section 5) to all sites. Sites
can dynamically join and leave the group during the collaboration as WOOT approach does not make any
assumption on the size and topology of the group. Each generated operation must be integrated on every
site including its generation site. The WOOT algorithm is able to integrate operations and to compute the
same result independently of the integration order of operations. This independency relies on the fact that
the pairs of operations (insert , delete) and (delete , delete) are commutative. The pair (insert , insert) does not
commute naturally, but the WOOTO data structure enables them to commute. When an insert operation
insert(pageid , line , lP , lN) is received at a site, lines might be present between the lines lP and lN . If no line
exists between the lines lP and lN , it means that the context of execution of an operation has not changed
since its generation. So the new line can be safely inserted between lP and lN . In the case that some lines
are present between lP and lN , the exact insertion position has to be determined. Sorting lines according to
their identifiers is not an adequate solution, since the order of already-inserted lines cannot be changed. It is
worthwhile to point out that these already inserted lines might not be ordered according to their identifiers [9].

However, if two lines are concurrently inserted between two given lines, the order between the concurrently
inserted lines can be arbitrary determined according to the line identifiers. The solution we adopted was to
take into account the causal order of insertion of lines and to consider an arbitrary order for lines inserted
concurrently such as the order of line identifiers. The degree of lines expresses information about the causal
order of line insertions. When a line has to be inserted between two other lines lP and lN , the lines with the
minimum degree between lP and lN are considered first. The position of insertion of the new line is determined
according to the ascending order of line identifiers. This represents the position of insertion in the range of
lines with the same degree. Lines with other degrees have to be considered as well and therefore the procedure
is recursively called for the insertion of the line between the determined position and the right next position.
The IntegrateIns procedure for determining the position of insertion of a line is presented below. The line to be
inserted as well as the line identifiers between which insertion has to be performed are provided as arguments
of the procedure. S denotes the sequence of lines composing the page where the new line has to be inserted.
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IntegrateIns (l, lP , lN ) :−
let S′ := subseq(S, lP , lN);
if S′ := ∅ then

insert(S, l, position(lN ));
else

let i := 0, dmin := min(degree , S′);
let F := filter(S′, λli. degree(li) = dmin);
while (i < |F | − 1) and (F |i| <id l) do i := i + 1;
IntegrateIns (l, F [i − 1], F [i]);

endif ;

7.3 Revisiting Motivating Example

In what follows we describe how WOOTO algorithm can be applied on the motivating example presented in
section 3. In the WOOTO algorithm, wiki pages and lines are uniquely identified. We suppose that lines 8, 9,
10 were respectively inserted by the 8th to 10th operations generated by site 1 on page 0. Their identifiers are
therefore (1,8), (1,9) and (1,10) respectively. We suppose also that lines were inserted in their order of occurrence
in the page, and therefore the degree of line is the line number, e.g. degree of line 8 is 8. Consequently, the
operation generated at site 1 is represented as: op

1
= insert(0, 〈(1, 15), “Usually [...]”, 11, true〉, (1, 9), (1, 10))

We supposed that the identifier of the new line inserted by op1 is (1, 15). As this line was inserted between
the two lines with degree 9 and 10, the degree of the new line is computed as max(9, 10) + 1 = 11.

Update operations are not directly represented in WOOT. An update of a line is interpreted as a delete of
the line followed by an insert of the modified line. Thus, the operation generated at site 2 is represented as:
op21 = delete(0, (1, 9)); op22 = insert(0, 〈(2, 7), “[...] Coda [...]”, 11, true〉, (1, 9), (1, 10)).

Deletion of multiple lines is not directly represented in WOOT. An operation of deletion of multiple lines
is simulated as a sequence of deletions of each line. The operation generated at site 3 is decomposed as the
following sequence of operations: op

31
= delete(0, (1, 8)); op

32
= delete(0, (1, 9)); op

33
= delete(0, (1, 10)).

Applying in any order the set of operations op1, op21, op22, op31, op32 and op33 leads to the following result
at all sites:

〈(1, 8), “With no coordination [...]”, 8, false〉
〈(1, 9), “Conflicts happen when operations fail [...]”, 9, false〉
〈(2, 7), “[...] Coda [...]”, 11, true〉
〈(1, 15), “Usually [...]”, 11, true〉
〈(1, 10), “Resolution of conflicts [...]”, 10, false〉

The effects of all operations have been integrated. All lines deleted by site 3 are marked invisible. The new
line “Usually, detection of conflicts is done by using the happens-before relationship in order to flag conflicts.”
created by site 1 is included in the final page. The line modified by site 2 is updated with its new content.

7.4 Evaluation

Communication Complexity We consider that m sites execute in parallel a set of operations and the
operations executed by each site are grouped and sent as a single message. If the diffusion protocol is based on
multicast, the communication complexity equals to m messages. If unicast mechanisms are used for diffusion,
the total number of messages is m(m − 1). In the example presented in Section 3, if multicast mechanisms are
used, the total number of messages exchanged is 3 (one message per site). If unicast mechanisms are used, the
number of messages exchanged is 6.

Time Complexity In the worst case, the time complexity for integrating an operation in WOOTO is O(l2)
[18] where l is the number of lines ever inserted in the wiki page. Therefore, the time complexity for integrating
n operations is O(nl2).

Space complexity Lines are not physically deleted in WOOT approach, but just marked as invisible. There-
fore, the space complexity of the approach is proportional to the number of lines ever inserted in the document.
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First Site Convergence Latency As the convergence state does not depend on the order of arrival of
operations, one round of communication when sites send and receive all messages is sufficient for the first site
to obtain convergence.

Convergence Latency One round of communication between sites is sufficient for all sites to obtain the
convergence state. Therefore, in WOOT, Convergence Latency is the same as First Site Convergence Latency.

Semantic Expressiveness In the WOOT approach, a shared document is modeled as a linear structure,
e.g., a wiki page is represented as a sequence of lines. Only basic operations of insertion and deletion of lines are
used to manage the linear structure. Therefore, semantically rich operations are simulated by means of these
two basic operations.

The insertion of a line li is specified to be performed between two lines lP and lN . The precondition to its
execution is that these two lines exist. As a postcondition, WOOT approach ensures that the partial orders
between lines (lP < li < lN) are maintained as well as previously established orders between other lines.

The deletion of a line li marks this line as invisible. The precondition to its execution is that the line exists
without taking into account its current visibility status. As a postcondition, WOOT approach ensures that the
line is marked as invisible and the previously established orders between lines are maintained.

Determinism WOOT approach is deterministic as the result of convergence does not depend on the order
of arrival of operations.

8 Action-Constraint Framework

The Action-Constraint Framework (ACF) is a set of tools to reason about consistency in a distributed system
[13]. In this section, we focus on the design of a collaborative text editor with ACF, and its evaluation in the
context of the generic reconciliation algorithm.

8.1 Modeling collaborative text editing with ACF

The key concept in ACF is the multilog. A multilog is a record of operations submitted by users (actions)
and of semantic relations between actions (constraints). A multilog is a tuple M = (K,→, C, /), representing
three graphs, where K is a common set of vertices representing actions, and →, C and / (pronounced NotAfter,
Enables and NonCommuting respectively) are the respective edge sets, called constraints. We will explain the
semantics of constraints shortly.

ACF is independent of a particular application. Each application defines its own action types, and parame-
terises the system with constraints between them. For the wiki application, we model the document as a totally
ordered set of lines: D = (L, <D), and each line in L is uniquely identified. Users update D using the following
actions:

• create(c, k, l): create a line with content c between lines k and l; return its unique identifier.

• delete(l): hide line l.

• update(l, c): replace the contents of line l with c.

We identify the state of a document with a schedule. A schedule S is a sequence of distinct actions, ordered
by <S , and executed from the common initial state init. In the motivating example, init is the state in
Figure 1, before users start editing the document. As a simplification, we identify line creation actions by the
identifier of the created line. Thus, we note l8 = create(“With no ...”,−,−) the action that created line 8;
similarly l9 = create(“Conflict happen ...”,−,−) for line 9, and l10 = create(“Resolution ...”,−,−) for line 10.

Constraints represent scheduling relations between actions. Basically, α → β (NotAfter) means that any
correct schedule that executes both actions α and β executes α before β. Similarly, if α C β (Enables) then
any correct schedule that executes α executes β as-well. The following safety condition defines formally the
semantics of NotAfter and Enables in relation to schedules. Schedule S = (A, <S), where <S is a strict total
order over A, is sound with respect to multilog M = (K,→, C, /) iff:
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init ∈ A

A ⊆ K

α ∈ A ∧ α 6= init ⇒ init <S α

(α → β) ∈ M ∧ α, β ∈ A ⇒ α <S β

(α C β) ∈ M ⇒ (β ∈ A ⇒ α ∈ A)

In the example, assuming that User 3 wants to atomically delete lines 8 to 10, his change is modeled as:

• A set of three actions: d1 = delete(l8), d2 = delete(l9), d3 = delete(l10).

• An C-cycle: d1 C d2 C d3 C d1. Therefore all three delete operations execute, or none of them does.

In our approach, each site i holds its own multilog Mi and its own schedule Si. Mi monotonically grows
over time, by addition of new actions and constraints, either submitted locally, or received epidemically from
remote sites (see Section 5). Si represents the current state of the document at site i.

Action u1 = update(“Conflict happens ... and Coda ...”,) is User 2’s update. Notice that actions u1 and
d1 conflict. Depending on the desired effect, the application may declare them, either to be non-commuting:
u1 / d1, or antagonistic: u1

←
→ d1 (shortcut for u1 → d1 ∧ d1 → u1). In what follows, we declare them to be

antagonistic.
The system has the obligation to eventually resolve conflicts. In the case of non-commuting actions, it must

either order them (by adding a NotAfter constraint), or abort one or the other or both. In the case of an
antagonism, it can only abort. We explain later how sites agree on a final common state.

Designing an application in ACF is invariant-driven. Let us consider the following (informal) set of invariants:

1. Any two collaborators eventually observe any two visible lines in the same order.

2. If line l is created, eventually all collaborators see l, or none of them.

3. Given a line l, l has eventually the same content for all collaborators.

Tables 2 and 3 specify constraints that satisfy these invariants. (k ≤D k′
4
= k <D k′ ∨ k = k′, o′ ≺ o means

that o happens-before o′, o′ ‖ o means that o and o′ are concurrent: o′ 6≺ o ∧ o 6≺ o′, and l = o′ means that the
identifier of l (a line) and that of o′ (an action of creation) are equal.)

H
H

H
H

H
o

o’
create(c′, k′, l′) delete(l′) update(c′, l′)

create(c, k, l)
o′ → o

k = o′ ∨ l = o′ ⇒ o′ C o
Ø Ø

delete(l) l = o′ ⇒ o′ C

→
o Ø Ø

update(c, l) l = o′ ⇒ o′ C

→
o Ø o’ → o

Table 2: Collaborative editing constraints for o′ ≺ o

H
H

H
H

H
o

o’
create(c′, k′, l′) delete(l′) update(c′, l′)

create(c, k, l) k ≤D k′ <D l ∨ k′ <D k <D l′ ⇒ o / o′ Ø Ø
delete(l) Ø Ø l = l′ ⇒ l ←→ l′

update(c, l) Ø l = l′ ⇒ l ←→ l′ l = l′ ⇒ o′ / o

Table 3: Collaborative editing constraints for o′ ‖ o

8.2 Agreeing when collaborating

The system propagates the contents of multilogs, using background epidemic communication. Eventually, users
become aware of the actions of their collaborators, and the possible conflicts. Thus every user eventually receives
the insertion: l11 = create(“Usually, the detection... ”, l9, l10) from User 1, the update: u1 from User 2, and
the actions d1, d2, d3 with the parcel constraint from User 3. According to Table 3, every site eventually
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includes the following information in its multilog: the set of actions {l11, u1, d1, d2, d3}, the parcel constraint:
d1 C d2 C d3 C d1, and the conflict: u1

←
→ d2.

However, until operations commit, different users may view different states of the document. For instance
if User 1 ignores User 3, his current view could be the following sound schedule: S1 = init.l11.u1. Similarly
User 3 might observe his own actions only: S3 = init.d1.d2.d3.

Eventually, sites have to agree. We propose a voting protocol, whereby each site makes a proposal reflecting
its tentative state and/or the user’s preference [15].

Back to the example. Actions u1 and d1 are antagonistic (linked by a NotAfter cycle), and actions d1,
d2 and d3 are atomic (linked by an Enables cycle). Say User 1 and User 2 both vote to commit l11 and u1;
consistency obligates them to vote to abort d1, d2 and d3. Note this proposal P , and note Q the proposal of
User 3 to commit his own actions and to abort both l11 and u1. Our protocol distributes proposals epidemically.
Eventually all sites are aware of P and Q.

Our algorithm decomposes a proposal into semantically-meaningful units, called candidates. An election
runs locally between competing candidates. A candidate C receives a number of votes, equal to the sum of
the weights of the sites that voted for some proposal containing C. (If a single site has a weight of 100%, our
algorithm degenerates to a primary approach.) Suppose that weights are uniformly distributed among three
sites. Then candidate C = “commit u1” extracted from P has a weight of 2

3
, and candidate C ′ = “abort u1”

extracted from Q has a weight of 1

3
.

A candidate cannot be just any subset of a proposal. It must also be consistent with existing constraints. For
instance “abort d1” is not a well-formed candidate, because of the atomicity constraint, but “abort d1 and d2 and
d3” is well-formed. During an election a candidate competes against comparable candidates. Two candidates
are comparable if they contain the same set of actions. For instance candidates C and C ′ are comparable. A
candidate wins when it receives a majority or a plurality. In our example, eventually every site aborts d1, d2

and d3, and commits l11 and u1.

8.3 Evaluation

Communication Complexity We consider that m sites execute an action concurrently. Sites exchange their
proposals and their multilogs epidemically. In the best case, the communication cost is 4(m − 1):

• Every site sends its actions to site i: m − 1 messages.

• Site i computes the constraints, and sends its multilog M to all other sites: m − 1 messages.

• When a site receives M , it computes a proposal and returns the result to i: m − 1 messages.

• Site i receives all proposals, and sends them to other sites: m − 1 messages.

• Each site decides locally.

This reduces to 2(m − 1) if a single site holds 100% weight.

Time Complexity Computing an optimal proposal is equivalent to the feedback vertex set problem, which
is NP-hard. However, the IceCube system proposed heuristic algorithm, which computes an excellent approx-
imation of the optimal with O(n) average complexity, where n is the number of actions in the multilog [10].
However, the complexity of the election algorithm is O(m2n2) in the worst case [15], which dominates the cost
of computing a proposal.

Space complexity In ACF a site stores all the non-stable actions, be they either local or remote. However,
stable actions and their constraints are eventually garbage-collected, and replaced by snapshots. A snapshot
contains the state of the document, its size is proportional to l. If we assume that GC keeps a small and constant
number of snapshots at each site, the space complexity is O(lm).

The size of a proposal is eventually O(n). As each site keeps tracks of all proposals, the space requirement
for proposals is O(nm). (Proposals are also eventually garbage-collected, but we ignore this effect in this
evaluation.)

First Site Convergence Latency In the best case execution (the one depicted above), the number of
asynchronous rounds to converge is 3. It reduces to 1 if a primary site holds all the weight.
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Comparison criteria MediaWiki MOT2 WOOTO ACF

Merging concurrent changes Manual Automatic Automatic Automatic
Communication topology Centralised Decentralised Decentralised Decentralised

(Pair-wise synchro.)
Dynamic membership N/A Yes Yes No

Communication complexity m
2 + 3m − 2 2(2m − 3) m 4(m − 1)

Time complexity N/A O(n2 + mn) O(nl
2) O(m2

n
2)

Space complexity per site O(L) O(n) O(l) O(l + mn)
First site convergence latency 2m − 1 rounds m − 1 rounds 1 round 3 rounds

Convergence latency 2m rounds 2m − 3 rounds 1 round 4 rounds
Semantic expressiveness N/A Any operation Insert, Delete Any operation + constraints

Deterministic No Yes Yes No / Yes (given votes)

Key: m = number of sites, n = number of operations,

L = number of lines in the doc., l = number of lines ever appeared in the doc.

Table 4: Comparison Overview

Convergence Latency Once a site has elected a candidate locally, a single additional round ensures other
sites are informed.

Semantic Expressiveness ACF supports arbitrary operation types. The ACF logic is parameterised by
application semantics; see for instance Tables 2 and 3. A different application differs only by a different set of
constraints.

Conflict is an important concept in collaborative applications, and ACF supports it. ACF recognises two
variants of conflict, non-commutativity and antagonism. ACF also allows users to group operations atomically.
This is particularly useful in our example. For instance, if a user inserted a line between lines 8 and 9, it probably
would not make sense to keep the inserted line without the lines around it. In our system, this will be flagged
as an antagonism, and either the insert or the delete would fail (or both). In contrast, the WOOTO approach
is limited to commutative operations, and MOT2 to ones that can be transformed to commute. These systems
do not support conflict nor atomicity. In fact, these techniques are complementary. MOT2 or WOOTO should
be used to make commutative as many operation pairs as possible; then the ACF reconciliation techniques can
be used to resolve any remaining conflicts.

Determinism By design, our approach is not deterministic, since the outcome depends on the collaborators’
votes. However, for a given set of votes, the system is deterministic.

9 Conclusion

In this paper we presented four approaches to collaborative editing of wiki pages: the current centralised
approach, and three decentralised, peer-to-peer approaches. One is based on operational transformation, one
on commutative operations, and one on reconciliation. We discussed and evaluated each one in detail, according
to a complete set of metrics. Table 4 summarises the evaluation.
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