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ABSTRACT
Referential integrity (RI) is an important correctness property of a
shared, distributed object storage system. It is sometimes thought
that enforcing RI requires a strong form of consistency. In this
paper, we argue that causal consistency suffices to maintain RI. We
support this argument with pseudocode for a reference CRDT data
type that maintains RI under causal consistency. QuickCheck has
not found any errors in the model.
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1 REFERENCES AND REFERENTIAL
INTEGRITY

Consider a shared store (memory) of objects, and a reference data
type for linking objects in the store. Let’s call a referencing object
the source of the reference, and the referenced object its target.
Intuitively, the referential integrity (RI) invariant states that if an
application can reference some target, then the target “exists,” in the
sense that the application can access the target safely. A referenced
object must not be deleted; conversely, when an object cannot be
reached by any reference, deleting it is allowed.

We say that an object is unreachable if it is not the target of
a reference, and never will be in the future (the latter clause is
problematic under weak consistency). The RI property that we
wish to achieve is the following:
• Safety: An object can be deleted only if it is unreachable.
• Liveness: Unreachability of an object will eventually be de-
tected.

In a storage system where the application can delete objects
explicitly, the programmer must be careful to preserve the RI invari-
ant. This problem has been studied in the context of (concurrent)
garbage collection for decades. Folklorically, it is often thought
that enforcing RI requires synchronisation and strong consistency.
In fact, previous work has stated otherwise [2, 4, 12]. The main
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purpose of this paper is to construct a reference data type demon-
strating that causal consistency (with progress guarantees) suffices
to ensure RI and to implement a safe deletion operation. We support
this claim with pseudocode.

The solution that we sketch in this paper uses a form of reference
counting (designed for distributed systems), called reference listing
[4, 5, 10]. Objects with a non-empty reference list must not be
deleted.

2 REFERENTIAL INTEGRITY AND CAUSAL
CONSISTENCY

The safety property of RI is an instance of an implication invariant
P =⇒ Q : If a reference to an object exists, the object can accessed (has
not been deallocated). Elementary logic tells us that the sequential
pattern of first making Q true, followed by making P true, will
maintain such an invariant (the “backward pattern”). Similarly,
making P false followed by making Q false (the “forward pattern”)
also works. The backward pattern translates to “first allocate the
object, then assign reference to it,” and the forward pattern to “first
delete all references to object, then delete the object.”

In a concurrent system with causal consistency [1], if two up-
dates are ordered by happened-before [7], then all processes observe
them in the same order. Therefore, we expect the same patterns
to extend to such a system. Unfortunately, this does not suffice to
maintain RI, because both patterns may be executing in parallel.

It is encouraging to remember that some datatypes can be engi-
neered to support apparently-conflicting concurrent updates. For
instance, a set can support concurrent insertion and removal of the
same element, by making one operation “win” deterministically, the
other one being superseded [11]. However, we cannot re-use this
design directly since handling references also requires to handle
the referred objects accordingly (including transitive reachability).
Furthermore, while it is easy to ensure safety by never deleting
anything, we also require liveness.

Note that causal consistency is only a safety property; it allows
arbitrarily old versions to be observed. We need to add a progress
guarantee assumption to ensure that our algorithm is live.

We assume that the objects of interest are accessed only via the
reference datatype discussed herein. We do not address the more
complex problem of objects that are accessible via some external
means, e.g., through a well-known key, through a URL, or via a data-
base query. These are called “root” objects (in garbage-collection
parlance), which for our purposes are never deleted.
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Figure 1: Concurrently creating references and deleting objects can lead to dangling references. How should the replicas be
reconciled?
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Figure 2: References with inref/outref after concurrently as-
signing B.b to A.a (twice) and C.c.

3 HIGH-LEVEL DESCRIPTION
We sketch in the following the reference handling protocol; a pseu-
docode description is given in Appendix A. A source object contains
an instance of a data type called outref for every attribute that
refers to another object. A (target) object is associated with exactly
one inref. The inref identifies the currently-known sources point-
ing to this target. Creating a new reference initialises both the inref
and an outref. The only application-level operations supported by
inref are initialisation and testing whether deleting the target is
allowed.

A (source) object contains any number of distinct outrefs. An
outref supports the following application-level operations: (i) ini-
tialisation, (ii) assigning from another outref, (iii) assigning null
(we assume that deleting an object first automatically nulls out
all of its outrefs), and (iv) invocation, detailed shortly. To support
concurrency, assigning an outref behaves much like a Multi-Value
Register. Assignment overwrites its previous value; when concur-
rent assignments occur, the resulting reconciled value contains all
the concurrently-assigned values. To simplify the semantics, we
check that the right-hand side of the assignment is single-valued.

An outref can invoke its target, but this makes sense only if it
has a single (non-null) target. If the outref contains multiple values,
the invocation fails (the application can fix this by performing a
new assignment).

Figure 2 illustrates three source objects A, B, C, each containing
an attribute single outref named a, b, c respectively, and two
target objects X and Y. The state illustrated might result from the
following code snippet:

init (A.a, X); init (C.c, Y);
B.b := A.a || B.b := A.a || B.b := C.c;

Our algorithm design hinges on two principles that can be im-
plemented assuming only causal consistency: (1) before an outref
is assigned to a source object (in initialisation or assignment), we
ensure that the corresponding inref has been added to the target
object; importantly, causal consistency is enough to enforce this
ordering of updates. (2) To delete a target, we require that no inref
exists, nor will later be added, for this target. This property can
be checked by well-known mechanisms which rely only on causal
consistency and progress guarantees [14]. The combination of these
properties is sufficient to ensure RI as defined in the introduction.

4 SYSTEM MODEL AND PSEUDOCODE
The pseudocode for references is listed in Appendix A. Some pre-
liminary explanations are required.

References are layered above a lower-level unmanaged address-
ing mechanism (similar to a memory address used by the JVM),
which we call key; a key uniquely identifies a single discrete (but
possibly replicated) object.

Our system model is based on invocation split into two phases:
the generator executes at a single replica, and generates a list of
downstream messages that are eventually received at all replicas
and executed by corresponding effectors [6, 8, 11]. At the source
replica, the downstream messages are processed atomically with
the generator. Other replicas may observe delays between the dif-
ferent downstream messages, but they will always receive them
in the order specified by the generator. The generator may check
preconditions (noted precond) against shared state; if any precon-
dition is false, the operation fails. A generator may not have side
effects on shared state. The effector must have the same effect at
every replica, and therefore may not depend on testing shared state.
We assume an operation’s preconditions are stable, i.e., evaluating
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the precondition to true does not change under any concurrent
operation [6].1

We assume causal consistency, i.e., one operation’s effector is
delivered (to some replica) only after the effectors of operations
that are visible to it. We consider two alternatives for composed
operations:
• Atomic: an operation is the atomic composition of all of its
sub-operations. All the sub-generators (resp. sub-effectors)
compose into a single atomic generator (resp. effector). This
is somewhat similar to closed-nested transactions, without
the isolation property.
• Pure causal: An effector updates a single object, but effectors
can be chained, respecting the order defined in the code. This
is somewhat similar to transaction chaining.

In both cases, if any precondition is false, the whole operation fails.
Appendix A provides pseudocode for the latter option.2

The logic is relatively simple. On creating or copying a reference,
avoid races by following the backward direction, first adding to
the target, then to the source. On resetting (removing) a reference,
follow the forward direction, first removing from the source, then
from the target. We deal with concurrency by ensuring every ref-
erence has a unique identifier, and being careful of not losing any
information. The details are tedious, but hopefully explained in the
comments.

The may_delete operation merits a more detailed explanation.
This operation returns true if and only if the inref argument is not
reachable; however, in order to break circular reference patterns,
the last_refs argument lists references to ignore. The stably
notation in may_delete and in the third invariant means that the
assertion is true, and that there are no concurrent mutations that
could make it false.3 Detecting stably boils down to detecting ter-
mination. Its implementation is well understood, requiring replicas
to know about each other in order to exchange information on their
progress [14]. Note that causal consistency is usually defined as
a safety guarantee only [1, 13]. In order to ensure that a stably
check eventually succeeds, we must add an assumption of progress,
i.e., reads do not indefinitely return an old version.

Correctness. In order to validate the correctness of our CRDT
references implementation, we formalized the system model and
pseudocode implementation in Isabelle/HOL [9] and tested it with
Haskell QuickCheck [3]. The corresponding code is available on
GitHub.4 The QuickCheck tests generate random executions and
then check the first and the third invariant described in the pseu-
docode. To generate interesting random executions, we let each
generated event depend on two randomly chosen previous events.
Then, we randomly decide how many of their effector messages
have been delivered to the new event. By doing this, it is likely that
an event observes other events only partially, which is a common
source of bugs. Indeed, we were able to discover some flaws in
1 The pseudocode also makes use of local_precond, which does not need to be
stable. Our use of the term “stable” in this section follows the terminology used in
rely-guarantee logic.
2 The “atomic” version is easier to read, but we prefer to minimise the assumptions. It
is obtained from the pure-causal version by replacing the chained effectors by a single
atomic one with the same text.
3 This is called a “stable” property in the literature on distributed algorithms; we use
“stably” to distinguish from the usage in Footnote 1.
4 https://github.com/peterzeller/ref-crdt

earlier drafts of the implementation and were able to fix them. For
the updated implementation, our tests did not find a problem after
50 000 random executions.
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5 % each one has a distinct object_key.

6 object_key: write_once register of Key

7 % routing information to referenced object

8 dest_keys: MV_register of (outkey: Key, id: uid),

9 initial (nullkey, nulluid)

11 datatype inref

12 % key of embedding object

13 object_key: write_once register of Key

14 % set of reverse references

15 rev_refs: 2P_set of (inkey: Key, id: uid),

16 initial emptyset

17 % call "init" only once

18 inuse: CRDT_flag, initial false

20 % if outref exists, inref exists

21 invariant
22 forall r: outref of T

23 (k,u) in r . dest_keys ==> (r . object_key, u) in k . inref . rev_refs

25 % correct type

26 invariant
27 forall r: outref of T

28 (k,u) in r . dest_keys ==> k in T

30 % once an inref is unreachable, it remains unreachable

31 invariant
32 forall i: inref

33 % "stably" = true at all replicas and no concurrent updates in flight

34 stably { i . rev_refs = emptyset }

35 ==> henceforth { i . rev_refs = emptyset }

37 %% constructor; not part of API

38 _create_inref (k: Key, inref: inref)

39 % the inref is embedded inside the object with key k

40 inref . object_key := k

42 %% constructor; not part of API

43 _create_outref (k: Key of T, outref: outref of T)

44 % the outref is embedded inside the object with key k

45 outref . object_key := k

47 %% updates outref with new key value; not part of API

48 _outref_update(outTo: outref of T, new_key: Key)

49 generator(outTo, new_key)

50 let source_key = outTo . object_key

51 let to_reset = outTo . dest_keys . getall ()

52 let newuid = new_uid()

53 % explicit effector chaining

54 if new_key != nullkey

55 effector#1 (outTo, source_key, new_key, to_reset, newuid)

56 else
57 effector#2 (outTo, source_key, new_key, to_reset, newuid)

59 effector#1 (outTo, source_key, new_key, to_reset, newuid)

60 % first insert into new target

61 new_key . inref . rev_refs . add ((source_key, newuid))

62 effector#2 (outTo, source_key, new_key, to_reset, newuid)

64 effector#2 (outTo, source_key, new_key, to_reset, newuid)

65 % then assign source

66 outTo . dest_keys := (new_key, newuid) % conc. assign possible

67 forall (k, u) in to_reset

68 % chain reset

69 effector#3 (k, u, source_key)

70 effector#3 (k, u, source_key)

71 % finally, remove old reverse refs

72 k . inref . rev_refs . remove ((source_key, u))

74 % create a reference from outref to inref

75 init (outref: outref of T, inref: inref)

76 generator (outref, inref)

77 precond ! inref . inuse % call init only once

78 effector#1(inref)
79 % run _outref_update effectors after effector#1

80 _outref_update(outref, inref.object_key)

81 effector#1(inref)
82 inref.inuse := true

84 % Remove an inref.

85 % Deleting the object that embeds inref calls this; therefore, the

86 % outer delete will fail if there are any remaining references.

87 reset (inref: inref)

88 generator
89 % Non-reachability is monotonic

90 precond inref . may_delete()

91 effector
92 skip

94 % Remove an outgoing reference

95 % Deleting the object that embeds the outref calls this.

96 reset (outref: outref of T)

97 generator (outref)

98 % same as assigning nullkey:

99 _outref_update(outref, nullkey)

101 := (outTo: outref of T, outVal: outref of T)

102 assign (outTo, outVal)

104 % outTo := outVal

105 %

106 % Copy outVal into outTo; reset outTo; in that order. Either may be

107 % initially null. No-op if outVal target already in outTo.

108 %

109 % Concurrent "assign"s to outref store multiple values inside MV_register.

110 % The user should resolve by a subsequent "assign"

111 %

112 assign (outTo: outref of T, outVal: outref of T)

113 generator (outTo, outVal)

114 % simplification: ensure outVal has no more than one target

115 % local check, not necessarily stable

116 local_precond outVal . dest_keys . count() = 1

117 let (new_key, _) = outVal . dest_keys . get1 ()

118 _outref_assign(outTo, newKey)

120 % Use a reference to call the target object

121 deref (outref: outref of T, invocation: invocation of T)

122 generator (outref, invocation)

123 % local checks, not necessarily stable

124 local_precond outref . dest_keys . count() = 1

125 local_precond outref . dest_keys . get1() != (nullkey, _)

126 let (key1, _) = outref . dest_keys.get1()

127 effector(key1, invocation)

128 invoke (key1, invocation)

130 % Is target object reliably not referenced?

131 % To be tested in a generator. last_refs: if only these exist we are

132 % still OK, because the effector will to reset them shortly.

133 may_delete (inref: inref,

134 last_refs: set of outref, default emptyset

135 ): boolean

136 generator (inref, last_refs)

137 % check that the only remaining rev_refs are those in last_refs

138 % (none by default)

139 last_keypairs: set of (Antidote_key, uid)

140 = { fold (last_refs,

141 lambda (r) cons (r.object_outref, "_")) }

142 return stably inref . rev_refs = last_keypairs
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143 effector ()

144 skip
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