
Optimistic Replication and Resolution

Marc Shapiro
INRIA Paris-Rocquencourt & LIP6, http://www-sor.inria.fr/~shapiro/

January 29, 2009

1 Synonyms

Optimistic Replication, OR, Reconciliation-based Data Replication, Lazy Repli-
cation, Multi-Master System.

The term “Optimistic Replication” is prevalent in the distributed systems
and distributed algorithms literature. The database literature prefers “Lazy
Replication.”

2 Definition

Data replication places physical copies of a shared logical item onto different
sites. Optimistic replication (OR) allows a program at some site to read or
update the local replica at any time. An update is tentative because it may
conflict with a remote update. Such conflicts are resolved after the fact, in the
background. Replicas may diverge occasionally but are expected to converge
eventually (see entry on Eventual Consistency).

OR avoids the need for distributed concurrency control prior to using an
item. It allows a site to execute even when remote sites have crashed, when net-
work connectivity is poor or expensive, or while disconnected from the network.
Disconnected operation, the capability to compute while disconnected from a
data source, e.g., in mobile computing, requires OR. In computer-supported
co-operative work, OR enables a user to temporarily insulate himself from other
users.

3 Historical background

The first historical instance of OR is Johnson’s and Thomas’s replicated database
(1976).1

Usenet News (1979) was an important and inspirational development. News
supports a large-scale ever-growing database of (read-only) items, posted by
users all over the world. A Usenet site connects infrequently (e.g., daily) with

1The vocabulary used in this history is defined in Section 4.

1



its peers. New items are flooded to other sites, and are received in arbitrary
order. Users occasionally observe ordering anomalies, but this is not considered
a problem. However, system administrators must deal manually with conflicts
over administrative operations.

In 1984, Wuu and Bernstein’s replicated mutable key-value-pair database
uses an operation log, transmitted by an anti-entropy protocol: site A sends
to site B only the tail of A’s log that B has not yet seen [12]. Concurrent
operations either commute or have a natural semantic order; non-concurrent
operations execute in happens-before order.

The Lotus Notes system (1988) supports co-operative work between mobile
enterprise users. It replicates a database of discrete items in a peer-to-peer
manner. Notes is state-based, and uses a Last-Writer Wins policy. A deleted
item is replaced by a tombstone.

Several file systems, designed in the early 1990s to support disconnected
work, e.g., Coda [3], are state based and use version vectors for conflict detection.
Conflicts over some specific object types (e.g., directories or mailboxes) cause
automatic resolver programs to run. The others must be resolved manually.

Golding (1992) [1] studies a replicated database of mutable key-value pairs.
This system purges an operation from the log when it can prove that it was
delivered to all sites. Consistency is ensured by defining a total order of opera-
tions.

Bayou (1994–1997) is an innovative general-purpose database for mobile
users [6]. Bayou is operation-based and uses an anti-entropy protocol. Each
site executes transactions in arbitrary order; transactions remain tentative. The
eventual serialisation order is the order of execution at a designated primary site.
Other sites roll back their tentative state, and re-execute committed transactions
in commit order.

In 1996, Gray et al. argued that OR databases for disconnected work cannot
scale [2], because conflict reconciliation is expensive, conflict probability rises
as the third power of the number of nodes, and the wait probability further
increases quadratically with disconnection time.

Breitbart et al. [?] describe a partially-replicated database that uses a form
of OR. Each item has a designated primary site and may be replicated at any
number of secondary sites. A read may occur at a secondary site but a write
must occur on the primary. It follows that a write transaction updates a single
site. If transactions are serialisable at each site, and update propagation is
restricted to avoid ordering anomalies, then transactions are serialisable despite
lazy propagation.

The Computer-Supported Cooperative Work (CSCW) community invented
(1989) a form of OR called Operational Transformation (OT). Conflicting op-
erations are transformed, by modifying their arguments, in order to execute in
arbitrary order [9].

2



Figure 1: Three sites with replicas of logical item x. Site 1 initiates transaction
f , Site 2 initiates g. The system propagates and replays on remote sites. Site 3
executes in the order g; f , whereas Site 1 replays f before g. Eventually, Site 2
will also execute f .

4 Scientific fundamentals

Figure 1 depicts a logical item x, concretey replicated at three different sites. In
OR, any site may submit or initiate a transaction reading or writing the local
replica. If the transaction succeeds locally, the system propagates it to other
sites, and replays the transaction on the remote sites, in a lazy manner, in the
background. Local execution is tentative and may be rolled back later, because
of a conflict with a concurrent remote transaction.2

OR is opposed to pessimistic (or eager) replication, where a local transaction
terminates only when it commits globally. Pessimistic replication establishes a
total order for committed transactions, at the latest when each transaction
terminates. In contrast, OR generally relaxes the ordering requirements and/or
converges to a common order a posteriori. The effects of a tentative transaction
can be observed, thus OR protocols may violate the isolation property and allow
cascading aborts and retries to occur.

4.1 Transmitting and replaying updates

In OR, updates are propagated lazily, in the background, after the transaction
has terminated locally. Transmission usually uses peer-to-peer epidemic or anti-
entropy techniques (see entry on Peer-to-Peer Content Distribution).

A site that receives a remote update replays it, i.e., incorporates it into
the local replica. There are two main approaches. In the state-based approach,
the initiator site transmits the after-values of the transaction, and other sites
assign the after-value to their local replica. In the operation-based approach, the
initiator sends the program of the transaction itself, and other sites re-execute
the transaction.

State-based replay is guaranteed to be deterministic. State-based replay
can be more efficient, since the replay code is just a write. On the downside, if
the granularity is large, then state-based transmission is expensive and replay

2The happens-before and concurrency relations are defined formally by Lamport [4]. Trans-
action A happens-before B, if B was initiated on some site after A executed at that site. Two
transactions are concurrent if neither happens-before the other.

3



is subject to false conflicts. Furthermore, logical operations are more likely to
commute than writes, thus operation-based replay typically causes fewer aborts.

The defining characteristic of OR is that any synchronisation between sites
occurs in the background, after local termination, i.e., off the critical path of
the application.

4.2 Conflicts

Each transaction taken individually is assumed correct (the C of the ACID
properties), i.e., it maintains semantic invariants. For example, ensuring that a
bank account remains positive, or that a person is not scheduled in two different
meetings at the same time.

As is clear from Figure 1, concurrent transactions may be delivered to differ-
ent sites in different orders.3 However, consistency requires that local schedules
be equivalent. In this respect, one may classify pairs of concurrent transactions
as commuting, non-commuting, and antagonistic. Transactions conflict if they
are mutually non-commuting or mutually antagonistic.

The relative execution order of commuting transactions is immaterial; they
require no remote synchronisation. Formally, two transactions T1 and T2 com-
mute if execution order T1; T2 returns the same results to the user and leaves
the database in the same state as the order T2; T1. For instance, depositing AC10
in a bank account commutes with a depositing AC20 into the same account, and
also commutes with withdrawing AC100 from an independent account.

If running concurrent transactions together would violate an invariant, they
are said antagonistic. Safety requires aborting one or the other (or both). For
instance, if T1 schedules me in a meeting from 10:00 to 12:00, and T2 schedules
a meeting from 11:00 to 13:00, they are antagonistic since no combination of
both T1 and T2 can be correct.

If two transactions are non-commuting and neither is aborted, then their
relative execution order must be the same at all sites. Consider for instance T1

= “transfer balance to savings” and T2 = “deposit AC100”. Both orders T1; T2

and T2; T1 make sense, but the result is clearly different. There must be a
system-wide consensus on the order chosen.

4.3 Conflict resolution and reconciliation

Conflict resolution rewrites or aborts transactions to remove conflicts. Conflict
resolution can be either manual or automatic. Manual conflict resolution simply
allows conflicting transactions to proceed, thereby creating conflicting versions;
it is up to the user to create a new, merged version.

Reconciliation detects and repairs conflicts, and combines non-conflicting
updates. Thus transactions are tentative, i.e., a tentatively-successful transac-
tion may have to roll back for reconciliation purposes. OR resolves conflicts a
posteriori (whereas pessimistic approaches avoid them a priori).

3Dependent transactions are assumed to execute in dependency order; see Section 4.7.

4



In many systems, data invariants are either unknown or not communicated
to the system. In this case, the system designer conservatively assumes that
concurrent transactions that access the same item, and one writes the item (or
both), then they are are antagonistic. Then, one of them must abort, or both.

A few systems, such as Bayou [11] or IceCube [7] support an application-
specific check of invariants.

4.4 Last Writer Wins

When transactions consist only of writes, a common approach is to ensure a
global precedence order.

For instance, many replicated file systems follow the “Last Writer Wins”
(LWW) approach. Files have timestamps that increase with successive ver-
sions. When the file system encounters two concurrent versions of the same file,
it overwrites the one with the smallest timestamp with the “younger” one (high-
est timestamp). The write with the smallest timestamp is lost; this approach
violates the Durability property of ACID.

4.5 Semantic resolvers

A resolver is an application-specific conflict resolution program that automat-
ically merges two conflicting versions of an item into a new one. For exampe,
the Amazon online book store resolves problems with a user’s “shopping cart”
by taking the union of any concurrent instances. This maximizes availability
despite network outages, crashes, and the user opening multiple sessions.

A resolver should ensure that the conflicting transactions are made to com-
mute. In a state-based approach, a resolver generally parses the item’s state
into small, independent sub-items. Then it applies a LWW policy to updated
and tombstoned sub-items, and a union policy to newly-created sub-items.

The most elaborate example exists in Bayou. A Bayou transaction has three
components: the dependency check, the write, and the merge procedure. The
former is a database query that checks for conflicts when replaying. The write
(a SQL update) executes only if the consistency check succeeds. If it fails, the
merge procedure (an arbitrary but deterministic program) provides a chance to
fix the conflict. However, it is very difficult to write merge procedures in the
general case.

4.6 Operational Transformation

In Operational Transformation (OT), conflicting operations are transformed [9].
Consider two users editing the shared text "abc". User 1 initiates insert("x",
2) resulting in "aXbc" and User 2 initiates delete(3), resulting in "ab". When
User 2 replays the insert, the result is "aXb" as expected. However for User 1
to observe the same result, the delete must be re-written to delete(2).

In essence, the operations were specified in a non-commuting way, but trans-
formation makes them commute. OT assumes that transformation is always

5



possible. The OT literature focuses on a simple, linear, shared edit buffer data
type, for which numerous transformation algorithms have been proposed.

OT requires two correctness conditions, often called TP1 and TP2. TP1
requires that, for any two concurrent operations A and B, running “A followed
by {B transformed in the context of A}” yield the same result as “B followed
by {A transformed in the context of B}”. TP1 is relatively easy to satisfy, and
is sufficient if replay is somehow serialised.

TP2 requires that transformation functions themselves commute. TP2 is
necessary if replay is in arbitrary order, e.g., in a peer-to-peer system. The vast
majority of published non-serialised OT algorithms have been shown to violate
TP2 [5].

4.7 Scheduling transactions content and ordering

In order to capture any causal dependencies, transactions execute in happens-
before order. As explained in Section 4.2, antagonistic transactions cause aborts,
and non-commuting transactions must be mutually ordered. This so-called se-
rialisation requires a consensus.

Whereas pessimistic appoaches serialise a priori, most OR systems execute
execute transactions tentatively in arbitrary order and serialise a posteriori.
Some executions are rolled back; cascading aborts may occur.

A prime example is the Bayou system [11]. Each site executes transactions
in the order received. Eventually, the transactions reach a distinguished pri-
mary site. If a transaction fails its dependency check at the primary, then it
aborts everywhere. Transactions that succeed commit, and are serialised in the
execution order of the primary.

The IceCube system showed that it is possible to improve the user expe-
rience by scheduling operations intelligently [7]. IceCube is a middleware that
relieves the application programmer from many of the complexities of reconcilia-
tion. Multiple applications may co-exist on top of IceCube. Applications expose
semantic annotations, indicating which operation pairs commute or not, are an-
tagonistic, dependent, or have an inherent semantic order. The user may create
atomic groups of operations from different applications. The IceCube sched-
uler performs an optimisation procedure over a batch of operations, minimising
the number of aborted operations. The user commits any of the alternative
schedules proposed by the system.

4.8 Freshness of replicas

Applications may benefit from freshness or quality-of-service guarantees, e.g.,
that no replica diverges by more than a known amount from the ideal, strongly-
consistent state. Such guarantees come at the expense of decreased availability.

The Bayou system proposes qualitative “session guarantees” on the relative
ordering of operations [10]. For instance, Read-Your-Writes (RYW) guarantees
that a read observes the effect of a write by the same user, even if initiated at
a different site. RYW ensures that immediately after changing his password, a

6



user can log in with the new password. Other similar guarantees are Monotonic-
Reads, Writes-Follow-Reads, and Monotonic-Writes.

Systems such as TACT control replica divergence quantatively [13]. TACT
provides a time-based guarantee, allowing an item to remain stale for only a
bounded amount of time. TACT implements this by pushing an update op-
eration to remote replicas before the time limit elapses. TACT also provides
“order bounding,” i.e., limiting the number of uncommitted operations: when
a site reaches a user-defined bound on the number of uncommitted operations,
it stops accepting new ones. Finally, TACT can bound the difference between
numeric values. For this, each replica is allocated a quota. Each site estimates
the progress of other sites, using vector clock techniques. The site stops ini-
tiating operations once its cumulative modifications, or the estimated remote
updates to the item, reach the quota. At that point the site pushes its updates
and pulls remote operations. For example a bank account might be replicated
at ten sites. To guarantee that the balance observed is within AC50 of the truth,
each site’s quota is AC50/10 = AC5. Whenever the difference estimated by a site
reaches AC5, it synchronises with the others.

4.9 Optimistic replication vs. optimistic concurrency con-
trol

The word “optimistic” has different, but related, meanings when used in the
context of replication and of concurrency control.

Optimistic replication (OR) means that updates propagate lazily. There is
no a priori total order of transactions. There is no point in time where different
sites are guaranteed to have the same (or equivalent) state. Cascading aborts
are possible.

Optimistic concurrency control (OCC) means that conflicting transactions
are allowed to proceed concurrently. However, in most OCC implementations,
a transaction validates before terminating. A transaction is serialised with re-
spect to concurrent transactions, at the latest when it terminates, and cascading
aborts do not occur.

5 Key applications

Usenet News pioneered the OR concept, allowing to share write-only information
over a slow, but cheap network using dial-up modems over telephone lines.

Mobile users want to be able to work as usual, even when disconnected from
the network. Thus, mobile computing is a key driver for OR applications. Sys-
tems designed for disconnected work that use OR include the Coda file system
[3], the Bayou shared database [11], or the Lotus Notes collaborative suite.

Another important application area is Computer-Supported Collaborative
Work. In this domain, users must be able to update shared artefacts in complex
ways without interfering with one another. OR allows a user to insulate himself
temporarily from other users. A key example is the Concurrent Versioning

7



System (CVS), which enables collaborative authoring of computer programs
[?]. Bayou and Lotus Notes, just cited, are also designed for collaborative work.

OR is used for high performance and high availability in large-scale web
sites. A recent example is Amazon’s “shopping cart,” which is designed to
be highly available, even if the same user connects to several instances of the
Amazon store discussed earlier.

6 Cross references

Consistency Models for Replicated Data. Eventual consistency. Peer-to-peer
systems. Traditional Concurrency Control for Replicated Databases. WAN
Data Replication.

7 Recommended reading

Optimistic replication, Computing Surveys [8]: a comprehensive survey of OR
applications and techniques.

References

[1] Richard A. Golding. Weak-consistency group communication and member-
ship. PhD thesis, University of California Santa Cruz, Santa Cruz, CA,
USA, December 1992. Tech. Report no. UCSC-CRL-92-52.

[2] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dan-
gers of replication and a solution. In Int. Conf. on Management of Data
(SIGMOD), pages 173–182, Montréal, Canada, June 1996. ACM SIGMOD,
ACM Press.

[3] James J. Kistler and M. Satyanarayanan. Disconnected operation in the
Coda file system. ACM Trans. on Comp. Sys. (TOCS), 10(5):3–25, Febru-
ary 1992.

[4] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[5] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Proving
correctness of transformation functions in collaborative editing systems.
Research Report RR-5795, LORIA – INRIA Lorraine, December 2005.

[6] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.
Flexible update propagation for weakly consistent replication. In Symp. on
Op. Sys. Principles (SOSP), pages 288–301, Saint Malo, October 1997.
ACM SIGOPS.

[7] Nuno Preguiça, Marc Shapiro, and Caroline Matheson. Semantics-based
reconciliation for collaborative and mobile environments. In Int. Conf. on
Coop. Info. Sys. (CoopIS), volume 2888 of Lecture Notes in Comp. Sc.,
pages 38–55, Catania, Sicily, Italy, November 2003. Springer-Verlag.

8



[8] Yasushi Saito and Marc Shapiro. Optimistic replication. Computing Sur-
veys, 37(1):42–81, March 2005.

[9] Chengzheng Sun and Clarence Ellis. Operational transformation in real-
time group editors: issues, algorithms, and achievements. In Int. Conf.
on Computer-Supported Cooperative Work (CSCW), page 59, Seattle WA,
USA, November 1998.

[10] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Mar-
vin M. Theimer, and Brent B. Welch. Session guarantees for weakly con-
sistent replicated data. In Int. Conf. on Para. and Dist. Info. Sys. (PDIS),
pages 140–149, Austin, Texas, USA, September 1994.

[11] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
Mike J. Spreitzer, and Carl H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In 15th Symp. on Op. Sys.
Principles (SOSP), pages 172–182, Copper Mountain, CO, USA, December
1995. ACM SIGOPS, ACM Press.

[12] Gene T. J. Wuu and Arthur J. Bernstein. Efficient solutions to the repli-
cated log and dictionary problems. In Symp. on Principles of Dist. Comp.
(PODC), pages 233–242, Vancouver, BC, Canada, August 1984.

[13] Haifeng Yu and Amin Vahdat. The costs and limits of availability for
replicated services. In 18th Symp. on Op. Sys. Principles (SOSP), pages
29–42, Lake Louise, AB, Canada, October 2001.

9


