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ABSTRACT
Discrete differential equations of order 1 relate polynomially a

power series F (t ,u) in t with polynomial coefficients in a “catalytic”

variable u and one of its specializations, say F (t , 1). Such equations

are ubiquitous in combinatorics, notably in the enumeration of

maps and walks. When the solution F is unique, a celebrated result

by Bousquet-Mélou and Jehanne, reminiscent of Popescu’s theorem

in commutative algebra, states that F is algebraic. We address algo-

rithmic and complexity questions related to this result. In generic
situations, we first revisit and analyze known algorithms, based

either on polynomial elimination or on the guess-and-prove para-

digm. We then design two new algorithms: the first has a geometric

flavor, the second blends elimination and guess-and-prove. In the

general case (no genericity assumptions), we prove that the total

arithmetic size of the algebraic equations for F (t , 1) is bounded
polynomially in the size of the input discrete differential equation,

and that one can compute such equations in polynomial time.
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1 INTRODUCTION
Context andmotivation. In enumerative combinatorics, many classes

of objects (e.g., walks, maps, permutations) obey various sets of

structural constraints (e.g., evolution domains, colorings). A com-

mon method to study and understand such classes is to first trans-

late the structural constraints into a functional equation in one or

several generating functions, then to solve that equation. Very of-

ten, if not always, this process intrinsically requires to introduce

auxiliary variables—called catalytic in what follows—leading to an
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equation that relates the complete function with the partial func-

tions obtained by specializing the catalytic variables. Solving such

equations and understanding the nature of their solutions is an im-

portant problem with connections to graph theory [39], theoretical

physics [21] and computational geometry [26].

There are many reasons why it is important to be able to predict

the nature of the generating function of some class of combinatorial

objects. For instance, knowing that a class of objects is counted

by an algebraic function (i.e., root of a polynomial) suggests that

it should be possible to construct these objects recursively by con-
catenation of objects of the same type. For many objects, such a

construction is easily found, but for others, among which planar

maps and walks, the algebraic structure of the objects is far from

clear, and the algebraicity of the generating function gives rise to

challenging combinatorial problems. A different type of motivation

comes from the fact that the class of algebraic functions is closed

under natural operations (sum, product, derivative) that reflect nat-

ural operations on combinatorial classes (disjoint union, Cartesian

product, pointing–erasing). Finally, the coefficients of algebraic

generating functions can be computed fast [14, 28, 29], and their

asymptotic behavior can be precisely determined [33, §VII. 7].

Three examples. The simplest example of a functional equation

with catalytic variables arises in the enumeration of Dyck walks:
these are walks on the half-line N that start from 0 and consist of

unit steps ±1. If one wants to find the number dn of Dyck walks

of length n (the length counts the number of used steps), or equiv-

alently to understand the generating function D (t ) :=
∑
n≥0 dnt

n
,

then a convenient way is to introduce a catalytic variable u that

takes into account the abscissa of the endpoint. In other words,

one introduces a bivariate power series F (t ,u) :=
∑
n,k an,ku

k tn ,
where an,k is the number of n-step walks that end at abscissa k .
Then, D (t ) = F (t , 1). A step-by-step construction of Dyck walks

gives the recurrence relation an+1,k = an,k−1 + an,k+1, valid for

n ≥ 0 and any k , with initial conditions a0,0 = 1 and an,k = 0 if

n < 0 or k < 0. Equivalently, the construction yields the equation

F (t ,u) = 1 + t

(
uF (t ,u) +

F (t ,u) − F (t , 0)

u

)
. (1)

The functional equation (1) is linear and with one catalytic vari-
able. It clearly defines F (t ,u) uniquely as a formal power series in

t , with coefficients in Q(u). In fact, it is easy to see that the unique

solution in Q(u)[[t]] of (1) actually belongs to Q[u][[t]]. This is a
consequence of the fact that the divided difference, or the discrete de-
rivative, operator ∆ : F (t ,u) 7→ (F (t ,u) − F (t , 0))/u maps Q[u][[t]]
to itself. Rewritten as F = 1+t · (u ·F +∆F ), equation (1) is a discrete
differential equation (DDE), linear and of order 1.

A second example is provided by the enumeration of planar maps.

If cn,d is the number of such maps with n edges and external face

of degree d , then the generating series F (t ,u) :=
∑
n,d cn,du

d tn is
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the unique solution in Q[u][[t]] of the functional equation

F (t ,u) = 1 + t

(
u2F (t ,u)2 + u

uF (t ,u) − F (t , 1)

u − 1

)
. (2)

Equation (2) is similar to equation (1) as it also involves a single
catalytic variable, but it is more complicated as it is nonlinear. It also
admits a unique solution inQ[u][[t]], due to the fact that the divided
difference operator ∆1 : F (t ,u) 7→ (F (t ,u) − F (t , 1))/(u − 1) maps

Q[u][[t]] to itself. Equation (2) was written (and solved) in 1968 by

Tutte [58], who obtained it by the so-called recursive method for

maps, based on deletion and contraction of edges: a map is either

reduced to a single vertex, or, after deleting its root-edge either two

connected components are left (which gives the term tu2F (t ,u)2)
or only one is left (giving the term tu∆1 (uF (t ,u))). Rewritten as

F = 1+ tu · (u · F 2 + F + ∆1F ), eq. (2) is a nonlinear DDE of order 1.

A third example arises from the enumeration of the so-called

intervals in the 2-Tamari lattices [19, Ex. 2, §2.3]. In that context, the

bivariate generating function F (t ,u) satisfies the equation

F (t ,u) = u +
tuF (t ,u)

u − 1

(
F (t ,u)

F (t ,u) − F (t , 1)

u − 1
− F (t , 1)∂uF (t , 1)

)
,

which can be rewritten as the following nonlinear DDE of order 2:

F = u + tu · F ·
(
(∆1F )

2 + F · ∆2

1
F − (u − 1) · ∆1F · ∆

2

1
F
)
. (3)

Equations (1), (2), (3) share the (a priori unexpected) property that

their unique solution F (t ,u) in Q[u][[t]] is algebraic: this means

that in the three cases F (t ,u) satisfies a nontrivial polynomial equa-

tion S (F (t ,u), t ,u) = 0, for some S (x , t ,u) ∈ Q[x , t ,u] \ {0}. As
a consequence, its specialization at u = 1 (or some other value)

is also algebraic, i.e. a root of a nonzero polynomial in Q[x , t],
namely S (x , t , 1) if S is taken irreducible. More precisely, for eq. (1),

the generating function of Dyck walks, F (t , 1) = 1 + t + 2t2 + 3t3 +
6t4 + 10t5 + 20t6 + · · · , is a root of t (2t − 1) x2 + (2t − 1) x + 1, for
eq. (2), the generating function of planar maps, F (t , 1) = 1 + 2t +
9t2 + 54t3 + 378t4 + · · · , is a root of 27t2x2 + (1 − 18t ) x + 16t − 1,

and for eq. (3), the generating function of intervals in the 2-Tamari

lattices, F (t , 1) = 1 + t + 6t2 + 58t3 + 703t4 + · · · , is a root of

t4x9 − 16t3x7 + 81t3x6 + 96t2x5 + 4968t2x4 +
(
2187t2 − 256t

)
x3

+11664t x2 +
(
256 − 31347t

)
x + 19683t − 256.

A general algebraicity result. Bousquet-Mélou and Jehanne [20]

proved in 2006 the following general result, which guarantees alge-

braicity of the solution of any functional equation with one catalytic

variable such as (1), (2) or (3).

Theorem 1.1. ([20, Thm. 3]) LetK be a field of characteristic 0 and
consider two polynomials Q ∈ K[x ,y1, . . . ,yk , t ,u] and f ∈ K[u],
where k ∈ N \ {0}. Let a ∈ K and ∆a : K[u][[t]]→ K[u][[t]] be the
divided difference operator ∆aF (t ,u) := (F (t ,u) − F (t ,a))/(u − a).
Let us denote by ∆ia the operator obtained by applying i times ∆a .
Then, there exists a unique solution F ∈ K[u][[t]] of the equation

F (t ,u) = f (u) + t Q (F (t ,u),∆aF (t ,u), . . . ,∆
k
aF (t ,u), t ,u), (4)

and moreover F (t ,u) is algebraic over K(t ,u).

In short, Theorem 1.1 says that solutions in K[u][[t]] of ordinary
discrete differential equations (w.r.t. the catalytic variable u) are
necessarily algebraic.

Theorem 1.1 does not generalize to partial discrete differential
equations; for instance, solutions in K[u,v][[t]] of equations with
two catalytic variables u and v may be transcendental. A simple

example is the linear equation

F (t ,u,v ) = 1 + t
(
(u +v )F (t ,u,v ) + ∆u,0F (t ,u,v ) + ∆v,0F (t ,u,v )

)
which occurs in the enumeration of {→,↑,←,↓}-walks inN2. In this
case, F (t , 0, 0) = 1+2t2+10t4+70t6+ · · · equals

∑
n≥0CnCn+1t

2n
,

where Cn =
1

n+1

(
2n
n

)
, hence F (t , 0, 0) is transcendental [15, §4.2].

There are however some important extensions of Theorem 1.1.

For instance, for a , 0, Theorem 14 in [8, §9] contains the more

general case where F ∈ K[u,u−1][[t]] satisfies a generalization of

equation (4) with f in K(u) and Q in K(u)[x , z0, . . . , zk−1, t]. In a

different direction, Theorem 16 in [11] addresses the system ana-

logue of (4), and provides a vast generalization of Theorem 1.1. (See

also [53, Theorem 2] for the particular case of linear systems.) The

result in [11] is actually a consequence of a deep theorem in commu-

tative algebra, on Artin approximation with nested conditions, due

to Popescu [49, Thm. 1.4]. However, while the results in [8, 20, 53]

are proved in a constructive fashion, Popescu’s theorem, as well as

Theorem 16 in [11], are not known to admit constructive proofs.

Setting and main goal. In the rest of the paper, we will restrict to

the setting of Theorem 1.1 and only to discrete differential equations

of order k = 1, that is to equations of the form

F (t ,u) = f (u) + t Q (F (t ,u),∆aF (t ,u), t ,u), (5)

where a ∈ K, f ∈ K[u] and Q ∈ K[x ,y, t ,u] are given.
Equation (5) can be written in the equivalent form

1

F (t ,u) = f (u) + t Q̃ (F (t ,u), F (t ,a), t ,u), (6)

where Q̃ ∈ K(u)[x , z, t], is given by Q̃ (x , z, t ,u) = Q
(
x , x−zu−a , t ,u

)
.

Uponmultiplying by a sufficiently high power of (u−a), equation (6)
can itself be rewritten as

P (F (t ,u), F (t ,a), t ,u) = 0, (7)

for some nonzero polynomial P ∈ K[x , z, t ,u].
By Theorem 1.1, equations (5)–(7) admit a unique solution F

inK[u][[t]], and this solution is algebraic overK(t ,u). In particular,

F (t ,a) is algebraic overK(t ). Themain goal of the paper is to review,

design and analyze several algorithms for computing a nonzero

polynomial R ∈ K[z, t] such that R (F (t ,a), t ) = 0. Note that setting

u = a in (7) is in general not enough to find such an R. (See Ex. 5.1.)
For each algorithm for computing an R starting from a P defining

equations (5)–(7), we aim at giving complexity estimates, expressed

in terms of the total degree δ of P . As an intermediate step, we will

provide upper bounds on the degrees of the output polynomial R.
Previous work. For DDEs, either linear or nonlinear, algebraicity

of solutions is granted by Popescu’s aforementioned theorem [49].

However, the proof of this existential and qualitative result is not
constructive. Hence, to go further, towards constructive and quanti-
tative results, different approaches are needed. One such effective

method, called the kernel method (terminology coined in [4]), ap-

plies uniformly to any linear DDE [37, Sec. 4.3]. This case can be

considered as fully understood, mathematically and algorithmically.

We therefore restrict to the nonlinear case in what follows.

Since F satisfies equation (7) if and only if it satisfies it with P

1
Note that in order to simplify notation, we renamed y1 into y , and z0 into z .
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replaced by its squarefree part, we make the following global as-

sumption in the remaining part of the paper.

Global Hypothesis: degx (P ) ≥ 2 and P is squarefree. (GH)

All subsequent assumptions will implicitly refine (GH).

The first non-linear equations of the form (2) appeared in the

early sixties, in the work of Tutte and Brown on (various kinds

of) planar maps [23, 24, 57, 58]. All of them have order k = 1,

hence the form (7), with P ∈ Q[x , z, t ,u]. The first proofs of Tutte
and Brown were based on a rudimentary (still, very powerful)

form of the so-called guess-and-prove paradigm [48]. Their origi-

nal form only applies when one is able to guess an explicit closed

formula Fa for F (t ,a), the proving step being based on showing

that P (F (t ,u), Fa (t ), t ,u) = 0 admits a root in Q[u][[t]]. In 1965,

Brown invented the so-called quadratic method [23] which allows

to systematically solve all equations (7) with degx (P ) = 2. Thirty

years later, Bender and Canfield [7] applied Brown’s method to a

particular family of equations of the form (4) with arbitrary order k
and degx (P ) = 2. In 2006, Bousquet-Mélou and Jehanne proposed a

far-reaching extension (Thm. 1.1) of both the kernel method and of

the quadratic method [20]; it applies in principle to any equation

of the form (7), and more generally, to any order-k DDE of the

form (4). With their method, solving a DDE is reduced to a (highly

structured) algebraic elimination problem.

Going back to our case k = 1, two more methods deserve to be

mentioned. The first one is a guess-and-prove algorithm of Gessel

and Zeilberger [38], which is to our knowledge the only one fully

implemented. It is an improvement of another guess-and-prove

method used by Zeilberger on a particular functional equation,

related to the enumeration of two-stack-sortable permutations [61].

The other one is based on [20, Theorem 14], and shows that, under a

genericity assumption, a polynomial equation for F (t ,a) is provided
by the discriminant (in u) of the discriminant (in x ) of P in (7).

Complexity basics.We estimate the cost of algorithms by count-

ing arithmetic operations (+,−,×,÷) in the base field K at unit

cost. We use standard complexity notation, such as M(d ) for the
cost of degree-d multiplication in K[x] and θ for feasible expo-

nents of matrix multiplication. The best known upper bound is

θ < 2.37286 [2]. Most arithmetic operations on univariate polyno-

mials of degree d inK[x] can be performed in quasi-linear complex-

ity Õ (d ): multiplication, shift, interpolation, gcd, resultant, square-

free part, etc2. A key feature of these results is the reduction to

fast polynomial multiplication, which can be performed in time

M(d ) = O (d logd log logd ) [25, 52]. An excellent general reference

for these questions is the book by von zur Gathen and Gerhard [36].

Main results. In Section 2 we analyze, under various genericity

assumptions, the complexity of several algorithms for computing

a polynomial R annihilating F (t ,a). We first prove (Prop. 2.4) the

correctness of (a variant of) the iterated discriminant algorithm, and

show (Prop. 2.5) that it delivers an R of total arithmetic sizeO (δ8) in
Õ (δ10) ops. in K. Then, we propose (Prop. 2.8 and Prop. 2.9) a new

algorithm, with a geometric flavor, that computes a smaller R, of
total arithmetic size O (δ6), in Õ (L · δ6 + δ7.89) ⊆ Õ (δ10) ops. in K,
where L is the size of an arithmetic circuit (or, straight-line program)

2
As usual, the notation Õ ( ·) is used to hide polylogarithmic factors in the argument.

for evaluating P . We also discuss the complexity of guess-and-

prove algorithms: we first show (§2.2.1) that the classical approach

needs Õ (δ15) ops. in K, and we then propose (Prop. 2.11) a new

hybrid guess-and-prove algorithm of complexity Õ (L ·δ6+δ3θ+3) ⊆
Õ (δ10.12). Finally, Section 3 is dedicated to the proof of our main

result (Thm. 3.3) which states that, when k = 1 in Thm. 1.1 and

under no further assumption, there exists a nontrivial polynomial

annihilating F (t ,a) of total polynomial size O (δ6), which can be

computed in polynomial time Õ (L · δ9 + δ10.89) ⊆ Õ (δ14) ops.
Notation. We collect here a few notations that we will freely

use throughout the article. As usual, we write K for an algebraic

closure of K, and K[t],K(t ) and K[[t]] for, respectively, the rings
of polynomials, rational functions and formal power series in t
with coefficients in K. Additionally, we will work with the ring

K[[t1/⋆]] :=
⋃
d≥1 K[[t

1/d
]] of “fractional power series”, that is se-

ries of the formU =
∑
n≥0 unt

n/d
for some integer d ≥ 1. We write

∂x f and alike for the partial derivative of a function f with respect

to x , we denote by Resx (p,q), resp. by discx (p), the resultant, resp.
discriminant, with respect to a variable x . For a polynomial p in n

variables over K, we write V (p) for the zero locus of p in K
n
.

2 SOLVING GENERIC DDES

2.1 Using polynomial elimination
Bousquet-Mélou and Jehanne proposed in [20] several methods

for computing polynomial equations for F (t ,a), based on algebraic

elimination. These methods work under the following assumption:

Hypothesis 1: degu (∂xP (x , z, 0,u)) ≥ 1 and (H1)

∂xP (F (t ,a), F (t ,a), t ,a) , 0.

We recall the general common principle of these methods, which

is also the first main ingredient of the proof of Theorem 1.1. It

is based on the idea of creating, from the input equation (7), two

additional polynomial equations, such that the resulting polynomial

system admits a solution with F (t ,a) for its z-coordinate. Then, a
polynomial R ∈ K[z, t] \ {0} annihilating F (t ,a) is computed by

algebraic elimination algorithms. Let us give a few more details.

First, from part 1 of (H1) and from [20, Thm. 2], there exists a

fractional power seriesU (t ) in K[[t1/⋆]] satisfying

∂xP (F (t ,U (t )), F (t ,a), t ,U (t )) = 0. (8)

Now, differentiating equation (7) with respect to u yields

∂uF (t ,u) · ∂xP (F (t ,u), F (t ,a), t ,u) + ∂uP (F (t ,u), F (t ,a), t ,u) = 0.

Plugging u = U (t ) into (7) and this equation and using (8) implies

that the following constraints hold in K[[t1/⋆]]




P (F (t ,U (t )), F (t ,a), t ,U (t )) = 0,

∂xP (F (t ,U (t )), F (t ,a), t ,U (t )) = 0,

∂uP (F (t ,U (t )), F (t ,a), t ,U (t )) = 0,

U (t ) , a. (9)

(The inequation U (t ) , a is a consequence of part 2 of (H1).) In
other terms,

P = ∂xP = ∂uP = 0, u , a, (S)

admits (x , z,u) = (F (t ,U (t )), F (t ,a),U (t )) ∈ K[[t1/⋆]] × K[[t]] ×
K[[t1/⋆]] as solution. Let I ⊂ K(t )[x , z,u] be the saturation with
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respect to u − a of the ideal generated by P , ∂xP and ∂uP , i.e.

I =
{
f ∈ K(t )[x , z,u] | ∃N ∈ N, (u − a)N · f ∈ ⟨P , ∂xP , ∂uP⟩

}
.

The rest of the argument works under the following assumption:

Hypothesis 2: the ideal J := I ∩ K[z, t] is nonzero. (H2)

Now, if R is a nonzero element of J , then it can be written as

(u−a)N ·R = AP+B∂xP+C∂uP , for someA,B,C inK(t )[x , z,u] and
some N ∈ N. AsU (t ) , a, by specializing this equality at (x , z,u) =

(F (t ,U (t )), F (t ,a),U (t )) ∈ K[[t1/⋆]] ×K[[t]] ×K[[t1/⋆]], we con-
clude from (9) that R (F (t ,a), t ) = 0. This proves the following:

Proposition 2.1. Under (H1), R ∈ J implies R (F (t ,a), t ) = 0.

The remaining parts of this section provide and analyze different

methods that allow us to compute such a polynomial R ∈ J \ {0},
based on various ways of doing the needed polynomial elimination.

2.1.1 Using iterated discriminants. We start by presenting amethod

based on iterated discriminants, taken from [20, §6].

Let us denote by discx P ∈ K[z, t ,u] the discriminant of P with

respect to x , and denote as before by U (t ) a fractional power

series satisfying equation (8). It is then shown in [20, Thm. 14]

that U (t ) is a multiple root of (discx P ) (F (t ,a), t ,u) ∈ K[[t]][u].
As a consequence, U (t ) is also a root of ∂u (discx P ) (F (t ,a), t ,u)
and it follows that F (t ,a) is a root of the iterated discriminant

discu (discx P ) ∈ K[z, t]. To summarize, Bousquet-Mélou and Je-

hanne proved in [20, §6] the following:

Proposition 2.2. Under (H1), discu (discx P ) (F (t ,a), t ) = 0.

Unfortunately, it may happen that discx P , as a polynomial in

z, t ,u, has a factor of multiplicity at least 2, in which case the equal-

ity in Prop. 2.2 is trivially satisfied, hence useless. It is illustrated by

Ex. 5.2. However, in this example, taking first the squarefree part

of discx P , and only then taking the discriminant w.r.t. u delivers a

nonzero polynomial that annihilates F (t , 0) = 1+ 31t − 775t2 − · · · .
It is natural to wonder whether this is a general fact. We will prove

that this is indeed so, under the following regularity assumption:

Hypothesis R: V (P ) ⊂ K
4

is smooth outside {u = a} (R)

We will first prove that this assumption is stronger than (H2).

Lemma 2.3. Assumption (R) implies assumption (H2).

Proof. The Zariski closure of the constructible set defined by

the system (S) is the algebraic set defined by I. Geometrically,

since P is squarefree (by (GH)), this algebraic set is the union of:

(1) the Zariski closure of the set of regular critical points of the

restriction of the projection on the (z, t )-space to V (P ),
(2) and the singular points of V (P ) which satisfy u , a.

By Sard’s theorem [50, Prop. B.2], the projection of (1) in the (z, t )-
space is enclosed in a Zariski-closed subset of codimension ≥ 1.

By (R), there is no singular point satisfying u , a. We deduce

thatV (J ) is contained in a proper Zariski closed subset ofK
2

. This

implies that J contains a nonzero polynomial, as claimed. □

We now state and analyze our first algorithm, which is a variant

of the iterated discriminant method proposed in [20, §6].

Proposition 2.4. Let P ∈ K[x , z, t ,u] be as in (7), and satisfy-
ing (H1) and (R). Set D0 := discx P , D1 := SqFreePart(D0) and
D2 := discu D1. Then, R := SqFreePart(D2) is a nonzero polynomial
in K[z, t] such that R (F (t ,a), t ) = 0.

Proof. We denote by V ′ the Zariski closure of the solution set

inK
4

of {P = ∂xP = 0, u , a}, and byV ′′ the Zariski closure of the
solution set of the system (S). We considerW (resp.W ′′) the Zariski
closure of the projection πz,t,u (resp. πz,t ) on the (z, t ,u)-space
(resp. (z, t )-space) of V ′ (resp. V ′′). Let Z be an irreducible com-

ponent ofW ′′. By the elimination theorem, Z is the algebraic set

attached to some minimal prime associated to J . By definition of

J and I, there exists a Zariski-dense subset Z ′ of Z such that any

(ζ ,ϑ ) ∈ Z ′ is the projection of some point α = (ξ , µ, ζ ,ϑ ) ∈ V (I)
which satisfies u , a. Since we assume (R), we deduce that α is

a regular point in V (P ). Let T be the tangent space to V (P ) at α .
Observe that the projection of T on the (z, t )-space is not fully

dimensional (it is orthogonal to the line supported by the gradient

of P evaluated at α , since α is a regular point).

Following [45], we prove further that D1 and ∂uD1 vanish at

β = (µ, ζ ,ϑ ). This implies that D2 and its squarefree part R vanish

at (ζ ,ϑ ). Since (by construction) D1 is squarefree, D2 and R are

not zero. Hence, all in all, R vanishes on a Zariski-dense subset

ofW ′′ and we deduce that R lies in the radical of J . Recall that we

assume (H1) and (R). Lemma 2.3 implies that (H2) then holds and

we can then conclude using Proposition 2.1 that R (F (t ,a), t ) = 0.

First, we prove that β belongs to W . This is clear since α ∈
V (I) \V (u − a) ⊂ V ′ \V (u − a), β is the projection of α andW is

the Zariski-closure of the projection of V ′. Next, we prove that any
point inW cancels D1. This is clear since discx P lies in the ideal

generated by P , ∂xP . We denote by ∆ the vanishing set of D1. We

prove now that ∂uD1 vanishes at β .
If β is a singular point of ∆, this is immediate. Assume now that

β is a regular point of ∆. Then the tangent space T ′ to ∆ at β is the

projection of the tangent spaceT on the (u, z, t )-space [45, Prop. 9].
We deduce that the projection of T ′ on the (z, t )-space is not fully
dimensional since this is the case for T and projections are nested.

Since D1 is squarefree by definition, by the Jacobian criterion [32,

Theorem 16.19], we deduce that T ′ is orthogonal to the line sup-

ported by the gradient of D1 evaluated at β . Consequently, ∂uD1

vanishes at β , as requested. □

Proposition 2.4 yields an algorithm and proves its correctness.

In what follows, we will refer to it as Algorithm DD. A variant of

this algorithm further factors the polynomial R and identifies the

minimal polynomial of F (t ,a) among its factors. (See Ex. 5.3.)

Ex. 5.4 shows that without assuming (H1), Algorithm DD may

return a wrong answer. Let us now analyze its complexity.

Proposition 2.5. Assume P ∈ K[x , z, t ,u] as in (7) satisfies (H1)
and (R), and let δ ≥ 2 be an upper bound on its total degree. Then,
the output R ∈ K[z, t] of Algorithm DD has total degree at most 8δ4

and degree in each variable at most 4δ4. Moreover, R can be computed
with a probabilistic algorithm in Õ (δ10) ops. in K.

Before proving Proposition 2.5, we need the following lemma,

whose proof is omitted (see [60] for similar statements.)
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Lemma 2.6. Let G ∈ K[x , t1, . . . , tλ] be a polynomial of degree N .
Then SqFreePart(discx G ) can be computed in Õ (λN 2λ+1) ops. in K.

Proof of Prop. 2.5. By applying Lemma 2.6 to P , λ = 3, and

N = δ ,one can compute D1, defined as in Prop. 2.4, in Õ (δ7) ops.
inK. By the Bézout inequality, each partial degree of D1 is bounded

by δ2. A second application of Lemma 2.6, now to D1, λ = 2,

N = 3δ2, allows us to compute R in Õ (δ10) ops. in K. Using the

Bézout inequality with D1, one obtains that degz (R) and degt (R)

by 4δ4 are bounded by 4δ4. □

2.1.2 Using direct elimination. Another strategy based on algebraic
elimination is proposed in [20, Section 3] to compute a nonzero

element of J := I ∩ K[z, t]. We investigate in this subsection the

complexity of computing such an element in J using a second al-

gorithm for algebraic elimination.We start with a new assumption.

Hypothesis 3: the ideal I in K(t )[x , z,u] is radical and (H3)

has dimension zero over K(t ).

The next lemma clarifies the link between (H3) and (H2).

Lemma 2.7. Assumption (H3) implies assumption (H2).

Proof. We need to prove that there exists a nonzero element

in I ∩ K[z, t]. Since I ⊂ K(t )[x , z,u] is zero-dimensional by (H3),
the quotient ring K(t )[x , z,u]/I is a K(t )-vector space of finite

dimension. By Stickelberger’s theorem (see e.g. [31, Thm. 1.1]),

the characteristic polynomial ξ (z) of the multiplication map f 7→
z · f lies in I and, by design, is not zero and in K(t )[z]. Hence,
multiplying ξ (z) by the least common multiple of its coefficients

yields a nonzero element in J = I ∩ K[z, t], as requested. □

Proposition 2.8. Let P be as in (7) and let δ be its total degree.
Assume that (H1) and (H3) hold. Then, there exists a nonzero ir-
reducible polynomial R in K[z, t] such that R (F (t ,a), t ) = 0 with
degz (R) ≤ δ3 and degt (R) ≤ δ3.

Proof. As we assume (H3), Lemma 2.7 implies that (H2) holds.
Since we also assume (H1), we can then apply Prop. 2.1 and deduce

that any polynomial in J = I ∩ K[z, t] satisfies R (F (t ,a), t ) = 0.

Below, we identify such a polynomial and prove the degree

bounds. We start by defining some auxiliary objects.

The first one is the ideal I ′ in K[x , z, t ,u] generated by P , ∂xP , ∂uP
(note that I ′ ⊂ I). We next consider the saturation I ′′ of I ′ by

u − a, and finally consider the ideal K which is the intersection of

the prime ideals of I ′′ over which t is not a constant.
Observe that K coincides with I ∩ K[x , z, t ,u]. Indeed, the inclu-
sion I ∩K[x , z, t ,u] ⊂ K is immediate; to prove the reverse one, it

suffices to observe that, as a union of primes, K is radical and one

easily establishes that all points which cancel elements of I cancel

elements ofK which shows that

√
K ⊂

√
I ∩K[x , z, t ,u]. SinceK

and I are radical (by construction and by assumption respectively),

our conclusion follows. Also, since I has dimension 0, all primes

associated toK have dimension at most one. SinceK is the intersec-

tion of primes associated to I ′ which is generated by 3 polynomials,

all these primes have dimension at least one. HenceK is equidimen-

sional of dimension one. Hence the sum of the degrees of its irre-

ducible components equals the degree of its associated algebraic set.

The degree of the algebraic set given byK is bounded by the sum

of the degrees of the irreducible components of the algebraic set

given by I ′, which by the Heintz–Bézout theorem [42], is bounded

by δ3. Hence, the sum of the degrees of the irreducible components

ofK +ℓwhere ℓ is a linear form inK[x , z, t ,u] is also bounded by δ3.
Now, as in the proof of Lemma 2.7 we consider the squarefree

part χ (z) ∈ K(t )[z] of the characteristic polynomial of the multipli-

cationmap f 7→ z · f in the quotient ringK(t )[x , z,u]/I (this makes

sense since, by (H3), I is zero-dimensional) and let R ∈ K[z, t] be
its numerator. By (H3), I is radical, and consequently so is J . By

Stickelberger’s theorem, R therefore lies in J .

To bound the degrees of R in z and t respectively, we prove that
it suffices to bound the degrees ofK + ⟨t −ϑ ⟩ andK + ⟨z−ζ ⟩where

ϑ and ζ are chosen generically in K. Indeed, by Sard’s theorem, for

ϑ and ζ generic, these ideals are radical and either equal ⟨1⟩ or have

dimension 0. Hence, applying componentwise Bézout’s theorem,

we deduce that their degrees are bounded by δ3, as requested.
Irreducibility comes as an easy bonus as it suffices to identify the

K-irreducible factor of R which vanishes at (z, t ) = (F (t ,a), t ). □

Proposition 2.9. Let P be as in (7) and let δ be its total degree. As-
sume that (H1) and (H3) hold. There exists an algorithm which takes
as input a ∈ K and a straight-line program of length L evaluating P ,
and computes a nonzero element R in J such that R (F (t ,a), t ) = 0

using Õ (Lδ6 + δ7.89) ⊆ Õ (δ10) ops. in K.

Proof. We aim at computing the polynomial R defined in (the

proof of) Prop. 2.8 (which applies since we assume (H1) and (H3)),
that is, the numerator of the squarefree part χ (z) ∈ K(t )[z] of the
characteristic polynomial of the multiplication map f 7→ z · f in

the quotient ring K(t )[x , z,u]/I. We proceed by first using the al-

gorithm in [54] to compute the squarefree part of the characteristic

polynomial of the multiplication map f 7→ (λ1x + λ2z + λ3u) · f
where λi ∈ K for 1 ≤ i ≤ 3 are chosen generically, as well as some

extra data encoding the solutions ofI. From this, we use evaluation-

interpolation techniques and the degree bounds of Prop. 2.8 to

deduce χ (z), which we then multiply by the lcm of its coefficients.

Since (H3) holds, one can apply, as a first step, the algorithm

on which [54, Theorem 2] relies. This takes as input a straight-line

program evaluating P , ∂xP , ∂uP and u − a. By the Baur-Strassen

theorem [5], such a straight-line program of length O (L) can be

obtained from the one which evaluates P . The next parameter to

control the complexity of this algorithm is the degree of the ideal I

(which is bounded by δ3) and the degree of the algebraic set de-

fined as the Zariski closure of the solution set of the system (S).

Using again the Heintz–Bézout theorem [42], this is dominated

by δ3. The algorithm computes a rational parametrization of the

solutions of I with coefficients in K(t ): x = Ṽ3 (t , λ)/W̃ ′(t , λ), u =

Ṽ2 (t , λ)/W̃ ′(t , λ), z = Ṽ1 (t , λ)/W̃ ′(t , λ), over the extension defined

by W̃ (t , λ) = 0 where λ is a new variable, W̃ monic and squarefree,

W̃ ′ = ∂W̃ /∂λ, deg(Ṽi ) < deg(W̃ ) and
∑
3

i=1 λiṼi = λW̃ ′ mod W̃
(for some λi ∈ K). Theorem 2 from [54] shows that such a compu-

tation can be done using O ((L + 1)δ6) ops. in K.
Actually, the above definition of rational parametrization implies

that for any ϑ ∈ K such that W̃ (ϑ , λ) remains squarefree, special-

izing t to ϑ in the rational parametrization yields a univariate one

which encodes the solutions of I|t=ϑ . Observe that one can then
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compute the inverse E of W̃ ′(ϑ , λ) modulo W̃ and deduce a lexi-

cographic Gröbner basis x − Q3 (λ),u − Q2 (λ), z − Q1 (λ),W̃ (ϑ , λ)

of the ideal It=ϑ + ⟨λ − λ3x − λ2u − λ1z⟩ (here Qi = EṼi (ϑ , λ)

mod W̃ (ϑ , λ)). Hence, using again Stickelberger’s theorem, the re-

sultant of z −Q1 (λ) and W̃ (ϑ , λ) is the characteristic polynomial of

the map f 7→ z · f in the quotient ring defined by the above ideal.

Following [43, §5], this can be done using Õ (δ4.89) ops. in K. Using
the degree bounds of Prop. 2.8, we need to perform this computation

O (δ3) times. All in all, we deduce that the arithmetic cost is then in

Õ (Lδ6 + δ7.89) ops. in K. The inequality L ≤ δ4 ends the proof. □

2.2 Using Guess-and-Prove methods
2.2.1 Zeilberger’s method. To find an annihilating polynomial for

F (t ,a), where F (t ,u) is the unique solution of equation (5)–(7),

Zeilberger proposed in [61] a guess-and-prove strategy, that he

further refined with Gessel in [38]. The main steps are the following.

Zeilberger’s method

(0) Compute the expansion of F (t ,u) mod tσ for some integer σ ;
(1) Guess S ∈ K[x , t ,u]\{0} such that S (F (t ,u), t ,u) = 0 mod tσ ;
(2) Prove that there exists a power series G in K[u][[t]] such

that S (G (t ,u), t ,u) = 0;

(3) Prove that G satisfies P (G (t ,u),G (t ,a), t ,u) = 0;

(4) Return R (z, t ) := S (z, t ,a).

This is a typical guess-and-prove process, which proceeds in

three basic parts: data generation (step 0), guessing part (step 1)

and proving part (steps 2–3). To be historically fair, it should be

mentioned that this general strategy was used already in the early

60’s by Tutte and Brown on many examples coming from the enu-

meration of various types of maps. For instance, in his 1962 study of

planar triangulations, Tutte [57, §4] solves his equation (3.7)–(3.8)

(see also eq. (4) in [20]) using this approach. Shortly after, in his

1963 paper on non-separable planar maps, Brown [22, §4] solves

his equation (3.6) in a similar fashion, and the same happens in

the joint paper by Brown and Tutte [24] with their eq. (3.8). A few

years later, Tutte [58] solves equation (2) by guess-and-prove too.

Assuming that steps (1)–(3) have succeeded well, the correctness

of this method relies on the observation that both F (t ,u) andG (t ,u)
are solutions inK[u][[t]] of eq. (7). By uniqueness, F (t ,u) coincides
with G (t ,u), which is algebraic by design, and root of S . Hence
S (F (t ,u), t ,u) = 0; in particular R (F (t ,a), t ) = S (F (t ,a), t ,a) = 0.

The strength of guess-and-prove is that it is a very general and

robust method, which works even for more general equations, for

which algebraicity is not known beforehand, e.g. [17]; in such cases,

algebraicity is discovered (and proved) along the way.

In our setting, algebraicity is granted by Theorem 1.1. In order

to get realistic estimates on the complexity of the method, we

will (implicitly) make in the next paragraphs the assumptions that

allow to get a priori bounds on the bidegree of the output R (z, t ),
e.g. Prop. 2.8, but these assumptions are not necessary for the guess-

and-prove approach to work.

Step (0) was taken for granted in [61] and [38]. Although it is a

simple step from the mathematical viewpoint, it can be very time

consuming: it can actually be the one with the highest computa-

tional complexity. It takes as input σ , and it outputs the truncation

modulo tσ of the unique solution F in K[u][[t]] of equation (7).

This solution can be computed in several ways, starting from the

equivalent fixed-point-type equation (5). One way is to iterate

Fk+1 (t ,u) := f (u) + t Q (Fk (t ,u),∆aFk (t ,u), t ,u) mod tk+1,

for k ≥ 0, starting from F0 := f (u). If F (t ,u) =
∑
n≥0 fn (u)t

n
, one

can show by induction that deg( fn ) = O (δ2n), hence the total size
of F (t ,u) mod tσ is O (δ2σ 2) (and this bound is generically tight).

The guessing of Step (1) can be performed in different ways.

Zeilberger [61] uses an ansatz and linear algebra; a better idea is to

use evaluation-interpolation with respect to u, and for each u0 ∈ K,
perform Hermite-Padé (algebraic) approximation on the univariate

series F (t ,u0). In both cases, a precision σ of order degx S ·degt S is

required, which isO (δ8) (see below). An even better idea, proposed

in [38], is to first guess the polynomial R (z, t ) annihilating F (t ,a);
for this, it is enough to use a precision linear in degz R·degt R, which

by Prop. 2.8 is of order δ6 only. Then, S is taken to be the resultant

w.r.t. z of P (x , z, t ,u) and R (z, t ), which is of total degreeO (δ4). Us-
ing the fastest known algorithms for Hermite-Padé approximation,

either based on polynomial matrices (e.g. [40]), or on structured

scalar matrices (e.g. [16]), guessing the polynomial R takes Õ (σ ·

(degz R)
θ−1) = Õ (δ3θ+3) ops. in K. Using evaluation-interpolation

and fast univariate resultants, S can be computed in Õ (δ15) ops. inK.
Note in retrospect that the total arithmetic size of F (t ,u) mod tσ

computed in Step (0) with this variant is of order δ2σ 2 = δ14.
Remark, for the sake of comparison, that constructing S directly

by evaluation-interpolation w.r.t. u and by O (δ4) Hermite-Padé

approximants of univariate power series F (t ,⋆) would require σ =
O (δ8) (and therefore an object of total arithmetic size O (δ18) in

Step (0)) and would take Õ (δ4θ+8) ops. inK, which is at least Õ (δ16)
even if θ would be equal to 2.

Step (2) was taken for granted in [61] and [38]. However, it is

both mathematically and algorithmically nontrivial. It is generally

easy to prove the existence of aG in K(u)[[t]], but it could be hard

to prove that the coefficients ofG are polynomials in u. Note that it
is enough to relax the requirement that the coefficients of G are in

K[u], by just asking that they are rational functions in K(u) with
no pole at u = a. However, this may also be a nontrivial task

3
,

related to the process of desingularisation, either algebraic [10, 59]
or differential [1, 27]. Because of this, the complexity is difficult to

estimate, and is possibly not polynomial in δ (in the worst case). In

the particular case when the curve defined by S (x , t ,u0) has genus 0
for (almost) allu0 ∈ K, it is possible to use rational parametrizations

in order to prove the existence of a root G in K[u][[t]]. This idea
is frequently used in the combinatorics community, e.g. by Tutte

and Brown [22, 24, 57, 58]. However, although computing rational

parametrizations is known to be decidable and implemented in

many computer algebra systems [34, 35, 51, 55], its complexity may

have an exponential dependence with respect to δ [47, 56].

In [61], Step (3) is also quite laborious, and is treated using a

nonlinear ODE satisfied by F (t ,u). The approach seems difficult to

analyze fully from the complexity viewpoint.

In [38], Gessel and Zeilberger proposed a different approach for

Step (3). SinceG (t ,u) is algebraic over K(t ,u) (by design),G (t ,a)
is algebraic K(t ), hence M (t ,u) := P (G (t ,u),G (t ,a), t ,u) is also
algebraic over K(t ,u). Being algebraic,M (t ,u) =

∑
n≥0Mn (u)t

n
is

3
An example of application can be found in the proof of Prop. 17 of [12].
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D-finite (w.r.t. t ), hence the sequence of polynomials (Mn (u))n≥0 is
P-recursive. To prove thatM is identically zero, it is enough to check

that a finite amount of polynomialsMn (u) are identically zero, for

n = 0, . . . ,N , for some integer N . However, N is potentially expo-

nentially large in δ , as it is related to the largest integer root of an

indicial polynomial of the corresponding recurrence. An alternative

is to check Step (3) using algebraic elimination tools: one computes

the intersection of K[T , t ,u] and the ideal of K[T ,x , z, t ,u] gener-
ated by S (x , t ,u), S (z, t ,a) andT − P (x , z, t ,u) and extract from it a

polynomial annihilating P (G (t ,u),G (t ,a), t ,u); this polynomial is

of the formTm ·A(T , t ,u) withm ≥ 1 and it suffices to check thatA
does not vanish at T = P (G (t ,u),G (t ,a), t ,u) = O (t ). (See Ex. 5.5.)

The conclusion is that Zeilberger’s method, and its various vari-

ants and improvements, is a complex process, which for generic

polynomials P of degree δ requires at least Õ (δ15) ops. in K.

2.2.2 A new hybrid method. We propose here a new approach of

the type “guess-and-prove” which blends ingredients inspired from

both the elimination method (§2.1) and Zeilberger’s method (§2.2.1).

Hybrid method

(0) Compute F (t ,a) mod tσ for some integer σ ;
(1) Guess R ∈ K[z, t]\{0} such that R (F (t ,a), t ) = 0 mod tσ ;

(2) Check if R (F (t ,a), t ) = 0 mod tδ
3 ·degR+1

;

(3) If not, then go back to (0) with σ := 2σ ; if yes, then return R.

Assuming that some R is returned at step (3), the correctness of

this method relies on the following reasoning. (Note the similarity

with the so-called “multiplicity lemma” in number theory [9, 18, 30];

a similar approach was already used in computer algebra, in several

contexts: polynomial factorization [44]; rational solutions of alge-

braic ODEs [3]; differential equations for algebraic functions [14];

first integrals and Darboux polynomials [13].) Under (H1) and (H3),
we know (by Prop. 2.8) that there exists an irreducible polynomial

M ∈ K[z, t] \ {0} of degree at most 2δ3 such thatM (F (t ,a), t ) = 0.

Then, the resultant A(t ) with respect to z of R (z, t ) and M (z, t )
writesA = UR+VM forU ,V inK[z, t]. Hence, replacing z = F (t ,a)
in this equality yields thatA(t ) = U (F (t ,a), t ) ·R (F (t ,a), t ) is either
zero, or it has a valuation at least that of R (F (t ,a), t ), which is larger
than δ3 ·degR by the successful check of Step (2). On the other hand,

A(t ) is a polynomial of degree at most degM ·degR ≤ δ3 ·degR. The
conclusion is thatA(t ) is identically zero, and sinceM is irreducible,

this implies thatM divides R in K[z, t], hence R (F (t ,a), t ) = 0.

The method is guaranteed to succeed, because at some point the

precision σ will be large enough so that the guessing part (Step (1))

captures (a multiple of) the minimal polynomial of F (t ,a). The
terminating σ will be not more than twice the degree of this mini-

mal polynomial, which is at most the degree of the polynomial R
predicted by Prop. 2.8, implying σ ∈ O (degz R · degt R) ⊆ O (δ6).

We now introduce a notion and a new regularity assumption in

more generality, as they will be used repeatedly, in Prop. 2.11 then

in §3.1. Let K be a field. For H = (H1, . . . ,Hn ) in K[s1, . . . , sn]n ,
the Jacobian matrix of H is Jacs1, ...,sn (H1, . . . ,Hn ) =

[
∂Hi
∂sj

]n
i, j=1

.

LetDH be the determinant of this matrix. We say thatH satisfies (J)
when the following assumption holds true:

Hypothesis J: There exists s ∈ V (H ) such that DH (s ) , 0. (J)

Lemma 2.10. Let H be as above and assume that (J) holds. Then
the saturation ideal ⟨H ⟩ : (DH )∞ is zero-dimensional and radical.

Proof. Since (J) holds, the Hilbert Nullstellensatz implies that

the saturation of the ideal generated by H with DH is not reduced

to K[s1, . . . , sn]. Applying [32, Theorem 16.19], we deduce that it

is radical of co-dimension n (and hence of dimension 0). □

Note that Prop. 2.8 is still valid under (H1) and (J) applied to

K = K(t ), (s1, s2, s3) = (x , z,u) and (H1,H2,H3) = (P , ∂xP , ∂uP ).

Proposition 2.11. Let P be as in (7) and let δ be its total degree. As-
sume that (H1) holds and that (P , ∂xP , ∂uP ) satisfies (J) (w.r.t. x , z,u).
Assume further that there exists a straight-line program of length L
evaluating P . Then, the new hybrid method terminates on input P
using Õ (L · δ6 + δ3θ+3) ⊆ Õ (δ10.12) ops. in K.

Proof. Consider the last execution of (0)–(3), which happens

with σ ∈ O (δ6) and deg(R) ∈ O (δ3). As in §2.2.1, the guessing

at Step (1) takes Õ (σ · (degz R)
θ−1) ⊆ Õ (δ3θ+3) ops. in K. The

orderσ of F (t ,a) and the truncation order δ3 ·degR+1 at Step (2) are
bothO (δ6), so the truncated evaluation ofR requires Õ (deg(R) · (δ3 ·

deg(R))) ⊆ Õ (δ9) ⊆ Õ (δ3θ+3) ops. in K. The truncation of F (t ,a)
at Step (0) is computed by the classical Newton–Hensel method

[e.g., 41, §4.1] applied to the polynomial system (9), in the form of

the Newton iteration

F 7→ N (F) := F − J (F)−1 ·V T (F), (10)

whereV = [P , ∂xP , ∂uP], J = Jacx,z,u (P , ∂xP , ∂uP ), and F ∈ K[[t]]3

denotes an approximation of a solution (F (t ,U (t )), F (t ,a),U (t )).
Let (J) provide (α , β ,γ ) at which J is invertible. Because (10) dou-
bles the number of correct terms in an approximate series solution

to (9), the iteration starting from the initial point for F = (α , β ,γ )
is well defined. By the Baur–Strassen theorem [5], a straight-line

program of length O (L) evaluating V can be obtained from the one

evaluating P , and by iterating the process, another straight-line

program of length O (L) is found to evaluate the Jacobian matrix;

by the fixed dimension 3, there is also one for its inverse. Now,

evaluatingV and J−1 at series F of some order N requires Õ (L · N )
ops. in K, which is also the cost of one Newton iteration. After

taking a geometric sum, it follows that the overall cost of Step (0) is

Õ (L · σ ) ⊆ Õ (L · δ6) ops. in K. Therefore, Steps (0)–(3) can be exe-

cuted using Õ (L ·δ6+δ3θ+3) ops. inK. The proposition follows after
summation over logσ ∈ O (logδ ) executions of Steps (0)–(3). □

An application of the hybrid method is given in Ex. 5.6.

3 SOLVING GENERAL DDES

3.1 Deformation method
We now recall the second main ingredient, introduced by Bousquet-

Mélou and Jehanne in [20, §4], and used by them to prove Thm. 1.1

in full generality (with no assumptions on f ,Q, P ).
The approach relies on a symbolic homotopy method, via the

introduction of a perturbation parameter ϵ used to “deform” (5)

into a functional equation that satisfies (H1) and (J), given by

G (h,u, ϵ ) = f (u) + ϵ h ∆aG (h,u, ϵ )

+ h2Q (G (h,u, ϵ ),∆aG (h,u, ϵ ),h2,u). (11)
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The “deformed equation” (11) can also be rewritten in the form

Pϵ (G (h,u, ϵ ),G (h,a, ϵ ),h,u, ϵ ) = 0 for some Pϵ ∈ K[x , z,h,u, ϵ]. It
enjoys the following properties (proved in [20, p. 635–638]):

• it satisfies (H1), with P replaced by Pϵ ;
• it admits a unique solution G (h,u, ϵ ) in K[u, ϵ][[h]];
• G (h,u, 0) = F (h2,u), where F (t ,u) is the solution of (5)–(7).

In particular, forR0 ∈ K[z,h]\{0} such thatR0 (G (h,a, 0),h) = 0, we

get for free the nonzero polynomial R (z, t ) := R0 (z,
√
t ) ·R0 (z,−

√
t )

in K[z, t] that annihilates F (t ,a).
Moreover, there exists a uniqueU (h, ϵ ) ∈ K[ϵ][[h]] such that:

• it satisfies (9) with P replaced by Pϵ , and F (t ,u) byG (h,u, ϵ );
• the Jacobianmatrix of Pϵ , ∂xPϵ , ∂uPϵ evaluated at the “point”
(x , z,u) = (G (h,U (h, ϵ ), ϵ ),G (h,a, ϵ ),U (h, ϵ )) has full rank.

We consider the ideal Iε obtained by saturating ⟨Pϵ , ∂xPϵ , ∂uPϵ ⟩
with the determinant D of the Jacobian Jacx,z,u (Pϵ , ∂xPϵ , ∂uPϵ ).

Note that V (Iϵ ) contains the point

(x , z,u) = (G (h,U (h, ϵ ), ϵ ), G (h,a, ϵ ), U (h, ϵ )) ∈ K[ϵ][[h]]3.

By Lemma 2.10 applied to (Pϵ , ∂xPϵ , ∂uPϵ ), hyp. (H3) holds and
then (H2) holds (Lemma 2.7). Recall that (H1) holds. Hence, apply-
ing Prop. 2.1, we deduce that all elements of Jϵ = Iϵ ∩ K[z,h, ϵ]
annihilateG (h,a, ϵ ). From such an element, setting ϵ to 0 yields the
desired R0 ∈ K[z,h] \ {0} annihilating G (h,a, 0). (See Ex. 5.7.)

3.2 A polynomial time algorithm
In this section, we prove a quantitative version of Theorem 1.1 for

DDEs of order k = 1. More precisely, we will show that for P as

in (7), of degree δ , there exists a nonzero polynomial annihilating

F (t ,a) with total arithmetic size polynomial in δ , and moreover,

that this polynomial can be computed in polynomial time in δ .
To do this, we rely on the deformation method recalled in §3.1.

We start by identifying an elementRϵ inJϵ \{0} and by bounding its
degrees. The proof follows the same pattern as the one of Prop. 3.1,

via algebraic objects related to the ideals Iϵ and Jϵ defined in §3.1.

Proposition 3.1. Assume Pϵ ∈ K[x , z,h,u, ϵ] has total degree δϵ .
Then, there exists a nonzero element Rϵ in Jϵ ∩ K[z,h, ϵ] such that
degz (Rϵ ) ≤ δ3ϵ , degh (Rϵ ) ≤ δ3ϵ and degϵ (Rϵ ) ≤ δ3ϵ .

Proof. Let χ (z) ∈ K(h, ϵ )[z] be the squarefree part of the char-
acteristic polynomial of the multiplication map by z in the quotient

ring K(h, ϵ )[x ,u, z]/Iϵ (this makes sense since, by Lemma 2.10, Iϵ
is zero-dimensional over K(h, ϵ )). Multiplying χ by the lcm of the

denominators of its coefficients yields Rϵ ∈ K[z,h, ϵ] which also

lies in Jϵ by Stickelberger’s theorem. Note that Rϵ is squarefree,

and that degz (Rϵ ) ≤ δ3ϵ . It remains to prove that degh (Rϵ ) ≤ δ3ϵ ,

degϵ (Rϵ ) ≤ δ3ϵ as well. The degree of Rϵ in h is the same as the

degree of Rϵ (h, ζ1, ζ2) obtained by specializing (z, ϵ ) to a generic

point, say ζ = (ζ1, ζ2), in K
2
. Since ζ is chosen generically, we can

assume that Rϵ (h, ζ1, ζ2) is squarefree. We consider the ideal gen-

erated by the intersection of Iϵ with K[x , z,u,h, ϵ]. By an abuse of

notation, we still denote this ideal by Iϵ . Since Rϵ (h, ζ1, ζ2) lies in
Kζ = Iϵ + ⟨z − ζ1, ϵ − ζ2⟩ in K[x ,u, z,h, ϵ], the Heintz–Bézout the-
orem implies that the algebraic set this ideal defines has degree at

most δ3ϵ . Since ζ is chosen generically, we may assume thatKζ has

dimension at most 0. We deduce that the squarefree part of the char-

acteristic polynomial χζ of the multiplication map by h in the ring

K[x ,u, z,h, ϵ]/Kζ is squarefree and has degree at most δ3ϵ . Also,
note that it divides Rϵ (h, ζ1, ζ2) and that all roots of Rϵ (h, ζ1, ζ2)
are the projections on the h variable of the roots of Kζ . Hence, up

to a multiplicative constant in K \ {0}, the polynomials Rϵ (h, ζ1, ζ2)
and χζ coincide. Hence degh (Rϵ ) ≤ δ3ϵ . By specializing (z,h) to a

generic point, one obtains in a symmetric way degϵ (Rϵ ) ≤ δ3ϵ . □

We now turn to the computation of the polynomial Rϵ defined in

(the proof of) Prop. 3.1, that is, the squarefree part χ (z) ∈ K(h, ϵ )[z]
of the characteristic polynomial of the multiplication map f 7→ z · f
in the quotient ring K(h, ϵ )[x , z,u]/Iϵ . We note Lϵ the length of a

straight-line program for evaluating Pϵ . Clearly, Lϵ ≤ δ5.

Proposition 3.2. Assume Pϵ ∈ K[x , z,h,u, ϵ] has total degree δϵ .
There exists an algorithm that takes on input a straight-line program
of length Lϵ for Pϵ and that returns a nonzero element Rϵ ∈ Jϵ , using
Õ (Lϵδ

9

ϵ + δ
10.89
ϵ ) ⊆ Õ (δ14ϵ ) ops. in K.

Proof. We follow the lines of the proof of Prop. 2.9. Since Iϵ ⊂

K(h, ϵ )[x , z,u] is zero-dimensional and radical, one applies [54,

Thm. 2] and the algorithm on which it relies. By the Baur-Strassen

theorem [6], a straight-line program of length O (Lϵ ) evaluating
Pϵ , ∂xPϵ , ∂uPϵ can be obtained from the one evaluating Pϵ . With

this straight-line program as input, the algorithm in [54, Thm. 2]

computes a rational parametrization x = Ṽ3 (h, ϵ, λ)/W̃ ′(h, ϵ, λ),

u = Ṽ2 (h, ϵ, λ)/W̃ ′(h, ϵ, λ) and z = Ṽ1 (h, ϵ, λ)/W̃ ′(h, ϵ, λ) over the

extension defined by W̃ (h, ϵ, λ) = 0 in O
(
(Lϵ + 1)δ

9

ϵ
)
ops. in K.

Without loss of generality, we assume that W̃ ,W̃ ′ and Ṽi have
coefficients inK[h, ϵ]. In this setting, λ encodes the values of a linear
form λ1x +λ2u+λ3z (with λi ∈ K); hence, when specializing h, ϵ to

some generic pointϑ = (ϑ1,ϑ2) ∈ K
2
inW̃ , the roots ofW̃ |h=ϑ1,ε=ϑ2

are the evaluations of the above linear form at the roots of Pϵ =
∂xPϵ = ∂uPϵ = 0,h = ϑ1, ε = ϑ2,D , 0, with D the determinant

of the Jacobian matrix of (Pϵ , ∂xPϵ , ∂uPϵ ) w.r.t. x , z,u. By Prop. 3.1,
the degree of these polynomials is bounded above by δ3ϵ and the

degree of their coefficients is bounded by δ3ϵ too.

Besides, the polynomialW is just the squarefree part of the minimal

polynomial of the multiplication map f 7→ f · λ in the quotient

ring K(h, ϵ )[x , z,u]/(Iϵ + ⟨−λ + λ1x + λ2u + λ3z⟩) and the above

parametrization is valid outside the vanishing set of W̃ ′.
We compute from there the squarefree part Rϵ of the characteristic

polynomial of the map f 7→ f · z in the above quotient algebra. We

proceed by evaluation-interpolation as in Prop. 2.9, using [43, §5] for

the resultant computation needed after transforming the specialized

parametrization as a lexicographic Gröbner basis. Note that the

interpolation is done to retrieve bivariate coefficients. By Prop. 3.1,

the degrees of Rϵ in h and ϵ are bounded by δ3ϵ , which implies that

we need O (δ6ϵ ) evaluation points. We deduce that this step used

Õ (δ10.89ϵ ) ops. in K. Using Lϵ ≤ δ5ϵ concludes the proof. □

We are now in position to prove our main result.

Theorem 3.3. For P as in (7) of total degree δ , there exists a poly-
nomial R ∈ K[z, t] \ {0} annihilating F (t ,a), of total arithmetic
size O (δ6). Moreover, one can compute R in Õ (δ14) ops. in K.

Proof. One first deforms equation (5) as in §3.1. Then, the proof

follows from Propositions 3.1 and 3.2 and from δϵ = O (δ ). □
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4 CONCLUSION AND FUTUREWORK
This article is just a first preliminary step towards a good under-

standing of effectivity issues related to Theorem 1.1. Many things

remain to be done. Already in the case k = 1, we plan to address

the optimality (size of the objects / complexity) of the exponents in

our estimates, as well as to implement and compare the practical

performances of the various algorithms, and to use them in order to

treat challenging combinatorial examples. We also plan to extend

our study to the case k > 1.
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5 EXAMPLES
The running examples that follow are split into smaller paragraphs

to be referred to from the main body of the text: Ex. 5.3, 5.5, and 5.6

continue Ex. 5.1 in independent ways; Ex. 5.7 continues Ex. 5.4.

Example 5.1. For planar maps, the bivariate generating function

F (t ,u) satisfies the DDE (2). In this case, a = 1, f (u) = 1 and

Q = u2x2 + ux + uy, Q̃ = u2x2 + ux +
u (x − z)

u − 1
, (12)

P = t u2 (u − 1)x2 + (t u2 − u + 1)x − tuz + u − 1.

Note that setting u = 1 in P (F (t ,u), F (t , 1), t , 1) = 0 yields a tauto-

logic identity. The algorithms presented in the paper will compute,

by different means, the polynomial R (z, t ) = 27t2z2 + (1 − 18t ) z +
16t − 1 (or a multiple of it) as an annihilating polynomial for F (t , 1).

Example 5.2. Taking (6) with f (u) = 1, a = 0 and Q := 97t2 −
73u2 − 56x2 − 62y2 + 87x gives the polynomial equation (7), with

discx P = − 16352t
2u6 + (21728t4 − 10535t2 + 50t + 1)u4

+ 248t (97t3 − 56t z2 + 87tz − z + 1)u2,

which has a double root at u = 0.

Example 5.3. For P as in (12), Algorithm DD computes

D0 = D1 = t (4tz + t − 4)u4 − 2t (2tz − 3)u3 + (1 − 2t )u2 − 2u + 1,

then it computes the polynomial of bi-degree (8, 4) in (t , z)

D2 = − 6912t
8z4 + 256t6 (72t − 1)z3 − 512t5 (8t2 + 31t − 1)z2

+ 256(32t2 + 16t − 1)t4z − 256(16t − 1)t4,

and it finally returns the polynomial of bi-degree (4, 3) in (t , z)

R = 27t4z3 − t2 (45t − 1)z2 + t (16t2 + 17t − 1)z − t (16t − 1).

If one further completely factors the bivariate polynomial R,

R = t (tz − 1) (27t2z2 − 18tz + 16t + z − 1),

one concludes that F (t , 1) is a root of 27t2z2 + (1 − 18t ) z + 16t − 1,
as announced in the introduction.

Example 5.4. Doing u = 0 in the trivial functional equation

F (t ,u) = 1 + t (uF (t ,u)2 + F (t ,u) − F (t , 0)) (13)

solves it immediately, but this example is to show a specific phe-

nomenon. Here, Q̃ = u x2 + x − z and P = 1 − x + t (ux2 + x − z).
Therefore, ∂xP (x , z, 0,u) = −1, hence assumption (H1) is violated.
Now, Algorithm DD computes discx P = 4t (tz − 1)u + (t − 1)2,
then its discriminant in u, which is the constant polynomial 1. The

output of Algorithm DD is R = 1, which is obviously wrong. In fact,

the unique solution F (t ,u) of (13) in Q[u][[t]] satisfies F (t , 0) = 1,

and is a root of tux2 + (t − 1)x + 1 − t .

Example 5.5. For P as in (12), Zeilberger’s method computes the

first 20 terms in the expansion

F (t ,u) = 1 + (u + 1)ut + (2u3 + 3u2 + 2u + 2)ut2 + · · · ,

and from there it guesses a polynomial S = 27t3u4 (u − 1)2 x4 +

54t2u2 (u − 1)
(
u2t − u + 1

)
x3+· · · of degree (4, 3, 6) in (x , t ,u). Al-

ternatively, the Gessel-Zeilberger variant computes the first 8 terms

of F (t ,u), then deduces that F (t , 1) = 1+2t+9t2+54t3+378t4+ · · · ,
from where it guesses the polynomial R = 27t2z2 + (1 − 18t ) z +

16t − 1 that cancels (conjecturally) F (t , 1), and then takes its resul-

tant with P from (12); this gives t · S . Then, Step (2) is a nontrivial

one: one way to prove the existence of a root G in K[u][[t]] of S
is to use rational parametrizations, but this proof requires human

cleverness, in addition to nontrivial algorithms, see e.g. [8, p. 365].

Finally, Step (3) can be performed by algebraic elimination: the

intersection of ⟨S (x , t ,u), S (z, t , 1),T − P⟩ and Q[T , t ,u] is gener-

ated by T
(
1728t3u2 + 729T 2t2 − 432t2u2 + 36u2t − u2

)
. Since by

construction P (G (t ,u),G (t , 1), t ,u) = O (t ) is a root of this polyno-
mial, it is 0. By uniqueness of the solution of (2), one concludes that

F (t ,u) = G (t ,u), and hence F (t , 1) is a root of R = S (z, t , 1).

Example 5.6. For P as in (12), the hybrid method loops and even-

tually (or immediately) uses some σ ≥ 8: one could check that any

smaller σ will get rejected at Step (2). With σ = 8, Step (0) computes

the first 8 terms in the expansion F (t , 1) = 1 + 2t + 9t2 + 54t3 +
378t4 + · · · , which are enough to guess in Step (1) the polynomial

R = 27t2z2 + (1 − 18t ) z + 16t − 1. In Step (2), as δ = 4, one first

computes the σ · (2δ3) + 1 = 1025 terms of F (t , 1), using the poly-
nomial system (9) and the Newton iteration (10) with initial point

F = [1, 1, 1]T, where J = Jacx,z,u (P , ∂xP , ∂uP ) is the matrix



2t u2 (u − 1) x + t u2 − u + 1 −ut 3t u2x 2 − 2xt (x − 1) u − tz − x + 1
2t u2 (u − 1) 0 6t u2x − 4tux + 2ut − 1

2ut (3u − 2) x + 2ut − 1 −t 2xt (3ux − x + 1)


which yields the simultaneous expansion of



F (t ,U (t ))
F (t , 1)
U (t )


=



1 + 2t + 12t2 + 90t3 + 756t4 + 6804t5 + · · ·
1 + 2t + 9t2 + 54t3 + 378t4 + 2916t5 + · · ·
1 + t + 4t2 + 25t3 + 190t4 + 1606t5 + · · ·


.

Checking R (F (t , 1), t ) mod t1025 = 0 proves that R (F (t , 1), t ) = 0.

The needed precision 1025 is so large because of the very pessimistic

a priori bound 2δ3 = 128 on degR = 4. Any improvement in this

bound would result in (much) less computations.

Example 5.7. Consider the functional equation (13). The corre-

sponding deformed functional equation is

G (h,u, ϵ ) = 1 + ϵh∆0G (h,u, ϵ ) + h2 (uG (h,u, ϵ )2 + u∆0G (h,u, ϵ )).

Hence, the deformed polynomial equation is given by

Pϵ := (1 − x )u + ϵh(x − z) + uh2 (ux2 + x − z).

The determinant of the Jacobian matrix Jacx,u,z (Pϵ , ∂xPϵ , ∂uPϵ ) is

D = (8u3x2 + 4u2x − 2u2z)h6 + (12ϵu2x2 + 4ϵux )h5

− (4u2x − 2u2)h4 − (8ϵux + ϵ )h3 + ϵh.

From there, one determines Iϵ and computes Jϵ ∩ K[z,h, ϵ]. A gen-

erator of the principal ideal Jϵ ∩ K[z,h, ϵ] is

Rϵ := 16ϵ2h6z3 − (h6 + 18ϵh5 + 36ϵh3 − 3h4 + 3h2 − 1)z

− (ϵh7 − 20ϵh5 − 8ϵh3)z2 + h6 + 27ϵh3 − 3h4 + 3h2 − 1.

Consequently, Rϵ (G (h,a, ϵ ),h, ϵ ) = 0, and specializing ϵ to 0 gives

R0 (G (h,a, 0),h, 0) = 0 where R0 = − (h− 1)
3 (h+ 1)3 (z − 1). Setting

h = t2, we recover that z − 1 annihilates F (t , 0) = 1.
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