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Abstract

Interrupt Timed Automata (ITA) form a subclass of stopwatch automata
where reachability and some variants of timed model checking are decidable
even in presence of parameters. They are well suited to model and analyze
real-time operating systems. Here we extend ITA with polynomial guards
and updates, leading to the class of polynomial ITA (PolITA). We prove
that reachability is decidable in 2EXPTIME on PolITA, using an adapta-
tion of the cylindrical algebraic decomposition algorithm for the first-order
theory of reals. We also obtain decidability for the model checking of a
timed version of CTL and for reachability in several extensions of PolITA.
In particular, compared to previous approaches, our procedure handles pa-
rameters and clocks in a unified way. We also study expressiveness questions
for PolITA and show that PolITA are incomparable with stopwatch au-
tomata.
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1. Introduction

Hybrid Automata. Hybrid systems [2] combine continuous evolution of
variables according to flow functions (described by differential inclusions)
in control nodes, and discrete jumps between these nodes, where the vari-
ables can be tested by guards and updated. This class of models is very
expressive and all relevant verification questions (e.g. reachability) are un-
decidable. For the last twenty years, a large amount of research was devoted
to approximation methods like in [3] or the identification of subclasses with
decidable properties obtained by restricting the continuous dynamics and/or
the discrete behavior of the systems. Among these classes lie the well known
Timed Automata (TA) [4], where all variables are clocks evolving with rate
1 w.r.t. to global time, guards are comparisons of clocks with rational con-
stants, and updates are resets. It is proved in [5] that reachability becomes
undecidable when adding one stopwatch, i.e., a clock whose rate is either 0
or 1 depending on the state, to timed automata. Decidability results were
also obtained for larger classes (see [6, 7, 5, 8, 9, 10]), usually by building
from the associated transition system (with uncountable state space) a finite
abstraction preserving a specific class of properties, like reachability or those
expressed by temporal logic formulas. In all these abstractions, a state is a
pair composed of a control node and a polyhedron of variable values [5, 8].

Interrupt Timed Automata. The class of Interrupt Timed Automata
(ITA), incomparable with TA, was introduced in [11, 12] as another subclass
of hybrid automata with a (time-abstract) bisimulation providing a finite
quotient, thus leading to decidability of reachability and some variants of
timed model checking. In a basic n-dimensional ITA, control nodes are or-
ganized along n levels, with n stopwatches (also called clocks hereafter), one
per level. At a given level, the associated clock is active, while clocks from
lower levels are frozen and clocks from higher levels are irrelevant. Guards
are linear constraints and the clocks can be updated by linear expressions
(using only clocks from lower levels). The hierarchical structure of ITA makes
them particularly well suited for modeling systems with interruptions, like
real-time operating systems. ITA were extended with parameters in [13],
while preserving the decidability results.

Polynomial constraints. Linear constraints are not always expressive
enough for modeling purposes. In an untimed setting, polynomials of dis-
crete variables were considered for the analysis of programs [14, 15, 16]. In
the context of hybrid systems, several biological models shown in [17] in-

2



volve polynomials (or even rational functions) of continuous variables, that
appear in the differential equations, but can also be compared with thresh-
old values. Polynomials of parameters were also considered in [18] for the
analysis of Slope Parametric Linear Hybrid Automata (SPLHA). Classical
polyhedron-based abstractions [19, 20] are not sufficient to deal with these
constraints.

As a toy example to motivate the model, we consider the landing of a
rocket. In the first stage, the rocket approaches the land from distance d,
under gravitation g. In the second stage, the rocket approaches the land
with constant deceleration h < 0. The rocket must reach the land with small
positive speed (less than some fixed ε). The problem we are interested in is
the following: For all g ∈ [7, 10], does there exist an h ∈ [−3,−1] such that
the rocket is landing without crash ?

Contribution. We define the class PolITA, of polynomial ITA, where
linear expressions are replaced by polynomials with rational coefficients both
for guards and updates. For instance, a guard at level 2 with clock x2 can
be of the form P1(x1)x

2
2 +P2(x1) ≥ 0, where P1 and P2 are polynomials with

rational coefficients and single variable x1, the clock of level 1.
The PolITA below illustrates the rocket landing example. The first

stage is modeled by q0 at level 1 where the system spends x1 seconds. The the
system spends x2 seconds in q1, representing the second stage (deceleration).
State q2 is the final state where the rocket has landed. Remark that the
rocket can only land if its speed is below ε as enforced by the guard.

q0, 1

q1, 2 q2, 2

1
2
gx21 + gx1x2 + 1

2
hx22 = d ∧ 0 ≤ gx1 + hx2 < ε

Figure 1: A PolITA modeling the rocket landing.

Thus, guards are more expressive in PolITA than in the whole class of
linear hybrid automata. In addition, they can be used to simulate irrational
(algebraic) constraints, a case that becomes undecidable in the setting of
timed automata [21].
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We establish that reachability is decidable in 2EXPTIME for PolITA by
adapting the cylindrical algebraic decomposition algorithm due to Collins [22]
(we also refer to the textbook [23] for a self-contained exposition of this algo-
rithm) related to the first order theory of reals. This decomposition produces
a finite partition of the state space, which is the basis for the construction
of a finite bisimulation quotient, together with a decision procedure for the
consistency of a polynomial system. The first order theory of reals has al-
ready been used in several works on hybrid automata [9, 8, 10] but it was
restricted to the dynamical part, with discrete jumps that must reinitial-
ize the variables. It was also used for parametric analysis [18] in SPLHA
(but still with linear constraints on the clocks) or approximate analysis [3]
of hybrid automata. Our adaptation consists in an on-the-fly construction
avoiding to build the whole decomposition. The construction can also be
adapted to model checking of a timed extension of CTL.

From an expressiveness point of view, w.r.t. timed language acceptance,
we show that, contrary to ITA, PolITA are incomparable with stopwatch
automata (SWA [20]). We also prove that the decidability results still hold
with several extensions: adding auxiliary clocks and parameters, and enrich-
ing the possible updates. In particular, parametric ITA [13] can be seen as
a subclass of PolITA, and the complexity of our reachability algorithm is
better than the one obtained in [13], which is in 2EXPSPACE.

Outline. We describe the model of polynomial ITA in Section 2, with an
example and the presentation of the verification problems. In Section 3 we
informally present the cylindrical algebraic decomposition and the decision
procedures for PolITA. Then in Section 4, we detail these constructions
with a special focus on the data structures and algorithmic schemes. We
extend the decidability result to model checking in Section 5 and discuss
expressiveness and extensions in Section 6. We conclude in Section 7. Missing
proofs and constructions can be found in [24].

2. Polynomial ITA

We denote respectively by N, Z, Q and R the sets of natural numbers,
integers, rational and real numbers, with R≥0 for the set of non negative real
numbers. Let X = {x1, . . . , xn} be a finite set of n variables called clocks. We
write Q[x1, . . . , xn] for the set of polynomials with n variables and rational
coefficients.
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A polynomial constraint is a conjunction of constraints of the form P ./ 0
where P ∈ Q[x1, . . . , xn] and ./∈ {<,≤,=,≥, >}, and we denote by C(X)
the set of polynomial constraints. We also define U(X), the set of polynomial
updates over X, by: U(X) = {∧x∈Xx := Px | ∀x Px ∈ Q[x1, . . . , xn]}.

A valuation forX is a mapping v ∈ RX , also identified to the n-dimensional
vector (v(x1), . . . , v(xn)) ∈ Rn. The valuation where v(x) = 0 for all x ∈ X
is denoted by 0. For P ∈ Q[x1, . . . , xn] and v a valuation, the value of P at v
is P (v) = P (v(x1), . . . , v(xn)). A valuation v satisfies the constraint P ./ 0,
written v |= P ./ 0, if P (v) ./ 0. The notation is extended to a combination
of polynomial constraints: v |= ϕ with ϕ =

∧
i Pi ./i 0 if v |= Pi ./i 0 for

every i.
An update of valuation v by u = ∧x∈Xx := Px in U(X) is the valuation

v[u] defined by v[u](x) = Px(v) for each x ∈ X. Hence an update is atomic
in the sense that all variables are assigned simultaneously. For valuation v,
delay d ∈ R≥0 and k ∈ {1, . . . , n}, the valuation v′ = v +k d, corresponding
to time elapsing of d for xk, is defined by v′(xk) = v(xk)+d and v′(x) = v(x)
for x 6= xk.

Definition 1 (PolITA). A polynomial interrupt timed automaton (PolITA)
is a tuple A = 〈Σ, Q, q0, F,X, λ,∆〉, where:

• Σ is a finite alphabet, with ε the empty word in Σ∗, the set of words
over Σ;

• Q is a finite set of states, q0 is the initial state, F ⊆ Q is the set of final
states;

• X = {x1, . . . , xn} consists of n interrupt clocks;

• the mapping λ : Q→ {1, . . . , n} associates with each state its level and
xλ(q) is called the active clock in state q;

• ∆ ⊆ Q × C(X) × (Σ ∪ {ε}) × U(X) × Q is the set of transitions. Let

q
ϕ,a,u−−−→ q′ in ∆ be a transition with k = λ(q) and k′ = λ(q′). The guard

ϕ is a conjunction of constraints P ./ 0 with P ∈ Q[x1, . . . , xk] (P is a
polynomial over clocks from levels less than or equal to k). The update
u is of the form ∧ni=1xi := Ci with:

– if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′,
Ci = xi and for i > k′, Ci = 0;
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q0, 1

q1, 2 q2, 2

x21 ≤ x1 + 1, a

x21 > x1 + 1, a′, x1 := 0

(2x1 − 1)x22 > 1, b

x2 ≤ 5− x21, c

Figure 2: A sample PolITA A0.

– if k ≤ k′ then for 1 ≤ i < k, Ci = xi, Ck = P for some P ∈
Q[x1, . . . , xk−1] or Ck = xk, and for i > k, Ci = 0.

Remark that although it is possible to compare an active clock in a non-
polynomial way, e.g. x2 >

√
|x1| (which can be translated as x42 > x21 ∧ x2 ≥

0), it cannot be updated in such a fashion.

Example 1. PolITA A0 of Figure 2 has alphabet {a, a′, b, c}, two levels,
with q0 at level 1 and q1, q2 at level 2. The single final state is q2. At level
1, only x1 appears in guards and updates (here the only update is the reset
of x1 by action a′), while at level 2 guards use polynomials in both x1 and
x2. In the sequel, the polynomials of A0 are denoted by A = x21 − x1 − 1,
B = (2x1 − 1)x22 − 1 and C = x2 + x21 − 5.

A configuration (q, v) of A consists of a state q and a clock valuation v.

Definition 2. The semantics of a PolITA A is defined by the (timed)
transition system TA = (S, s0,→), where S =

{
(q, v) | q ∈ Q, v ∈ RX

}
is the

set of configurations, with initial configuration s0 = (q0,0). The relation →
on S consists of two types of steps:
Time steps: Only the active clock in a state can evolve, all other clocks are
frozen. For a state q with active clock xλ(q), a time step of duration d ∈ R≥0
is defined by (q, v)

d−→ (q, v′) with v′ = v +λ(q) d.

Discrete steps: There is a discrete step (q, v)
a−→ (q′, v′) if there exists a

transition q
ϕ,a,u−−−→ q′ in ∆ such that v |= ϕ and v′ = v[u].

A run of a PolITA A is a path in the graph TA alternating time and
discrete steps. For a given run ρ, the trace of ρ is the sequence of letters
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x1

x2

(2x1 − 1)x22 − 1 = 0

x2 + x21 − 5 = 0

x21 − x1 − 1 = 0

a

b

b

b

c

c

c0
c1
c2

c3
c4

c5 c6
c7

c8 c9 c10

c11

c5,−3
c5,−2

c5,−1

c5,1

c5,2

c5,3

c5,4

c5,5

Figure 3: Sample trajectory for abcbcb of A0 in R2. (Axes are not orthonormal.)

(or word) appearing in the path and the timed word of ρ is the sequence of
letters along with the absolute time of the occurrence, i.e. the sum of all
delays appearing before the letter. A run is accepting if it ends in a state
of F . The language (resp. timed language) of A is the set of traces (resp.
timed words) of accepting runs.

Example 2. In A0, the transition from q0 to q1 can only be fired before
(or when) x1 reaches 1+

√
5

2
, i.e. at the point labeled c6 on Figure 3. Then,

transition b from q1 to q2 can only be taken once x2 reaches the grey areas.
Transition c cannot be taken once the green curve has been crossed. Hence
the loop bc can occur as long as the clock values remain in the dark gray
area c5,3, or on the green curve c5,4. In the sequel, we show how to sym-
bolically compute these sets, called cells. Since q2 ∈ F , the run depicted
in Figure 3 is accepted by A0. The associated timed word (resp. trace) is
(a, 1.2)(b, 2.3)(c, 2.6)(b, 3.3)(c, 3.9)(b, 5.1) (resp. abcbcb).

Given a PolITAA, the reachability problem asks, given a state q, whether
there exists a valuation v and a path from (q0,0) to (q, v) in TA. Note that
a variant of the reachability problem where the goal is given by both a state
and polynomial constraint g on v can be treated by adding from q a transition
guarded by g to a new state qgoal and testing reachability to qgoal.
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The reachability procedure given in Section 3 relies on a finite abstraction
of TA. This abstraction needs to be refined enough to capture time elapsing,
discrete jumps through the crossing of a transition, and keep constant the
truth value of constraints P ./ 0. In the resulting model, a state will consist of
an automaton state coupled with a cell of an appropriate cylindrical algebraic
decomposition.

3. Cylindrical algebraic decomposition and reachability

3.1. Definition

The cylindrical algebraic decomposition is the basis of the first elementary
decision procedure (more precisely 2EXPTIME) for the satisfiability of the
first-order logic over reals [22]1. A cylindrical decomposition of Rn consists of
finite partitions of R,R2, . . . ,Rn into cells such that the cells for R are open
intervals or points and, at each level, cells of Rk+1 are obtained by lifting
each cell of Rk on the k+1th axis and then partitioning this axis with finitely
many intervals and points; the partitioning itself depends on the original cell.
Most of the notions presented below are introduced in [23, Chap. 5 and 11].

Example 3. Figure 3 partly depicts a cylindrical decomposition of R2. The
cells of R≥0 are denoted by c0, . . . , c11 (those of the negative part of the x1 axis
are not represented). They partition the line into points and intervals. For
example cell c5 is the open interval between point c4 (corresponding to the

first intersection of the blue and green curve) and c6 = {1+
√
5

2
}. The lifting

of cell c5 yields a partition of c5×R into cells c5,−3, c5,−2, . . . , c5,5. Given any
z ∈ c5, {z}×R is partitioned in an open interval c5,−3 ∩ {z}×R followed by
a point c5,−2 ∩ {z} × R, etc. Observe that the mapping z 7→ c5,−2 ∩ {z} × R
is continuous.

Definition 3. A cell of level k is a subset of Rk inductively defined as follows.

• When k = 1, it is either a point or an open interval.

• A cell C of level k+ 1 is based on a cell C ′ of level k. It has one of the
following shapes.

1Later on, an EXPSPACE procedure was proposed in [25].
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1. C = {(x, f(x)) | x ∈ C ′} where f is a continuous function from
C ′ to R;

2. C = {(x, y) | x ∈ C ′ ∧ l(x) < y < u(x)} with l < u continuous
functions from C ′ to R, possibly with l = −∞ and/or u = +∞.

We are interested in a cylindrical decomposition adapted to some finite
family P = {P1, . . . ,Pn} of sets of polynomials with Pk ⊆ Q[x1, . . . , xk]: in
a cell of level k, the sign (−, 0,+) of each polynomial in Pk is constant. In
this context, the boundaries of each cell can be represented with algebraic
constraints; hence, such cylindrical decompositions are called cylindrical al-
gebraic decompositions. Due to the definition of cells, a cylindrical decom-
position is appropriately represented by a tree.

Definition 4. A cylindrical algebraic decomposition of Rn adapted to P =
{Pk}k≤n such that Pk ⊆ Q[x1, . . . , xk], is a tree of cells inductively defined
as follows:

• The root of the tree is the only cell of level 0, that is R0;

• Let C be a cell of level k < n in the tree. There exists some r ∈ N and
continuous functions fi, for 1 ≤ i ≤ r, with −∞ = f0 < f1 < . . . <
fr < fr+1 = +∞, such that the (ordered) children of C at level k + 1
in the tree are the cells

C0 = {(x, y) | x ∈ C ∧ f0(x) < y < f1(x)},
C1 = {(x, f1(x)) | x ∈ C},
C2 = {(x, y) | x ∈ C ∧ f1(x) < y < f2(x)},

...

C2r = {(x, y) | x ∈ C ∧ fr(x) < y < fr+1(x)},

that must satisfy: for all P ∈ Pk+1, for all i ∈ {0, . . . , 2r}, for all
z, z′ ∈ Ci, sign(P (z)) = sign(P (z′)).

Example 4. For the PolITA of Figure 2, the relevant polynomials in Q[x1]
are those related to level 1: the clock x1 itself and the polynomial A =
x21 − x1 − 1 used in both guards from q0, hence P1 = {x1, A}. The relevant
polynomials in Q[x1, x2] are those from level 2: x2, B = (2x1− 1)x22− 1, and
C = x2+x21−5 associated with the guards from q1 and q2, so P2 = {x2, B, C}.

We illustrate the definition above with several cells from Figure 3.
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• At level 1, cells c4, c8, c10 correspond to intersection points of graphs
B = 0 and C = 0 projected on the x1 axis, while c2 corresponds to
1
2
, the root of the coefficient 2x1 − 1 of B. Other cells like c1, c3, c5

correspond to intervals between roots.

• At level 2, all cells of the form c5,i are children of c5. The dark gray zone
where the guards of both transitions between q1 and q2 are satisfied is
c5,3. It can be described by:

c5,3 = {(x1, x2) | x1 ∈ c5 ∧
1√

2x1 − 1
< x2 < 5− x21}

while the next cell c5,4 is the portion of green curve above:

c5,4 = {(x1, 5− x21) | x1 ∈ c5}.

The main elements for the effective construction of a cylindrical decom-
position are given in Section 4. For the moment, we recall the result of [22]:

Theorem 1 ([22]). For any family P = {Pk}k≤n such that Pk is a finite
subset of Q[x1, . . . , xk], one can build a cylindrical algebraic decomposition of

Rn adapted to P in 2EXPTIME, more precisely in (|P| · d)2
O(n)

where d is
the maximal degree of a polynomial of P.

3.2. Reachability for PolITA

We now use this decomposition to build a finite abstraction of the set
of configurations of a PolITA (also called a bisimulation-quotient in the
literature), which leads to the decidability of the reachability problem:

Theorem 2. Reachability for PolITA is decidable in time (d|A|)2O(n)
where

n is the number of clocks in A and d the maximal degree of polynomials
appearing in A; thus in polynomial time when the number of clocks is fixed.

Let A = 〈Σ, Q, q0, F,X, λ,∆〉 be a PolITA with X = {x1, . . . , xn}. We
define Poly(A) as the set of all polynomials appearing in guards and updates
of A (including all clocks) as follows: P belongs to Poly(A) iff (1) P is a
clock, (2) P occurs in a guard P ./ 0, or (3) P = xi − Pi where xi := Pi is
an update.

We denote by DA a cylindrical decomposition adapted to Poly(A), with
D1
A, . . . ,DnA for the set of cells at the respective levels 1, . . . , n so that for

1 ≤ k ≤ n, DkA is a decomposition of R{x1,...,xk}.
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We define a finite transition system RA with states in Q×DA. The states
can also be partitioned according to levels as

⋃n
k=1 λ

−1(k)×DkA. Indeed, given
a configuration (q, v) with λ(q) = k, the clocks of level i > k are irrelevant and
so v can be identified as a point in R{x1,...,xk}. We now define the transitions
of RA as follows.
Time successors. Let succ /∈ Σ be a letter representing time elapsing. Let
(q, C) be a state of RA, with λ(q) = k, and let C ∈ Dk−1A be the projection
of C onto Rk−1 and −∞ = f0 < · · · < fr+1 = +∞ be the functions dividing
C as in Definition 4. The succ transitions are defined as follows:

• if C = {(x, fi(x)) | x ∈ C} for some i ∈ {1, . . . , r}, then there is a transi-
tion (q, C)

succ−−→ (q, C ′) where C ′ = {(x, y) | x ∈ C, fi(x) < y < fi+1(x)};

• if C = {(x, y) | x ∈ C, fi−1(x) < y < fi(x)} for some i ∈ {1, . . . , r},
there is a transition (q, C)

succ−−→ (q, C ′), with C ′ = {(x, fi(x)) | x ∈ C};

• otherwise, C = {(x, y) | x ∈ C, fr(x) < y < fr+1(x)}, and there is a self-
loop labeled by succ: (q, C)

succ−−→ (q, C).

In all the above cases, C ′ is called the time successor of C (in the last
case, C is its own time successor). Since the decomposition is cylindrical,
time elapsing according to the current clock corresponds to moving to the
“next” cell.

Proposition 1 (Correctness w.r.t. time elapsing). Let v be a valuation
belonging to a cell C of level k. There exists d > 0 such that:

• The elapsing of d time units for xk yields a valuation v +k d ∈ C ′, the
time successor of C.

• For any 0 < d′ < d, the elapsing of d′ time units for xk yields a
valuation v +k d that is either in C or in C ′.

Discrete successors. Since DA is adapted to Poly(A) which contains all
guards and updates we can write C |= ϕ whenever v |= ϕ for some v ∈ C and
C[u] for the unique cell in DA such that for any valuation v ∈ C, v[u] ∈ C[u].
Discrete transitions of A are translated as follows into RA. If (q, ϕ, a, u, q′) ∈
∆, and C |= ϕ with k′ = λ(q′) < λ(q) = k, the update u is trivial, hence
there is a transition (q, C)

a−→ (q′, C ′) where C ∈ DkA has been lifted from
C ′ ∈ Dk′A , i.e. C ′ is the projection of C over Rk′ . If (q, ϕ, a, u, q′) ∈ ∆, and
C |= ϕ with k′ = λ(q′) ≥ λ(q) = k, there is a transition (q, C)

a−→ (q′, C ′)
where C ′ ∈ Dk′A has been successively lifted k′−k times from C[u] ∈ DkA with
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point 0. Since the decomposition provides sign-invariant cells with respect
to the polynomials of A, we have:

Proposition 2 (Correctness w.r.t. discrete steps).

• If (q, v)
a−→ (q′, v′) ∈ TA, then (q, C)

a−→ (q′, C ′) ∈ RA with v ∈ C and
v′ ∈ C ′.

• If (q, C)
a−→ (q′, C ′) ∈ RA then for all v ∈ C there exists v′ ∈ C ′ such

that (q, v)
a−→ (q′, v′) ∈ TA.

Since the number of cells in a cylindrical decomposition is doubly ex-
ponential in the number of clocks and polynomial in the number and the
maximal degree of polynomials to which it is adapted [23, Chap. 11], we
obtain the complexity stated in Theorem 2. By setting {(q, C) | q ∈ F} as
the set of final states of RA, we obtain:

Proposition 3. The untimed language of a PolITA is regular.

4. Effective construction and on-the-fly algorithm

4.1. Construction of a cylindrical decomposition

Building a cylindrical decomposition consists in two stages: the elimina-
tion stage that enlarges P and the lifting stage that builds the cylindrical
decomposition using symbolic representations of sample points (one per cell).

Elimination stage. Starting from a cell C at level k, in order to get a
partition at level k + 1 adapted to Pk+1, any two points z, z′ ∈ C should
trigger a similar behavior for polynomials of Pk+1, that we consider for our
discussion as univariate polynomials of Q[x1, . . . , xk][xk+1] with variable xk+1.
More precisely, the properties we are looking for are:

• For all P ∈ Pk+1 and for all z, z′ in C, the number of real roots (counted
with multiplicities) of the polynomials P (z) and P (z′) in R[xk+1] are
equal (say µP ). For 1 ≤ i ≤ µP and z ∈ C, we denote by rP,i(z) the ith

real root of polynomial P (z) (in increasing order);

• For all P,Q ∈ Pk+1, for all 1 ≤ i ≤ µP and 1 ≤ j ≤ µQ, for all z, z′ in
C, rP,i(z) ≤ rQ,j(z) implies rP,i(z

′) ≤ rQ,j(z
′).
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These properties are analytical and do not provide insights on how to en-
sure them. Fortunately, it turns out that a simple effective semi-algebraic suf-
ficient condition exists: there is a finite subset of polynomials of Q[x1, . . . , xk]
denoted by Elimxk+1

(Pk+1) such that if z, z′ satisfy sign(R(z)) = sign(R(z′))
for all R ∈ Elimxk+1

(Pk+1), then the above properties are satisfied.
To define Elimxk+1

(Pk+1), we need some notations. For P =
∑

i≤p aix
i
k+1

with ai ∈ Q[x1, . . . , xk] for all i, lcof(P ) denotes the leading coefficient ap.
Since this leading coefficient is a polynomial and could be null for some P (z),
the set of truncations of P contains all “possible realizations” of P :

Tru(P ) =

{∑
i≤h

aix
i
k+1

∣∣∣∣∣ ∀i > h ai /∈ R \ {0} ∧ ah 6= 0

}
.

For instance, if P = x1x
3
2 + (3x1 + 1)x22 + 5x2− 2, then the set of truncations

of P is Tru(P ) = {P, (3x1 + 1)x22 + 5x2− 2, 5x2− 2}. Note that even though
in this case it is not possible for x1 and 3x1 + 1 to be null at the same time,
truncation is defined syntactically in order to deal with the general case.

Given another polynomial, Q =
∑

i≤q bix
i
k+1 ∈ Q[x1, . . . , xk][xk+1], the

subresultants (sResi(P,Q))i≤max(p,q) are polynomials of Q[x1, . . . , xk] obtained
as determinants of matrices whose items are coefficients of P and Q (see [23,
24] for a formal definition of subresultants, a polynomial time computation,
and their properties).

Definition 5. Let Pk be a finite subset of Q[x1, . . . , xk−1][xk] for k > 1.
Then Elimxk(Pk) is the subset of Q[x1, . . . , xk−1] defined for all P,Q ∈
Pk, R ∈ Tru(P ), T ∈ Tru(Q) by:

• if lcof(R) does not belong to Q then lcof(R) ∈ Elimxk(Pk);

• if deg(R) ≥ 2 then for all sResj(R,
∂R
∂xk

) that are defined and do not

belong to Q, sResj(R,
∂R
∂xk

) ∈ Elimxk(Pk);

• for all sResj(R, T ) that are defined and do not belong to Q, we have
sResj(R, T ) ∈ Elimxk(P).

Using the properties of subresultants, one gets the following theorem
whose implementation is the elimination stage of the cylindrical decomposi-
tion. Due to the quadratic blow up at each recursive level of elimination, the
final number of polynomials is doubly exponential w.r.t. the original number.
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Theorem 3. Let P = {Pk}k≤n be a family of finite set of polynomials such
that Pk ⊆ Q[x1, . . . , xk]. Define Qn = Pn and inductively Qk−1 = Pk−1 ∪
Elimxk(Qk) for k > 1. Then there exists a cylindrical decomposition adapted
to Q (and thus to P).

Example 5. Consider again the polynomials B = (2x1 − 1)x22 − 1 and C =
x2 + x21 − 5 from the PolITA of Figure 2. Their subresultant of index 0
is F = −2x51 + x41 + 20x31 − 10x21 − 50x1 + 26 which has precisely three real
roots c4, c8, c10: the x1-coordinates of intersection points of graphs B = 0
and C = 0 mentioned previously.

Lifting stage. The starting point of the lifting stage is the family P appro-
priately enlarged by the elimination stage. In the cylindrical decomposition
that we build, every cell C of level k is represented by a sample point inside
the cell and the values of signs of all polynomials of the set Pk on this point.

We consider representations of real subrings of the form D = Q[α1, . . . , αk]
where the αi’s are algebraic numbers, i.e., roots of polynomials in Q[x]. Any
real algebraic number α can be represented by a pair (n, P ) where P is a
non null polynomial in Q[x] such that P (α) = 0 and n is the index of α in
the ordered set of real roots of P . This representation is extended for real
algebraic points (α1, . . . , αk) with the notion of triangular systems : α1 is the
nth1 root of P1 ∈ Q[x1], α2 is the nth2 root of P2(α1) with P2 ∈ Q[x1][x2], etc.

Definition 6 (Triangular system). For k ≥ 1, let (α1, . . . , αk) be a se-
quence of reals and let {(ni, Pi)}ki=1 be such that for all i, ni is a positive
integer and Pi ∈ Q[x1, . . . , xi−1][xi]. Then {(ni, Pi)}ki=1 is a triangular sys-
tem of level k for (α1, . . . , αk) if:

• P1 is non null and α1 is its nth1 real root;

• Pi+1(α1, . . . , αi) is a non null polynomial of Q[α1, . . . , αi][xi+1], and αi+1

is its nthi+1 real root, for all i, 1 ≤ i < k.

Example 6. Let us consider the point (α1, α2) depicted as a circle in Fig-
ure 3. This point is represented by the triangular system ((2, A), (2, B))
where A = x21 − x1 − 2 and B = (2x1 − 1)x22 − 1. This means that α1 is the
2nd root of A(x1) and α2 is the 2nd root of B(α1, x2).

The interest of such a representation is its effectiveness: in a ring D =
Q[α1, . . . , αk] associated with a triangular system one can compute:
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1. the sign of an item of Q[α1, . . . , αk],

2. the number of real roots of P (α1, . . . , αk) with P ∈ Q[x1, . . . , xk][xk+1],

3. the sign realizations of a polynomial Q(α1, . . . , αk) on the real roots of
a polynomial P (α1, . . . , αk),

and one can order (with merge) the roots of P (α1, . . . , αk) and Q(α1, . . . , αk).
All these procedures are performed in polynomial time (see for instance [24]).

The tree corresponding to the cylindrical decomposition is built top-down
so that a triangular system is associated with a sample point of every cell
and its sign realizations on the appropriate polynomials. Let us describe
how, given a sample point (α1, . . . , αk), the partition over axis xk+1 can be
built w.r.t. Pk+1. First for all P ∈ Pk+1, the number of roots of P (α1, . . . , αk)
is determined. Then the roots of these polynomials are sorted and merged;
their triangular system is the one associated with (α1, . . . , αk) extended by
the polynomial for which they are roots. Then the open intervals between
these roots or beyond these roots must be specified, to yield the completed
line partitioning. Let (r, P ) and (s,Q) be the borders of an open interval,

then one selects as sample point, a root of ∂(PQ)
∂xk+1

located in the interval. Let

(r, P ) and +∞ (resp. −∞ and (1, P )) be the borders of the last (resp. first)
open interval, then one selects (r, P [xk+1 := xk+1 − 1]) (resp. (1, P [xk+1 :=
xk+1 + 1])) as sample point. To achieve this step it remains to compute the
sign realizations of P (α1, . . . , αk) for all P ∈ Pk+1 on these sample points.
Theorem 1 results from these two construction steps.

4.2. On-the-fly algorithm

The abstraction from Section 3 provides decidability of the reachability
problem, by the algorithm that builds the finite graph RA.

However, building the complete graph is not efficient in practice, since it
requires to build the set of all cells beforehand, even though usually most of
them are unreachable. Observe that the lifting stage requires to manipulate
polynomials of large degrees (doubly exponential). Hence, in practice, it is
often the most time consuming stage of the cylindrical algebraic decomposi-
tion algorithm. In the sequel, we show an on-the-fly construction of RA that
reduces complexity in practice.

The key to the on-the-fly algorithm is to store only the part of the tree
corresponding to the current sample point and its time successors. This con-
struction relies on executing the lifting phase only when the level is increased
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and then only for the current sample point. As an illustration, in Figure 3,
only the lifting for x2 above c5 has been represented, since it is the only rele-
vant one with respect to the given trajectory. Note that liftings over sample
points c0 to c6 have to be computed in order to build the reachable part of
RA0 . On the other hand, liftings over c7 to c11 and over unrepresented cells
to the left of c0, need not, since level 2 is not reachable from these cells. As
a result, we do not keep the whole tree but only part of it.

We show that this information is sufficient to compute the successors
through time elapsing and transition firing. Although this pruning yields
better performances in practice, the computational complexity in the worst
case is not improved.

Definition 7 (Pruned tree). Let {Pk}k≤n be the polynomials obtained by
the elimination phase. The pruned tree for sample point (α1, . . . , αk) is the se-
quence of completed line partitionings for sample points {(α1, . . . , αi)}1≤i≤k.
The pruned tree for the empty sample point (k = 0) is the line partitioning
at level 1.

A valuation (v1, . . . , vk, 0, . . . , 0) at level k is represented by a sample point
(α1, . . . , αk), or, equivalently, by a pruned tree for sample point (α1, . . . , αk−1)
and the index m of αk in the line partitioning for (α1, . . . , αk−1). In this
representation, computing the time successors of (α1, . . . , αk) is simply done
by incrementing m (if it is not the maximal index in the line partitioning).

The set of enabled discrete transitions can be generated by computing
the signs of polynomials appearing in guards. When a discrete transition
q

g,a,u−−→ q′ is chosen, there are three cases w.r.t. the level of states q and q′.

• The level decreases, i.e. λ(q′) < λ(q). Then the pruned tree cor-
responding to the new configuration is the truncation of the original
pruned tree up to height λ(q′). Otherwise said, we “forget” line par-
titionings for levels above λ(q′); however, the partitionings are kept in
memory to avoid redundant computations. The new index is the index
of αλ(q′) in the partitioned line for this level.

• The level is unchanged, i.e. λ(q′) = λ(q) = k. The only possible change
of clock values is through an update xk := P with P ∈ Q[x1, . . . , xk−1].
The polynomial R = xk − P of degree 1 was added to Poly(A) and
its unique root α′k appears in the line partitioning of level k. Note
that in the triangular system representing (α1, . . . , α

′
k) it may appear
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as ((n1, P1), . . . , (nk, Pk)) with (nk, Pk) 6= (1, R). Hence to determine
the index in the partitioned line the algorithm must actually determine
the sign of R for all sample points of the line until 0 is found.

• The level increases, i.e. λ(q′) > λ(q). If there is an update of xk, the
same computations as above must be performed in order to find the
new sample point corresponding to the valuation of clocks up to λ(q).
Then the pruned tree of height λ(q′) has to be computed (or retrieved).
This is done by λ(q′)−λ(q) lifting steps. These lifting steps are applied
on sample points of the form (α1, . . . , αλ(q), 0, . . . , 0), since all clocks are
null for levels above λ(q).

The on-the-fly algorithm builds the reachable part of RA as follows: the
elimination phase is performed and the line for x1 is partitioned. It starts
with a queue containing q0 with index corresponding to the root of x1 (i.e.
0). Then until the queue is empty, it computes all (new) successors through
time and discrete transitions, building the pruned tree as described above.
As noted above, a line partitioning only needs to be computed once. In addi-
tion, and this also holds for the complete construction of RA, the triangular
structure of triangular systems enables a sharing of line partitioning at lower
levels.

Example 7. We conclude this section by an example of construction of (a
part of) the finite automaton RA0 associated with PolITA A0 (Figure 2).
It is depicted on Figure 4, where points are given by the triangular system
representing them. Computations of sample points for intervals between
roots were omitted, and only appear in the graph as roots of derivatives.
Note that having no a edge from state q0, 1, (5, Int) is not an omission, but
a consequence of the guard x21 ≤ x1 + 1 no longer being satisfied. In this
graph, C+ is the polynomial obtained when replacing x2 by x2−1 in C. Faded
states and transitions are unreachable but are nonetheless constructed from
the decomposition, though not by the on-the-fly algorithm. Gray states are
those traversed by the trajectory of Figure 3. The names of the polynomials
obtained by elimination and used in this graph are given in Table 1.

5. Model checking

More elaborate queries regarding the behavior of a PolITA can be ex-
pressed through temporal logics like CTL [26, 27] or timed extensions of such
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Figure 4: Partial representation of RA0 .
Dashed edges correspond to time successors succ; faded states are unreachable.

18



I1 = x1
I2 = x2
A = x21 − x1 − 1
B = (2x1 − 1)x22 − 1
C = x2 + x21 − 5
D = 2x1 − 1 (= lcof(B))
E = x21 − 5 (= sRes0(I2, C))
F = −2x51 + x41 + 20x31 − 10x21 − 50x1 + 26 (= sRes0(B,C))
G = 4(2x1 − 1)2 (= sRes0(B,

∂B
∂x2

))

Int = −14x61 + 18x51 + 105x41 − 124x31 − 180x21 + 172x1 + 24 (= ∂FA
∂x1

)

P1 = {I1, A,D,E, F,G} P2 = {I2, B, C}

Table 1: Polynomials used in the cylindrical decomposition.

logics like TCTL [19, 28]. Here we consider a timed extension of CTL where
it is possible to reason on the values of clocks of the PolITA.

Given a PolITAA = 〈Σ, Q, q0, F,X, λ,∆〉 and a set AP of atomic propo-
sitions, we equip the automaton with a mapping lab : Q → 2AP , labeling a
state with the set of propositions that hold in this state. For convenience,
we assume that Q ⊆ AP with for all q, q′ ∈ Q, q′ ∈ lab(q) iff q = q′.

Definition 8. Formulas of the timed logic TCTLint are defined by the fol-
lowing grammar:

ψ ::= p | ψ ∧ ψ | ¬ψ | P ./ 0 | Aψ Uψ | Eψ Uψ

where p ∈ AP , P is a polynomial of Q[x1, . . . , xn], and ./∈ {>,≥,=,≤, <}.

The formulas of TCTLint are interpreted over configurations of A, hence
the semantics of TCTLint is defined as follows on the transition system TA
associated with A. Let Run(s) denote all runs starting from configuration

s = (q, v). For ρ = (q, v)
d1−→ (q, v+λ(q)d1)

a1−→ (q2, v2) · · · ∈ Run(s), a position
in ρ is a pair π = (i, δ) where 1 ≤ i and 0 ≤ δ ≤ di. The configuration
corresponding to π is sπ = (qi, vi +λ(qi) δ) (with q1 = q and v1 = v). We
denote by <ρ the strict lexicographical order over positions of ρ.
For basic formulas:

s |= p iff p ∈ lab(q)
s |= P ./ 0 iff v |= P ./ 0
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and inductively:

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= ¬ϕ iff s 6|= ϕ
s |= AϕUψ iff for all ρ ∈ Run(s), ρ |= ϕUψ
s |= EϕUψ iff there exists ρ ∈ Run(s) s. t. ρ |= ϕUψ
with ρ |= ϕUψ iff there is a position π ∈ ρ s. t. sπ |= ψ

and ∀π′ <ρ π, sπ′ |= ϕ ∨ ψ.

The automaton A satisfies ψ (written A |= ψ) if the initial configuration
s0 of TA satisfies ψ. The model checking problem asks, given A and ψ,
whether A |= ψ. We now prove the following result.

Theorem 4. The model checking problem of TCTLint over PolITA is de-
cidable in time (|A| · |ψ| · d)2

O(n)
where n is the number of clocks in A and d

the maximal degree of polynomials appearing in A and ψ.

The automaton built fromA for the reachability problem must be adapted
as follows. Given a TCTLint formula ψ, we define Poly(ψ) as the set of all
polynomials appearing in ψ, i.e., in subformulas of the form P ./ 0. We now
consider DA,ψ, the cylindrical decomposition adapted to Poly(A) ∪ Poly(ψ)
and build the associated transition system RA,ψ as done previously.

Finally, we translate a comparison P ./ 0 in ψ into a fresh atomic propo-
sition pP./0. Note that since DA,ψ is in particular adapted to Poly(ψ), every
cell C of DA,ψ is sign-invariant for P , hence the truth value of P ./ 0 is
constant in C. As a result, we can write C |= P ./ 0 whenever v |= P ./ 0
for some v ∈ C, and proposition pP./0 is true in every state (q, C) where
C |= P ./ 0. Writing ψ for the formula obtained from ψ by replacing each
P ./ 0 by pP./0, we have:

Proposition 4. A |= ψ if, and only if, RA,ψ |= ψ.

Since ψ is a CTL formula, it can be checked with the usual polynomial
time labeling procedure. From the doubly exponential number of cells in the
cylindrical decomposition, we obtain the complexity stated in Theorem 4.

6. Expressiveness

We finally focus on the expressiveness of PolITA. After comparing this
class with o-minimal hybrid systems and stopwatch automata, we show how
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to extend it while keeping decidable the above verification problems. For the
sake of clarity, in Section 2 we have presented a basic model of PolITA.
Here we consider three new features obtained by: (1) including parameters
in the expressions of guards and updates, (2) associating with each level a
subset of auxiliary clocks, and (3) allowing updates for clocks of levels lower
than the current one. Since in the context of ITA, the first two extensions
have already been studied in [13] and the third one in [12], our presentation
will not be fully formalized.

6.1. Remarks on o-minimal hybrid systems

Following [10], recall that a totally ordered structure M = (M,<) is o-
minimal if every definable subset of M is a finite union of points and open
intervals (possibly unbounded). The main property of o-minimal structures
is that Mn (for n ∈ N \ {0}) admits finite cell decompositions in the same
spirit as the particular structure of the real numbers. Observe that [29, 30, 31]
provide quantitative bounds on the number of cells for such a decomposition.
An o-minimal dynamical system is a pair (M, γ), whereM is o-minimal and
γ : Mk1 ×M → Mk2 (with k1, k2 in N \ {0}) is a definable function of M.
The function γ describes the trajectories: Mk1 stands for the parameters’
space and its second argument represents the time. The target space of γ,
Mk2 , is the state space.

Finally, an o-minimal hybrid system H is composed of a finite set of lo-
cations, each of which equipped with an o-minimal dynamical system, and
such that the transitions between locations are decorated with guards and
resets that are subsets in Mk2 definable in M. More precisely, in a discrete
transition along some edge e from location `1 to `2 with guard Ge and reset
Re, a pair (`1, y1) with y1 ∈ Ge is sent to (`2, y2) where y2 is an arbitrary
point in Re. This strong reset condition implies that finding a finite bisimu-
lation for H reduces to finding such a bisimulation for each location. These
techniques have been used in particular for Pfaffian hybrid systems [32], that
are special cases of o-minimal hybrid systems where Pfaffian functions like
exp, trignometrical functions defined in appropriate domains, etc. are added
to polynomials. However, in these cases, the algorithm must additionally
assume that an oracle deciding the consistency of a Pfaffian systems is given.
Note that, up to our knowledge, such an oracle does not exist for the general
class of Pfaffian systems.

Moreover, it is shown in [10] that relaxing the assumptions, either on
the continuous dynamics or on the discrete transitions, can lead to systems
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that do not admit finite bisimulations. In particular, this is the case if the
transitions are generalized by authorizing some kind of memory for the resets.
Therefore, the model of PolITA, like the one of timed automata, are specific
subcases of hybrid systems where finite bisimulations exist in spite of the
generalized reset conditions, and where no oracle is needed.

6.2. PolITA vs Timed automata and Stopwatch automata

By syntax inclusion, PolITA are at least as expressive as ITA. As a di-
rect consequence of the results in [11], there exists a timed language accepted
by a PolITA that is not accepted by a TA.

Conversely, there exists a timed language accepted by a timed automaton
that is not accepted by any PolITA as defined in Section 2. Consider the
language:

L1 =
{

(a, t1)(b, t2) . . . (a, t2p+1)(b, t2p+2) | p ∈ N,
∀i, 0 ≤ i ≤ p, t2i+1 = i+ 1 and i+ 1 < t2i+2 < i+ 2,

∀i, 1 ≤ i ≤ p, t2i+2 − t2i+1 < t2i − t2i−1
}
.

The corresponding untimed language is (ab)+ and in the timed words of
L1, there is an occurrence of a at each time unit and the successive occur-
rences of b come each time closer to the previous occurrence of a.

It was shown in [12] that no ITA can accept L1. The proof also holds
for PolITA since it is only based on the following hypotheses: (1) there is
a single clock per level, (2) at level i, the behavior is only determined by the
current state and the values of clocks at levels less or equal than i, and (3)
the clock xi is null at level j < i.

Note, however that L1 is accepted by the extension with auxiliary clocks
provided in Section 6.4.

We now show that the class of stopwatch automata (SWA), which also
syntactically contains the class of ITA, is incomparable to PolITA. Recall
that in a stopwatch automaton, each clock can be active or inactive in every
state. Also recall that updates are restricted to resets2 x := 0 and guards
are comparisons to a rational constant3. In the remainder of the section, we

2It is possible to simulate assignments with rational constants, but it does not change
expressiveness of the model.

3Again, diagonal constraints x− y ./ c for c ∈ Q can be simulated.
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use +q to denote addition only on stopwatches active in q. We first show the
following lemma about runs accepted by a SWA:

Lemma 1. Let ρ = (q0, v0)
δ0−→ (q0, v0+q0 δ0)

g0,a0,u0−−−−→ (q1, v1) · · · be a run in a

stopwatch automaton. Then there exists ρ′ = (q0, v0)
δ′0−→ (q0, v0+q0 δ

′
0)

g0,a0,u0−−−−→
(q1, v

′
1) · · · taking the same discrete transitions as ρ such that ∀i, δ′i ∈ Q.

Proof. We assume that stopwatches are never reset throughout the run.
This can be done since one can assume that a reset stopwatch is actually
a fresh one. Let X be the set of stopwatches. We consider a system of
linear constraints with a variable δi per delay and rational coefficients which
correspond to all guards appearing in ρ. We define:

γxi =

{
1 if x is active in qi
0 otherwise

Writing |ρ| for the number of discrete transitions in ρ, the system contains
the following constraints for 0 ≤ i < |ρ|:

δi ≥ 0 and

(
i∑

`=0

γx` · δ`

)
x∈X

|= gi

The last constraint may actually denote several constraints if gi is a conjunc-
tive formula.

Note that since guards have rational coefficients, this system also has
rational coefficients. In addition since ρ is an accepted run, this system has a
solution (δ0, . . . ). Also note that for every solution (δ′i)i, replacing each delay
δi with δ′i in ρ still yields a valid run ρ′, since all guards are still respected. It
is well-known that when the set of solutions of a system of linear constraints
is non empty, there is a solution with rational coefficients, say (δ′i)i ∈ Q|ρ|.
So ρ′ is a run with rational delays. �

Proposition 5. There exists a timed language accepted by a PolITA with
a single clock that cannot be accepted by a stopwatch automaton.

Proof. Consider the PolITA of Figure 5, which accepts the timed lan-
guage L2 containing the single word (a, 1)(b,

√
2). Assume that L2 is accepted

by a stopwatch automaton A2 and let ρ = (q0, v0)
δ0−→ (q0, v0 +q0 δ0)

g0,a0,u0−−−−→
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x1 = 1, a x21 = 2, b

Figure 5: A PolITA whose timed language is not accepted by a stopwatch automaton.

(q1, v1) · · · be a run accepting (a, 1)(b,
√

2). Note that some ais may actually
be ε. Since b occurs at an irrational instant, there is at least an irrational
delay before the occurrence of b. By Lemma 1, some run ρ′ where all delays
are rational is also accepted. Therefore the instant of b in ρ′ is rational and
cannot be

√
2. �

Furthermore any time rescaling for L2 does not change this result since either
a or b is taken at an irrational instant.

On the other hand, the (untimed) language of a PolITA (and the exten-
sions of Section 6) is regular, as shown by Proposition 3. It is not necessarily
the case of (untimed) languages of stopwatch automata [20, 7], hence there
are some timed languages accepted by a SWA that are not accepted by any
PolITA.

6.3. Parameters

Getting a complete knowledge of a system is often impossible, especially
when integrating quantitative constraints. Moreover, even if these constraints
are known, when the execution of the system slightly deviates from the ex-
pected behavior, due to implementation choices, previously established prop-
erties may not hold anymore. Additionally, considering a wide range of values
for constants allows for a more flexible and robust design. Introducing pa-
rameters instead of concrete values is an elegant way of addressing these
three issues. Parametrization however makes verification more difficult. For
instance, in timed automata, allowing a single clock to be compared to pa-
rameters leads to undecidability of the reachability problem [21].

Suppose that we enlarge PolITA allowing expressions to be polynomials
whose set of variables is the union of a set of clocks {x1, . . . , xn} and a set
of parameters {p1, . . . , pk}. Then we consider the cylindrical decomposition
where the order of variables is p1, . . . , pk, x1, . . . , xn. Now assume that the
relevant values of parameters are specified by a first-order formula val. Then
using the cylindrical decomposition, we can answer reachability questions
like “for all p1 · · · pk satisfying val, is q reachable?” or safety questions like
“for all p1 · · · pk satisfying val, is q unreachable?”.
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6.4. Auxiliary clocks

With each level i, one may associate a set of auxiliary clocks Yi in addition
to the main clock xi. Since there are now multiple clocks for some level i,
in this PolITA, with every state of level i, is associated an active clock in
the set Xi = {xi}∪Yi, specifying which clock evolves with time in this state.
Auxiliary clocks may be used in a restrictive setting w.r.t. the main clocks
to influence the behavior of the PolITA. Let us detail these restrictions:

• In a guard of a transition outgoing from a state at level i, among
auxiliary clocks only those of the level i may occur and they are only
be compared between them or with the main clock (i.e. z ./ z′ with
z, z′ ∈ Xi);

• In a transition outgoing from state at level i, an auxiliary clock of level
i may be updated by another clock of level i (i.e. y := z with y ∈ Yi
and z ∈ Xi) while the main clock may be updated by an auxiliary
clock only if the destination state of the transition is also at level i (i.e.
xi := y with y ∈ Yi).

The decision procedure works as follows. The cylindrical decomposition does
not take into account the auxiliary clocks. However the definition of a class
specifies in which interval of level i lies any clock of level i and their relative
position for clocks inside the same interval.

Adding auxiliary clocks strictly extends expressiveness of PolITA w.r.t.
timed languages. Consider the PolITA of Figure 6 with a single level and
single final state q2. The main clock x is active in all states and y is an aux-
iliary clock. It is routine to check that the timed language of this automaton
is the language L1 given in section 6.2 above.

q0 q1 q2 q3
x = 1, a, x := 0 0 < x < 1, b, y := x

x = 1, a, x := 0

y < x < 1, b, y := x

Figure 6: A PolITA with a single level and an auxiliary clock accepting L1.

25



6.5. Extended updates

At level i, the value of a clock of level j < i is relevant. So it is interesting
to allow updates of such a clock. Again for keeping decidability, such updates
have the following restrictions:

• At level i, the main clock of level j < i can only be updated by a
polynomial of the main clocks of level less than j: xj := P (x1, . . . , xj−1);

• At level i, an auxiliary clock of level j < i may be updated by a clock
of level j: y := z with y ∈ Yj and z ∈ Xj.

The decision procedure for this extension consists in translating the ex-
tended PolITA in a PolITA with the same behavior at level i: (1) delaying
the update of clocks of level j < i that should have been done until the cur-
rent level becomes j and (2) duplicating the states by memorizing the current
value of such a clock as an expression of the values of the clock when the
level j was left. Furthermore iterating this process, by considering successive
updates, only a finite (but exponential) number of duplications is triggered.
Guards and updates outgoing from a duplicated state are modified to take
into account these expressions.

We illustrate this transformation on the PolITA of Figure 7 that is
transformed in the PolITA of Figure 8. The original automaton has only
main clocks and the level of the state is indicated inside the state. In the
transformed state the superscript ’+’ means that it corresponds to a state of
the original ITA ready to be simulated while the superscript ’-’ indicates that
the delayed updates have to be performed. Let us start with the transition
outgoing the state q0: the update of x1 is delayed but memorized in the state
[q+2 , x1 := 2]. The transition outgoing from this state corresponds to the
transition outgoing from q2 but in the guard the occurrence of x1 has been
substituted by 2. With this transformation, the update becomes x2 := 5 but
since we are at level 3, this update is memorized in state [q+3 , x1 := 2, x2 := 5].
The transition from q3 at level 3 to q5 at level 2 is split into two transitions in
the simulating PolITA. First we enter state [q−5 , x1 := 2, x2 := 5] at level 2
where the active clock is y2, an auxiliary clock of level 2. Then in null time,
due to the guard, we perform the delayed update of x2, still memorizing the
update of x1 and enter the state [q+5 , x1 := 2].
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q0, 2

q1, 2

q2, 3 q3, 3

q4, 3

q5, 2

x1 := 2 2x2 + x1 > 3 ∧ x3 < 2
x2 := 2x1 + 1

x2 := x1 + 1
x3 := 2x2

x1 := 1

Figure 7: A PolITA containing extended updates of clocks.

7. Conclusion

We extend ITA with polynomial expressions on clocks, and prove that
reachability and model checking of a timed extension of CTL are decidable
using the cylindrical algebraic decomposition. We also show that an on-the-
fly construction of a class automaton is possible during the lifting phase of
this decomposition. We discuss extensions of PolITA that increase expres-
siveness while preserving the decidability results, and show how the class
PolITA relates to other hybrid models.

An implementation4 (in Python, using the Sage library) was produced as
a proof-of-concept, showing the practical feasibility of the reachability algo-
rithm. A further step on the applicative side could be to look for biological
systems where PolITA would be an adequate model.

Since the construction still suffers from the doubly exponential complexity
of the cylindrical decomposition, we plan to investigate if recent methods
proposed in [33] with a lower complexity could be used to achieve reachability,
possibly for a restricted version of PolITA. Another direction would be to
enlarge the class of functions (like those studied in [34]) labeling guards and
updates, still ensuring decidability of the reachability problem.

Acknowledgements. This work was partially supported by LIP6 project
Parasol. We would like to thank all anonymous reviewers for their insightful
comments and suggestions. We would also like to thank Rémi Garnier and
Mathieu Huot for implementing the reachability algorithm.

4Available at https://github.com/MathieuHuot/D-composition-Cylindrique.
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q+0 , 2
q+2 , 3

x1 := 2

q+3 , 3
x1 := 2
x2 := 5

q+4 , 3
x1 := 2
x2 := 3

q+5 , 2
x1 := 1

q−5 , 2
x1 := 1
x2 := 5

q−5 , 2
x1 := 1

x2 := 2x1 + 1

q+3 , 3
x2 := 2x1 + 1

q+2 , 3q+1 , 2
q+4 , 3

x2 := x1 + 1

2x2 + 2 > 3
∧x3 < 2 x3 := 10

y2 = 0, ε, x2 := 5

2x2 + x1 > 3
∧x3 < 2

x3 := 4x1 + 2

y2 = 0, ε, x2 := x1 + 1

Figure 8: A PolITA equivalent to the PolITA of Figure 7.
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