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Abstract—Local minima are a well-known drawback of image-
based visual servoing systems. Up to now, there were no formal
guarantees on their number, or even their existence, according
to the considered configuration. In this work, a formal approach
is presented for the exhaustive computation of all minima
and unstable equilibria for a class of six well-known image-
based visual servoing controllers. This approach relies on a new
polynomial formulation of the equilibrium condition that avoids
using the camera pose. By using modern computational algebraic
geometry methods and an ad hoc symmetry breaking strategy, the
formal resolution of this new equilibrium condition is rendered
computationally feasible. The proposed methodology is applied to
compute the equilibria of several classical visual servoing tasks,
with planar and non-planar configurations of four and five points.
The effects of local minima and saddle points on the dynamics
of the system are finally illustrated through intensive simulation
results, as well as the effects of image noise and uncertainties on
depths.

Index Terms—Visual Servoing, Formal Methods in Robotics
and Automation, Sensor-based Control, Stability Analysis

I. INTRODUCTION

Visual servoing is a mature area whose formalism is well
established [1]. Even if it has lead to many successful applica-
tions and benefits in practice from a large convergence domain
and a large robustness to modeling and calibration errors, its
stability analysis is still an open theoretical issue when all the
six degrees of freedom of the system have to be controlled.

In this regard, pose-based visual servoing [2], [3] seems to
be appealing since using a minimal representation of pose as
input of the control scheme allows the system to be globally
asymptotically stable (i.e., the system will converge whatever
its initial configuration) in case the pose is assumed to be
perfectly estimated all along the servo. Without speaking about
the visibility constraint that imposes a sufficient number of
image measurements are always available to estimate the pose,
the assumption of perfect pose estimations is very strong and
can be violated, as exhibited in [4] for the case of a simple
planar object. This is due to the fact that going from 2D image
measurements to pose is an inverse problem whose Jacobian
can be ill-conditioned.

The situation is the same for the hybrid and 2 1/2 D
approaches [5]–[7] that use once again a minimal number
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of visual features as inputs of the control scheme, some
expressed in the image, others in 3D. In that case, global
asymptotic stability can be demonstrated by assuming the
3D data involved are perfectly estimated.

Another approach consists in using as visual features the
image coordinates of at least three points and their depth [8],
[9], leading to 3D features. It has been demonstrated in [10]
that four equilibrium poses exist in that case, one correspond-
ing to the desired pose and the three others corresponding to
unstable equilibria, which means that the system will move
away from them as soon as noise will be introduced. Very
recently, a deeper study of this scheme has been performed
in [11], leading to the nice result that the system is almost
globally asymptotically stable in perfect conditions, but also
that there exists a set of particular poses that will converge
towards these unstable equilibria, meaning they correspond to
saddle points.

Very few results exist concerning image-based visual servo-
ing. This approach has the strong advantage of being the more
robust to measurement noise since the inputs of the closed-
loop control scheme only rely on image measurements. Even
if depth is involved in the control scheme since it appears
in the interaction matrix from which the control scheme is
designed, noise on depth will affect the transient phase of
the dynamic system (that is, the trajectory to reach the goal
will be perturbed by noise or coarse approximation on depth),
but it will have no effect on the accuracy reached at the
goal (if the system converges to that goal!). However, up-to-
now, only local asymptotic stability has been demonstrated
for image-based visual servoing [1], which means one is
sure that the system converges if the initial configuration
is in the neighborhood of the desired one (and determining
quantitatively the size of this neighborhood is a clear open
issue). This is due to the fact that a redundant number of
visual features, typically the coordinates of at least four image
points, are used as inputs of the control scheme for avoiding
the famous cylinder of singularities when only three image
points are considered [12], [13], and also since there usually
exist four different poses such that the image of three points is
the same [14]. Global asymptotic stability seems to be out of
reach since the existence of attractive local minima has been
exhibited in [4]. It concerned the case of coplanar points with a
desired configuration not parallel to the image plane, following
the result given in [15] that pose ambiguity exists in that
particular case. More precisely, if a unique pose exists from the
perspective projection of four points, two symmetric solutions
exist in the non-parallel case with the para-perspective model,
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leading to two similar (but not exactly the same) images
for the poses corresponding to these two solutions with the
perspective model. Designing one solution as the desired pose
and starting from a pose near the other solution, it was not
surprising that the system converges toward the latter, a local
minimum, and not toward the former corresponding to the
global minimum and desired pose. Furthermore, in a recent
work focused on the investigation of singularities [16], local
minima have been incidentally exhibited for the case of four
non coplanar points. These minima have been found by chance
in simulation while studying the behavior of the system near
such singularities.

The main contribution of this paper is a method to deter-
mine the full set of equilibrium points of image-based visual
servoing using Cartesian coordinates of image points as visual
features, that is, the local minima, the local maxima, and the
saddle points, in function of the configuration of the object
observed. The exhaustive computation of all equilibria, which
has been an open issue in the field for more than 25 years,
is a first step toward answering fundamental questions like: is
there only one local minimum in the case of a planar object
non-parallel to the image plane? Are there other equilibrium
points than the global minimum in the case of a planar object
parallel to the image plane? What is the situation for non
planar objects? Furthermore, we believe that the resolution
of this problem is also a first step toward a deep stability
analysis of these systems. In particular, and as illustrated with
typical test cases with four and five points, the computation
of saddle points opens the door to determine in the future the
convergence domain towards the desired global minimum.

The paper is organized as follows. In Section II, we intro-
duce two classes of image-based visual servoing controllers
and we derive polynomial models for their equilibrium con-
ditions. A first polynomial model is naturally expressed in
the state-space of the system, but turns out to be intractable.
We then propose a second model, expressed in an extended
space of visual features, which lead to systems of equations
that are medium size and strongly non-linear. In Section III,
we show that computational algebraic geometry methods are
suitable to solve this second model. Our solver msolve [17] is
a recent, highly optimized implementation based on Gröbner
bases computations, which is presented in Section III-A. A
modification of the polynomial model dedicated to an efficient
resolution is presented in Section III-B. This allows us to
compute all fixed points for a benchmark of typical config-
urations of image-based visual servoing systems, presented in
Section IV. The application of our strategy uncovered a great
diversity in the zoology of equilibrium points, a diversity that
is further highlighted through extensive simulations for each
configuration. Resolution timings ranging from fractions of a
second for simple configurations and up to 35 hours for general
ones on our 12 core server demonstrate the difficulty of solving
these problems. The validity of our results in the presence of
realistic perturbations is then examined in Section V, where we
present a series of simulations to illustrate that the qualitative
behavior of the system remains basically unaffected by the
presence of noise.

II. MODEL DERIVATION FOR THE EQUILIBRIA’S
COMPUTATION

A. IBVS Model & Control

We consider a traditional IBVS task [1], where we take the
image-plane coordinates of N ≥ 4 points (not necessarily co-
planar) as visual features. We assume that we have an ideal
pinhole camera, that the points are visible from any direction
and that the camera is controllable in velocity. The points’
Cartesian coordinates oai, expressed in a given world frame,
are constant and known a priori for the analysis. The visual
features xi, yi of the i-th point cai = (Xi, Yi, Zi), expressed
in the camera frame, are:

xi =
Xi

Zi
, yi =

Yi

Zi
(1)

With this choice of features, the interaction matrix Li related
to si = (xi, yi) is given by [1]:

Li =

−
1

Zi
0

xi

Zi
xiyi −(1 + x2

i ) yi

0 − 1

Zi

yi
Zi

1 + y2i −xiyi −xi

 (2)

Denoting with s = (s1, . . . , sN ) the (stacked) image features
and with s∗ = (s∗1, . . . , s

∗
N ) the desired ones, the dynamics of

the features error e = s− s∗ are:

ė = Leτc, Le = [LT
1 , . . . ,L

T
N ]T , (3)

where τc = (vc, ωc) is the camera’s spatial velocity that
represents the control inputs, with vc being the linear velocity
and ωc being the angular one.

The general goal of an IBVS task is to make the image fea-
tures s converge to the desired features s∗. Several strategies
to design appropriate controllers for these tasks exist in the
literature. We focus in this work on three such strategies [18],
[19], that are all based on the general form:

τc = −λCee with λ ∈ R+. (4)

More precisely, we consider:
• Transpose controller: Ce = L̂T

e ,
• Pseudo-inverse controller: Ce = L̂+

e ,
• Levenberg-Marquardt controller:

Ce = (L̂T
e L̂e + µI)−1L̂T

e , with µ ∈ R+.
We denote with L̂e the interaction matrix used in the control
feedback, which might be different from the true interaction
matrix Le, since the latter depends on the features depths that
may not be available in practice. In particular, in this work we
consider two classical choices for L̂e, which give rise to the
two following classes of control schemes:

• Perfect approximation: we assume that the image features
s and the points’ depths Zi are perfectly known at each
moment, with no approximation nor noise. The true
interaction matrix Le is then used in the control input,
i.e. L̂e = Le.

• Desired pose approximation: we assume that the depths
Zi are unknown. The true interaction matrix is then
approximated as L̂e = Le∗ , where Le∗ is the value of
Le with desired features s = s∗ and desired depths Z∗

i .
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The main objective of this paper is the computation of all
equilibria for these six controllers. Before proceeding, the
following lemma shows how the equilibria characterization
for all strategies can be actually reduced to the case of the
transpose controller.

Lemma 1. Given the interaction matrix L̂e to be used
in the control loop, the system’s equilibrium configurations,
characterized by:

L̂T
e e = 0, (5)

are the same for the pseudo-inverse, transpose and Levenberg-
Marquardt controllers.

Proof. We argue that τc = 0 if and only if L̂T
e e = 0 for all

three controllers. This is obvious for the transpose controller.
It is well known [20] that ker L̂+

e = ker L̂T
e , proving the

equivalence for the pseudo-inverse controller. Finally, by the
positive semi-definiteness of LT

e Le, (LT
e Le+µI) is invertible

for all µ > 0, meaning that (LT
e Le + µI)−1LT

e e = 0 if and
only if L̂T

e e = 0, concluding the proof.

Furthermore, as it is classically done, we assess the stability
properties of a given equilibrium by computing the system’s
linearization at it and verifying the signs of the linearized
system’s eigenvalues (see, e.g., [21]). It is well known that, if
there are no eigenvalues with null real part, then the linearized
and non-linear systems are equivalent in a neighborhood of the
equilibrium, and the number of positive eigenvalues (called the
equilibrium’s index) identifies the type of equilibrium. More
precisely, if the index is null, the equilibrium is stable and
corresponds to a minimum while it is an unstable maximum if
the index is 6 and a saddle otherwise. In practice, this analysis
boils down to computing the vector field’s Jacobian in state-
space at the equilibrium points. This Jacobian is defined as the
derivative of the control input τc with respect to the camera
pose. From (4), this Jacobian is given by −λCeLe in the
desired pose approximation case since Ce is constant in that
case and we have τ̇c = −λCeė = −λCeLeτc. It has the same
form in the perfect approximation case for the global minimum
where s = s∗ since Ċee = 0, but has a more complex form,
not given here, for the other equilibria.

The explicit, polynomized expression of (5) is given in (6)
(Table I), where x̂i, ŷi and Ẑi denote the features used in the
evaluation of L̂e. In (6), we multiplied the first three equations
by the product of all Zi’s to make the expression polynomial,
which is a necessary step to be able to solve the system using
computational algebra methods. However, (6) is expressed in
what is called the extended features ξ = (s,Z) ∈ R3N [10],
meaning that it only provides a necessary condition for the
equilibrium: it is a system of 6 equations in 3N > 6
unknowns, where infeasible extended features (i.e., extended
features not corresponding to any camera pose) are equally
considered together with feasible extended features. Thus, it
is imperative to find a strategy that allows us to impose that
the solutions of (6) are within the set of feasible extended
features.

For the sake of clarity, we focus in the next two subsections
on the perfect approximation case. The desired pose controllers

TABLE I
EQUILIBRIUM CONDITION’S EXPLICIT EXPRESSION.

N∑
i=1

 N∏
j ̸=i

Ẑj

 (x∗
i − xi)

 = 0 (6a)

N∑
i=1

 N∏
j ̸=i

Ẑj

 (y∗i − yi)

 = 0 (6b)

N∑
i=1

 N∏
j ̸=i

Ẑj

(
x̂i(xi − x∗

i ) + ŷi(yi − y∗i )
) = 0 (6c)

N∑
i=1

x̂iŷi(xi − x∗
i ) + (1 + ŷ2i )(yi − y∗i ) = 0 (6d)

N∑
i=1

(1 + x̂2
i )(x

∗
i − xi) + x̂iŷi(y

∗
i − yi) = 0 (6e)

N∑
i=1

(xiy
∗
i − yix

∗
i ) = 0. (6f)

Perfect approximation: x̂i, ŷi, Ẑi = xi, yi, Zi (7a)

Desired approximation: x̂i, ŷi, Ẑi = x∗
i , y

∗
i , Z

∗
i (7b)

can then be seen as a (significantly simpler) particular case,
which is briefly discussed in Section II-D.

B. Camera state-space model

A first attempt to solve the equilibrium condition is to con-
sider the camera pose cTo ∈ SE(3) as the system’s variables,
from which features s(cTo) and their corresponding depths
Z(cTo) are easily computed, leading to intrinsically feasible
extended features that can be substituted in (6). However,
SE(3) does not admit a unique representation. We focus here
on two of these representations, namely, rotation matrices and
quaternions. We then rewrite (6), which is naturally expressed
as a function of ξ(cTo), for the two parameterizations. First,
considering the parameterization cTo = (cRo,

cto), we obtain
the points coordinates in camera frame by

cai =
cRo

oai +
cto, (8)

from which the image features can be retrieved using (1) and
their depth from the third component of cai. Second, this
relation also allows us to rewrite (6) as a function of the
quaternion parameterization cTo = (cqo,

cto), by expressing
cRo as a function of cqo (see, e.g., [22]).

In order to actually solve the system on SE(3), it is addition-
ally necessary to impose the group constraints cRo ∈ SO(3)
or cqo ∈ H for the two representations. Putting all together,
the explicit expression of (6) as a function of the camera
state becomes a huge degree 3N polynomial system of 12
equations in 12 variables with the (cRo,

cto)-representation,
while we have a degree 6N polynomial system of 7 equations
in 7 variables with the (cqo,

cto) representation. A comparison
between the degrees of these systems is detailed in Table II.
Because of their substantial density and high degrees, the latter
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TABLE II
COMPLEXITY COMPARISON BETWEEN DIFFERENT CHOICES OF PARAMETRIZATION FOR THE PERFECT APPROXIMATION CASE.

N Parametrization # of unknowns # of equations Polynomial degrees of the equations

N

(cRo, cto) 12 12 [2N − 1, 2N − 1, 3N − 1, 3N, 3N, 2N − 1, 2, . . .
(6)

, 2]

(cqo, cto) 7 7 [2(2N − 1), 2(2N − 1), 2(3N − 1), 6N, 6N, 2(2N − 1), 2]

ξ 3N 6 +
N(N−1)

2
+ 1 [N,N,N + 1, 3, 3, 1, 4, . . .

N(N−1)/2
, 4, 5]

N = 4

(cRo, cto) 12 12 [7, 7, 11, 12, 12, 7, 2, . . .
(6)

, 2]

(cqo, cto) 7 7 [14, 14, 22, 24, 24, 14, 2]

ξ 12 13 [4, 4, 5, 3, 3, 1, 4, . . .
(6)

, 4, 5]

N = 5

(cRo, cto) 12 12 [9, 9, 14, 15, 15, 9, 2, . . .
(6)

, 2]

(cqo, cto) 7 7 [18, 18, 28, 30, 30, 18, 2]

ξ 15 17 [5, 5, 6, 3, 3, 1, 4, . . .
(10)

, 4, 5]

N = 6

(cRo, cto) 12 12 [11, 11, 17, 18, 18, 11, 2, . . .
(6)

, 2]

(cqo, cto) 7 7 [22, 22, 34, 36, 36, 22, 2]

ξ 18 22 [6, 6, 7, 3, 3, 1, 4, . . .
(15)

, 4, 5]

of which form the basis for determining the maximum number
of complex solutions (the so-called Bézout bound), these
systems are out of reach for current state-of-the-art complete
solvers for polynomial systems, as these solvers’ performances
are sensitive to these factors. Note that similar conclusions are
obtained using minimal representations of rotations, such as
the angle multiplied by the unitary rotation axis.

C. Extended features space model

1) Derivation of the model: As explained just above, ex-
pressing the system directly in SE(3) leads to a highly com-
plicated system, which cannot be solved as-is. The equilibria
condition (6), considered directly in the extended features
space, is seemingly far simpler than the system’s expression
in camera state-space. We aim here to replace the extended
feature feasibility, expressed in the previous system using
the camera pose, by simpler constraints acting only on the
extended features.

To this end, we propose to check the feasibility of the
extended features ξ by first reconstructing the corresponding
points in the camera frame by using the one-to-one correspon-
dence

Zi = Zi , Xi = xiZi , Yi = yiZi, (9)

and second imposing that point-to-point inter-distances in the
camera frame to be the same as in the world frame. This
leads to the following CN

2 = 1
2N(N − 1) point-to-point inter-

distance constraints:

(xiZi−xjZj)
2 +(yiZi− yjZj)

2 +(Zi−Zj)
2 = d2ij , (10a)

for all i < j = 1, . . . , N , where the distances dij :=
∥oai − oaj∥ are known a priori. The new system (6) and

(10a), which allows us to compute the system’s equilibria
directly in extended features space, has more equations but
with much lower degrees with respect to the camera state-
space representation (see Table II) and it is in the scope of
current complete solvers for polynomial systems, as shown in
Section III.

This new expression offers a great simplification, but also
comes with a drawback: the point-to-point inter-distance con-
straints are only a necessary condition that is not sufficient for
an extended feature to be feasible. Informally, points in the
camera frame that have the same point-to-point inter-distance
as in the world frame may come from an improper rigid
transformation belonging to the group of isometries E(3) and
not to SE(3).

It is possible to overcome this issue by noting that the
handedness of a tetrahedron is only preserved under proper
isometries. Therefore, the following constraint is satisfied only
by feasible extended features:

det


x1Z1 x2Z2 x3Z3 x4Z4

y1Z1 y2Z2 y3Z3 y4Z4

Z1 Z2 Z3 Z4

1 1 1 1

 = det

oa1 · · · oa4
1 · · · 1

 , (10b)

where {oai}4i=1 are 4 points in the configuration and where the
two determinants are proportional to the signed volume of the
tetrahedron (see, e.g., [23]) represented in the camera-frame
and world-frame, respectively.

In the non-coplanar case, by taking 4 non-coplanar points
in (10b), the feasibility constraints (10) select only the fea-
sible extended features. In the coplanar case, handedness
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loses meaning due to the tetrahedron’s degeneracy and the
distance constraints (10a) become sufficient for feasibility.
Nevertheless, the addition of (10b) still has the benefit of
speeding up the computations: informally, extended features
corresponding to proper and improper isometries are merged
in the coplanar case, leading to solutions of multiplicity two,
and the determinant constraint removes this multiplicity.

2) Pose reconstruction: We discuss here a classical pose
reconstruction strategy to recover the camera pose given the
extended features ξ and the points’ coordinates in world frame
{oai}Ni=1. The proposed reconstruction algorithm is based on
the solution of the orthogonal Procrustes’ problem [24], whose
aim, given two sets of points {Pi}Ni=1 and {Q}Ni=1, is to find
an orthogonal matrix Ω that maps Pi to Qi for all i in the best
possible way. The problem allows for the points to undergo a
translation as well; in this case, the translation is first removed
from the problem by shifting the points’ centroid to the origin,
and then reconstructed using Ω and the centroids’ information.

The reconstruction algorithm for a given solution ξ of
(6) and (10) is detailed in Table III. The feasibility of ξ
implies that there always exists at least one proper camera
pose that corresponds to it, or, equivalently, that there exists
at least one proper isometry between the two sets of points P
and Q. Such isometry is a global minimizer of the residual
∥ΩP−Q∥F , meaning that it is retrieved by the reconstruction
algorithm, being the reconstructed orientation guaranteed to
minimize the residual (see [24]–[26]). However, since the
algorithm computes only one camera pose, the uniqueness of
such solution is critical to ensure that no equilibria are lost
due to the reconstruction process. Said differently, we want to
prove that there exists a one-to-one correspondence between
feasible extended features and proper camera poses.

In the non-coplanar case, it is possible to show1 that the
(proper) solution Ω computed in Step 3 is unique. Similarly,
when the points are coplanar (but non-collinear), one can
show2 that there are exactly one proper and one improper
solution. We can then select the unique proper rotation by
forcing its determinant to be positive (see, e.g., [26]). Thus, in
both the non-coplanar and the coplanar cases, the proposed re-
construction algorithm always finds the unique corresponding
camera pose for all solutions of (6) and (10).

D. Differences between perfect and desired pose approxima-
tion controllers

In the desired pose controller case, the extended features
space’s model (6) and (10) still represents the easiest way to
compute all system’s equilibria. By substituting x̂i, ŷi and Ẑi

with the desired x∗
i , y∗i and Z∗

i , the equilibrium condition (6)

1A global minimizer Ω∗ of the residual satisfies Ω∗ = USVT , where
S ∈ O(3) is a maximizer of ⟨S, Σ⟩F and QPT = UΣVT (see [27,
p. 327]). When the points are non-coplanar, the singular values of Σ are strictly
positive, which implies that S = I is the unique maximizer of ⟨S, Σ⟩F .
Since ξ satisfies (10b), then sign

[
detUVT

]
= 1, meaning that Step 3

always selects S = I.
2When the points are coplanar but non-collinear, by standard linear algebra

we have that Σ has exactly one null singular value, from which it directly
follows that ⟨S, Σ⟩F has exactly two maximizers, which are S1 = I3
and S2 = diag{1, 1,−1}. We then have detUS1VT = − detUS2VT ,
showing that one solution is proper while the other is improper.

TABLE III
POSE RECONSTRUCTION ALGORITHM.

Input: {oai}Ni=1 and ξ which is a solution of (6) and (10)
Output: (cRo, cto)

1. Determine, through (9), {cai}Ni=1 and define Qi :=
cai − ck and Pi := oai − ok, where ck and ok
represent the points’ centroid in camera- and world-frame,
respectively.

2. Let Q and P be the 3 × N matrices that have the
corresponding points as columns, define the covariance
matrix M = QPT and let M = UΣVT be its SVD
decomposition.

3. The orientation-preserving rotation matrix is Ω =
U diag(1, 1, d)VT , where d is the sign of the deter-
minant of UVT .

4. Return the reconstructed camera pose as (cRo, cto) =
(Ω, ck−Ωok).

becomes a linear system of equations with respect to the ex-
tended features ξ, which significantly reduces the complexity
of its resolution, while the feasibility constraints (10) are not
affected. Once all solutions are computed, it is then possible
to retrieve the camera pose using the reconstruction strategy
presented in Section II-C2.

III. EQUILIBRIA’S COMPUTATION

This section deals with the resolution of the polynomial
systems derived in the previous sections by means of computa-
tional algebraic geometry methods and, in particular, Gröbner
bases computations.

A. Generalities on computational geometry

The tools used to solve polynomial systems fall into two
categories: numerical (e.g. Newton’s method, numerical homo-
topy continuation) [28]–[30], and symbolic (e.g. multivariate
resultant, Gröbner bases) [31], [32]. Numerical methods are
generally not successful in finding all solutions in an un-
bounded domain with certification, see, e.g., a comparison
to homotopy methods in [33]. Symbolic methods are thus
privileged for applications where an exhaustive search of all
solutions is required.

Given a set of polynomials f1, . . . , fs in Q[x], the ring
of polynomials in variables x = (x1, . . . , xn) with rational
coefficients, we say that they generate a polynomial ideal,
i.e. the set defined by all the polynomials that are algebraic
combinations of f1, . . . , fs:

I = ⟨f1, . . . , fs⟩ =

{
s∑

i=1

hifi | hi ∈ Q[x1, . . . , xn]

}
. (11)

For any other polynomial g in the ideal I , if a point c ∈ Cn

satisfies f1(c) = · · · = fs(c) = 0, then g(c) = 0 too. This
shows that the ideal I is an object to study in order to obtain
information about the solutions of the system f1(x) = · · · =
fs(x) = 0.

The locus of all the complex solutions of this system is
called the algebraic variety defined by the ideal I , denoted

V(I) = {c ∈ Cn | f(c) = 0, ∀f ∈ I} . (12)
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When the algebraic variety of an ideal consists of finitely many
(complex) roots, we say that the ideal is zero-dimensional
(because its variety is a set of dimension zero). In this case,
we define the degree of the ideal as the number of complex
roots of the system, counted with multiplicity. We refer to [34]
for more information about polynomial ideals and varieties.

Gröbner bases are an essential tool in computer algebra for
solving problems with polynomial ideals. They can be used,
among other things, whether a polynomial is contained in a
given ideal, to eliminate a subset of variables from a system
of equations, or to obtain a rational parametrization of the
solutions. Given a set of polynomials defining an ideal and
given a monomial ordering (i.e. a hierarchy of the monomials
in the polynomial ring), which must be specified a priori, a
Gröbner basis is a set of generators of that ideal that have par-
ticularly useful computational properties. Different monomial
orderings have different effects on the structure of the final
Gröbner bases and on the complexity of their computation.
For instance, the lexicographical ordering provides a triangular
description of the ideal, but it is costly to compute, while the
degree reverse lexicographical ordering results in general in
the fastest computations and in polynomials of lower degree.
We refer to [32], [34] for a more complete introduction to
Gröbner bases and their applications.

The current state-of-the-art methods for computing Gröbner
bases are based on the F4 [35] and F5 [36] algorithms.
The FGLM algorithm [37] for change of ordering allows to
compute a lexicographical ordering from a given Gröbner
basis with respect to an easier monomial ordering. Efficient
implementations of these algorithms for solving systems of
polynomials exist in computer algebra systems like Magma
or Maple, or in libraries such as FGb [38] or msolve [17].
In this paper we relied on msolve, an open-source, high-
performance library for computing the real roots of zero-
dimensional polynomial systems, which is based on efficient
implementations of F4 and FGLM and on a dedicated univari-
ate real root isolation algorithm.

Using msolve, all complex solutions of the system (6)
and (10) are computed together with their multiplicity, real
solutions being then easily selected. Note that this system
is overconstrained; while this may be a problem for many
numerical polynomial solving methods, Gröbner bases com-
putations can deal with it nicely, since the extra relations
belonging to the same ideal provide more information about
its algebraic structure. Nevertheless, the system (6) and (10)
is still difficult to solve for msolve, and we were able to
improve the resolution process by breaking a symmetry present
in the coplanar case through a change of coordinates invariant
to this symmetry.

B. Symmetry breaking in the coplanar case

In the coplanar case, the solutions of equations (6) and (10)
present a symmetry with respect to a reflection of the scene
through the optical center of the camera3. In this section we
explain how to exploit this symmetry to our advantage by

3Note that this is not the case for non-coplanar configurations since this
reflection changes the handedness of the object, which is preserved by (10b).

applying a change of coordinates invariant to this reflection.
By means of Gröbner bases and algebraic elimination, we
derive a new system of equations in the new variables that
is computationally easier to solve.

In particular, consider the transformation that maps the
observed points coordinates to their reflection through the
camera center by the mapping cai 7→ −cai. Each point with
coordinates (s,Z) in the space of the extended features is
mapped to (s,−Z) by this reflection. Applying this transfor-
mation to the system (6) and (10) results in a sign change
for the polynomials (6a-c), while the remaining equations are
left unchanged. The solution set is therefore invariant, i.e., if
a point ξ = (s,Z) is a solution, then so is ξ′ = (s,−Z).

Consider now the following change of variables from the
Zi coordinates to a new set of variables θij , which is invariant
to the reflection described above

Z = (Z1, . . . , ZN ) 7→ θ =
(
θ12, θ13, . . . , θ(N−1)N

)
, (13)

with:
θij = ZiZj . (14)

By applying this coordinate transformation to (6) and (10), we
expect to remove the spurious symmetric solutions, and derive
a system with half the total number of solutions. Applying the
change of variables by hand is extremely hard, but it is possible
using Gröbner bases and algebraic elimination [34].

From the definition of θij we trivially obtain relations
between the old and new variables of the form θij−ZiZj = 0.
For every polynomial fi in the original system (6) and (10), we
consider the ideal formed by appending these relations, along
with a constraint 1 − ℓ Z1 · · ·ZN = 0, with ℓ an auxiliary
variable, to enforce Zi ̸= 0 for all i. This ideal lies in the ring
Q[ℓ, s,Z,θ]:

Ii = ⟨fi, 1−ℓ Z1 . . . ZN , θ12−Z1Z2, θ13−Z1Z3, . . . ⟩. (15)

The ideal Ii is then projected onto the space of variables (s,θ)
by computing a Gröbner basis with respect to an elimination
ordering, that is, a monomial ordering which eliminates the
variables Z and ℓ:

Gi ← Ii ∩ Q[s,θ]. (16)

The basis Gi spans all the algebraic combinations of the
polynomials in (15) that only involve s and θ. It is equivalent
to replacing the variables Z by θ in the polynomial fi.
However, the resulting Gi consists not of a single polynomial,
but rather of a set of polynomials.

Let us illustrate the algebraic elimination step with an
example. Consider the case N = 4 and let f1 be the first
polynomial (6a). Then, by computing a Gröbner basis for the
ideal (15) with respect to the elimination ordering we obtain
the following six elements:

G1 = [θ12 θ13 (x4 − x⋆
4) + θ12 θ14 (x3 − x⋆

3) + . . . ,

θ12 θ23 (x4 − x⋆
4) + θ12 θ24 (x3 − x⋆

3) + . . . ,

θ13 θ23 (x4 − x⋆
4) + θ12 θ34 (x3 − x⋆

3) + . . . ,

θ12 θ34 (x4 − x⋆
4) + θ14 θ24 (x3 − x⋆

3) + . . . ,

− θ12 θ34 + θ14 θ23,

−θ12 θ34 + θ13 θ24] ,

(17)
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where the first four ones are respectively obtained by multi-
plying f1 with Zi, i = 1, . . . , 4, while the last two equations
preserve consistency with the change of variables itself, as we
can clearly see by substituting (14) in the formulas.

The set union of all the Gröbner bases Gi computed in this
form for all the polynomials fi in (6) and (10) defines the
new system of equations in variables (s,θ). Once again, a
constraint of the form 1 − ℓ θ12 . . . θ1N = 0 must be added
to remove the solutions with coordinates θij = 0 for some
i and j, which correspond to solutions with some coordinate
Zi = 0. The new system is then

G(s,θ) = (G1, G2, . . . , Gs, 1− ℓ θ12 . . . θ1N ). (18)

The system contains more equations and variables than the
original one, but the number of complex solutions (i.e. the
degree of the ideal) is cut by half, and we observe an
improvement in the computation time of up to an order of
magnitude (see Section IV). For instance, for N = 4, the
original system contains 13 equations and 12 variables, while
the system (18) consists of 59 equations in 14 variables.

Every solution (s,θ) for (18) maps to two points (s,Z) and
(s,−Z), but we are only interested in those for which all the
3D points are in the semi-space in front of the camera (i.e.,
Zi > 0 for all i). One can easily verify that a solution with
positive Zi exists if and only if all θij are positive. Using (14),
the depths are then recovered by

Zi =

√
θijθik
θjk

, (19)

where j and k are chosen arbitrarily such that i ̸= j ̸= k.
The pose reconstruction algorithm in Table III is then used
to determine the proper camera poses corresponding to these
solutions.

Overall, the strategy detailed above allow halving the degree
of the polynomial ideal by projecting it onto the space of
new variables that are symmetry invariant. This leads to a
significant reduction in the computation times, resulting in a
more effective formulation for computing the critical points of
image point-based visual servoing systems.

IV. REPRESENTATIVE TEST CASES

In this section, we apply the equilibria computation strategy
developed throughout the paper (of which it is possible to find
a summary in Fig. 1) to a selection of case studies. For each of
the examples, we compute all the equilibria4 and we analyze
their local stability by looking at the eigenvalues of the vector
field’s Jacobian, as described in Section II-A. Additionally, we
perform extensive simulations for each case by focusing on the
pseudo-inverse controller since it is well known to provide
a better time response. For a deeper comparison with the
transpose controller’s performances, and their meaning with
respect to the Levenberg-Marquardt one, the interested reader
can refer to [39].

4The equations given to msolve for each case study as well as the
list of all computed equilibria are available at https://github.com/acolotti/
equilibria-computation-in-ibvs.

The computations of the equilibria are performed on a com-
puting server equipped with an INTEL(R) XEON(R) GOLD
6246R CPU running at 3.40GHz, and with 1.5 TB of total
memory. We consider examples of perfect approximation and
desired pose approximation control schemes separately in the
next two subsections. For the perfect approximation case, we
only consider cases having N = 4 points, since cases with
N > 4 are too complex to be tackled by the current version
of our solver. For the desired pose approximation, on the other
hand, we also consider one case having N = 5 points.

The computation times can be found in Tables IV and VI,
for the perfect and desired approximation cases, respectively.
For both cases, as expected, exploiting the points’ coplanarity
(as discussed in Section III-B) leads to a great reduction in
computation time. We can also notice that, as a rule of thumb,
the symmetry of the chosen parameters plays a significant role
in the resolution complexity, with more symmetric cases re-
quiring much shorter computation times on average. Moreover,
for the desired approximation only, we can see the exponential
increase of time as we add new points to the configuration.

A. Outline of the simulations

The test cases presented below intend showing how the
computations of the stable and unstable fixed points shine a
new light on the dynamics of these systems. This is particularly
true for systems that enforce the error to decrease, which is
the case using the perfect approximation of the interaction
matrix in the controller. For such error decreasing systems,
fixed points are extrema of the error function, and saddles
play a critical role: it is expected that saddles with index
1 (i.e., having 1 eigenvalue with positive real part and 5
eigenvalues with negative real part) have a stable manifold
of dimension 5 that separates the regions of attraction of the
global and local minima, see, e.g., [40]. The computation of
these saddles allows gaining a global qualitative understanding
of the dynamics. Although the exact location of the saddles
stable manifolds is unknown5, we can compute their unstable
manifold since they are of dimension 1: it consists of two
so-called heteroclinic trajectories6, which exit the saddle in
opposite directions toward the minima. Trajectories starting
near the stable manifold of a saddle will first move toward the
saddle, and then turn and exit toward a minimum following
one of the two heteroclinic trajectories. This qualitative un-
derstanding of the dynamics is finer and more robust than just
performing numerous simulations spanning a large portion of
the state-space. We will therefore just simulate the heteroclinic
orbits associated to the saddles: in the case of index 1 saddles,
there is a pair of heteroclinic orbits; in the case of index 2
saddles, there is a two dimensional map of heteroclinic orbits
and we will simulate a sample of them. The critical importance
of saddles for error decreasing systems is also illustrated
by performing statistics of trajectories starting near them to

5Fixed points and their index do not depend on the error decreasing
controller, but the (un)stable manifolds actually depend on the controller.
The computation of (un)stable manifolds of dimension greater than one is
extremely difficult [41], and unfeasible for dimension five manifolds like here.

6In general, a heteroclinic trajectory (or orbit) is a trajectory that joins two
different equilibrium points.
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Input: Desired cTo

and {oai}Ni=1. Coplanar?
Solve the system
(6) and (10) as
a function of ξ.

Solve the system
(6) and (10) as a

function of (s,θ).

Recover the solutions
ξ from (s,θ)
by using (19).

Reconstruct poses
using the algorithm

in Table III.

Output: all equilibria
cT

(k)
o ∈ SE(3).

no

yes

Fig. 1. Flowchart illustrating the equilibria computation’s steps from start to finish.

TABLE IV
PERFECT APPROXIMATION TEST CASES CONSIDERED IN THE PAPER AND THEIR CORRESPONDING EQUILIBRIA’S COMPUTATION TIME, NUMBER AND

STABILITY PROPERTIES.

Configuration
Desired pose

Comp. time Equilibria result
ID otc θu

1 oP =


0.0 1.0 0.62 0.31

0.0 0.0 0.38 0.88

0.0 0.0 0.0 0.31


1a

[
-0.66, -0.43, 2.49

] [
-π, 0.0, 0.0

]
22.9h 2 stable, 2 saddles

1b
[

-3.96, 6.94, -0.41
] [

1.6, -0.4, 1.2
]

34.7h 2 stable, 2 saddles

2 oP =


0.0 0.13 0.06 0.13

0.0 0.0 0.08 -0.11

0.0 0.0 0.0 0.0


2a

[
-0.19, -0.01, -0.47

] [
-0.2, -0.2, 1.4

]
25.2h 2 stable, 2 saddles

2b
[
0.0, 0.0, -1.0

] [
0.0, 0.0, 0.0

]
2.7h 1 stable, 1 saddle

3 oP = 0.07


-1 1 1 -1

k k -k -k

0 0 0 0



3a, k = 5
7

[
0.0, 0.0, -0.3

] [
0.0, 0.0, 0.0

]
58.5min 1 stable, 1 saddle

3b, k = 6
7

[
0.0, 0.0, -0.3

] [
0.0, 0.0, 0.0

]
66.0min 1 stable, 1 saddle

3c, k = 69
70

[
0.0, 0.0, -0.3

] [
0.0, 0.0, 0.0

]
103.4min 1 stable, 1 saddle

3d, k = 1
[
0.0, 0.0, -0.3

] [
0.0, 0.0, 0.0

]
13.1min 1 stable

confirm their equiprobability of converging toward different
minima, see Table V. Finally, the video accompanying this
paper illustrates the behavior of the system for each test case
considered below.

Remark. A complete qualitative understanding of the dynam-
ics requires the verification that there exists no trajectory with
camera position converging to infinity. This is granted with
proper error function that have compact error level sets, but
not granted for the image points investigated here, whose error
function is not proper: a well-known counterexample is a set
of coplanar points with parallel image plane desired configu-
ration, and 180 degrees around the optical axis flipped initial
condition whose trajectory moves backward to infinity [4].

Section IV-B presents test cases using the perfect approx-
imation interaction matrix in the control law. The three first
test cases Case 1a, Case 1b (four non-coplanar arbitrary points
with two different desired poses) and Case 2a (four planar
arbitrary points with non-parallel desired image plane), whose
detailed descriptions are given in Table IV, all have one local

minimum in addition to the global minimum and two saddles
of index 1. They are represented in Figs. 2-4. These two index
1 saddles have stable manifolds of dimension 5 that form
the boundary of the region of attractions of each minimum,
as it can be guessed by looking at the corresponding 3D
trajectories (Figs. 2a-4a). In each case, two heteroclinic orbits
leave the saddles with almost equal initial images and converge
toward different minima with their own but similar images,
showing similar trajectories in the image (the similitude of the
image views of the two heteroclinic orbits is really remarkable
in Cases 1a and 2a, as shown in Figs. 2b-2c and 4b-4c).
However, the corresponding trajectories in SE(3) start in
opposite directions and diverge from each other to eventually
converge to different minima. Overall, the computation of
the minima, saddles and heteroclinic orbits show the similar
qualitative dynamics of these three example. Additionally, we
numerically confirm our analysis by performing simulations
with initial poses close to the saddles. For each of them, we
sample 1000 initial poses uniformly in a small neighborhood
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of the saddle7 and verify how many converge to which stable
equilibrium (see Table V for an overview).

Two cases of planar quadrilaterals with parallel desired
image plane are then investigated: Case 2b (four arbitrary
planar points) and Case 3 (a typical rectangle with centered
desired pose). In both cases, these systems have only one min-
imum and one index 1 saddle, therefore showing a qualitative
behavior very different than the previous test cases. Case 3 is
investigated for different ratios for the rectangle sides, showing
that the closer to a square the farther the saddle, see Figure 6.
A closed-form formula (20) is given for the distance of this
saddle with respect to the ratio, proving that it indeed diverges
to infinity to finally disappear for a square in Case 3d.

Section IV-C presents test cases using the desired pose in-
teraction matrix in the control law (see Table VI). This system
is not anymore energy decreasing, hence in spite of a simpler
expression due to the usage of a fixed interaction matrix, it has
more complex dynamics. Surprisingly, all tested non-planar
cases (four and five points non-planar configurations, with two
desired poses in each case) have exactly one attractive fixed
point and one saddle. Even more surprisingly, the saddle now
has index 2, meaning that a surface of heteroclinic trajectories
leaves the saddle, here all converging toward the desired pose.
All of them have arbitrarily similar initial images and identical
final images, but run very different trajectories both in SE(3)
and in image space, see Fig. 7a and Figs. 8a-8b, as well as
the accompanying video. Together with some trajectories that
do not converge due to physical constraints, this quantitative
analysis shows a complex global dynamics of this controller.

B. Perfect approximation test cases

1) Test case 1, non-planar configuration: In this example,
we consider the case where the 4 points are arranged in an
arbitrary non-planar configuration. Two different desired poses
are considered, one which is such that the optical axis of the
camera is perpendicular to one of solid’s faces (Case 1a in
Table IV) while the other is completely arbitrary (Case 1b). In
both cases, we have 4 equilibria, one of which coincides with
the desired pose (which is stable), a second stable equilibrium
(a local minimum) and two unstable equilibria (specifically,
two saddles).

It is possible to see the computed equilibria and the corre-
sponding heteroclinic orbits for Cases 1a and 1b in Figs. 2-
3. We can see (Figs. 2a-3a) that all trajectories converge to
a stable equilibrium, and, as expected, roughly half of them
converge to the desired pose (see Table V). As for the trajec-
tories produced in the image, we can note in Figs. 2b-2c and
Figs. 3b-3c that the controller produces as expected straight
line trajectories for the four image points for converging either
to the global minimum or to the local one.

Interestingly, comparing the global and local minima in
image space, we can see that, as it might be expected, they are
very similar for Case 1a (Fig. 2d), while they are surprisingly
different for Case 1b (Fig. 3d).

7We consider a maximum displacement of 1 cm in position and 0.5◦ in
orientation.

TABLE V
PERCENTAGE OF TRAJECTORIES (OUT OF 1000 SIMULATIONS) STARTING

IN A NEIGHBORHOOD OF THE SADDLES AND CONVERGING TO THE
DESIRED POSE; THE REMAINING ONES CONVERGE TO THE LOCAL

MINIMUM WHEN IT EXISTS.

Ex. 1a Ex. 1b Ex. 2a Ex. 2b

Sad. 1 51.6% 49.6% 51.3% 100%

Sad. 2 49% 51.4% 49.8% N.A.

2) Test case 2, planar quadrilateral: In this example, we
consider the case where the 4 points are coplanar (but non-
aligned) and arranged in an arbitrary quadrilateral configura-
tion. Once again, two different desired poses are considered,
one which is completely arbitrary (Case 2a in Table IV) and
the other where the quadrilateral is parallel to the image plane
(Case 2b). In the first case, we have again 4 equilibria, two of
which are stable (being one of them the desired pose), while
the other two are saddles. However, in the second case, we
only have 2 equilibria, one of which coincides with the desired
pose (which is stable), while the other is a saddle. For the first
case, we can note the symmetry between the desired pose and
the local minimum with respect to the object plane (even if it is
not perfect) and the fact that the saddles are almost parallel to
the object plane. These results are fully coherent with the state-
of-the art recalled in Section I that a local minimum exists for a
planar object in the non-parallel case. In this specific example,
we show for the first time that the local minimum is unique
and that it does not exist in the parallel case. We conjecture
that this might be a general property for this class of cases,
even though it still remains an open question.

The computed equilibria for Cases 2a and 2b are illustrated
in Figs. 4-5, together with trajectories starting in a neighbor-
hood of the saddles. The overall behavior in Case 2a matches
the ones in Cases 1a and 1b. In Case 2b, however, we only have
one saddle and one stable equilibrium, and all the trajectories
converge to the desired pose; interestingly, though, they still
do so following two distinct orbits. In Case 2a, we can note
that the positions of the four points in the image are almost the
same for the two stable equilibria and for the saddle located
at their middle, while they are very different for the other
saddle (as well as for the single saddle in Case 2b). Finally,
the percentage of simulated trajectories that converge to the
desired pose are given in Table V, where we can see that,
as expected, roughly half of the trajectories converge to the
local minimum, when it is present. Note that similar results
are obtained when the 4 points are arranged in a rectangle or
square configuration, with the exception of the particular case
exhibited below.

Finally, for Case 2a, the behavior of the system around
the saddle S2 has also been validated experimentally on a 6
DoF Gantry robot with an eye-in-hand INTEL(R) REALSENSE
D435 camera, giving equivalent results with respect to the
simulations. Notably, while the simulations used two close
initial poses, in the experiment we used the very same initial
pose, with the intrinsic imprecision of the physical system
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(a) (b) (c)

(d)

Fig. 2. Computed equilibria and simulations around the saddles for Case 1a. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-inverse
controller. (b) and (c): image view, trajectories converging to the desired pose (b) and local minimum (c). (d): comparison between local minimum and desired
pose in image space.

(a) (b) (c)

(d)

Fig. 3. Computed equilibria and simulations around the saddles for Case 1b. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-inverse
controller. (b) and (c): image view, trajectories converging to the desired pose (b) and local minimum (c). (d): comparison between local minimum and desired
pose in image space.
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(a) (b) (c)

(d)

Fig. 4. Computed equilibria and simulations around the saddles for Case 2a. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-inverse
controller. (b) and (c): image view, trajectories converging to the desired pose (b) and local minimum (c). (d): comparison between local minimum and desired
pose in image space.

(a)

(b)

Fig. 5. Computed equilibria and simulations around the saddles for Case
2b. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-
inverse controller. (b): image view, trajectories converging to the desired pose.

causing random convergence to either stable equilibrium. The
interested reader may refer to the end of the accompanying
video to observe the experiment.

3) Test case 3: In this last example, we want to showcase
a peculiar behavior obtained while studying the classical case
where the 4 points are coplanar and arranged in a rectangle,

and where the desired pose is such that the rectangle is
centered and parallel to the image plane. We fix the desired
pose and we consider four different points configurations,
starting with a narrow rectangle (Case 3a in Table IV) and
making it gradually wider (Cases 3b and 3c) until it becomes a
square (Case 3d). For the tested rectangles, there always exist 2
equilibria, one of which coincides with the desired pose (which
is stable), while the other is a saddle. As it can be seen in
Fig. 6, for all three cases the unstable equilibrium is a “mirror
image” of the desired pose, i.e., it is rotated 180°around the
camera x-axis and it is such that the optical axis is aligned with
the desired pose’s optical axis. Furthermore, the trajectories of
the four points in the image are no more pure straight line but
slightly differ starting from one side of the saddle or the other.
We can also note that the four points become aligned in the
image when the camera optical center crosses the rectangle
plane.

Interestingly, as the rectangle gets closer to a square, the
saddle gets pushed farther and farther and, when it becomes a
square (Case 3d), we have only one equilibrium, which coin-
cides with the desired pose (which, again, is stable by design).
Although, to the best of our knowledge, this is the first time
that the uniqueness of the equilibrium is rigorously confirmed
for the classical parallel and centered square configuration, it
is important to note that this does not imply that the system
is globally asymptotically stable; as already said, there exist
unstable trajectories for this system, typically for a rotation of
180° around the optical axis [4].

The previous result suggests that the saddle is moved back-
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(a) (b) (c)

Fig. 6. Cases 3a-3c (left to right). On the top row: 3D view, computed equilibria and heteroclinic orbits for the pseudo-inverse controller. On the bottom
row: image view, trajectories converging to the desired pose.

ward at infinity for the square configuration, which motivated
us to investigate more deeply this particular case of a parallel
centered square. We consider the ratio k between the two
sides of the rectangle as a parameter, and we restrict the
camera/square poses to a pure translation along the optical axis
while fixing their orientation to the saddle’s one. Doing so, the
extended features ξ only depend on k and the depth Z w.r.t.
the points plane, which significantly simplifies the system (6)
and (10). It is possible to show that this new system is equal
to zero if and only if:

Z = Zd
1 + k2

|1− k2|
, (20)

where Zd > 0 represents the desired depth w.r.t. the points
plane. This means that there is exactly one equilibrium that
lies on this restriction for any choice of k ̸= 1, and it proves
that the equilibrium’s position moves backwards and tends
to infinity as the points get closer and closer to a square
configuration. On the other hand, it does not provide any
information on the presence of other equilibria lying outside
of this restriction, even though we conjecture that no other
fixed points exist from the four examples we have considered
in this case.

C. Desired pose approximation test cases

Similarly to the previous section, we study three examples
of points’ configurations, analyzing a representative set of
desired poses for each example. Table VI summarizes the

examples’ parameters. Cases 1a and 1b are taken directly
from the previous section. Cases 2a and 2b consider the same
desired poses as Case 1 for a 5 points’ configuration, obtained
by adding one point to the previous 4 points. Finally, Case
3 showcases a peculiar behavior that arises for this class of
controllers.

1) Test case 1, 4 points non-planar configuration: In this
example, as already said, we reanalyze Case 1 from Sec-
tion IV-B, where 4 points are arranged in an arbitrary non-
planar configuration. The same desired poses are considered,
one which is such that the optical axis of the camera is
perpendicular to one of solid’s faces (Case 1a in Table VI)
while the other is completely arbitrary (Case 1b). Contrarily to
the perfect approximation controller, we now have 2 equilibria
for both cases, one of which coincides with the desired pose
(which is stable) and one unstable equilibrium (specifically, a
saddle). These equilibria are illustrated in Figs. 7a-7b, where
we also show a selection of trajectories, both in camera
state- and image space, starting in a close proximity of the
saddle. Comparing these trajectories with the ones obtained
with the perfect approximation controller, we have a striking
qualitative difference between the trajectories’ behavior in the
two settings. For both desired poses, the trajectories seem
to develop on a surface connecting the saddle to the desired
pose (even though the surfaces appear to be significantly more
regular for Case 1b than Case 1a). This behavior is linked to
the dimension of the saddle’s unstable manifold: checking the
eigenvalues of the system’s Jacobian computed at the saddle,
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TABLE VI
DESIRED POSE APPROXIMATION TEST CASES CONSIDERED IN THE PAPER AND THEIR CORRESPONDING EQUILIBRIA’S COMPUTATION TIME, NUMBER

AND STABILITY PROPERTIES.

Configuration
Desired pose

Comp. time Equilibria results
ID otc θu

1 oP =


0.0 1.0 0.62 0.31

0.0 0.0 0.38 0.88

0.0 0.0 0.0 0.31


1a

[
-0.66, -0.43, 2.49

] [
-π, 0.0, 0.0

]
27.3s 1 stable, 1 saddle

1b
[

-3.96, 6.94, -0.41
] [

1.6, -0.4, 1.2
]

116s 1 stable, 1 saddle

2 oP =


0.0 1.0 0.62 0.31 -0.31

0.0 0.0 0.38 0.88 0.5

0.0 0.0 0.0 0.31 -0.31


2a

[
-0.66, -0.43, 2.49

] [
-π, 0.0, 0.0

]
254.8s 1 stable, 1 saddle

2b
[

-3.96, 6.94, -0.41
] [

1.6, -0.4, 1.2
]

2.2h 1 stable, 1 saddle

3 oP =


-0.07 0.07 0.07 -0.07

0.07 0.07 -0.07 -0.07

0.0 0.0 0.0 0.0



3a
[
0.0, 0.0, -0.5

] [
0.0, 0.0, 0.0

]
0.07s 1 stable, 4 saddles

3b
[
0.0, 0.0, -0.3

] [
0.0, 0.0, 0.0

]
0.07s 1 stable, 4 saddles

3c
[
0.0, 0.0, -0.14

√
2
] [

0.0, 0.0, 0.0
]

0.08s 1 stable, 4 saddles

3d
[
0.0, 0.0, -0.1

] [
0.0, 0.0, 0.0

]
0.07s 1 stable

we can see that in both cases we have two positive eigenvalues.
Moreover, with respect to the perfect approximation con-

troller, we have a new behavior that arises, which is the
presence of failed trajectories, i.e., trajectories that come too
close to the object so that the depth Z of at least one
object point becomes null (shown with dashed lines in the
figures). This phenomenon, however, is not surprising: the
employed control law is based on a constant and very coarse
approximation of the true interaction matrix, and, by design,
we expect it to be effective only when the camera is reasonably
close to the desired pose. In general, we have no guarantees
for trajectories with arbitrary initial conditions, and, as we will
see, this behavior arises in almost all the examples considered
in this section. Additionally, considering the trajectories in
the image, we see that the points do not move at all along
straight lines (while it is the case for the perfect controller).
Once again, this validates the approximated nature of this class
of controllers, which leads to more unpredictable (but, also,
richer) behavior.

Similar examples where the 4 points are arranged in a
coplanar rectangle configuration lead to comparable results
with respect to Case 1, the reason why these cases were left
out from the current discussion. The interested reader can find
one such example in the accompanying video.

2) Example 2, 5 points non-planar configuration: In this
example, we study a variation of Cases 1a and 1b. We consider
a configuration of 5 points, formed by the 4 points considered
in the previous example and an additional, arbitrary point,
and we use the very same desired poses (Cases 2a and 2b
in Table VI). Again, in both cases, we have 2 equilibria, a
stable one (coinciding with the desired pose) and a saddle.
Even though we have significant similarities with the previous

example, quite surprisingly the saddles do not bear any evident
resemblance to what we found above.

In Figs. 8a-8b, we can see the computed equilibria and a
selection of trajectories for Cases 2a and 2b. While in Case 2b
the trajectories seem to develop on a surface connecting the
saddle to the desired pose, matching the behavior of Cases
1a and 1b, in Case 2a the trajectories quickly converge to
one single orbit, as it was the case for the saddles seen
in Section IV-B. Once again, this behavior is due to the
dimension of the saddle’s unstable manifold: in Case 2a
we have an index 1 saddle, while there are two positive
eigenvalues in Case 2b.

Finally, we can see that the trajectories in the image are
far from developing along straight lines, and they present an
erratic behavior that changes conspicuously depending on the
initial pose, which showcases, once again, the approximated
nature of this control law.

3) Example 3: In this last example, we want again to
showcase a curious behavior that arises in the classical case
where the 4 points are coplanar and arranged in a square,
and where the desired pose is such that the square is centered
and parallel to the image plane. We consider four different
desired poses, all with the same orientation and lying on
the same axis, with only the distance from the points plane
changing: we start farther away (Case 3a in Table VI) and we
get increasingly closer (Cases 3b to 3d) to the points plane.
In the first three cases, we have 5 equilibria, four of which
are saddles, while the fifth one is the desired pose (stable by
design). All the saddles lie on the points plane, and they are
arranged symmetrically with respect to the points. In the fourth
case, instead, we only have 1 equilibrium, coinciding with the
desired pose. By looking at Fig. 9, we can see that, as the
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(a) (b)

Fig. 7. Computed equilibria and a selection of heteroclinic orbits, both in 3D and image space. (a): Case 1a. (b): Case 1b.

(a) (b)

Fig. 8. Computed equilibria and a selection of heteroclinic orbits, both in 3D and image space. (a): Case 2a. (b): Case 2b.

desired pose approaches the points plane, the four saddles get
closer to the four points (Cases 3a and 3b), until they reach
a position where they are superposed to the points (Case 3c).
Drawing the desired pose even closer, the saddles eventually
disappear (Case 3d), or, more precisely, they become such that
at least one point is behind the camera optical center, which
excludes them to be a feasible solution.

In all cases, the four saddles share the same relative ori-
entation, and only their distance to the points changes from
case to case, which motivated us to investigate this example

more deeply. In the same spirit of the analysis carried out
in Section IV-B3, we consider the desired depth Zd as a
parameter, and we restrict the camera’s position to be on one
of the axes where the saddles’ lie8 and we fix its orientation to
the saddle’s one. With this restriction, the extended features
ξ depend only on the (signed) distance d w.r.t. the closest
point, with d > 0 when the point lies in front of the camera
(i.e., when the point’s depth in camera-frame is positive).

8We can choose any of the four axes; it has no impact on the result due to
the symmetry of the problem.
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(a) (b) (c)

Fig. 9. Cases 3a-3c (left to right). On the top row: 3D view, computed equilibria and heteroclinic orbits for the pseudo-inverse controller. On the bottom
row: image view, one of the heteroclinic orbits.

Substituting into the system (6) and (10), it is possible to show
that the equilibrium condition is equal to zero if and only if:

d =
1

2

(
Zd −

√
2L

)
, (21)

where L > 0 is the length of the square’s side. This means that
these four, symmetrical saddles are present for every choice
of Zd ≥

√
2L, and, as Zd decreases, the saddles positions get

closer and closer to the points, until they eventually become
superposed to them at the equality. Interestingly, these saddles
are solutions of (6) and (10) even in the case where d < 0,
and they tend to converge to the center of the square as Zd

tends to 0; however, these solutions lose physical meaning,
since one of the points is behind the camera.

V. SENSITIVITY ANALYSIS

In this section, we analyze the impact of perturbations on
the study of equilibria we have developed so far. In case of
uncertainties only on the point depths Zi, it is clear that the
desired pose is a robust equilibrium. Indeed, by looking at
Eq. (4), e = 0 is sufficient to have an equilibrium, regardless
of Z. By the system’s continuity, we have that, for acceptable
levels of perturbation, the system still precisely converges to
the desired pose. However, for all other equilibria and/or in
case of image noise, we expect that perturbation prevents

the system from converging exactly to the equilibrium, since
the presence of noise disrupts the deterministic structure of
the system. However, if we have reasonable bounds on the
noise amplitude, it is possible to show that stable equilibria
become attractors, i.e., invariant and locally attractive sets for
the system [42], meaning that we still expect it to converge
towards a neighborhood of the stable equilibria.

To verify this hypothesis and quantify the impact of un-
certainties, a series of simulations afflicted by noise has
been conducted, distinguishing between errors only in depth
estimates and errors in all extended features. In particular, we
considered additive uniform noise with zero mean and realistic
amplitudes, as detailed in the top rows of Table VII. The sensor
noise levels correspond to an error of ± 2 and ± 5 pixels,
respectively, for a camera with 700 as focal length-pixel size
ratio. Additionally, we only present the results for Case 1a (see
Table IV), as we have observed that the results are similar for
all examples.

In order to study the behavior around the stable equilibria,
we firstly perform a series of simulations starting from poses
randomly chosen within a large neighborhood of the two
saddle points. In particular, we sample 1000 random initial
poses for each saddle point, with a maximum displacement of
1m in position and 15◦ in orientation. As expected, all simula-
tions converge towards one of the stable equilibria, ultimately
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TABLE VII
OVERVIEW OF THE ANALYSIS OF CASE 1a UNDER PERTURBATION,

DEPENDING ON THE TYPE AND LEVEL OF NOISE.

Z only (s,Z) simultaneously

Noise range on si 0 ±0.003 ±0.007

Noise range on Zi ±5cm ±5cm ±5cm

Dist. to des. pose 0cm 0.09cm 0.33cm

Ellipsoid vol. 0cm3 37.47cm3 525.5cm3

Dist. to loc. min. 0.44cm 0.41cm 0.21cm

Ellipsoid vol. 1.22cm3 21.49cm3 130.7cm3

getting trapped inside a neighborhood of the equilibrium. Out
of the initial poses sampled around the saddle point S1, 57.1%
converge towards the desired pose and 42.9% towards the
local minimum, while the convergence percentage for the
poses sampled around S2 stands at 41% and 59% respectively,
considering the highest noise level. Then, we assess these
neighborhoods’ centers (representing the average distance to
the equilibrium) and volumes (representing the trajectories’
spread), by running simulations for approximately 100 times
the unperturbed convergence time and identifying the smallest
ellipsoid containing all points after an initial transient. The
values for the average distance to the equilibrium (centers) and
volumes are listed in Table VII for each equilibrium and choice
of perturbation. Interestingly, we notice that the ellipsoids’
radii seem to increase linearly with respect to the noise level
on the visual features. Additionally, we show an illustrative
selection of simulations in Fig. 10, for the case of noise on Z
alone and simultaneously on s and Z, for the highest level
of image noise. Our intuition of the perturbations’ impact
is confirmed, since the qualitative behavior of the perturbed
system matches the unperturbed case, while the deviation
of the steady-state poses with respect to the unperturbed
equilibria is low and even null for the global minimum when
only depth errors are introduced in the controller.

Furthermore, in order to showcase the importance of saddle
points even in the perturbed case, we want to assess whether
they maintain their role as separators of the regions of attrac-
tion. We thus selected a small grid of initial poses centered on
the saddle point S2, and for each of these points, we ran 1000
simulations with that point as the initial pose. We then counted,
for each point, how many simulations converge within a
neighborhood of the desired pose and how many are attracted
to the local minimum, allowing us to construct an estimation of
the probability density of the convergence towards the desired
pose. A comparison between the unperturbed and perturbed
cases can be seen in Fig. 11. As expected, in the unperturbed
case, there is a deterministic separation between the regions
of attraction of the two stable equilibria, with the boundary
between them represented by the stable manifold of the saddle
point. In the perturbed case, we have a qualitatively similar

behavior, with the difference that the boundary between the
two regions is no longer a sharp surface but a rather ”blurred”
region, where the convergence to either equilibrium becomes
stochastic, depending on the perturbation itself. Finally, we
highlight that the same behavior can be observed in practice,
as discussed at the end of Sec. IV-B2 and as it can be seen at
the end of the accompanying video.

VI. CONCLUSION

In this paper, we proposed a strategy to systematically assess
all the equilibria, both stable and unstable, of image point-
based visual servoing systems, for a class of 6 well-known
controllers employed in the literature. Our strategy relies on
defining the equilibrium condition directly in the extended
features-space ξ = (s,Z), to which we added the feasibility
constraints that let us solve the system of equations directly
on the subset of feasible extended features. By recasting the
system of equations in polynomial form, we were able to
employ a state-of-the-art certified polynomial solver, based
on Gröbner basis theory, to find all the solutions of the
system in a rigorous way for a representative class of test
cases. Even though this modelization offers a great degree of
simplification, the computational complexity of the equilibria
computation currently restricts us to 4 points for the perfect
approximation controller and 5 points for the desired pose
approximation controller.

Nevertheless, our strategy grants us the ability to analyze
a large class of classical situations in a more profound way,
shining a new light on the behavior of these systems. In the
authors knowledge, this is the first time that all stable and un-
stable equilibria of these systems have been identified, which
allows us to provide a deeper qualitative understanding on the
system’s dynamics, in particular for the perfect approximation
case. Moreover, it opens the door to a rich set of previously
unknown behaviors, as well as providing a new way to study
known phenomena in the field.

For instance, by formally assessing the uniqueness of the
local minimum (Case 2a in Section IV-B) and the absence of
it (Case 2b in Section IV-B) for a specific case of a planar
quadrilateral configuration, we provide new evidence to the
long-standing conjecture that this is always the case for planar
objects. In particular, the absence of local minima in the
parallel configuration is a promising result that gives hope to
demonstrate formally the stability of the system in a very large
workspace. Additionally, thanks to our new formulation of the
equilibrium condition, we were able to explicitly compute the
poses of some saddles in a parametric way, in particular cases
of planar rectangular and square configurations that depend
on a parameter (Case 3 in Section IV-B and Case 3 in Sec-
tion IV-C). Finally, the identification of the unstable equilibria
for the desired pose approximation controllers allowed us to
explore the dynamical richness of these systems, shining light
on what happens beyond the usual bounds of the desired
pose’s proximity, where the approximation introduced by these
controllers is expected to be modest.

Hopefully, this might be just the beginning of a line of
research that aims to build up a global understanding of
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(a) (b) (c)

Fig. 10. Selection of 12 simulations with noise on Z only on top row and with simultaneous noise on s and Z on bottom row. (a): Trajectories overview,
where 6 of the initial poses were chosen around each saddle point. (b)-(c): Zoom-in at the desired pose and local minimum, respectively.

(a) (b)

Fig. 11. Probability density of the convergence towards the desired pose for
a 2-dimensional neighborhood centered on the saddle S2, Case 1a. (a): No
noise. (b): Simultaneous noise on s and Z.

the dynamics of these systems. As thoroughly discussed in
Section IV-A, for the controllers that use the true interaction
matrix, localizing the saddles allows us to start studying
the stable equilibria’s regions of attraction, since the stable
manifold of the saddles represents the boundary between these
regions. The characterization of these regions could prove
itself to be crucial in the design of controllers that can escape
the local minima, since it would allow the system to detect
whether it is inside the local minimum’s region of attraction.
On the other hand, finding explicit conditions that guarantee
the stable equilibrium’s uniqueness could pave the way for the

design of tasks for which the system always converges to the
desired pose. In the same spirit, the desired pose approxima-
tion controllers’ examples considered in Section IV-C make us
hope that there is only one stable equilibrium in these cases.
If this were to be confirmed, gaining a better understanding on
the failed trajectories would become crucial in order to discuss
the stability properties of these systems.

From a computational point of view, we believe that, as the
solving algorithms and hardware evolve, attacking examples
with configurations of 5 points for the perfect approximation
controller will be within reach in the near future. Another
interesting, but currently too computationally heavy, problem
is to clear up how the equilibria move as we let one or more
parameters of the problem change (for instance, by finding a
parametric formulation of the equilibria w.r.t. the size or shape
of the object).
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Paris, France in 2004. From 2008 to 2011 he was
with the Lagadic group at Inria Rennes where he
received the Ph.D. degree in signal processing from
University of Rennes, France in 2011. He then joined
the Ocean Systems Laboratory at Heriot-Watt Uni-
versity, Edinburgh, Scotland as a Research Assistant.
He was Assistant Professor at University of Stras-
bourg, France from 2012 to 2014. Since 2015 he
has been Associate Professor at Centrale Nantes and
LS2N, France. His research interests include sensor-

based robot control, maritime robotics and optimization.

Mohab Safey El Din defended his PhD in 2001 at
Univ. Pierre et Marie Curie. He is Professor at Sor-
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