
Computing critical points for invariant

algebraic systems

Jean-Charles Faugère

Inria, Sorbonne Université, CNRS, LIP6, Équipe PolSys, CryptoNext Security, 4 place Jussieu,
F-75252, Paris Cedex 05, France

George Labahn

David Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Mohab Safey El Din

Sorbonne Université, CNRS, LIP6, PolSys, Paris, France

Éric Schost

David Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Thi Xuan Vu

Sorbonne Université, CNRS, LIP6, PolSys, Paris, France and David Cheriton School of
Computer Science, University of Waterloo, ON, Canada

Abstract

Let K be a field and (f1, . . . , fs, ϕ) be multivariate polynomials in K[x1, . . . , xn] (with s < n)
each invariant under the action of Sn, the group of permutations of {1, . . . , n}. We consider
the problem of computing the critical points of ϕ restricted to the algebraic set V (f), where
f = (f1, . . . , fs). This is the same as computing the points at which f vanishes and the Jacobian
matrix associated to (f1, . . . , fs, ϕ) is rank deficient, provided that this set is finite.

We exploit the invariance properties of the input to split the solution space according to the
orbits of Sn. This allows us to design an algorithm which gives a triangular description of the
solution space and which runs in time polynomial in ds,

(
n+d
d

)
and

(
n

s+1

)
where d is the maximum

degree of the input polynomials. When d, s are fixed, this is polynomial in n while when s is
fixed and d ≃ n this yields an exponential speed-up with respect to the usual polynomial system
solving algorithms.

Preprint submitted to Journal of Symbolic Computation 7 June 2022

Key words: Polynomial systems solving, Invariant algebraic systema, Determinantal systems,
Critical points, Computational complexity

1. Introduction

1.1. Motivation and Problem Statement

In this paper we consider the problem of finding the critical points of a polynomial map
ϕ restricted to the variety V (f). Here f = (f1, . . . , fs) and ϕ are symmetric polynomials
in the ring K[x1, . . . , xn], with K a field of characteristic zero. Symmetric polynomials
are those invariant under the action of Sn, the group of permutations of {1, . . . , n}.

More precisely we will look at the closely related problem of computing a description
of the set W (ϕ,f) defined by the following equations:

⟨f1, . . . , fs⟩+ ⟨Ms+1(Jac(f , ϕ))⟩, (1)

where Jac(f , ϕ) is the Jacobian matrix of (f1, . . . , fs, ϕ) with respect to (x1, . . . , xn) and
Mr(G) denotes the set of all r-minors of a matrix G. If we assume that the Jacobian
matrix Jac(f) has full rank s at any point of V (f), then the Jacobian criterion [19,
Theorem 16.19] implies that the algebraic set V (f) is smooth and (n−s)-equidimensional,
and that W (ϕ,f) is indeed the set of critical points of ϕ on V (f). Our goal is to describe
the critical point set with an improved complexity which takes advantage of the added
symmetric structure of the input functions.

The problem of computing critical points appears in many application areas including
polynomial optimization [32, 43, 3, 31, 49] and real algebraic geometry [2, 4, 6, 8, 11,
33, 58]. For example, when K is a real field, then finding critical points provides an
effective Morse-theoretic approach to many problems such as real root finding, quantifier
elimination or answering connectivity queries (see [5]). In the symmetric case a similar
set of applications arise naturally for example when looking for critical points of functions
defined over varieties on an n dimensional sphere. For example finding the critical points
of ϕ = x1x2x3 − 3x1 − 3x2 − 3x3 over the sphere defined by f = x2

1 + x2
2 + x2

3 − 6 is the
same as finding the critical points of the function h : S2 7→ R given by

h(θ1, θ2) = 2 sin(θ1) cos(θ1) cos(θ2)− 2 sin(θ1) cos(θ2)− cos(θ1)

with θ1, θ2 being spherical coordinates.

1.2. Previous work

Prior works encompass three bodies of contributions: (i) solving polynomial optimiza-
tion problems which are invariant under the action of the symmetric group Sn, (ii)
computing critical points of the restriction of some polynomial map to an algebraic set
and (iii) solving polynomial systems which are invariant by the action of a finite group.

Email addresses: Jean-Charles.Faugere@inria.fr. (Jean-Charles Faugère),

glabahn@uwaterloo.ca. (George Labahn), mohab.safey@lip6.fr (Mohab Safey El Din),
eschost@uwaterloo.ca (Éric Schost), txvu@uwaterloo.ca (Thi Xuan Vu).

2

Polynomial optimization problems under the action of Sn: Polynomial optimization is
highly related to deciding non-negativity since computing the infimum of some polyno-
mial map ϕ over a set defined by some polynomial constraints boils down to computing
the supremum value φ⋆ such that ϕ − φ⋆ is non-negative over this set. In [63], Timofte
introduces the so-called degree principle, which states that a real symmetric polynomial
inequality of degree d ≥ 2 holds in the non-negative orthant if and only if it holds for
points with at most ⌊d2⌋ distinct coordinates. This has been further improved and gener-
alized in series of work by Riener [53, 54] with applications to approaches based on sums
of squares decompositions [56]. This series of works leads to algorithms and complexity
results which state that, when the maximum degree d of ϕ and f = (f1, . . . , fs), one
can decide the non-negativity of ϕ over the real counterpart of V (f) in time which is
polynomial in the number of variables n. Such results have been extended in various
directions considering other group actions such as [55, 64]. All these works rely on the
analysis of the orbits of some critical points associated to the map ϕ, identifying the
existence of such critical points with a prescribed number of distinct coordinates, hence
involving the so-called isotypic decomposition of this set. This analysis is further refined
in [48], for the case of sets invariant under symmetric groups Sn, shaping in algebraic
terms the degree principle and making explicit the isotypic decomposition of polynomial
ideals which are invariant by the action of Sn.

All in all, these works allow one to expect that one should be able to compute W (ϕ,f)
in time which is polynomial in n when the maximum degree of ϕ and entries of f is fixed.
Still, taking advantage of the action of Sn when n grows remained an open problem in
this context.

Computation of critical points: In the nonsymmetric case, at least when ϕ is linear,
there exist algorithms for determining critical points using dO(n) operations in K [5,
Section 14.2]. More precisely, using Gröbner basis techniques, the paper [24, Corollary 3]
establishes that, if the polynomials f1, . . . , fs are generic enough of degree d, then this
computation can be done using

O

((
n+Dreg

n

)ω

+ n

(
ds (d− 1)n−s

(
n− 1

s− 1

))3
)

operations in K. Here Dreg = d(s−1)+(d−2)n+2, and ω is the exponent of multiplying
two (n× n)-matrices with coefficients in K (see [60] for a generalization to systems with
mixed degrees).

Hence, additional special techniques are required when f1, . . . , fs and ϕ are Sn-invariant.
One important difficulty to exploit Sn-invariance in this context, is that f1, . . . , fs and
ϕ being Sn-invariant does not imply that the individual polynomials in (1) are also in-
variant. However, we can prove that the set of polynomials in (1) is globally invariant.
That is, for all σ in Sn, and any g among either f1, . . . , fs or the (s + 1)-minors of
Jac(f , ϕ), either σ(g) or −σ(g) belongs again to the same set of generators. This implies
that W (ϕ,f) is Sn-invariant.

Example 1. Let n = 3 and s = 1. In order to determine the critical points of ϕ =
x1x2x3 − 3x1 − 3x2 − 3x3 over the sphere defined by f = x2

1 + x2
2 + x2

3 − 6, one has to
solve the set of equations defined by

{f , x2
1x3 − x2

2x3 − 3x1 + 3x2, x
2
1x2 − x2x

2
3 − 3x1 + 3x3, x1x

2
2 − x1x

2
3 − 3x2 + 3x3 }.

3

(a) First view (b) Permuted view

Fig. 1. Critical points of ϕ = x1x2x3 − 3x1 − 3x2 − 3x3 over the sphere x2
1 + x2

2 + x2
3 = 6

One observes that individual generator polynomials are not symmetric but that the
algebraic set is globally invariant. Indeed one can see that these critical points are the
intersection of three different colored curves in Figure 1. We can see that the set of these
critical points is S3-invariant.

Hence, a key missing ingredient, to leverage the Sn-invariance property for the compu-
tation of critical points, is to elaborate computational methods that handle the situation
where input systems are globally Sn-invariant but given with polynomials which are not
individually.

Solving globally invariant systems: For globally invariant systems, the classical technique
which is used is the one of divided differences. Divided differences appear frequently in the
context of Sn-equivariant polynomial systems, for example, in [51] and [25] as mentioned
above. In addition, given a system of n homogeneous polynomials in n variables, Busé
and Karasoulou in [13] prove that its resultant can be decomposed into a product of
several resultants. These resultants are easier to compute and can be expressed in terms
of the divided differences of the input polynomial system.

The techniques we develop here are more inspired by [25], which, following [22]. There
upon input of a polynomial system which is Sn-invariant globally, one uses divided dif-
ferences to construct a new system where all entries are Sn-invariant. Our work extends
this reference, taking into account the specific type of the equations that we solve, that
is, those involving minors of a Jacobian matrix, requires us to extend the work from [25].
In our case we will also provide a complexity analysis.

Once, Sn-invariant polynomial systems are transformed to systems where all poly-
nomials are Sn-invariant, there remains the issue of solving them. In Colin [15], the
proposed method uses primary and secondary invariants to reformulate the problem (see
e.g. [62] for the definition of these invariants). Faugère and Rahmany [23] compute a
SAGBI-Gröbner basis in the ring K[e1, . . . , en], where ei is a variable corresponding to
i-th elementary symmetric polynomial ηi in (x1, . . . , xn). Steidel [61] designs dedicated
Gröbner bases algorithms for this. Note that for all these works, there is no complexity
result which stands for general polynomial systems.

4

In our context, the critical point computations also induce some determinantal struc-
ture to take into account in addition to the one coming from the Sn-invariance. Recall
also that while we expect complexity results which are polynomial in n when the maxi-
mum degree d of the input polynomials is fixed, there was no complexity result that show
a discrepancy between the complexity achieved in the general case and the one gotten in
the Sn-invariant case when both n and d grow.

1.3. Main results

The global invariance property allows us to split the set W = W (ϕ,f) into orbits
under the action of the symmetric group. It is well known that the size of the orbit of a
point in W will depend on the number of pairwise distinct coordinates of that point.

Example 2. Let f and ϕ be as above. The four points (2, 1, 1), (0,
√
3,
√
3), (−2,−1,−1),

(0,−
√
3,−
√
3) are solutions with three elements in their respective S3-orbits, while the

two points (
√
2,
√
2,
√
2), (−

√
2, −
√
2,−
√
2) are also solutions, with only one point in

each of their orbits (this is the complete decomposition of W into orbits).

In order to devise a fast algorithm, the different sizes of orbits needs to be taken into
consideration. This phenomenon is to be expected for systems such as (1), but is not
discussed for the particular family of equations in [25] (on the other hand, that reference
takes into consideration further properties of the family of equations considered therein;
we refer the reader to the article [25] for more details of these properties).

The structure of these orbits is determined by the number of pairwise distinct coor-
dinates of the points they contain. To study them, we make use of partitions of n. A
sequence λ = (nℓ1

1 nℓ2
2 . . . nℓr

r), with the ℓi and ni positive integers and n1 < · · · < nr,
is called a partition of n if n1ℓ1 + n2ℓ2 + · · · + nrℓr = n. Partitions of n will be used to
parametrize orbits, with λ as above parameterizing those points in W having ℓ1 distinct
sets of n1 equal coordinates, ℓ2 distinct sets of n2 equal coordinates and so on. We will
write Wλ for the set of such orbits contained in W , so that W is the disjoint union of all
Wλ, for all partitions λ of n.

Example 3. For the ϕ and f mentioned previously, our algorithm will determine that
the set W(13) of orbits parameterized by λ = (13), which corresponds to the orbits with
all distinct coordinates (ξ1, ξ2, ξ3), is equal to the zero set of

(f, −4, −2(x1 + x2 + x3), 2(x2
1 + x2

2 + x2
3) + 8(x1x2 + x2x3 + x1x3)− 36)

(and so W(13) is empty, as we saw above). The set W(11 21) of orbits parameterized by
λ = (11 21), that is, orbits of points of the form (ξ1, ξ2, ξ2), with ξ1 ̸= ξ2, is the orbit of
the zero set of

(x2
1 + 2x2

2 − 6, x2
2 + x1x2 − 3, x2 − x3),

where the first component is f restricted to the hyperplane x2 = x3. In particular,W(11 21)

is the union of the orbits of the points (2, 1, 1), (0,
√
3,
√
3), (−2,−1, −1), (0,−

√
3,−
√
3)

seen in Example 2.
Finally, the set W(31) of orbits parameterized by λ = (31), which is orbit of points of

the form (ξ1, ξ1, ξ1), is the zero set of 3x2
1 − 6 = 0. This polynomial is g restricted to

hyperplanes x2 = x1 and x3 = x1.

5

In this paper we provide a procedure to find invariant polynomials that describe these

Sn-orbits. For an orbit parameterized by the partition λ = (nℓ1
1 nℓ2

2 . . . nℓr
r), we work with

points which have distinct coordinates (ξ1,1, . . . , ξ1,ℓ1 , ξ2,1, . . . , ξ2,ℓ2 , . . . , ξr,1, . . . , ξr,ℓr), so

that instead of n coordinates, there are only ℓ = ℓ1+· · ·+ℓr distinct coordinates for points

in this orbit. Then, the invariance of W under permutations implies that single distinct

points are permuted, groups of two points are permuted, etc. This will allow us to work

with polynomials in K[e1, . . . , er] = K[e1,1, . . . , e1,ℓ1 , e2,1, . . . , e2,ℓ2 , . . . , er,1, . . . , er,ℓr], in

order to represent a certain “compressed” image W ′
λ ⊂ Kℓ of Wλ. Here, ei,1, . . . , ei,ℓi are

variables standing for the elementary symmetric polynomials in ℓi indeterminates and

K is an algebraic closure of K. The process of finding such polynomials in K[e1, . . . , er],

which is presented as the Symmetrize algorithm in Section 3, is one of the main contri-

butions in this paper.

Example 4. In our running example, for λ = (11 21), we have ℓ = 2 and W ′
(11 21) is the

set {(2, 1), (0,
√
3), (−2,−1), (0,−

√
3)}.

Throughout the paper, we will assume that W , and thus all Wλ and W ′
λ, are finite.

Then, for λ as above, the cardinality of W ′
λ is smaller than that of Wλ by a factor

νλ = ℓ1! · · · ℓr!·
(

n

n1, . . . , n1, . . . , nr, . . . , nr

)
, (2)

where each ni in the multinomial coefficient is repeated ℓi times. The first part in (2) is
obtained from the fact that we compress the set Wλ to W ′

λ; it is also the order of the
group Sℓ1×· · ·×Sℓr . Meanwhile, the second part in (2) is the total number permutations
of a point ξ of type

ξ =
(
ξ1,1, . . . , ξ1,1︸ ︷︷ ︸

n1

, . . . , ξ1,ℓ1 , . . . , ξ1,ℓ1︸ ︷︷ ︸
n1

, . . . , ξr,1, . . . , ξr,1︸ ︷︷ ︸
nr

, . . . , ξr,ℓr , . . . , ξr,ℓr︸ ︷︷ ︸
nr

)
,

where ξi,j ’s are pairwise distinct.

The idea of using group orbits to describe the critical points of (1) when all polynomials

fi are symmetric is already in [51]. There, the authors also use the partitions of n to give

a description of critical points of a homogeneous symmetric polynomial in (x1, . . . , xn).

However they do not use polynomials in K[e1, . . . , er] to encode the critical points for

each group orbit, something which is vital to the efficiency of our computations.

Altogether, if d is the maximum of the degrees of the input of polynomials, then we

will prove bounds, denoted by cλ, on the cardinality of the finite set W ′
λ. We will see

that, in practice, each of the cλ provides an accurate bound on the cardinality of W ′
λ.

The sum of the cλ’s then gives us an upper bound on the size of the output of our main

algorithm. There is no closed formula for this sum, but we prove it is bounded above by

c = ds
(
n+ d− 1

n

)
. (3)

We will see that, in practice, this is a rather rough upper bound but in several cases, it

compares well to the upper bound

c̃ = ds (d− 1)n−s

(
n

s

)
(4)

6

from Nie and Ranestad [50, Theorem 2.2] on the size of W . For example, when d = 2,
we have c = 2s(n + 1) while c̃ = 2s

(
n
s

)
. More generally, when d and s are fixed, c is

polynomial in n (since it is bounded above by ds(n+ d− 1)d) while c̃ is exponential in n
(since it is greater than (d− 1)n). When s is fixed and d = n, c is nO(1)2n, whereas c̃ is
nO(1)(n− 1)n−s. Observe additionally that when d ≃ nα with α < 1, c is subexponential
in n. The following complexity result illustrates the importance of these facts, as the
computation of W (ϕ,f) is polynomial in c, ds and

(
n

s+1

)
.

Theorem 5. Let f = (f1, . . . , fs) and ϕ be Sn-invariant polynomials in K[x1, . . . , xn],
with degree at most d ≥ 2. Suppose further that W = W (ϕ,f) is finite. Then there exists
a randomized algorithm that takes f , ϕ as input and outputs a symmetric representation
for the setW , and whose runtime is polynomial in ds,

(
n+d
d

)
, and

(
n

s+1

)
. The total number

of points described by the output is at most ds
(
n+d−1

n

)
.

Hence, W (ϕ,f) can be computed in time polynomial in n when both d and s are fixed,
which match some statements based on the degree principle in [53]. Note that when
s is fixed, but d ≤ nα with α < 1, one novelty is that our algorithm runs in time
subexponential in n. Section 5 gives a more precise estimate on the runtime of the
algorithm.

1.4. Some ingredients

In view of the previous discussion, our algorithm will naturally want to compute de-
scriptions of the sets W ′

λ rather than Wλ. Of course we will also explain how one would
recover the later knowing the former. While there are a number of ways to represent
algebraic sets, in our case it is convenient make use of a representation based on uni-
variate polynomials. If Y ⊂ Kn is a zero-dimensional variety, then a zero-dimensional
parametrization R = ((v, v1, . . . , vn), µ) of Y consists of
(i) a squarefree polynomial q in K[y], where y is a new indeterminate and deg(q) = |Y |,
(ii) polynomials (v1, . . . , vn) in K[y] with deg(vi) < deg(v) for all i, and satisfying

Y = {(v1(τ)v′(τ) , . . . ,
vn(τ)
v′(τ)) ∈ Km | v(τ) = 0} with v′ = ∂v

∂y ,

(iii) a linear form µ in n variables such that µ(v1, . . . , vn) = yv′.
When these conditions hold, we write Y = Z(R).

The last condition says that the roots of v are the values taken by the linear form µ
on y. This representation was first introduced in the works of Kronecker and König [44]
and has been widely used in computer algebra [1, 27, 28, 29, 30, 57]. The output of our
algorithm will be a collection of zero-dimensional parametrizations, one for each of the
sets W ′

λ. We will call such a parametrization a symmetric representation of W (precise
definitions are in Section 2).

At this stage we can use Gröbner bases to compute the descriptions giving a determin-
istic algorithm. However as we are also interested in determining a good complexity we
will instead use symbolic homotopy continuation, as this will allow us to precisely control
the cost of the computation. Homotopy continuation has become a foundational tool
for numerical algorithms while the use of symbolic homotopy continuation algorithms is
more recent. Such algorithms first appeared in [10, 36], for general inputs, and later for
sparse [42, 37, 38, 39] and multi-homogeneous systems [59, 35, 34].

In our case, we can make use of a recent sparse symbolic homotopy method given
in [45] specifically designed to handle determinantal systems over weighted polynomial

7

rings, that is, multivariate polynomial rings where each variable has a weighted degree,
which is a positive integer. These domains arise naturally for our orbits: the domain
arising from an orbit parameter λ has variables ei,k which are defined corresponding to
elementary symmetric polynomials ηi,k. Since ηi,k has degree k, the variable ei,k will
naturally be assigned weight k.

Further, we use standard notions and notations of commutative algebra and algebraic
geometry which can be found in [16, 19]. We will assume that the reader is familiar
with concepts such as dimension, Zariski topology, equidimensional algebraic set and the
degree of an algebraic set.

Throughout the paper, the multivariate polynomials we work with are encoded using
their dense representation. A possible alternative would be using straight-line programs.
Some of our subroutines can naturally be written with that data-structure in mind: this is
the case for the symbolic homotopy continuation algorithm, but also for the Symmetrize
algorithm in Section 3 (it follows by previous work by Bläser and Jindal, which was
written in a straight-line program model). However, a complete analysis in this model
still remains to be done.

1.5. Organization of paper

The remainder of the paper is organized as follows. In the next section, we provide
several properties of invariant polynomials and discuss in detail the sets Wλ and W ′

λ men-
tioned above. Section 3 gives our Symmetrize algorithm for constructing invariant gener-
ators of our invariant ideals, while Section 4 contains our main Critical Points Per Orbit
algorithm along with its proof of correctness. The runtime of this algorithm is analyzed
in Section 5, finishing the proof of Theorem 5. Experiments to validate our new algo-
rithm are given in Section 6 followed by a concluding section which gives topics for future
research. Section 7 also includes a discussion on how our results can decide emptiness of
Sn-invariant algebraic sets over a real field. Finally, the appendices include the proofs of
three technical statements.

2. Partitions and distinct coordinates of Sn-invariants

As noted in the introduction (f1, . . . , fs) and ϕ being Sn-invariant does not imply that
the equations in (1) are invariant. Fundamental to our results is the fact that W (ϕ,f)
is invariant under the action of the symmetric group, a direct consequence of the chain
rule, as shown below.

Lemma 6. Let g be in K[x1, . . . , xn] and σ in Sn. Then for k in {1, . . . , n}, we have

σ

(
∂g

∂xk

)
=

∂(σ(g))

∂xσ(k)
. (5)

Corollary 7. The algebraic set W (ϕ,f) is Sn-invariant.

Proof. Let ξ be in W and σ be in Sn. We need to show that σ(ξ) is in W , that is,
fi(σ(ξ)) = 0 for all i and Jac(f , ϕ) has rank at most s at σ(ξ).

The first statement is clear, since ξ cancels f and f is Sn-invariant. For the second
claim, since all fi’s and ϕ are Sn-invariant, Lemma 6 implies that the Jacobian matrix
Jac(f , ϕ) at σ(ξ) is equal to (Jac(f , ϕ)(ξ))A−1, where A is the matrix of σ. Therefore,
as with Jac(f , ϕ)(ξ), it has rank at most s. 2

8

The invariance of W (ϕ,f) allows us to split of W (ϕ,f) into subsets defined by the
orbits of the symmetric group Sn. An orbit is a set of the form Sn(ξ), for some point ξ in
Kn, that is, the set of all Sn-conjugates of ξ. As mentioned in the introduction, the size
of an orbit Sn(ξ) will depend on the number of pairwise distinct coordinates of ξ. For
example, with n = 3, a point of the form (ξ1, ξ2, ξ2) will have an orbit of size 3, unless
we have ξ1 = ξ2 (in which case the orbit has size 1). As a result, in this section we will
consider the separation of distinct coordinates in an orbit.

2.1. Partitions

Partitions play a major role in describing our orbits, with each orbit represented by a
single point. In this subsection, we gather the basic definitions of partitions and a number
of properties used throughout this section. A detailed description of these partitions can
be found in many combinatorics books, for example, in [47].

A sequence λ = (nℓ1
1 nℓ2

2 . . . nℓr
r), where n1 < · · · < nr and the ℓi’s and ni’s are

positive integers, is called a partition of n, sometimes denoted by λ ⊢ n, if n1ℓ1 + n2ℓ2 +
· · · + nrℓr = n. The number ℓ =

∑r
i=1 ℓi is called the length of the partition λ. To any

partition λ = (nℓ1
1 nℓ2

2 . . . nℓr
r), we can associate (in a one-to-one manner) the ordered

list (n1, . . . , n1, . . . , nr, . . . , nr), with each ni repeated ℓi times.
We will make use of the refinement order on partitions, with the naming based on the

fact that λ ≤ λ′ if and only if partition λ refines λ′. Formally the definition makes use
of unions of partitions: if λ and λ′ are partitions of a and a′, respectively, then λ ∪ λ′ is
the partition of a+ a′ whose ordered list is obtained by merging those of λ and λ′. Then
for two partitions λ = (nℓ1

1 nℓ2
2 . . . nℓr

r) and λ′ = (mk1
1 mk2

2 . . . mks
s) of the same integer

n, we write λ ≤ λ′ if λ′ is the union of some partitions (µi,j)1≤i≤s,1≤j≤ki
, where µi,j is

a partition of mi for all i, j. We also say that λ refines λ′ in this case.

Example 8. For the partitions of n = 3, we have (13) ≤ (1121) ≤ (31) since (1121) is a
partition of 3 while (12) is a partition of 2.

The refinement order on partitions will later allow us, in Subsection 4.2, to study only
partitions of the length at least s, the size of the vector f .

Let λ = (nℓ1
1 nℓ2

2 . . . nℓr
r) be a partition of n having length ℓ. For 1 ≤ k ≤ r, we will

denote a sequence of ℓk indeterminates by Zk = (zk,1, . . . , zk,ℓk). When convenient, we
denote (Z1, . . . ,Zr) = (z1,1, . . . , zr,ℓr) as (z1, . . . , zℓ), so that z1 = z1,1, . . . , zℓ = zr,ℓr . We
will let Sλ be the group

Sλ = Sℓ1 × · · · × Sℓr .
The group Sλ acts naturally on K[Z1, . . . ,Zr], and we let K[Z1, . . . ,Zr]

Sλ be the K-
algebra of Sλ-invariant polynomials. Note that Sλ can be seen as a subgroup of the
permutation group Sℓ of {1, . . . , ℓ}, where Sℓ1 acts on the first ℓ1 indices, Sℓ2 acts on the
next ℓ2 indices, etc.

2.2. Sλ-invariant polynomials: the Symmetric Coordinates algorithm

Let λ = (nℓ1
1 nℓ2

2 . . . nℓr
r) be a partition of n having length ℓ, and, for i = 1, . . . , r, let

ei = (ei,1, . . . , ei,ℓi) be a set of ℓi new variables. Then, by the fundamental theorem of
symmetric polynomials [17, Theorem 3.10.1], for any f in K[Z1, . . . ,Zr]

Sλ , there exists
a unique f̄ in K[e1, . . . , er] with

f(Z1, . . . ,Zr) = f̄(η1, . . . ,ηr), (6)

9

where ηi = (ηi,1, . . . , ηi,ℓi) denotes the vector of elementary symmetric polynomials in

variables Zi, with each ηi,j having degree j for all i, j. We will need a quantitative version

of this existence result, which gives an estimate on the cost of computing f̄ from f .

Our Symmetric Coordinates, formalized in the next lemma, is a slight generalization

of the procedure described in the proof of Bläser and Jindal’s algorithm [9, Theorem

4], which was written only for the case of r = 1, and for polynomials represented as

straight-line programs. The main idea of their algorithm is to use the fact that zi,j
can be written as a function of ηi,j . For example, consider r = 1, Z1 = (z1, z2) and

η1 = (η1, η2) = (z1 + z2, z1z2). Then z1 and z2 are the roots of polynomial

P (T) = T 2 − (z1 + z2)T + z1z2 = T 2 − η1T + η2,

and so z1 =
η1+
√

η2
1−4η2

2 and z2 =
η1−
√

η2
1−4η2

2 . If we substitute these functions to f we

obtain f̄ . However, these functions are neither polynomials nor power series. In order to

deal with this situation, we use the substitution η1 = η1 − 3 and η2 = η2 − 2 which will

allow us to express z1, z2 in the power series of η1, η2 by using Taylor expansion.

Lemma 9. There exists an algorithm Symmetric Coordinates(λ, f) which, given a par-

tition λ of n and f of degree at most d in K[Z1, . . . ,Zr]
Sλ , returns f̄ such that f =

f̄(η1, . . . ,ηr), using O (̃
(
ℓ+d
d

)
2) operations in K. 1

Proof. The key to the algorithm is the following. Let L be the ring of multivariate power

series L = K[[e1, . . . , er]]. Then this ring contains K[e1, . . . , er] and vectors ζ1, . . . , ζr
where for each i, ζi = (ζi,1, . . . , ζi,ℓi) ∈ Lℓi are the ℓi pairwise distinct roots of

Pi(T) = T ℓi − (ei,1 + ρi,1)T
ℓi−1 + · · ·+ (−1)ℓi (ei,ℓi + ρi,ℓi),

and where ρi,1, . . . , ρi,ℓi are the elementary symmetric polynomials evaluated at 1, . . . , ℓi.

Thus f̄ satisfies f̄(e1,1 + ρ1,1, . . . , er,ℓr + ρr,ℓr) = f(ζ1, . . . , ζr). Our construction, in-

volving the shifts by (ρ1,1, . . . , ρr,ℓr) shows that at e1 = · · · = er = 0, Pi(T) factors as

(T − 1) · · · (T − ℓi).

Applying Newton’s iteration, we deduce the existence of the requested power series

roots ζi = (ζi,1, . . . , ζi,ℓi). In order to obtain the polynomial f̄ , we only need truncations

of these roots at precision d. For i = 1, . . . , r, we can obtain the truncation of ζi using

O (̃ℓi
(
ℓi+d
d

)
) operations in K, where the factor

(
ℓi+d
d

)
accounts for the cost of multivariate

power series arithmetic [46]. Taking all i’s into account, this adds up to O (̃ℓ
(
ℓ+d
d

)
)

arithmetic operations.

We then evaluate f at these truncated power series. Since f has degree at most d,

this can be done using O(
(
ℓ+d
d

)
) (+,×) operations on ℓ-variate power series truncated in

degree d, for a total of O (̃
(
ℓ+d
d

)
2) operations in K. This gives us f̄(e1,1 + ρ1,1, . . . , er,ℓr +

ρr,ℓr). We then apply the translation (ei,j)i,j ← (ei,j − ρi,j)i,j in order to obtain the

polynomial f̄ , also at a cost of O (̃
(
ℓ+d
d

)
2) operations in K: through successive multipli-

cations, we incrementally compute the translates of all monomials of degree up to d and

then, before combining, using the coefficients of f̄(e1,1 + ρ1,1, . . . , er,ℓr + ρr,ℓr). 2

1 Here and in the rest of our paper we use O (̃·) to indicate that polylogarithmic factors are omitted,

that is, f is O (̃g) if there exists a constant k such that f is O(g logk(g)).

10

2.3. Symmetric representations

In this subsection we describe the geometry of Sn-orbits in Kn, define the data struc-
ture we use to represent Sn-invariant sets, and finally present some basic algorithms
related to these invariant sets.

2.3.1. The mapping Eλ and its fibers.
For a partition λ = (nℓ1

1 nℓ2
2 . . . nℓr

r) of n, we define the following two subsets of Kn:

(i) Cλ : the set of all points ξ in Kn that can be written as

ξ =
(
ξ1,1, . . . , ξ1,1︸ ︷︷ ︸

n1

, . . . , ξ1,ℓ1 , . . . , ξ1,ℓ1︸ ︷︷ ︸
n1

, . . . , ξr,1, . . . , ξr,1︸ ︷︷ ︸
nr

, . . . , ξr,ℓr , . . . , ξr,ℓr︸ ︷︷ ︸
nr

)
. (7)

(ii) Cstrictλ : the set of all ξ in Cλ for which the ξi,j ’s in (7) are pairwise distinct.
To any point ξ in Kn we can associate its type: this is the unique partition λ of n such

that there exists σ in Sn for which σ(ξ) lies in Cstrictλ . Since all points in an orbit have
the same type, we can then define the type of an orbit as the type of any point in it. Any
orbit of type λ = (nℓ1

1 nℓ2
2 . . . nℓr

r) has size

γλ =

(
n

n1, . . . , n1, . . . , nr, . . . , nr

)
=

n!

n1!
ℓ1 · · ·nr!

ℓr

since the stabilizer of a point in Cstrictλ is Sℓ1n1
× · · · × Sℓrnr

.
For efficiency purposes it is very important in our work to not count points in a given

orbit multiple times. This is where the refinement order on partitions plays an important
role. Notice that all points in Cstrictλ have type λ. However the definition of refinement
order implies that Cλ contains points of type λ′ for all λ′ ≥ λ. More precisely, Cλ is the
disjoint union of all Cstrictλ′ for all λ′ ≥ λ.

Example 10. For the partitions of n = 3, we have (13) < (1121) < (31). In addition,
(a) C(13) is K3, while Cstrict(13) is the set of all points ξ with pairwise distinct coordinates.

(b) C(1121) is the set of points that can be written ξ = (ξ1,1, ξ2,1, ξ2,1), while Cstrict(1121) is
the subset satisfying ξ1,1 ̸= ξ2,1.

(c) C(31) = Cstrict(31) is the set of points ξ = (ξ3,1, ξ3,1, ξ3,1) whose coordinates are all
equal.

For the partition λ = (nℓ1
1 nℓ2

2 . . . nℓr
r), we define a mapping Eλ : Cλ → Kℓ by

Eλ : ξ as in (7) 7→ (ηi(ξi,1, . . . , ξi,ℓi), . . . , ηℓi(ξi,1, . . . , ξi,ℓi))1≤i≤r,

where for i = 1, . . . , r and j = 1, . . . , ℓi, ηj(ξi,1, . . . , ξi,ℓi) is the degree j elementary
symmetric function in ξi,1, . . . , ξi,ℓi . One should see this mapping as a means to compress
orbits: through the application of Eλ, one can represent an entire orbit O of type λ,
which has size γλ, by the single point Eλ(O ∩ Cλ) = Eλ(O ∩ Cstrictλ).

To put this into practice, we need to be able to recover an orbit from its image. The
mapping Eλ is onto: for ε = (ε1,1, . . . , εr,ℓr) in Kℓ, define polynomials P1(T), . . . , Pr(T)
by

Pi(T) = T ℓi − εi,1T
ℓi−1 + · · ·+ (−1)ℓiεi,ℓi .

We can then find a point ξ in the preimage E−1
λ (ε) by finding the roots ξi,1, . . . , ξi,ℓi of

Pi(T). Since we will use this idea often, we will write E∗
λ(ε) = Sn(ξ) for the orbit of any

11

such point ξ in E−1
λ (ε). This is well-defined, as all points in this fiber are Sn-conjugate.

More generally, for a set G in Kℓ, we will write E∗
λ(G) for the union of the orbits E∗

λ(ε),
for ε in G.

The image Eλ(Cstrictλ) of points having type λ is an open subset Oλ ⊊ Kℓ, defined by
the condition that the polynomials Pi above are pairwise coprime and squarefree. For ε
in Kℓ \Oλ, the orbit E∗

λ(ε) does not have type λ, but rather type λ′, for some partition
λ′ > λ.

Example 11. With n = 3 and λ = (1121), a partition of length ℓ = 2, we see that
Eλ maps points of the form (ξ1,1, ξ2,1, ξ2,1) to (ξ1,1, ξ2,1). In this case we have two poly-
nomials, P1, P2 given by P1(T) = T − ε1,1 and P2(T) = T − ε2,1, with Oλ defined by
ε1,1 ̸= ε2,1.

The point ε = (2, 3) is in Oλ with the orbit E∗
λ(2, 3) being {(2, 3, 3), (3, 2, 3), (3, 3, 2)}.

On the other hand, ε = (1, 1) is not in Oλ. In this case the orbit E∗
λ(1, 1) is the point

{(1, 1, 1)}, and has type (31) > (1121). Finally, if we define G = {(1, 1), (2, 3)}, then
E∗

λ(G) is the set W = {(1, 1, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)}.

We will need an algorithm that computes the type λ′ of the orbit E∗
λ(ε), for a given

ε in Kℓ, and also computes the value that the actual compression mapping Eλ′ takes
at this orbit. The algorithm’s specification assumes inputs in K (since our computation
model is a RAM over K) but the procedure makes sense over any field extension of K.
We will use this remark later in the proof of Lemma 17.

Lemma 12. There exists an algorithm Type Of Fiber(λ, ε) which takes as input a par-
tition λ of n with length ℓ and a point ε in Kℓ, and returns a partition λ′ of n of length
k and a tuple f in Kk, such that
(i) λ′ is the type of the orbit O := E∗

λ(ε) and
(ii) Eλ′(O ∩ Cstrictλ′) = {f}.

The algorithm runs in time O (̃n).

Proof. Write ε = (ε1,1, . . . , εr,ℓr). The points in E−1
λ (ε) are obtained as permutations of

ξ =
(
ξ1,1, . . . , ξ1,1︸ ︷︷ ︸

n1

, . . . , ξ1,ℓ1 , . . . , ξ1,ℓ1︸ ︷︷ ︸
n1

, . . . , ξr,1, . . . , ξr,1︸ ︷︷ ︸
nr

, . . . , ξr,ℓr , . . . , ξr,ℓr︸ ︷︷ ︸
nr

)
,

where for i = 1, . . . , r, ξi,1, . . . , ξi,ℓi are the roots of

Pi(T) = T ℓi − εi,1T
ℓi−1 + · · ·+ (−1)ℓiεi,ℓi = 0.

Finding the type of such a point ξ amounts to finding the duplicates among the ξi,j ’s.
The latter can be done by computing the product

P =
(
T ℓ1 − ε1,1T

ℓ1−1 + · · ·+ (−1)ℓ1ε1,ℓ1

)n1

· · ·
(
T ℓr − εr,1T

ℓr−1 + · · ·+ (−1)ℓrεr,ℓr

)nr

and its square-free factorization P = Qm1
1 · · ·Qms

s , with m1 < · · · < ms and all Qi’s
squarefree and pairwise coprime. If ki = deg(Qi) then ξ has type λ′ = (mk1

1 mk2
2 . . .mks

s)
with λ′ > λ. If we write

Qi = T ki − fi,1T
ki−1 + · · ·+ (−1)kifi,ki

, 1 ≤ i ≤ s,

then our output is (λ′,f), where f = (f1,1, . . . , fs,ks).
Using subproduct tree techniques [26, Chapter 10] to compute P and fast GCD [26,

Chapter 14], all computations take quasi-linear time O (̃n). 2

12

Example 13. Let n = 3 and λ = (1121), with Eλ(ξ1,1, ξ2,1, ξ2,1) = (ξ1,1, ξ2,1). We saw
that for ε = (1, 1) ∈ K2, the orbit E∗

λ(1, 1) is {(1, 1, 1)}, with type λ′ = (31).
Since n1 = 1 and n2 = 2, the Type Of Fiber algorithm first expands (T − 1)(T − 1)2

as T 3 − 3T 2 + 3T − 1 and then computes its squarefree factorization as (T − 1)3. From
this, we read off that s = 1, m1 = 3 and k1 = 1, so that λ′ is (31). The output is
(λ′, Eλ′(1, 1, 1)), the latter being equal to (1).

2.3.2. Representing Sn-invariant sets.
The previous setup allows us to represent invariant sets in Kn as follows. Let W be a

set in Kn, invariant under the action of Sn. For a partition λ of n with ℓ, we write

Wλ = Sn(W ∩ Cstrictλ) ⊂ Kn and W ′
λ = Eλ(W ∩ Cstrictλ) ⊂ Kℓ, (8)

where Sn(W ∩ Cstrictλ) is the orbit of W ∩ Cstrictλ under Sn, or, equivalently, the set of
points of type λ in W (so this matches the notation used in the introduction).

For two distinct partitions λ, λ′ of n, Wλ and Wλ′ are disjoint, so that any invariant
set W can be written as the disjoint union W = ⊔λ⊢n Wλ. When W is finite, we then can
represent Wλ by describing the image W ′

λ. Indeed, the cardinality of the set W ′
λ is smaller

than that of the orbit Wλ by a factor of γλ, and we can recover Wλ as Wλ = E∗
λ(W

′
λ).

Altogether, we are led to the following definition.

Definition 14. LetW be a finite set inKn, defined overK and Sn-invariant. A symmetric
representation of W is a sequence (λi,Ri)1≤i≤N , where the λi’s are all the partitions of
n for which Wλi

is not empty, and, for each i, Ri is a zero-dimensional parametrization
of W ′

λi
.

Example 15. Suppose n = 3 and

W = {(1, 1, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)}.

Then with λ = (1121) we have Wλ = {(2, 3, 3), (3, 2, 3), (3, 3, 2)}, W ′
λ = {(2, 3)} ⊂ K2

and γλ = 3, while with λ′ = (31), we have Wλ′ = {(1, 1, 1)}, W ′
λ′ = {(1)} ⊂ K1, and

γλ′ = 1.
A symmetric representation ofW would consist of (λ,Rλ) and (λ′,Rλ′), with Z(Rλ) =

{(2, 3)} and Z(Rλ′) = {(1)}.

Our main algorithm will have to deal with the following situation. As input, we will
be given a representation of the set G in Kℓ; possibly, some points in G will not be in
the open set Oλ (that is, may correspond to orbits having type λ′, for some λ′ > λ). As
usual, the finite set G will be described by means of a zero-dimensional parametrization.
Our goal will then be to compute a symmetric representation of E∗

λ(G) when G is finite.

Example 16. Take n = 3, and again let λ = (1121), with Eλ(ξ1,1, ξ2,1, ξ2,1) = (ξ1,1, ξ2,1).
Assume we are given G = {(1, 1), (2, 3)} ⊂ K2. In this case, E∗

λ(G) is the set W seen in
Examples 11 and 15, and the output we seek is a distinct coordinates representation of
W , as discussed in Example 15.

Lemma 17. There exists a randomized algorithm Decompose(λ,R), which takes as
input a partition λ of n with length ℓ and a zero-dimensional parametrization R of a
set G ⊂ Kℓ and returns a symmetric representation of E∗

λ(G). The expected runtime is
O (̃D2n) operations in K, with D = deg(R) = |G|.

13

Proof. In the first step, we apply our algorithm Type Of Fiber from Lemma 12 where the
input fiber is given not with coefficients in K, but as the points described by R. A general
algorithmic principle, known as dynamic evaluation, allows us to do this as follows. Let
R = ((q, v1, . . . , vℓ), µ), with q and the vi’s in K[y]. We then call Type Of Fiber with
input coordinates (v1, . . . , vℓ), and attempt to run the algorithm over the residue class
ring K[y]/q, as if q were irreducible.

If q is irreducible, K[y]/q is a field, and we encounter no problem. However, in general,
K[y]/q is only a product of fields, so the algorithm may attempt to invert a zero-divisor.
When this occurs, a “splitting” of the computation occurs. This amounts to discovering
a non-trivial factorization of q. A direct solution then consists of running the algorithm
again modulo the two factors that were discovered. Overall, this computes a sequence
(Ri, λi,fi)1≤i≤N , where for i = 1, . . . , N ,
(i) Ri = ((qi, vi,1, . . . , vi,ℓ), µi) is a zero-dimensional parametrization that describes a

set Fi ⊂ F . In addition F is the disjoint union of F1, . . . , FN ;
(ii) λi is a partition of n, of length ℓi;
(iii) fi is a sequence of ℓi elements with entries in the residue class ring K[y]/qi;
(iv) for any ε in Fi, corresponding to a root τ of qi,

Type Of Fiber(λ, ε) = (λi,fi(τ)).

Since Type Of Fiber takes time O (̃n), this process takes time O (̃D2n), withD = deg(R).
The overhead O (̃D2) is the penalty incurred by a straightforward application of dynamic
evaluation techniques.

For i = 1, . . . , N , let Vi = E−1
λ (Fi), so that W = Sn(V) is the union of the orbits

Wi = Sn(Vi). Then, from (iv) above we see that all points in Wi have type λi and
that (Wi)

′
λi

is the set Gi = {fi(τ) | qi(τ) = 0} ⊂ Kℓi . Using the algorithm of [52,
Proposition 1], we can compute a zero-dimensional parametrization Si of Gi in time
O (̃D2

i n), with Di = deg(Ri). The total cost is thus O (̃D2n).
The λi’s may not be pairwise distinct. Up to changing indices, we may assume that

λ1, . . . , λs are representatives of the pairwise distinct values among them. Then, for
i = 1, . . . , s, we compute a zero-dimensional parametrization Ti that describes the union
of those Z(Sj), for j such that λj = λi. Using algorithm [52, Lemma 3], this takes a
total of O (̃D2n) operations in K. Finally, we return (λi,Ti)1≤i≤s. 2

3. Sλ-equivariant polynomials: the Symmetrize algorithm

As noted previously the set of polynomials in our zero sets are globally invariant under
the symmetric group, but its generators are not necessarily invariant. The goal of this
section is to construct invariant generators. More precisely, if we let λ = (nℓ1

1 nℓ2
2 . . . nℓr

r)
be a partition of n of length ℓ =

∑r
i=1 ℓi, then we will define Sλ-equivariant systems

of polynomials and give a detailed description of an algorithm, called Symmetrize, that
turns an Sλ-equivariant system into one which is Sλ-invariant. We recall that Sλ =
Sℓ1 × · · · × Sℓr . We note that Hubert [40] also has an algorithm which symmetrizes
polynomials constructed via a generating set of rational invariants. In our case we wish
to avoid rational functions for our polynomial system solving as these will require case
analysis for the zeros of the denominators (c.f. [41, Example 5.5]).

Consider a sequence of polynomials q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr], where Zi =
(zi,1, . . . , zi,ℓi) is a set of ℓi variables. As mentioned, we also index (Z1, . . . ,Zr) =

14

(z1,1, . . . , zr,ℓr) as (z1, . . . , zℓ). We say that q is Sλ-equivariant if for any σ in Sλ and
i in {1, . . . , ℓ}, we have σ(qi) = qσ(i), or equivalently

qi(zσ(1), . . . , zσ(ℓ)) = qσ(i)(z1, . . . , zℓ).

Here, we are implicitly seeing the elements of Sλ as permutations of {1, . . . , ℓ}, as ex-
plained in Section 2.1.

In geometric terms, the zero-set V (q) ⊂ Kℓ of such a system is Sλ-invariant, even
though the equations themselves may not be invariant. In what follows, we describe how
to derive equations p = (p1, . . . , pℓ) that generate the same ideal as q (in a suitable
localization of K[Z1, . . . ,Zr]) and which are actually Sλ-invariant. We will need an as-
sumption, discussed below, that zi − zj divides qi − qj for all pairwise distinct indices
i, j. We later show that this is always satisfied for our sets of critical points.

In order to construct a set of invariant generators we make use of divided differences
of q = (q1, . . . , qℓ). These are defined as q{i} = qi for i in {1, . . . , ℓ}, and for each set of
k distinct integers I := {i1, . . . , ik} ⊂ {1, . . . , ℓ}, with k ≥ 2,

qI =
q{i1,...,ir−1,ir+1,...,ik} − q{i1,...,iq−1,iq+1,...,ik}

zir − ziq
, (9)

for any choice of ir, iq in I, with ir ̸= iq. Indeed, it is known (see e.g., [25, Theorem
1]) that this defines qI unambiguously (independently of the choice of ir, iq). A useful
property of divided differences is the following:
(i) if zi − zj divides qi − qj for all 1 ≤ i < j ≤ ℓ, then qI is a polynomial for all

I ⊂ {1, . . . , ℓ}.
The following proposition gives our construction of the polynomials p. In what follows,
for i ≥ 0, ηi(y1, . . . , ys) denotes the degree i elementary symmetric function in variables

y1, . . . , ys. Define integers {τk} by τ0 = 0 and τk =
∑k

i=1 ℓi, for k = 1, . . . , r. Then any
index i in 1, . . . , ℓ can be written uniquely as i = τk−1 + u, for some k in 1, . . . , r and u
in 1, . . . , ℓk. Thus, the indeterminates zk,1, . . . , zk,ℓk are numbered zτk−1+1, . . . , zτk , with
τr = ℓ.

Proposition 18. Suppose the sequence q = (q1, . . . , qℓ) inK[Z1, . . . ,Zr] is Sλ-equivariant
and satisfies zi− zj divides qi− qj for 1 ≤ i < j ≤ ℓ. For 0 ≤ k ≤ r− 1 and 1 ≤ j < ℓk+1,
define

pτk+1
=

τk+1∑
i=τk+1

q{i,τk+1+1,...,τr},

pτk+j =

j∑
s=1

ηj−s(zτk+s+2, . . . , zτk+1
)
(τk+s∑
i=τk+1

q{i,τk+s+1,...,τr}
)
.

Then the sequence

p =
(
p1, . . . , pτ1 , pτ1+1, . . . , pτ2 , . . . , pτr−1+1, . . . , pτr

)
is in K[Z1, . . . ,Zr]

Sλ . If all qi’s have degree at most d, then deg(pi) ≤ d− ℓ+ i holds for
i = 1, . . . , ℓ. In particular, if ℓ ≥ d+ 2, then pi = 0 for all i = 1, . . . , ℓ− d− 1.

The degree bound comes by inspection. We defer the rest of the proof (which follows
by induction) to Appendix A. Our main idea is to use divided differences to reduce the

15

factor
∏

i,j,i′,j′(zi,j − zi′,j′) and the elementary symmetric functions ηj−s(·) to add the

missing monomials in a step by step fashion in order to obtain an invariant system.

Example 19. Let Sλ = S2 × S1. We take q = (q1, q2, q3), where

q1 = z2z
2
3(z1 + z2 + 2z3) + z1z2z

2
3 ,

q2 = z1z
2
3(z1 + z2 + 2z3) + z1z2z

2
3 ,

q3 = z1z2z3(z1 + z2 + 2z3) + z1z2z
2
3 .

These polynomials satisfy both the equivariance property and the divisibility property.

Using these divided differences and elementary symmetric functions, our procedure will

produce the polynomials:

p1 = (z1 + z2 + 2z3)z3,

p2 = (z1 + z2 + 2z3)z2z3 + (z1 + z2 + 2z3)z1z3,

p3 = z1z2z3(z1 + z2 + 2z3) + z1z2z
2
3 .

The polynomials (p1, p2, p3) are symmetric in (z1, z2) and (z3), that is, are S2 × S1-
invariant. They also generate the same ideal as (q1, q2, q3) in the localization ring

K[z1, z2, z3](z1−z2)(z1−z3)(z2−z3).

We can also show that q can be written as a linear combination of p, that is, we can
find an ℓ × ℓ matrix polynomial U such that pU = q. The construction of U proceeds
as follows. Let M be the block-diagonal matrix with blocks M1, . . . ,Mr given by

Mk+1 =



1 η1(zτk+3, . . . , zτk+1) η2(zτk+3, . . . , zτk+1) · · · ηℓk+1−2(zτk+3, . . . , zτk+1) 0

0 1 η1(zτk+4, . . . , zτk+1) · · · ηℓk+1−3(zτk+4, . . . , zτk+1) 0

0 0 1 · · · ηℓk+1−4(zτk+5, . . . , zτk+1) 0

...
...

...
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1


,

for all 0 ≤ k ≤ r− 1. The matrices Mk+1’s basically represent the elementary symmetric

functions ηj−s(·) in the construction of p. Here det(Mk+1) = 1 for all k, then det(M) = 1.
For a non-negative integer u, denote by Iu the identity matrix of size u and by 0 a

zero matrix. The matrices B,C and D below encode the divided differences operators
in the formulas of p. For k = 0, . . . , r − 1 and j = 1, . . . , ℓk+1, we define the following
τr × τr polynomial matrices. Set Bτ0+1 = Iτr , Cτ0+1 = Iτr , Dτ0+j = Iτr , and

Bτk+j =


Iτk 0 0

0 Ek,j 0

0 0 Iτr−τk+1

 , with Ek,j =



Ij−1

zτk+j − zτk+1

...

zτk+j − zτk+j−1

0

0 . . . 0 −1 0

0 0 Iℓk+1−j


,

16

Cτk+j =


Iτk 0 0

0 Fk,j 0

0 0 Iτr−τk+1

 , with Fk,j =


diag(zτk+j − zτk+t)

j−1
t=1 0 0

−1
j

. . . −1
j

−1
j

0

0 0 Iℓk+1−j

 ,

Dτk+j =


diag(zτk+j − zt)

τk
t=1

0 0

Gk,j Iℓk+1 0

0 0 Iτr−τk+1

 , with Gk,j : jth row is (1, . . . , 1), rest zeros.

We use the above matrices in the following.

Proposition 20. Suppose the sequence q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr]
ℓ satisfies the

conditions of Proposition 18. Let ∆ =
∏

1≤i<j≤ℓ(zi − zj) be the Vandermonde determi-

nant associated with z1, . . . , zℓ. Then the matrix U in K[Z1, . . . ,Zr]
ℓ×ℓ, defined by

M ·U =

r−1∏
k=0

ℓk+1∏
j=1

Bτk+j Cτk+j Dτk+j


has determinant a unit in K[Z1, . . . ,Zr, 1/∆] and satisfies pU = q.

The proof of Proposition 20 follows by induction and is deferred to Appendix B.

Example 21. Consider again the polynomials q = (q1, q2, q3) and p = (p1, p2, p3) of

Example 19. The matrix U which relates p to q is constructed as follows. For k = 0 and

j = 1, 2 let

B1 =


1 0 0

0 1 0

0 0 1

 , C1 =


1 0 0

0 1 0

0 0 1

 D1 =


1 0 0

0 1 0

0 0 1

 ,

B2 =


1 z2 − z1 0

0 −1 0

0 0 1

 , C2 =


z2 − z1 0 0

− 1
2 − 1

2 0

0 0 1

 , D2 =


1 0 0

0 1 0

0 0 1

 ,

while for k = 1 and j = 1 we have

B3 =


1 0 0

0 1 0

0 0 −1

 , C3 =


1 0 0

0 1 0

0 0 −1

 , D3 =


z3 − z1 0 0

0 z3 − z2 0

1 1 1

 .

17

In the case λ = (12 21), M =


1 0 0

0 1 0

0 0 1

 and hence

U = (B1C1D1)(B2C2D2)(B3C3D3) =
1
2 (z3 − z1)(z2 − z1)

−1
2 (z2 − z1)(z3 − z2) 0

1
2 (z3 − z1)

1
2 (z3 − z2) 0

1 1 1

 .

Note that det(U) = 1
2 (z3 − z1)(z3 − z2)(z2 − z1).

The formulas defining p are straightforward to implement. The following proposition
describes the resulting algorithm, called Symmetrize, and gives the cost of this procedure.

Proposition 22. There exists an algorithm Symmetrize(λ, q) which takes as input q as
in Proposition 18 and a partition λ of n, and returns p as defined in that proposition.
For q of degree at most d, the runtime is O (̃ℓ3

(
ℓ+d
d

)
) operations in K.

The proof occupies the rest of this section. Write q = (q1, . . . , qℓ), and recall the
expressions defining p = (p1, . . . , pℓ): for k = 0, . . . , r − 1, we have

pτk+ℓk+1
=

τk+1∑
i=τk+1

q{i,τk+1+1,...,τr}

and for j = 1, . . . , ℓk+1 − 1,

pτk+j =

j∑
s=1

ηj−s(zτk+s+2, . . . , zτk+1
)
(s∑
i=1

q{τk+i,τk+s+1,...,τr}
)
.

The main issue is to compute the divided differences q{τk+i,τk+s+1,...,τr} appearing in
these expressions, for k = 0, . . . , r − 1 and 1 ≤ i ≤ s ≤ ℓk+1. Once this is done, the
combinations necessary to obtain pτk+j are easily carried out. The main ingredient in
the proof is the following lemma which describes the computation of a single divided
difference.

Lemma 23. There exists an algorithm Divided Difference(q, I) that takes as input q as
in Proposition 22 and a subset I = {i1, . . . , ik} of {1, . . . , ℓ}, and returns qI . For q of
degree at most d, the runtime is O (̃ℓ

(
ℓ+d
d

)
) operations in K.

Proof. For j = 1, . . . , k − 1, we claim that given q{i1,...,ij−1}, we can obtain q{i1,...,ij}
using O (̃

(
ℓ+d
d

)
) operations in K.

To see this note that q{i1,...,ik−1} has degree at most d. In order to compute q{i1,...,ij}, we

use evaluation/interpolation. Choosing
(
ℓ+d
d

)
points as prescribed in [14], the algorithm

given there allows us to compute the values of both numerator and denominator in (9)
in O (̃

(
ℓ+d
d

)
) operations, then compute their ratio, and finally interpolate q{i1,...,ij} in the

same asymptotic runtime. The result then follows. 2

18

Our Symmetrize algorithm now proceeds as follows. Apply algorithm Divided Difference
from Lemma 23 to all [τk+ i, τk+s+1, . . . , τr], for k = 0, . . . , r−1 and 1 ≤ i ≤ s ≤ ℓk+1.

There are O(ℓ2) such indices, so this step takes O (̃ℓ3
(
ℓ+d
d

)
) operations in K, allowing us

to compute all sums
∑s

i=1 q{τk+i,τk+s+1,...,τr} for the same asymptotic cost.

For k = 0, . . . , r − 1, j = 1, . . . , ℓk+1 − 1 and s = 1, . . . , j, we then determine the

elementary symmetric polynomial ηj−s(zτk+s+2, . . . , zτk+1
), which does not involve any

arithmetic operations. We multiply it by the above sum, with cost O (̃
(
ℓ+d
d

)
), since the

polynomials involved in the product have degree sum at most d and at most ℓ variables.

Taking all indices k, j, s into account, this adds another O (̃ℓ3
(
ℓ+d
d

)
) steps to the total.

4. Algorithms for computing critical points

We can now turn to the main question in this article. Let f = (f1, . . . , fs) be polyno-

mials in K[x1, . . . , xn]
Sn , with s ≤ n, and with V = V (f) ⊂ Kn denoting the algebraic set

defined by f1 = · · · = fs = 0. Given a polynomial ϕ in K[x1, . . . , xn]
Sn , we are interested

in describing the algebraic set W = W (ϕ,f) defined by the simultaneous vanishing of

the polynomials

f1, . . . , fs, Ms+1(Jac(f , ϕ))

where Ms+1(Jac(f , ϕ)) is the set of (s + 1)-minors of the Jacobian matrix Jac(f , ϕ) ∈
K[x1, . . . , xn]

(s+1)×n.

4.1. Description of the algebraic set W

Sincce the algebraic set W is invariant under the action of the symmetric group by

Corollary 7, the discussion in Section 2.3 applies to W . In particular, for a partition λ

of n, the sets Wλ and W ′
λ of (8) are well-defined. In what follows, we fix a partition

λ = (nℓ1
1 nℓ2

2 . . . nℓr
r) of n and we let ℓ be its length; we explain how to compute a

description of W ′
λ along the lines of Section 2.3. For this, we let Z1, . . . ,Zr be the

indeterminates associated to λ, as defined in Section 2.1, with Zi = (zi,1, . . . , zi,ℓi). As

in that section, we also write all indeterminates z1,1, . . . , zr,ℓr as z1, . . . , zℓ.

Definition 24. With λ and Z1, . . . ,Zr as above, we define Tλ, the K-algebra homomor-

phism K[x1, . . . , xn]→ K[Z1, . . . ,Zr] mapping x1, . . . , xn to

z1,1, . . . , z1,1︸ ︷︷ ︸
n1

, . . . , z1,ℓ1 , . . . , z1,ℓ1︸ ︷︷ ︸
n1

, . . . , zr,1, . . . , zr,1︸ ︷︷ ︸
nr

, . . . , zr,ℓr , . . . , zr,ℓr︸ ︷︷ ︸
nr

. (10)

The operator Tλ extends to vectors or matrices of polynomials entry-wise.

We can now define

f [λ] = Tλ(f) = (f
[λ]
1 , . . . , f [λ]

s) and J[λ] = Tλ(Jac(f , ϕ)) =
[
J
[λ]
i,j

]
1≤i≤s+1,1≤j≤n

.

Notice that for f in K[x1, . . . , xn]
Sn , and for any indices j, k in {1, . . . , n} for which

Tλ(xj) = Tλ(xk), we have

Tλ

(
∂f

∂xj

)
= Tλ

(
∂f

∂xk

)
;

19

this follows by applying Lemma 6 to f and the transposition (j k). Thus

Tλ

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
=

(
f
[λ]
1,1, . . . , f

[λ]
1,1︸ ︷︷ ︸

n1

, . . . , f
[λ]
1,ℓ1

, . . . , f
[λ]
1,ℓ1︸ ︷︷ ︸

n1

, . . . , f
[λ]
r,1 , . . . , f

[λ]
r,1︸ ︷︷ ︸

nr

, . . . , f
[λ]
r,ℓr

, . . . , f
[λ]
r,ℓr︸ ︷︷ ︸

nr

)
,

where f
[λ]
i,j are polynomials in the variables (Z1, . . . ,Zr). Consequently, we have the

following.

Lemma 25. The columns of the transformed Jacobian matrix J[λ] have the form:

J[λ] =
(
J
[λ]
1,1, . . . , J

[λ]
1,1︸ ︷︷ ︸

n1

, . . . , J
[λ]
1,ℓ1

, . . . , J
[λ]
1,ℓ1︸ ︷︷ ︸

n1

, . . . , J
[λ]
r,1 , . . . , J

[λ]
r,1︸ ︷︷ ︸

nr

, . . . , J
[λ]
r,ℓr

, . . . , J
[λ]
r,ℓr︸ ︷︷ ︸

nr

)
. (11)

We will then letG[λ] = [G
[λ]
i,j]1≤i≤s+1,1≤j≤ℓ be the matrix with entries in K[Z1, . . . ,Zr]

obtained from Jac(f , ϕ) by first applying Tλ and then keeping only one representative
among all repeated columns highlighted in the previous lemma.

Example 26. Let s = 1 and n = 5, so we consider two polynomials f1, ϕ in K[x1, . . . , x5],
and take λ = (11 22). Then

f
[λ]
1 (z1,1, z2,1, z2,2) = Tλ(f1) = f1(z1,1, z2,1, z2,1, z2,2, z2,2),

and

G[λ] =


Tλ(

∂f1
∂x1

) Tλ(
∂f1
∂x2

) Tλ(
∂f1
∂x4

)

Tλ(
∂ϕ
∂x1

) Tλ(
∂ϕ
∂x2

) Tλ(
∂ϕ
∂x4

)

 ∈ K[z1,1, z2,1, z2,2]
2×3.

It is easy to see that the polynomials f [λ] are Sλ-invariant, where Sλ is the permutation
group Sℓ1 × · · · × Sℓr introduced in the previous section. However, this is generally not
the case for the entries of G[λ].

Lemma 27. Let g[λ] = (g
[λ]
1 , . . . , g

[λ]
ℓ) be a row of G[λ]. Then

(i) zi − zj divides g
[λ]
i − g

[λ]
j for 1 ≤ i < j ≤ ℓ and

(ii) g[λ] is Sλ-equivariant.

Proof. For the sake of definiteness, let us assume that g[λ] is the row corresponding to
the gradient of f1, with the other cases treated similarly.

For statement (i), we start from indices i, j as in the lemma and let S be the K-
algebra homomorphism K[Z1, . . . ,Zr] → K[Z1, . . . ,Zr] that maps zi to zj , leaving all

other variables unchanged. Let u, v in {1, . . . , n} be indices such that g
[λ]
i = Tλ(∂f1/∂xu)

and g
[λ]
j = Tλ(∂f1/∂xv) and σ ∈ Sn the transposition (u v). From Lemma 6, we have that

σ(∂f1/∂xu) = ∂f1/∂xv and applying S◦Tλ gives S(Tλ(σ(∂f1/∂xu))) = S(Tλ(∂f1/∂xv)).
For any h ∈ K[x1, . . . , xn] we have, by construction, S(Tλ(σ(h))) = S(Tλ(h)). Applying

this on the left-hand side of the previous equality gives S(g
[λ]
i) = S(g

[λ]
j). As a result,

zi − zj divides g
[λ]
i − g

[λ]
j , as claimed.

For statement (ii), we take indices k in {1, . . . , r} and j, j′ in {1, . . . , ℓk}. We let

σ ∈ Sλ be the transposition that maps (k, j) to (k, j′) and prove that σ(g
[λ]
k,j) = g

[λ]
k,j′ . As

20

before, there exist indices u, v in {1, . . . , n} such that g
[λ]
k,j = Tλ(∂f1/∂xu) and g

[λ]
k,j′ =

Tλ(∂f1/∂xv). Without loss of generality, assume that u and v are the smallest such
indices. Then Tλ maps xu, . . . , xu+ℓk−1 to zk,j and xv, . . . , xv+ℓk−1 to zk,j′ .

Let τ ∈ Sn be permutation that permutes (u, . . . , u+ ℓk − 1) with (v, . . . , v + ℓk − 1).
From Lemma 6, we get τ(∂f1/∂xv) = ∂f1/∂xu. Then Tλ(τ(∂f1/∂xu)) = Tλ(∂f1/∂xv) =

g
[λ]
k,j′ . By the construction, the left-hand side is equal to σ(Tλ(∂f1/∂xu)), that is, σ(g

[λ]
k,j). 2

Lemma 27 implies that we can apply Algorithm Symmetrize from Section 3 to each
row of G[λ]. The result is a polynomial matrix H[λ] in K[Z1, . . . ,Zr], whose rows are
all Sλ-invariant, and such that H[λ]U[λ] = G[λ], for some polynomial matrix U[λ] in
K[Z1, . . . ,Zr]

ℓ×ℓ. Applying Algorithm Symmetric Coordinates from Lemma 9 to the en-
tries of both f [λ] and H[λ] gives polynomials f̄ [λ] and a matrix H̄[λ], all with en-
tries in K[e1, . . . , er], with variables ei = ei,1, . . . , ei,ℓ1 for all i, and such that f [λ] =
f̄ [λ](η1, . . . ,ηr) and H[λ] = H̄[λ](η1, . . . ,ηr).

The following summarizes the main properties of this construction. For the definitions
of the sets Cλ, Cstrictλ , the mapping Eλ and the open set Oλ ⊂ Kℓ, see Section 2.3.

Proposition 28. Let λ be a partition of n of length ℓ.
(i) If ℓ ≤ s, then Eλ(W ∩ Cλ) is the zero-set of f̄ [λ] in Kℓ.
(ii) If ℓ > s, then W ′

λ = Eλ(W ∩ Cstrictλ) is the zero-set of f̄ [λ] and all (s+ 1)-minors of
H̄[λ] in Oλ ⊂ Kℓ.

Proof. Let ξ be in the set Cλ defined in Section 2.3, and write

ξ =
(
ξ1,1, . . . , ξ1,1︸ ︷︷ ︸

n1

, . . . , ξ1,ℓ1 , . . . , ξ1,ℓ1︸ ︷︷ ︸
n1

, . . . , ξr,1, . . . , ξr,1︸ ︷︷ ︸
nr

, . . . , ξr,ℓr , . . . , ξr,ℓr︸ ︷︷ ︸
nr

)
.

Set ζ = (ξ1,1, ξ1,2, . . . , ξr,ℓr) ∈ Kℓ and ε = Eλ(ξ) ∈ Kℓ. By definition, we have f(ξ) =
f [λ](ζ) and Jac(f , ϕ)(ξ) = J[λ](ζ). Thus, ξ is in W ∩ Cλ if and only if it cancels f and
Jac(f , ϕ) has rank at most s at ξ, that is, if f [λ](ζ) = 0 and J[λ](ζ) has rank at most s.
The point ξ is in W ∩ Cstrictλ if all the entries of ζ are also pairwise distinct.

In addition, we have f [λ](ζ) = f̄ [λ](ε) and, by construction,

rank(J[λ](ζ)) = rank(G[λ](ζ)).

If ℓ ≤ s then, since G[λ] has ℓ columns, we see that ξ is in W ∩Cλ if and only if ε = Eλ(ξ)
cancels f̄ [λ]. Since Eλ : Cλ → Kℓ is onto, this implies our first claim.

Suppose further that ξ is in Cstrictλ , so that ε is in Oλ. From Proposition 20, we have
H[λ]U[λ] = G[λ]. Our assumption on ξ implies that U[λ](ζ) is invertible, so that G[λ]

and H[λ] have the same rank at ζ. Finally, we have H[λ](ζ) = H̄[λ](ε). All this combined
shows that ξ is in W ′

λ = Eλ(W ∩ Cstrictλ) if and only if ε = Eλ(ξ) cancels f̄ [λ] and all
(s + 1)-minors of H̄[λ]. Since the restriction Eλ : Cstrictλ → Oλ is onto, this implies the
second claim. 2

4.2. The Critical Points Per Orbit algorithm

The main algorithm of this paper is Critical Points Per Orbit which takes as input
symmetric f = (f1, . . . , fs) and ϕ in K[x1, . . . , xn] and, if finite, outputs a symmetric
representation of the critical point set W = W (ϕ,f). Using our notation from Section 2,
this means that we want to compute zero-dimensional parametrizations of W ′

λ = Eλ(W ∩

21

Cstrictλ), for all partitions λ of n for which this set is not empty. The algorithm is based
on Proposition 28, with a minor modification, as we will see that it is enough to consider
partitions of n of length ℓ either exactly equal to s, or at least s+ 1.

For any partition λ, we first need to transform f and ϕ, in order to obtain the poly-
nomials in Proposition 28.

Lemma 29. There exists an algorithm Prepare F(f , λ) which takes as input f as above
and a partition λ, and returns f̄ [λ]. If f has degree at most d, the algorithm takes
O (̃n

(
n+d
d

)
2) operations in K. Similarly, there exists an algorithm Prepare F H(f , ϕ, λ)

which takes as input f , ϕ as above and a partition λ, and returns f̄ [λ] and H̄[λ]. If f and
ϕ have degree at most d, then the algorithm takes O (̃n4

(
n+d
d

)
2) operations in K.

Proof. In the first case, applying Tλ to f takes linear time in the number of monomi-
als O(n

(
n+d
d

)
) and gives us f [λ]. We then invoke Symmetric Coordinates (λ,f [λ]), using

Lemma 9, in order to obtain f̄ [λ] with the cost being O (̃n
(
n+d
d

)
2) operations in K.

In the second case, we obtain f [λ] as above. We also compute the matrix Jac(f , ϕ),
which takes O(n2

(
n+d
d

)
) operations. For the same cost, we apply Tλ to all its entries and

remove redundant columns, as specified in Lemma 25, so as to yield the matrix G[λ]. We
then apply Algorithm Symmetrize from Proposition 22 to all rows of G[λ], which takes
O (̃n4

(
n+d
d

)
) operations, and returns H[λ]. Finally, we apply Symmetric Coordinates to all

entries of this matrix which gives H̄[λ] and takes O (̃n2
(
n+d
d

)
2) operations in K. 2

At the core of the algorithm, we need a procedure for finding isolated solutions of
certain polynomial systems. In our main algorithm, we solve such systems using pro-
cedures called Isolated Points(g) and Isolated Points(g,H, k). Given polynomials g, the
former returns a zero-dimensional parametrization of the isolated points of V (g). The
latter takes as input polynomials g, a polynomial matrix H and an integer k, and re-
turns a zero-dimensional parametrization of the isolated points of V (g,Mk(H)), where
Mk(H) denotes the set of k-minors of H (note that the former procedure can be seen as
a particular case of the latter, where we take H to be a matrix with no row and k = −1).
To establish correctness of the main algorithm, any implementation of these procedures
is suitable.

Apart from the subroutines discussed above and the function Decompose from Lemma
17, our algorithm also requires a procedure Remove Duplicates(S). This inputs a list S =
(λi,Ri)1≤i≤N , where each λi is a partition of n and Ri a zero-dimensional parametriza-
tion. As all λi’s may not be distinct in this list, this procedure removes pairs (λi,Ri) from
S so as to ensure that all resulting partitions are pairwise distinct (the choice of which
entries to remove is arbitrary; it does not affect correctness of the overall algorithm).

Proposition 30. Algorithm Critical Points Per Orbit is correct.

Proof. The goal of the algorithm is to compute zero-dimensional representations of W ′
λ =

Eλ(W ∩ Cstrictλ) for all partitions λ of n for which this set is not empty.
To understand the first loop, recall first that W is assumed to be finite. Hence this

also holds for all W ∩ Cλ, and thus for all Eλ(W ∩ Cλ). As a result, for λ of length s,
Proposition 28(i) implies that at Step 2b , Isolated Points(f̄λ) returns a zero-dimensional
parametrization of G := Eλ(W ∩ Cλ). Then, we recall from Lemma 17 that the output
of Decompose(λ,Rλ) is a symmetric representation of E∗

λ(G). Note that the latter set is

22

Algorithm 1 Critical Points Per Orbit(f , ϕ)

Input: f = (f1, . . . , fs) and ϕ in K[x1, . . . , xn]
Sn such that W = W (ϕ, V (f)) is finite.

Output: A symmetric representation of W .
(1) S = []
(2) For λ ⊢ n of length s

(a) f̄ [λ] = Prepare F(f , λ)
(b) Rλ = Isolated Points(f̄ [λ])
(c) append the output of Decompose(λ,Rλ) to S

(3) For any partition λ of n of length in {s+ 1, . . . , n}
(a) f̄ [λ], H̄[λ] = Prepare F H(f , ϕ, λ)
(b) Rλ = Isolated Points(f̄ [λ], H̄[λ], s+ 1)
(c) (λi,Ri)1≤i≤N = Decompose(λ,Rλ)
(d) append (λi0 ,Ri0) to S, where i0 is such that λi0 = λ, if such an i0 exists

(4) Return Remove Duplicates(S)

the orbit of W ∩ Cλ, that is, the set of all orbits contained in W whose type λ′ satisfies
λ′ ≥ λ. Taking into account all partitions λ of length s, the set of partitions λ′ ≥ λ
covers all partitions of length ℓ ∈ {1, . . . , s}, so that at the end of Step 2, we have
zero-dimensional parametrizations of W ′

λ for all partitions of length ℓ ∈ {1, . . . , s} (with
possible repetitions). Calling Remove Duplicates(S) will remove any duplicates among
this list.

The second loop deals with partitions λ of length at least s+1. Since we assume that
W is finite, W ′

λ is finite for any such λ. Proposition 28(ii) then implies that the points
in W ′

λ are isolated points of the zero-set of f̄ [λ] and of the (s + 1)-minors of H̄[λ]. As a
result, W ′

λ is a subset of Z(Rλ), for Rλ computed in Step 3b with all other points in
Z(Rλ) corresponding to points in W with type λ′ > λ. In particular, after the call to
Decompose, it suffices to keep the entry in the list corresponding to the partition λ, to
obtain a description of W ′

λ. 2

5. Cost of the Critical Points Per Orbit Algorithm

In this section we provide a complexity analysis of our Critical Points Per Orbit algo-
rithm and hence also complete the proof of Theorem 5.

At the core of the Critical Points Per Orbit algorithm is a procedure, Isolated Points.
Recall that on input polynomials g, a polynomial matrix H and an integer k, it returns
a zero-dimensional parametrization of the isolated points of V (g,Mk(H)), where Mk(H)
denotes the set of k-minors of H. We apply this procedure to polynomials with entries
in K[e1, . . . , er] = K[e1,1, . . . , e1,ℓ1 , e2,1, . . . , e2,ℓ2 , . . . , er,1, . . . , er,ℓr].

Rather than using classical methods for solving these polynomial systems, we use
the symbolic homotopy method for weighted domains given in [45], as this algorithm is
well suited to handle a weighted-degree structure exhibited by such systems. Indeed,
the polynomial ring, K[e1, . . . , er], arising from an orbit parameter by λ is obtained
through a correspondence between the variable ei,k and the elementary symmetric poly-
nomial ηi,k(xj1 , . . . , xjm), for certain indices j1, . . . , jm. More precisely, for any f in

23

K[Z1, . . . ,Zr]
Sλ , let f̄ be the polynomial in K[e1, . . . , er] satisfying

f(Z1, . . . ,Zr) = f̄(η1, . . . ,ηr),

with ηi = (ηi,1, . . . , ηi,ℓi) for all i. Since each ηi,k has degree k, it is natural to assign a

weight k to variable ei,k, so that the weighted degree of f̄ equals the degree of f . Our

vector of variable weights is then w = (1, . . . , ℓ1, 1, . . . , ℓ2, . . . , 1, . . . , ℓr).

5.1. Solving weighted determinantal systems

In this section, we briefly review the algorithm for solving determinantal systems over

a ring of weighted polynomials.

Suppose we work with polynomials in K[Y] = K[y1, . . . , ym], where each variable yi
has weight wi ≥ 1 (denoted by wdeg(yi) = wi). The weighted degree of a monomial

yα1
1 · · · yαm

m is then
∑m

i=1 wiαi, and the weighted degree of a polynomial is the maximum

of the weighted degree of its terms with non-zero coefficients. The weighted column degrees

of a polynomial matrix is the sequence of the weighted degrees of its columns, where the

weighted degree of a column is simply the maximum of the weighted degrees of its entries.

Let f = (f1, . . . , fτ) be a sequence of polynomials in K[Y] and G = [gi,j] ∈ K[Y]p×q

a matrix of polynomials such that p ≤ q and m = q− p+ τ +1, and let Vp(G,f) denote

the set of points in K at which all polynomials in f and all p-minors of G vanish. In

[45], a symbolic homotopy algorithm for weighted domains is presented which constructs

a symbolic homotopy from a generic start system to the system defining Vp(G,f) and

then uses this to efficiently determine the isolated points of Vp(G,f). The main theorem

of [45], in the special case of weighted polynomial rings, is given in terms of a number of

parameters.

Let (γ1, . . . , γτ) be the weighted degrees of (f1, . . . , fτ), let (δ1, . . . , δq) be the weighted

column degrees of G, let d be the maximum of the degrees (in the usual sense) of all

f ,G and set

Γ = m2

(
m+ d

m

)
+m4

(
q

p

)
.

The following quantities are all related to the degrees of some geometric objects present

in the algorithm. We define

c =
γ1 · · · γτ · ηm−τ (δ1, . . . , δq)

w1 · · ·wm
and

e =
(γ1 + 1) · · · (γτ + 1) · ηm−τ (δ1 + 1, . . . , δq + 1)

w1 · · ·wm
,

where ηn−s is the elementary symmetric polynomial of degree n − s. For a subset i =

{i1, . . . , im−τ} ⊂ {1, . . . , q}, we further let (di,1, . . . , di,m) denote the sequence obtained

by sorting (γ1, . . . , γτ , δi1 , . . . , δim−τ
) in non-decreasing order, and we write

κi = max
1≤k≤m

(di,1 · · · di,kwk+1 · · ·wm) and κ =
∑

i={i1,...,im−τ}⊂{1,...,q}

κi. (12)

Note that without loss of generality, in these equations, we may also assume that the

weights w1, . . . , wm are reordered to form a non-decreasing sequence.

24

Theorem 31. [45, Theorem 5.3] Let G be a matrix in K[Y]p×q and f = (f1, . . . ,
fτ) be polynomials in K[Y] such that p ≤ q and m = q − p + τ + 1. There exists a
randomized algorithm which takes G and f as input and computes a zero-dimensional
parametrization of these isolated solutions using

O˜
((

c(e+ c5) + d2
(κ

w1 · · ·wm

)2)
m4Γ

)
operations in K. Moreover, the number of solutions in the output is at most c.

When there is no matrix G, so τ = m, then the runtimes reported above remain the
same with the term Γ becoming Γ = m2

(
m+d
m

)
. In this case, the term κ is simply equal

to κ = max1≤k≤m(γ1 · · · γkwk+1 · · ·wm), assuming that the degrees γ1, . . . , γk are given
in non-decreasing order.

We finish this subsection with an observation in those cases with m > q − p+ τ + 1.

Remark 32. When m > q − p+ τ + 1, there are no isolated points in Vp(G,f). Indeed
if we let I ⊂ K[Y] be the ideal generated by the p-minors of G then a result due to
Eagon and Northcott [18, Section 6] implies that all irreducible components of V (I)
have codimension at most q − p + 1. By Krull’s theorem the irreducible components of
Vp(G,f) = V (I+ ⟨f1, . . . , fτ ⟩) then have codimension at most q−p+1+ τ . This implies
that the irreducible components of Vp(G,f) in Km have dimension at least m− (q− p+
τ + 1), which is positive when m > q − p+ τ + 1.

5.2. The complexity of the Isolated Points procedure

Estimating the runtimes for the Isolated Points algorithms follows from Theorem 31,
for the weighted domains associated to various partitions of n. Therefore we let λ =
(nℓ1

1 nℓ2
2 . . . nℓr

r) be a partition of length ℓ, with ℓ ≥ s.
The parameters that appear in Theorem 31 can be determined as follows. The weights

of variables (e1, . . . , er) are w = (1, . . . , ℓ1, . . . , 1, . . . , ℓr). For i = 1, . . . , s, the weighted

degree of f̄
[λ]
i is the same as the degree of f

[λ]
i and so is at most d.

For j = 1, . . . , ℓ, the weighted column degree of the j-th column of H̄[λ] is at most
δj = d − 1 − ℓ + j (note that all entries of the Jacobian matrix of f , ϕ have degree at
most d − 1; then apply Proposition 18). In particular, if ℓ > d, then all entries on the
j-th column of H̄[λ] equal zero for j = 1, . . . , ℓ− d. Finally, in what follows, we let

Γ = n2

(
n+ d

d

)
+ n4

(
n

s+ 1

)
.

5.2.1. Partitions of length s.

We recall that when the length ℓ of the partition λ equals s, we do not need to deal
with a matrix H̄[λ]. In this situation, one only needs to compute the isolated points of
V (f̄ [λ]).

Consider such a partition λ = (nℓ1
1 nℓ2

2 . . . nℓr
r) of n and the corresponding variables

(e1, . . . , er), with wdeg(ei,k) = k for all i = 1, . . . , r and k = 1, . . . , ℓi. We make the
following claim: if there exists i such that ℓi > d, then there is no isolated point in
V (f̄ [λ]). Indeed, in such a case, variable ei,ℓi does not appear in f̄ [λ], for weighted degree

25

reasons, so that the zero-set of this system is invariant with respect to translations along
the ei,ℓi axis. In particular, it admits no isolated solution.

Therefore we can suppose that all ℓi’s are at most d. In this case, the quantities c, e, κ
used in Theorem 31 become respectively

cλ =
ds

wλ
, eλ =

n(d+ 1)s

wλ
, κλ = ds = wλcλ,

with wλ = ℓ1! · · · ℓr!. In this case Theorem 31 implies that V (f̄ [λ]) contains at most cλ
isolated points, and that and one can compute all of them using

O˜
((
cλ(eλ + c5λ) + d2c2λ

)
n4Γλ

)
⊂ O˜

(
d2cλ(eλ + c5λ)n

4Γ
)

operations in K.

5.2.2. Partitions of length greater than s.
For a partition λ of length ℓ greater than s, we have to take into account the minors of

the matrix H̄[λ]. Note that the assumptions of Theorem 31 are satisfied: the matrix H̄[λ]

is in K[e1, . . . , er]
(s+1)×ℓ, with ℓ ≥ s+ 1, and we have s equations f̄ [λ] in K[e1, . . . , er],

so the number of variables ℓ does indeed satisfy ℓ = ℓ− (s+ 1) + s+ 1.
We claim that if ℓ > d, then the algebraic set Vs+1(H̄

[λ], f̄ [λ]) does not have any
isolated points. Indeed, in this case, we pointed out above that the columns of indices 1
to ℓ − d in H̄[λ] are identically zero. After discarding these zero-columns from H̄[λ], we
obtain a matrix L[λ] of dimension (s+1)×d such that Vs+1(H̄

[λ], f̄ [λ]) = Vs+1(L
[λ], f̄ [λ]),

and using Remark 32 with p = s + 1, q = d, τ = s, and m ≥ ℓ shows that this algebraic
set has no isolated points.

Thus, let us now assume that ℓ ≤ d. The matrix H̄[λ] has weighted column degrees
(δ1, . . . , δℓ) = (d− ℓ, . . . , d− 1), whereas the weighted degrees of all polynomials in f̄ [λ]

are at most d. To estimate the runtime of the Isolated Points(H̄[λ], f̄ [λ]), we will need the
following property.

Lemma 33. Let κ be defined as in (12) with m = ℓ, τ = s, p = s+1, q = ℓ, (δ1, . . . , δℓ) =
(d − 1 − ℓ, . . . , d − 1), and (γ1, . . . , γs) = (d, . . . , d). Then, for partitions of length ℓ at
most d, one has

κ = dsηℓ−s(d− 1, . . . , d− ℓ).

Proof. Without loss of generality, we reorder the weights w as w′ = (w′
1, . . . , w

′
ℓ) such

that w′
1 ≤ · · · ≤ w′

ℓ.
Take i = (i1, . . . , iℓ−s) ⊂ {1, . . . , ℓ}, and let di = (di,1, . . . , di,ℓ) be the sequence

obtained by reordering (d, . . . , d, δi1 , . . . , δiℓ−s
) in non-decreasing order; we first compute

the value of κi from (12). If di,1 = 0 (which can happen only if ℓ = d), then κi = 0.
Otherwise, the sequence di starts with di,1 ≥ 1 and increases until index ℓ − s, after
which it keeps the value d. On the other hand, the ordered sequence of weights never
increases by more than 1, so that for all k = 1, . . . , ℓ, we have w′

k ≤ di,k. In this case,

κi = max
1≤k≤ℓ

(di,1 · · · di,kwk+1 · · ·wm) = di,1 · · · di,ℓ = dsδi1 · · · δiℓ−s
;

note that this equality also holds if di,1 = 0, since then both sides vanish. Since κ =∑
i={i1,...,iℓ−s}⊂{1,...,q} κi, we get

κ =
∑

i={i1,...,iℓ−s}⊂{1,...,ℓ}

dsδi1 · · · δiℓ−s
= dsηℓ−s(d− 1, . . . , d− ℓ). (13)

26

as claimed. 2

The procedure Isolated Points
(
f̄ [λ], H̄[λ]

)
then uses the algorithm in Theorem 31 with

input
(
f̄ [λ], H̄[λ]

)
. Writing as before wλ = ℓ1! · · · ℓr!, the quantities used in the theorem

become

cλ =
dsηℓ−s(d− 1, . . . , d− ℓ)

wλ
,

eλ =
n(d+ 1)sηℓ−s(d, . . . , d− ℓ+ 1)

wλ
,

κλ = dsηℓ−s(d− 1, . . . , d− ℓ) = wλcλ.

This implies that running Isolated Points
(
f̄ [λ], H̄[λ]

)
uses

O˜
((
cλ(eλ + c5λ) + d2c2λ

)
n4Γ

)
operations which is again in

O˜
(
d2cλ(eλ + c5λ)n

4Γ
)
.

As before, the number of solutions in the output is at most cλ.

5.3. Finishing the proof of Theorem 5

We can now finish estimating the runtime of the Critical Points Per Orbit Algorithm.
For partitions of length s we only need to compute f̄ [λ] which takes O (̃n

(
n+d
d

)
2) opera-

tions in K at Step 2a as per Lemma 29. At Step 2b, the procedure Isolated Points(f̄ [λ])
takes at most

O˜
(
d2cλ(eλ + c5λ)n

4Γ
)

operations in K, as we saw in Subsection 5.2.1. The output of this procedure contains
at most cλ points; then, by Lemma 17, the cost of the call to Decompose at Step 2c is
O (̃c2λ n), which is negligible compared to the previous costs.

For partitions of length greater than s, computing f̄ [λ] and H̄[λ] at Step 3a takes
O (̃n4

(
n+d
d

)
2) operations in K, by Lemma 29. The procedure Isolated Points

(
f̄ [λ], H̄[λ]

)
at Step 3b requires at most

O˜
(
d2cλ(eλ + c5λ)n

4Γ
)

operations in K, as we saw in Subsection 5.2.2. Again, since the number of solutions in
the output is at most cλ, the cost of Decompose at Step 3c is still O (̃c2λ n) which, as
before, is negligible in comparison to the other costs. To complete our analysis, we need
the following lemma.

Lemma 34. With all notation being as above, the following holds∑
λ⊢n,ℓλ≥s

cλ ≤ c and
∑

λ⊢n,ℓλ≥s

eλ ≤ e,

where c = ds
(
n+d−1

n

)
and e = n (d+ 1)s

(
n+d
n

)
.

Proof. The proof relies on the combinatorics of integer partitions and properties of ele-
mentary symmetric functions. Details are given in Appendix C. 2

27

As a result, the total cost incurred by our calls to Isolated Points and Decompose is

O˜

(
c(e+ c5)n9d2

((
n+ d

d

)
+

(
n

s+ 1

)))
.

Since
(
n+d
d

)
≤ (n + 1)

(
n+d−1

d

)
, we will simplify this further, by noticing that for d ≥ 2

we have e = n (d+ 1)s
(
n+d
n

)
≤ n(n+ 1)d5s

(
n+d−1

n

)5
= n(n+ 1)c5 so this is

O˜

(
c6n11d2

((
n+ d

d

)
+

(
n

s+ 1

)))
.

For the remaining operations, the total cost of Prepare F and Prepare F H is

n4
∑

λ⊢n,ℓλ≥s

(
n+ d

d

)2

.

Since
(
n+d
d

)
≤ (n + 1)

(
n+d−1

d

)
, the binomial term in the sum is in O(n2c2), so the total

is O(n5c3), and can be neglected. Similarly, the cost of Remove Duplicates is negligible.
Therefore, the total complexity of Critical Points Per Orbit is then in

O˜

(
n11d6s+2

(
n+ d

d

)6((
n+ d

d

)
+

(
n

s+ 1

)))
⊂
(
ds
(
n+ d

d

)(
n

s+ 1

))O(1)

.

Finally, the total number of solutions reported by our algorithm is at most
∑

λ⊢n,ℓλ≥s cλ,
which itself is at most c.

6. Experimental results

In this section, we report on an implementation and set of experimental runs support-
ing the results in this paper. We compare our Critical Points Per Orbit algorithm from
Section 4.2 with a naive algorithm which computes a zero-dimensional parametrization
of V (I), where I is the ideal generated by f and the (s+1)-minors of Jac(f , ϕ). Since no
implementation of the weighted sparse determinantal homotopy algorithm is available at
this time, we use Gröbner bases to solve polynomial systems for each orbit description.
In practical terms the use of Gröbner bases solving is sufficient to see the advantage when
the symmetric structure is exploited in our algorithm.

Our experiments are run using the Maple computer algebra system running on a com-
puter with 16 GB RAM. The Gröbner basis algorithm in Maple uses the implementation
of the F4 and FGLM algorithms from the FGb package [21]. The symmetric polynomials
f and ϕ are chosen uniformly at random in K[x1, . . . , xn], with K = GF(65521), and
have the same degree n as the number of variables, that is, deg(f1) = · · · = deg(fs) =
deg(ϕ) = n. The number s of equations f ranges from 2 to n− 1.

Our experimental results support the theoretical advantage gained by exploiting the
symmetric structure of the input polynomials. In Table 1, we first report the number of
points, denoted by D, that we compute using our algorithm. That is, D is the sum of the
degrees deg(Rλ) that we obtain for all partitions λ of length at least s. The next column
is
⌈∑

ℓλ≥s cλ
⌉
, which is an upper bound on D (here, cλ is as in Subsection 5.2). As we

can see, this bound is quite sharp in general. We next give the upper bound c from (3),
which was proved in Lemma 34. While this bound is sufficient to prove asymptotic results

28

Table 1. Degrees and bounds

n s D
⌈∑

ℓλ≥s cλ
⌉

c deg(I) c̃

4 2 79 80 560 856 864

4 3 47 48 2240 744 768

5 2 425 432 3150 15575 16000

5 3 357 370 15750 18760 20000

5 4 143 157 78750 11160 12500

6 2 2222 2227 16632 - 337500

6 3 2439 2453 99792 - 540000

6 4 1482 1503 598752 - 486000

6 5 470 486 3592512 - 233280

(for fixed input degree, for instance, see the discussion in the introduction), we see that

it is far from sharp.

Finally, we give the number of points deg(I) computed by the naive algorithm, together

with the upper bound c̃ from (4). When the naive algorithm could not complete its

computations within a 24 hour time period the deg(I) was unavailable. We see that

in all cases, the output of our algorithm is much smaller than the one from the direct

approach.

In Table 2 we report on our timings in a detailed fashion. Here, we give the time needed

to compute the zero-dimensional representations deg(Rλ) obtained by our algorithm,

together with their degrees; Time(total) denotes the total time spent in our algorithm. On

the other hand, Time(naive) is the time to compute a zero-dimensional parametrization

for the algebraic set V (I) using the naive algorithm. In the case of n = 6 our algorithm

was efficient (with a maximum time of 1650 seconds) while the naive computations were

all stopped since the computation had gone past 24 hours.

In our experiments, the output Rλ was always empty for partitions of length less

than s. Indeed, for any partition λ of length at most s − 1, Z(Rλ) = V (f̄
[λ]
1 , . . . , f̄

[λ]
s),

where the f̄
[λ]
i are s polynomials in less than s variables derived from the input f . Since

the polynomials f are chosen at random, the evaluated block symmetric polynomials

f
[λ]
1 , . . . , f

[λ]
s are generic. Using [45, Proposition 2.1.(ii)] or modifying slightly the proof

of [45, Proposition 4.5], we indeed expect Z(Rλ) to be empty for such partitions λ of

length less than s. However, we point out that this output can be non-trivial in the

general, non-generic case.

29

Table 2. Algorithm Timings

n s Partition(λ) Time(Rλ) deg(Rλ) ⌈cλ⌉ Time(total) Time(naive) deg(I)

4 2

λ = (14)

λ = (12 21)

λ = (22)

λ = (1131)

1.524s

0.684s

0.200s

0.380s

7

48

8

16

8

48

8

16

3.136s 0.905s 856

5 2

λ = (15)

λ = (13 21)

λ = (12 3)

λ = (11 22)

λ = (11 41)

λ = (21 31)

9.236s

6.832s

2.128s

2.816s

0.316s

0.392s

9

142

112

112

25

25

11

146

113

113

25

25

34.944s 2143.144s 15575

5 3

λ = (15)

λ = (13 21)

λ = (12 3)

λ = (11 22)

18.829s

18.120s

4.607s

5.316s

31

202

62

62

37

209

63

63

48.019s 3423.660s 18760

5 4
λ = (15)

λ = (13 21)

17.080s

12.024s

44

99

53

105
37.372s 969.396s 11160

7. Conclusion and topics for future research

In this paper we have provided a new algorithm for efficiently describing the critical
point set of a function ϕ a variety V (f) with ϕ and the defining functions of the variety
all symmetric. The algorithm takes advantage of the symmetries and lower bounds for
describing the generators of the set of critical points and as a result is more efficient than
previous approaches.

When f = (f1, . . . , fs) ⊂ R[x1, . . . , xn], with R is a real field, then computing the
critical points of polynomial maps restricted to V (f) finds numerous applications in
computational real algebraic geometry. As mentioned in the introduction, such computa-
tions provide an effective Morse-theoretic approach to many problems such as real root
finding, quantifier elimination or answering connectivity queries (see [5]). We view the
complexity estimates in this paper as a possible first step towards better algorithms for
studying real algebraic sets defined by Sn-invariant polynomials.

For instance, let d be the maximum degree of the entries in f = (f1, . . . , fs) and
assume that f generates an (n− s)-equidimensional ideal whose associated algebraic set
is smooth. Then under these assumptions, we observe that the set W (ϕu, V (f)) with

ϕu : (x1, . . . , xn)→ (x1 − u)2 + · · ·+ (xn − u)2

30

and u ∈ R, has a non-empty intersection with all connected components of V (f) ∩ Rn.
Hence, when W (ϕu,f) is finite for a generic choice of u, then one can use our algorithm to
decide whenever V (f)∩Rn is empty. This is done in time polynomial in ds,

(
n+d
d

)
,
(

n
s+1

)
.

Obtaining an algorithm to decide whether V (f) ∩Rn is empty in time polynomial in
ds,
(
n+d
d

)
,
(

n
s+1

)
, without assuming that W (ϕu,f) is finite for a generic u ∈ R, is still an

open problem.
Finally, note that many more involved algorithmic problems with symmetric semi-

algebraic sets arise, as illustrated by [12, 7].

Acknowledgements. G. Labahn is supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), grant number RGPIN-2020-04276. É. Schost is sup-
ported by an NSERC Discovery Grant. T. X. Vu is supported by a labex CalsimLab fel-
lowship/scholarship. The labex CalsimLab, reference ANR-11-LABX-0037-01, is funded
by the program “Investissements d’avenir” of the Agence Nationale de la Recherche, ref-
erence ANR-11-IDEX-0004-02. M. Safey El Din and T. X. Vu are supported by the ANR
grants ANR-18-CE33-0011 Sesame, ANR-19-CE40-0018De Rerum Natura and ANR-
19-CE48-0015 ECARP and the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement N. 813211 (POEMA).

References

[1] M.-E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. Zeros, multiplicities, and
idempotents for zero-dimensional systems. In Algorithms in Algebraic Geometry and
Applications, pages 1–15. Springer, 1996.

[2] P. Aubry, F. Rouillier, and M. Safey El Din. Real solving for positive dimensional
systems. Journal of Symbolic Computation, 34(6):543–560, 2002.

[3] B. Bank, M. Giusti, J. Heintz, and M. Safey El Din. Intrinsic complexity estimates
in polynomial optimization. Journal of Complexity, 30(4):430–443, 2014.

[4] B. Bank, M. Giusti, J. Heintz, M. Safey El Din, and É. Schost. On the geometry of
polar varieties. Applicable Algebra in Engineering, Communication and Computing,
pages 33–83, 2010.

[5] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry (Al-
gorithms and Computation in Mathematics). Springer-Verlag, Berlin, Heidelberg,
2006.

[6] S. Basu, M.-F. Roy, M. Safey El Din, and É. Schost. A baby-step giant-step roadmap
algorithm for general real algebraic sets. Foundations of Computational Mathemat-
ics, 14(6):1117–1172, 2014.

[7] Saugata Basu and Cordian Riener. Bounding the equivariant betti numbers of
symmetric semi-algebraic sets. Advances in Mathematics, 305:803–855, 2017.

[8] G. M. Besana, S. Di Rocco, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler.
Cell decomposition of almost smooth real algebraic surfaces. Numer. Algorithms,
63(4):645–678, 2013.

[9] M. Bläser and G. Jindal. On the Complexity of Symmetric Polynomials. In A. Blum,
editor, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019),
volume 124 of Leibniz International Proceedings in Informatics (LIPIcs), pages 47:1–
47:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

31

[10] A. Bompadre, G. Matera, R. Wachenchauzer, and A. Waissbein. Polynomial equa-
tion solving by lifting procedures for ramified fibers. Theoretical Computer Science,
315(2-3):335–369, May 2004.

[11] D. A. Brake, D. J. Bates, W. Hao, J. D. Hauenstein, A. J. Sommese, and C. W.
Wampler. Algorithm 976: {B}ertini_real: numerical decomposition of real alge-
braic curves and surfaces. ACM Trans. Math. Software, 44(1):Art. 10, 30, 2017.

[12] Ludwig Bröcker. On symmetric semialgebraic sets and orbit spaces. Banach Center
Publications, 44(1):37–50, 1998.

[13] L. Busé and A. Karasoulou. Resultant of an equivariant polynomial system with
respect to the symmetric group. Journal of Symbolic Computation, 76:142–157,
2016.

[14] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial
equations faster. In Proceedings of the 1989 International Symposium on Symbolic
and Algebraic Computation, ISSAC’89, pages 121–128. ACM, 1989.

[15] A. Colin. Solving a system of algebraic equations with symmetries. Journal of Pure
and Applied Algebra, 117-118:195 – 215, 1997.

[16] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[17] H. Derksen and G. Kemper. Computational Invariant Theory. Invariant Theory and
Algebraic Transformation Groups, I. Springer-Verlag, Berlin, 2002. Encyclopedia of
Mathematical Sciences, 130.

[18] J. A. Eagon and D. G. Northcott. Ideals defined by matrices and a certain complex
associated with them. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 269(1337):188–204, 1962.

[19] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry. Grad-
uate Texts in Mathematics. Springer, New York, Berlin, Heildelberg, 1995.

[20] N.-E. Fahssi. Polynomial triangles revisited. https://arxiv.org/abs/1202.0228,
2012.

[21] J.-C. Faugère. FGb: A Library for Computing Gröbner Bases. In Komei Fukuda,
Joris Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathematical Soft-
ware - ICMS 2010, volume 6327 of Lecture Notes in Computer Science, pages 84–87,
Berlin, Heidelberg, September 2010. Springer Berlin / Heidelberg.

[22] J.-C. Faugère, M. Hering, and J. Phan. The membrane inclusions curvature equa-
tions. Advances in Applied Mathematics, 31(4):643 – 658, 2003.

[23] J.-C. Faugère and S. Rahmany. Solving systems of polynomial equations with sym-
metries using SAGBI-Gröbner bases. In Proceedings of the 2009 International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’09, pages 151–158, New
York, NY, USA, 2009. ACM.

[24] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. Critical points and Gröbner
bases: The unmixed case. In Proceedings of the 2012 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’12, pages 162–169, New York, NY,
USA, 2012. ACM.

[25] J.-C. Faugère and J. Svartz. Solving polynomial systems globally invariant under
an action of the symmetric group and application to the equilibria of N vortices
in the plane. In Proceedings of the 2012 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’12, pages 170–178, New York, NY, USA, 2012.
ACM.

32

{B}ertini_real
https://arxiv.org/abs/1202.0228

[26] J. V. Z. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2 edition, 2003.

[27] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations using
Gröbner bases. In AAECC, volume 356 of LNCS, pages 247–257. Springer, 1989.

[28] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line
programs in geometric elimination theory. Journal of Pure and Applied Algebra,
124:101–146, 1998.

[29] M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. When polynomial equation
systems can be solved fast? In AAECC-11, volume 948 of LNCS, pages 205–231.
Springer, 1995.

[30] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner-free alternative for polynomial system
solving. Journal of Complexity, 17(1):154–211, 2001.

[31] A. Greuet and M. Safey El Din. Probabilistic algorithm for polynomial optimization
over a real algebraic set. SIAM Journal on Optimization, 24(3):1313–1343, 2014.

[32] F. Guo, M. Safey El Din, and L. Zhi. Global optimization of polynomials using gen-
eralized critical values and sums of squares. In Proceedings of the 2010 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’10, pages 107–114, New
York, NY, USA, 2010. ACM.

[33] J. D. Hauenstein. Numerically computing real points on algebraic sets. Acta Appl.
Math., 125:105–119, 2013.

[34] J. D. Hauenstein, M. Safey El Din, É. Schost, and T.X. Vu. Solving determinantal
systems using homotopy techniques. Journal of Symbolic Computation, 104:754–804,
2021.

[35] J. Heintz, G. Jeronimo, J. Sabia, and P. Solerno. Intersection theory and deformation
algorithms: the multi-homogeneous case, 2002.

[36] J. Heintz, T. Krick, S. Puddu, J. Sabia, and A. Waissbein. Deformation techniques
for efficient polynomial equation solving. Journal of Complexity, 16(1):70 – 109,
2000.

[37] M. I. Herrero, G. Jeronimo, and J. Sabia. Computing isolated roots of sparse poly-
nomial systems in affine space. Theoretical Computer Science, 411(44):3894 – 3904,
2010.

[38] M. I. Herrero, G. Jeronimo, and J. Sabia. Affine solution sets of sparse polynomial
systems. Journal of Symbolic Computation, 51:34 – 54, 2013. Effective Methods in
Algebraic Geometry.

[39] M. I. Herrero, G. Jeronimo, and J. Sabia. Elimination for generic sparse polynomial
systems. Discrete & Computational Geometry, 51(3):578–599, 2014.

[40] E. Hubert. Invariant algebraic sets and symmetrization of polynomial systems.
Journal of Symbolic Computation, 95:53–67, 2019.

[41] E. Hubert and G. Labahn. Computation of invariants of finite abelia groups. Math-
ematics of Computation, 85(302):3029–3050, 2016.

[42] G. Jeronimo, G. Matera, P. Solernó, and A. Waissbein. Deformation techniques for
sparse systems. Foundations of Computational Mathematics, 9(1):1–50, February
2009.

[43] G. Jeronimo and D. Perrucci. A probabilistic symbolic algorithm to find the min-
imum of a polynomial function on a basic closed semialgebraic set. Discrete &
Computational Geometry, 52(2):260–277, 2014.

33

[44] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
Journal für die Reine und Angewandte Mathematik, 92:1–122, 1882.

[45] G. Labahn, M. Safey El Din, É. Schost, and T.X. Vu. Homotopy techniques for
solving sparse column support determinantal polynomial systems. Journal of Com-
plexity, 66:101557, 2021.

[46] G. Lecerf and É. Schost. Fast multivariate power series multiplication in charac-
teristic zero. SADIO Electronic Journal on Informatics and Operations Research,
5(1):1–10, September 2003.

[47] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford university
press, 1998.

[48] Philippe Moustrou, Cordian Riener, and Hugues Verdure. Symmetric ideals, specht
polynomials and solutions to symmetric systems of equations. Journal of Symbolic
Computation, 107:106–121, 2021.

[49] J. Nie, J. Demmel, and B. Sturmfels. Minimizing polynomials via sum of squares
over the gradient ideal. Mathematical programming, 106(3):587–606, 2006.

[50] J. Nie and K. Ranestad. Algebraic degree of polynomial optimization. SIAM Journal
on Optimization, 20(1):485–502, April 2009.

[51] N. Perminov and Sh. Shakirov. Discriminants of symmetric polynomials. arXiv
preprint arXiv:0910.5757, 2009.

[52] A. Poteaux and É. Schost. On the complexity of computing with zero-dimensional
triangular sets. Journal of Symbolic Computation, 50:110–138, 2013.

[53] C. Riener. On the degree and half-degree principle for symmetric polynomials.
Journal of Pure and Applied Algebra, 216(4):850 – 856, 2012.

[54] C. Riener. Symmetric semi-algebraic sets and non-negativity of symmetric polyno-
mials. Journal of Pure and Applied Algebra, 220(8):2809 – 2815, 2016.

[55] C. Riener and M. Safey El Din. Real root finding for equivariant semi-algebraic
systems. In Proceedings of the 2018 ACM International Symposium on Symbolic
and Algebraic Computation, ISSAC ’18, pages 335–342, New York, NY, USA, 2018.
ACM.

[56] Cordian Riener, Thorsten Theobald, Lina Jansson Andrén, and Jean B Lasserre.
Exploiting symmetries in sdp-relaxations for polynomial optimization. Mathematics
of Operations Research, 38(1):122–141, 2013.

[57] F. Rouillier. Solving zero-dimensional systems through the Rational Univariate
Representation. Applicable Algebra in Engineering, Communication and Computing,
9(5):433–461, 1999.

[58] M. Safey El Din and É. Schost. A nearly optimal algorithm for deciding connectivity
queries in smooth and bounded real algebraic sets. J. ACM, 63(6):48:1–48:37, 2017.

[59] M. Safey El Din and É. Schost. Bit complexity for multi-homogeneous polyno-
mial system solving - application to polynomial minimization. Journal of Symbolic
Computation, 87:176–206, 2018.

[60] P.-J. Spaenlehauer. On the complexity of computing critical points with Gröbner
bases. SIAM Journal on Optimization, 24(3):1382–1401, 2014.

[61] Stefan Steidel. Gröbner bases of symmetric ideals. Journal of Symbolic Computation,
54:72–86, 2013.

[62] B. Sturmfels. Algorithms in Invariant Theory. Springer-Verlag, Berlin, Heidelberg,
1993.

34

[63] V. Timofte. On the positivity of symmetric polynomial functions.: Part i: General
results. Journal of Mathematical Analysis and Applications, 284(1):174 – 190, 2003.

[64] T. X. Vu. Computing critical points for algebraic systems defined by hyperoctahedral
invariant polynomials. In Proceedings ISSAC 2022. ACM, 2022.

A. Proof of Proposition 18

The proof of Proposition 18 will be done in stages. We start with some rather straight-
forward lemmas.

Lemma 35. Consider an Sλ-equivariant sequence q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr].
Then, for any I ⊂ {1, . . . , ℓ} and any σ in Sλ, we have σ(qI) = qσ(I).

Proof. By induction on the size of I. 2

Lemma 36. Consider a sequence q = (q1, . . . , qℓ) in K[Z1, . . . ,Zr], and suppose that
(i) zi − zj divides qi − qj for 1 ≤ i < j ≤ ℓ,
(ii) q is Sλ-equivariant.

Then, for k in {1, . . . , r} and s in {1, . . . , ℓk}, the polynomial
∑τk+s

i=τk+1 q{i,τk+s+1,...,ℓ} is
invariant under any permutation of {zτk+1, . . . , zτk+s}.

Proof. For any σ ∈ Sλ permuting only {zτk+1, . . . , zτk+s}, we have, using the previous
lemma,

σ
(τk+s∑

i=1

q{i,τk+s+1,...,ℓ}
)
=

τk+s∑
i=τk+1

σ
(
q{i,τk+s+1,...,ℓ}

)
=

τk+s∑
i=τk+1

q{σ(i),τk+s+1,...,ℓ}.

Since σ permutes {zτk+1, . . . , zτk+s} and the last sum runs over all i = τk +1, . . . , τk + s,
it equals

∑τk+s
i=τk+1 q{i,τk+s+1,...,ℓ}. 2

We can now prove the proposition. The fact that all entries of p are polynomials follows
from our first assumption. Proving that they are Sλ-invariant requires more work, as we
have to deal with numerous cases. While most are straightforward, the last case does
involve nontrivial calculations.

Fix k ∈ {0, . . . , r−1}. We first prove that for s in {1, . . . , ℓk+1}, i in {τk+1, . . . , τk+s},
and m in {0, . . . , r − 1}, with m ̸= k, then the term q{i,τk+s+1,...,τr} is symmetric in
{zτm+1, . . . , zτm+1

}. Indeed, consider a permutation σ ∈ Sλ that acts only on variables
{zτm+1, . . . , zτm+1

}. By Lemma 35, σ(q{i,τk+s+1,...,τr}) is equal to q{σ(i),σ(τk+s+1),...,σ(τr)}.
If m < k, then all indices i, τk + s + 1, . . . , τr are left invariant by σ while for m > k,
[σ(i), σ(τk + s+ 1), . . . , σ(τr)] is a permutation of [i, τk + s+ 1, . . . , τr]. In both cases,

q{σ(i),σ(τk+s+1),...,σ(τr)} = q{i,τk+s+1,...,τr},

as claimed.
Consider first the invariance of pτk+1

. By Lemma 36, the sum
∑τk+1

i=τk+1 q{i,τk+1+1,...,τr}
is symmetric in {zτk+1, . . . , zτk+1

}. Next, for i in {τk+1, . . . , τk+1} andm in {0, . . . , r−1},
with m ̸= k, each term q{i,τk+1+1,...,τr} is symmetric in {zτm+1, . . . , zτm+1

}, making use
of the previous paragraph with s = ℓk+1. As a result, pτk+1

is Sλ-invariant.

35

Next, for j in {1, . . . , ℓk+1 − 1} and σ in Sλ, we prove that σ(pτk+j) = pτk+j . Assume

first that σ acts only on {zτm+1, . . . , zτm+1
}, for somem in {0, . . . , r−1} withm ̸= k. For s

in {1, . . . , j}, the polynomial ηj−s(zτk+s+2, . . . , zτk+1
) depends only on {zτk+1, . . . , zτk+1

}
and so is σ-invariant. Using our earlier argument we see that for i in {τk+1, . . . , τk+s} the
divided difference q{i,τk+s+1,...,τr} is σ-invariant. As a result, pτk+j itself is σ-invariant.

It remains to prove that pτk+j is σ-invariant for a permutation σ of {τk + 1, . . . , τk+1}.
We do this first for σ = (τk+1, τk+2), by proving that all summands in the definition of

pτk+j are σ-invariant. For any s in {2, . . . , j}, ηj−s(zτk+s+2, . . . , zτk+1) does not depend

on (zτk+1, zτk+2), so it is σ-invariant. For s in {2, . . . , j}, the sum
∑τk+s

i=τk+1 q{i,τk+s+1,...,τr}
is symmetric in (τk + 1, τk + 2), since σ just permutes two terms in the sum while for

s = 1, q{τk+1,τk+2,...,τr} is symmetric in (zτk+1, zτk+2) by Lemma 35. Thus, our claim is

proved for σ = (τk + 1, τk + 2).

It remains to prove that pτk+j is invariant in (zτk+2, . . . , zτk+1
). For any t = 1, . . . , j,

set

pτk+j,t =

j∑
s=t

ηj−s(zτk+t+2, . . . , zτk+1
)
(τk+s∑
i=τk+1

q{i,τk+s+1,...,τr}
)
. (A.1)

Then pτk+j = pτk+j,1 and we have the recursive identity

pτk+j,t−1 = pτk+j,t + ηj−t+1(zτk+t+1, . . . , zτk+1
)
(τk+t−1∑
i=τk+1

q{i,τk+t,...,τr}
)
. (A.2)

For any t, set z:t = (zτk+1, . . . , zτk+t) and zt: = (zτk+t, . . . , zτk+1
). We will show that for

t = 1, . . . , j, the polynomial pτk+j,t satisfies:

pτk+j,t is block symmetric in z:t and zt+1: (A.3)

Taking t = 1 implies that pτk+j = pτk+j,1 is symmetric in z2: = (zτk+2, . . . , zτk+1
), as

claimed.

To prove statement (A.3) we use decreasing induction on t = j, . . . , 1. The statement is

true when t = j since in this case pτk+j,j =
∑τk+j

i=τk+1 q{i,τk+j+1,...,τr}, which is symmetric

in z:j by Lemma 36, while each summand q{i,τk+j+1,...,τr} is symmetric in zj+1: by

Lemma 35. Assume now that (A.3) is true for some index t in {2, . . . , j}; we show that

it also holds for t − 1. That is, we have pτk+j,t is block symmetric in z:t and zt+1: and

need to show that pτk+j,t−1 is block symmetric in z:t−1 and zt:.

From Lemma 36, we have that
∑τk+t−1

i=τk+1 q{i,τk+t,...,τr} is symmetric in z:t−1. Fur-

thermore, from our induction hypothesis, the polynomial pτk+j,t is symmetric in z:t−1,

while ηj−t+1(zτk+t+1, . . . , τk+1) depends only on zt:. Thus, in view of (A.2), we see that

pτk+j,t−1 is symmetric in z:t−1. It remains to prove that it is also symmetric in zt:.

We will prove this by showing σ(pτk+j,t−1) = pτk+j,t−1 for any σ = (τk + t+1, τk + ϵ)

with ϵ ∈ {t, t + 2, . . . , ℓk+1}. For any such σ with t + 2 ≤ ϵ ≤ ℓk+1, our induc-

tion hypothesis implies that σ(pτk+j,t) = pτk+j,t, while σ(ηj−t+1(zτk+t+1, . . . , τk+1)) =

ηj−t+1(zτk+t+1, . . . , τk+1) and σ
(
q{i,τk+t,...,τr}

)
= q{i,τk+t,...,τr} hold for all i. Together

with (A.2), we get σ(pτk+j,t−1) = pτk+j,t−1. Finally, if σ = (τk + t + 1, τk + t), then we

have

σ(ηj−t+1(zτk+t+1, . . . , τk+1)) = ηj−t+1(zτk+t, zτk+t+2, . . . , τk+1)

36

and σ
(
q{i,τk+t,...,τr}

)
= q{i,τk+t,...,τr} for all i = τk + 1, . . . , τk + t− 1. Notice that

ηj−t+1(zτk+t, zτk+t+2, . . . , τk+1)− ηj−t+1(zτk+t+1, . . . , τk+1) =

(zτk+t − zτk+t+1) ηj−t(zτk+t+2, . . . , zτk+1
).

Therefore,

σ(pτk+j,t−1)− pτk+ı̂,t−1 = σ(pτk+j,t)− pτk+j,t

+ (zτk+t − zτk+t+1) ηj−t(zτk+t+2, . . . , zτk+1)
(τk+t−1∑
i=τk+1

q{i,τk+t,...,τr}
)

= σ(pτk+j,t)− pτk+j,t + ηj−t(zτk+t+2, . . . , zτk+1)(τk+t−1∑
i=τk+1

(q{i,τk+t+1,τk+t+2,...,τr} − q{i,τk+t,τk+t+2,...,τr})
)
, (A.4)

where the last equality follows from the definition of divided differences. In particular,

σ(pτk+j,j−1)− pτk+j,j−1 =

σ(pτk+j,j)− pτk+j,j +

τk+j−1∑
i=τk+1

(q{i,τk+j+1,...,τr} − q{i,τk+j,τk+j+2,...,τr}).

In addition, since pτk+j,j =
∑τk+j

i=τk+1 q{i,τk+j+1,...,τr}, then when σ = (τk + j + 1, τk + j),

we have σ(pτk+j,j) − pτk+j,j =
∑τk+j−1

i=τk+1 (q{i,τk+j,τk+j+2,...,τr} − q{i,τk+j+1,...,τr}). This
implies that σ(pτk+j,j−1)− pτk+j,j−1 = 0.

When t ≤ j − 1, from (A.2), taken at index t + 1, if σ = (τk + t + 1, τk + t), we also
have

σ(pτk+j,t) = σ(pτk+j,t+1)+

ηj−t(zτk+t+2, . . . , zτk+1
)
(τk+t−1∑
i=τk+1

q{i,τk+t,τk+t+2,...,τr} + q{τk+t,τk+t+1,...,τk+1}
)
.

Then, by subtraction:

σ(pτk+j,t)− pτk+j,t = σ(pτk+j,t+1)− pτk+j,t+1 + ηj−t(zτk+t+2, . . . , zτk+1
)(τk+t−1∑

i=τk+1

(q{i,τk+t,τk+t+2,...,τr} − q{i,τk+t+1,...,τr})
)

and so

σ(pτk+j,t+1)− pτk+j,t+1 =σ(pτk+j,t)− pτk+j,t + ηj−t(zτk+t+2, . . . , zτk+1
)(τk+t−1∑

i=τk+1

(q{i,τk+t+1,...,τr} − q{i,τk+t,τk+t+2,...,τr})
)
. (A.5)

Combining (A.4) and (A.5) gives σ(pτk+j,t−1)− pτk+j,t−1 = σ(pτk+j,t+1)− pτk+j,t+1. By
induction, we have that pτk+j,t+1 is symmetric in z:t+1 and so σ(pτk+j,t+1) = pτk+j,t+1

for σ = (τk + t+1, τk + t) which in turn implies that σ(pτk+j,t−1) = pτk+j,t−1. This gives
our result.

37

B. Proof of Proposition 20

Define the row vector

h =
(
hτ0+1, . . . , hτ1 , . . . , hτr−1+1, . . . , hτr

)
where, for k = 0, . . . , r − 1 and j = 1, . . . , ℓk+1,

hτk+j =

τk+j∑
i=τk+1

q{i,τk+j+1,...,τr}. (B.1)

Then for all i = 1, . . . ,m, k = 0, . . . , r − 1, pτk+ℓk+1
= hτk+ℓk+1

, and for j =

1, . . . , ℓk+1 − 1,

pτk+j =

j∑
s=1

ηj−s(zτk+s+2, . . . , zτk+1
)hτk+s.

Then h = pM, where we recall that M is the block-diagonal matrix with blocks

M1, . . . ,Mr where

Mk+1 =



1 η1(zτk+3, . . . , zτk+1
) η2(zτk+3, . . . , zτk+1

) · · · ηℓk+1−2(zτk+3, . . . , zτk+1
) 0

0 1 η1(zτk+4, . . . , zτk+1
) · · · ηℓk+1−3(zτk+4, . . . , zτk+1

) 0

0 0 1 · · · ηℓk+1−4(zτk+5, . . . , zτk+1
) 0

...
...

...
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1


.

Then det(M) = 1 and N = M−1 is also a polynomial matrix in K[Z] with det(N) = 1.

We construct a matrix J which defines the column operations converting h into q as

follows. Recall that for k = 0, . . . , r−1 and j = 1, . . . , ℓk+1, we have defined the following

τr × τr polynomial matrices. Set Bτ0+1 = Iτr , Cτ0+1 = Iτr , Dτ0+j = Iτr , and

Bτk+j =


Iτk 0 0

0 Ek,j 0

0 0 Iτr−τk+1

 , with Ek,j =


Ij−1

zτk+j − zτk+1

...

zτk+j − zτk+j−1

0

0 . . . 0 −1 0

0 0 Iℓk+1−j


;

Cτk+j =


Iτk 0 0

0 Fk,j 0

0 0 Iτr−τk+1

 , with Fk,j =


diag(zτk+j − zτk+t)

j−1
t=1 0 0

−1
j . . . −1

j
−1
j 0

0 0 Iℓk+1−j

 ;

38

Dτk+j =


diag(zτk+j − zt)

τk
t=1

0 0

Gk,j Iℓk+1
0

0 0 Iτr−τk+1

 ,
with jth row of Gk,j is (1, . . . , 1) and

others are zeros

Let

J =

r−1∏
k=0

ℓk+1∏
j=1

Bτk+j Cτk+j Dτk+j ∈ K[Z1, . . . ,Zr]
τr×τr .

We will prove that this matrix satisfies q = hJ. Note first that, for k = 0, . . . , r − 1 and
j = 1, . . . , ℓk+1 we have det(Bτk+j) = det(Ek,j) = −1, det(Cτk+j) = det(Fk,j) =
−1
j

∏j−1
t=1 (zτk+j − zt), and det(Dτk+j) =

∏τk
t=1(zτk+j − zt). This implies that

det(J) = α

r−1∏
k=0

ℓk+1∏
j=1

j−1∏
t=1

(zτk+j − zt)

τk∏
t=1

(zτk+j − zt) = α∆ for some α ∈ K ̸=0.

Define U = NJ. Then p = qU, and det(U) is a unit in K[Z1, . . . ,Zr, 1/∆], as claimed.
It remains to prove q = hJ. For s = 0, . . . , τr, define

qs =
(
q{1,s+1,...,τr} . . . q{s,s+1,...,τr} hs+1 . . . hτr

)
,

so that for s = 0 we have q0 = h, whereas for s = τr we have qτr = q. We prove the
following: for k in {0, . . . , r − 1} and j in {1, . . . , ℓk},

qτk+j = qτk+j−1Bτk+j Cτk+j Dτk+j . (B.2)

Our claim q = hJ then follows from a direct induction, taking into account the values
of q0 and qτr given above.

Take k in {0, . . . , r−1} and j in {1, . . . , ℓk}. Right-multiplying qτk+j−1 by Bτk+j only
affects the entry at index τk + j. It replaces hτk+j by

j−1∑
i=1

q{τk+i,τk+j,...,τr}(zτk+j − zτk+i) − hτk+j .

Using the defining relation of divided differences, we get

q{τk+i,τk+j,...,τr}(zτk+j − zτk+i) = q{τk+i,τk+j+1,...,τr} − q{τk+j,τk+j+1,...,τr}.

With the definition of hτk+j in (B.1), the new entry at index τk + j simplifies as
−jq{τk+j,τk+j+1,...,τr}. When we multiply the resulting vector by Cτk+j , we affect only
entries from indices τk + 1 to τk + j. More precisely, the previous relation shows that we
obtain the vector(

q{1,τk+j,...,τr}, . . . , q{τk,τk+j,...,τr}, q{τk+1,τk+j+1,...,τr}, . . . , q{τk+j,τk+j+1,...,τr},

hτk+j+1, . . . , hτr

)
.

Finally, right-multiplication byDτk+j affects entries of indices 1, . . . , τk. For i = 1, . . . , τk,
it replaces q{i,τk+j,...,τr} by

q{i,τk+j,...,τr}(zτk+j − zi) + q{τk+j,τk+j+1,...,τr} = q{i,τk+j+1,...,τr}.

39

Thus, the resulting vector is(
q{1,τk+j+1,...,τr}, . . . , q{τk,τk+j+1,...,τr}, q{τk+1,τk+j+1,...,τr}, . . . , q{τk+j,τk+j+1,...,τr},

hτk+j+1, . . . , hτr

)
which is precisely qτk+j , as claimed in (B.2).

C. Proof of Lemma 34

To simplify our notation, for all 1 ≤ s ≤ ℓ, we abbreviate ηℓ−s(d − 1, . . . , d − ℓ) to
gℓ−s. Then, we claim that one has

gℓ−s < d(d− 1) · · · (d− ℓ+ 1).

Indeed, let f(t) = (t+d−1)(t+d−2) · · · (t+d−ℓ), so that f(1) = d(d−1) · · · (d−ℓ+1).
From Vieta’s formula we have

f(t) =

ℓ∑
s=0

gℓ−s t
s

and so we also have f(1) =
∑ℓ

s=0 gℓ−s. Therefore,

d(d− 1) · · · (d− ℓ+ 1) =

ℓ∑
s=0

gℓ−s

and so gℓ−s < d(d− 1) · · · (d− ℓ+ 1) for all 1 ≤ s ≤ ℓ.
Now, for any partition λ = (nℓ1

1 . . . nℓr
r) ⊢ n of length ℓλ, we denote by wλ =

∏r
i=1 ℓi!.

Then we have

cλ = ds
gℓλ−s

wλ
= ds

ℓλ!∏r
i=1 ℓi!

gℓλ−s

ℓλ!
= dsh(λ)Fd,ℓλ,s,

where h(λ) = ℓλ!∏r

i=1
ℓi!

=
(

ℓλ
ℓ1,...,ℓr

)
and Fd,ℓλ,s =

gℓλ−s

ℓλ!
. From our previous inequality we

have

Fd,ℓλ,s ≤
d(d− 1) · · · (d− ℓλ + 1)

ℓλ!
=

(
d

ℓλ

)
and so ∑

λ⊢n, ℓλ≥s

cλ ≤ ds

 ∑
λ⊢n, ℓλ≥s

h(λ)

(
d

ℓλ

) . (C.1)

Let a be a sequence of m + 1 numbers (a0, a1, . . . , am) and let pa(t) =
∑m

i=0 ai t
i be

its generating polynomial. The polynomial coefficients associated to a are defined by(
k

n

)
a

=

{
[tn] (pa(t)

k), if 0 ≤ n ≤ mk

0, if n < 0 or n > mk

where [tn]
∑

i citi = cn is the coefficient of tn in the series
∑

i citi. For any partition λ
of n, let further λ′ be its conjugate partition. By [20, Lemma 2.1], we have(

k

n

)
a

=
∑
λ⊢n,
ℓλ′≤n

a
k−ℓλ′
0 h(λ)wa(λ)

(
k

ℓλ

)
, (C.2)

40

where wa(λ) is the function wa(λ) =
∏m

i=1 a
ℓi
i , and ℓλ and ℓλ′ are the respective lengths

of λ and λ′. If we consider m = n, a = (1, . . . , 1) = 1, and k = d, then equation (C.2)
becomes (

d

n

)
1

=
∑
λ⊢n,
ℓλ′≤n

h(λ)

(
d

ℓλ′

)
.

For any partition λ of n, the length of its conjugate satisfies ℓλ′ ≤ n and so

[tn](1 + t+ · · ·+ tn)d =

(
d

n

)
1

=
∑
λ⊢n

h(λ)

(
d

ℓλ

)
. (C.3)

Furthermore,

(1+ t+ · · ·+ tn)d = (1− tn+1)d (1− t)d =
(d∑

k=0

(−1)k
(
d

k

)
t(n+1)k

)(∞∑
i=0

(
d+ i− 1

i

)
ti
)
,

where tn appears only when k = 0 and i = n. In other words,

[tn] (1 + t+ · · ·+ tn)d =

(
n+ d− 1

n

)
. (C.4)

Combining (C.1), (C.3) and (C.4), gives∑
λ⊢n, ℓλ≥s

cλ ≤ ds

(∑
λ⊢n

h(λ)

(
d

ℓλ

))
≤ ds

(
n+ d− 1

n

)
.

Similarly, we can prove the inequality
∑

λ⊢n, ℓλ≥s eλ ≤ n(d+ 1)s
(
n+d
n

)
.

41

	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Previous work
	1.3 Main results
	1.4 Some ingredients
	1.5 Organization of paper

	2 Partitions and distinct coordinates of Sn-invariants
	2.1 Partitions
	2.2 S-invariant polynomials: the Symmetric_Coordinates algorithm
	2.3 Symmetric representations

	3 S-equivariant polynomials: the Symmetrize algorithm
	4 Algorithms for computing critical points
	4.1 Description of the algebraic set W
	4.2 The Critical_Points_Per_Orbit algorithm

	5 Cost of the Critical_Points_Per_Orbit Algorithm
	5.1 Solving weighted determinantal systems
	5.2 The complexity of the Isolated_Points procedure
	5.3 Finishing the proof of Theorem 5

	6 Experimental results
	7 Conclusion and topics for future research
	A Proof of Proposition 18
	B Proof of Proposition 20
	C Proof of Lemma 34

