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Abstract. The positive semidefinite rank of a convex body C is the size of its smallest positive semidefinite
formulation. We show that the positive semidefinite rank of any convex body C is at least

√
log d

where d is the smallest degree of a polynomial that vanishes on the boundary of the polar of C. This
improves on the existing bound which relies on results from quantifier elimination. Our proof relies
on the Bézout bound applied to the Karush-Kuhn-Tucker conditions of optimality. We discuss the
connection with the algebraic degree of semidefinite programming and show that the bound is tight
(up to constant factor) for random spectrahedra of suitable dimension.

1. Introduction. Semidefinite programming is the problem of optimizing a linear function
over a convex set described by a linear matrix inequality:

max cTx s.t. x ∈ S

where S ⊆ Rn has the form:

(1.1) S = {x ∈ Rn : A0 + x1A1 + · · ·+ xnAn � 0}.

Here A0, . . . , An are real symmetric matrices of size m×m and the notation M � 0 indicates
that M is positive semidefinite. A set of the form (1.1) is called a spectrahedron.

Given a convex set C ⊆ Rk, we say that C has a semidefinite lift of size m if it can be
expressed as

C = π(S)

where S is a spectrahedron (1.1) defined using matrices of size m × m and π is any linear
map. If C can be expressed in this way, then any linear optimization problem over C can be
expressed as a semidefinite program of size m. The size of the smallest semidefinite lift of C
is called the positive semidefinite rank of C [8, 6].

The purpose of this paper is to give a general lower bound on the positive semidefinite
rank of convex bodies. Here, by a convex body we mean a closed convex set such that the
origin lies in the interior of C. For the statement of our main theorem, we need the notion of
polar of a convex body C, defined as follows:

Co =
{
c ∈ Rk : 〈c, x〉 ≤ 1 ∀x ∈ C

}
.

The polar of a convex body is another full-dimensional closed convex set that is bounded and
contains the origin [13, Theorem 14.6]. Throughout the paper, we use log for the logarithm
base 2. We can now state the first main result of this article.
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Theorem 1.1. Let C be a convex body and let Co be its polar. Let d be the smallest degree
of a polynomial with real coefficients that vanishes on the boundary of Co. Then rankpsd(C) ≥√

log d.

We also show that this bound is tight in general (up to multiplicative factors):

Theorem 1.2. There exist convex bodies C where the degree d of the algebraic boundary of
Co can be made arbitrary large and where rankpsd(C) ≤

√
20 log d.

When C is a polytope, the degree d of the algebraic boundary of Co is nothing but the
number of vertices of C. Theorem 1.1 can thus be compared to the well-known lower bound
of Goemans [7] on the size of linear programming lifts. The linear programming extension
complexity of a polytope P is the smallest f such that P can be written as the linear projection
of a polytope with f facets.

Theorem 1.3 (Goemans [7, Theorem 1]). Assume P is a polytope with d vertices. Then
the linear programming extension complexity of P is at least log d.

Proof. The proof is elementary so we include it for completeness. Assume P = π(Q)
where Q is a polytope with f facets. The pre-image by π of any vertex of P is a face of Q.
Since Q has at most 2f faces it follows that f ≥ log d.

For functions f, g : N → R we say that f(n) ∈ Ω(g(n)) if there exists a constant K > 0
such that f(n) ≥ K · g(n) for all large enough n.

The only previous lower bound on the positive semidefinite rank that applies to arbitrary
convex bodies that we are aware of is the bound proved in [8, Proposition 6] which says that1

rankpsd(C) ≥ Ω
(√

log d
n log log(d/n)

)
where n is the dimension of C. This bound was obtained

using results from quantifier elimination theory and one drawback is that it involves constants
that are unknown or difficult to estimate. Our lower bound of Theorem 1.1 improves on this
existing bound and also has the advantage of being explicit.

Main ideas. The main idea behind the proof of Theorem 1.1 is simple. Given a convex
body C, we exhibit a system of polynomial equations that vanishes on the boundary of Co.
This system of polynomial equations is nothing but the Karush-Kuhn-Tucker (KKT) system,
after discarding the inequality constraints to get an algebraic variety. Applying the Bézout
theorem on the KKT system gives us an upper bound on the degree of this variety and yields
the stated lower bound. To prove Theorem 1.2 about tightness of the bound we appeal to
existing works [11] where the degree of the KKT system was explicitly computed, under certain
genericity assumptions. The convex bodies of Theorem 1.2 are in fact random spectrahedra
(i.e., spectrahedra defined using random matrices A0, . . . , An) of appropriate dimension, where
the formulas for the algebraic degree of semidefinite programming [19] allow us to lower bound
the degree of the algebraic boundary of their polars. We would like to point out that many of
the ideas involved in the proofs of Theorems 1.1 and 1.2 appear in some form or another in
[14, 11, 18]. For example a study of the algebraic boundary of polars of spectrahedra appears
in [14, Section 5.5]. However it seems that the connection with the positive semidefinite rank
was not made explicit before. The focus in these previous works seemed to be on getting exact

1In the bound shown in [8, Proposition 6], d is the degree of the algebraic boundary of C. However since
rankpsd(C) = rankpsd(Co) it can also be taken to be that of Co in the statement of the lower bound.
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values for the degrees, at the price of genericity assumptions. In the present work our aim was
on getting bounds (tight up to constant factors) but valid without any genericity assumption.

Notations. The (topological) boundary of a set C ⊆ Rn is denoted ∂C and defined as
∂C = cl(C) \ int(C) where cl and int denote closure and interior respectively. The algebraic
boundary of C ⊆ Rn denoted ∂aC is the smallest affine algebraic variety in Cn that contains
∂C. We denote by Sm the space of m×m real symmetric matrices. This is a real vector space
of dimension

tm :=

(
m+ 1

2

)
.

We also denote by Sm(C) the space of m×m symmetric matrices with complex entries.

2. Proof of Theorem 1.1. In this section we prove Theorem 1.1. To do so we will
exhibit polynomial equations that vanish on the boundary of polars of spectrahedra and their
shadows. These equations are nothing but the KKT conditions of optimality. Applying the
Bézout bound will yield Theorem 1.1.

KKT equations. Let A0, . . . , An ∈ Sm and define

A(x) := x1A1 + · · ·+ xnAn.

Consider the linear optimization problem

(2.1) max cTx s.t. A0 +A(x) � 0

and assume that the feasible set

S = {x ∈ Rn : A0 +A(x) � 0}

contains 0 in its interior. In this case we know that any optimal point x of (2.1) must satisfy
the following KKT conditions:

(2.2) ∃X,Z ∈ Sm : X = A0 +A(x), A∗(Z) + c = 0, XZ = 0, X � 0, Z � 0

where Z plays the role of dual multiplier and A∗(Z) = (Trace(A1Z), . . . ,Trace(AnZ)). Condi-
tions (2.2) consist of equality conditions as well as inequality conditions. If we disregard the
inequality conditions we get a system of polynomial equations in (x,X,Z) ∈ Rn × Sm × Sm

which we denote by KKT(c):2

(2.3) KKT(c) : X = A0 +A(x), A∗(Z) + c = 0, XZ = 0.

This system has n+2tm unknowns and consists of n+tm+m2 equations. A crucial fact about
this system is that it has a finite number of solutions, assuming the parameters A0, A1, . . . , An

and c are generic (we come back to the genericity assumption after the statement of the result;
some form of genericity is needed for the statement to be true). It is the number of solutions
to the KKT system that will give an upper bound on the degree of the algebraic boundary of
the polar as we will see later.

2We note here that there are multiple ways of writing the SDP complementarity conditions in general, and
these can lead to differences in the context of algorithms for SDP, see e.g., the discussion in [2, Section 6.5.4].
For our purposes, the main property that we will need of the system KKT(c) is that it has a finite number of
solutions generically (Lemma 2.1).
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Lemma 2.1 (Finiteness of KKT solutions). For generic A0, A1, . . . , An and c, the KKT
system of polynomial equations (2.3) has a finite number of complex solutions (x,X,Z) ∈
Cn × Sm(C)× Sm(C). Furthermore the number of such solutions is at most 2m

2
.

Proof. That the KKT system has a finite number of solutions generically was proved in
[11, Theorem 7]. We include a sketch of proof for completeness which is simply a dimension
count argument. There are three equations in (2.3):
• The equation X = A0 +A(x) is linear and defines an affine subspace of codimension tm (we

assume that A is injective).
• The equation A∗(Z) + c = 0 is also linear and defines an affine subspace of codimension n.
• Finally the equations XZ = 0 can be shown to define a variety of codimension tm (see e.g.,

[11, Proof of Theorem 7]).
If A0, A1, . . . , An and c are generic, a Bertini-Sard type theorem tells us that the intersection
of these three varieties will have codimension equal to the sum of the codimensions, i.e.,
tm +n+ tm = 2tm +n which is the dimension of the ambient space. In other words the variety
defined by (2.3) is zero-dimensional, i.e., there are a finite number of solutions.

Bézout bound tells us that the number of solutions is at most the product of the degrees
of the polynomial equations that form the system (2.3), which in this case is 2m

2
.

Remark 1 (Genericity assumption of Lemma 2.1). An assumption of genericity is necessary
in general to guarantee that the system (2.3) has a finite number of solutions. This is to
rule out situations where the optimization problem (2.1) has an infinite number of solutions
(a positive dimensional face of S) or when there are an infinite number of dual multipliers.
In Lemma 2.1 we assumed all the parameters A0, . . . , An, c generic to be able to apply a
standard Bertini-Sard type theorem. We think however it may be possible to remove some of
the genericity assumptions (e.g., just to assume genericity on A0 and c) but we did not pursue
this further here as the current statement of the lemma will be sufficient for our purposes.

The next lemma shows that the number of solutions to the KKT system is intimately tied
to the degree of the algebraic boundary of the polar So.

Lemma 2.2. Consider a spectrahedron S = {x ∈ Rn : A0 + x1A1 + · · ·+ xnAn � 0} where
A0, . . . , An ∈ Sm and assume that 0 ∈ intS. Let So be its polar defined by

So = {c ∈ Rn : 〈c, x〉 ≤ 1 ∀x ∈ S} .

Then there is a polynomial of degree at most 2m
2

with real coefficients that vanishes on the
boundary of So.

Proof. The points on the boundary of So are exactly those c such that maxx∈S c
Tx = 1.

Consider the system of polynomial equations obtained by adding the equation cTx = 1 to the
KKT system:

(2.4) KKT :

{
X = A0 +A(x), A∗(Z) + c = 0, XZ = 0

cTx = 1.

We think of (2.4) as a system of equations on the variables (x,X,Z, c). If we eliminate the
variables x,X,Z we get an algebraic variety V ⊂ Cn in the variables c:

(2.5) V = elimc(Sols(KKT)).

4



By construction this variety contains the boundary of So, i.e., ∂So ⊆ V ∩ Rn. To bound the
degree of ∂aS

o it thus suffices to count the number of intersections of V with a generic line,
since ∂aS

o ⊆ V and ∂aS
o is a hypersurface [17, Corollary 2.8]. We will do this first in the

case where A0, . . . , An are generic. Let c0 ∈ Cn generic and consider the line {λc0 : λ ∈ C}.
Since V was defined by eliminating variables x,X,Z from (2.4), we know that λc0 ∈ V if and
only if there exist (x,X,Z) in the solution set of KKT(λc0) and λc0

Tx = 1. By looking at
the equations defining KKT(λc0) this implies that (x,X, (c0

Tx)Z) is in the solution set of
KKT(c0). Thus the number of intersection points is at most the cardinality of the solution
set of KKT(c0), i.e., 2m

2
. We have thus shown that ∂aS

o is a hypersurface of degree at most
2m

2
.
It thus remains to treat the case where A0, A1, . . . , An in the definition of S are not generic.

This can be done by using a simple perturbation argument. Let N be the total number of the
entries in n+ 1 symmetric matrices. Hence, the sequence of matrices A0, . . . , An represents a
point A in RN . For any k ∈ N \ {0}, there exists a point Ak in RN in the ball centered at A
of radius 1/k which is generic and represents a sequence of symmetric matrices A0,k, . . . , An,k.
Since, by assumption 0 ∈ intS, A0 is positive definite, one can assume w.l.o.g. that A0,k is
positive definite. Hence the spectrahedra Sk defined by A0,k, . . . , An,k are generic, non-empty
and such that 0 ∈ intSk. Hence, one can apply to them the above paragraph.

Now, let (pk) be a sequence of polynomials of degree at most 2m
2

that vanish on the
boundary of (Sk). We can rescale each pk to be unit-normed and we can thus assume that
(pk) has a convergent subsequence that converges to some polynomial p. Clearly the degree
of p is at most 2m

2
. Finally it is easy to verify that p vanishes on the boundary of So.

We are now in position to prove Theorem 1.1 on the lower bound for the positive semidef-
inite rank. The main idea is that if C = π(S) where S is a spectrahedron, then by duality Co

is the intersection of So with an affine subspace and thus the algebraic boundary of Co has
degree at most that of So.

Proof of Theorem 1.1. Assume C is a convex body that can be written as C = π(S) where
S is a spectrahedron defined using an m×m linear matrix inequality and π a linear map. We
can assume that S has nonempty interior, and furthermore that 0 ∈ int(S) since 0 ∈ int(C).
We are going to exhibit a polynomial of degree at most 2m

2
that vanishes on the boundary

of Co. Let p be a polynomial of degree at most 2m
2

that vanishes on the boundary of So.
Then we claim that the polynomial q = p ◦ π∗ (where π∗ is the adjoint of π), which has
degree at most 2m

2
vanishes on the boundary of Co. Indeed if y is on the boundary of Co this

means that maxx∈C〈y, x〉 = 1 which means that maxx∈S〈π∗(y), x〉 = 1 and so π∗(y) is on the
boundary of So, hence q(y) = p(π∗(y)) = 0.

If we let d be the degree of the algebraic boundary of Co and m = rankpsd(C) we have

thus shown that d ≤ 2m
2

which implies rankpsd(C) = m ≥
√

log d.

Application: number of vertices of spectrahedral shadows. In this subsection we discuss an
application of Theorem 1.1 to bound the number of vertices of spectrahedral shadows. If
C ⊆ Rn is a convex body and x ∈ C, the normal cone of C at x is defined as

NC(x) := {c ∈ Rn : 〈c, z〉 ≤ 〈c, x〉 ∀z ∈ C}.
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A point x ∈ C is called a vertex if NC(x) is full-dimensional. Observe that any vertex of C
must be an extreme point, but not all extreme points are vertices, see Figure 2.1. Vertices
play the role of singularities on the boundaries of convex sets; in fact they are also sometimes
called 0-singular points. It is known, see e.g., [15, Theorem 2.2.5] that any convex set has
at most a countable number of vertices. Vertices of spectrahedra arising from combinatorial
optimization problems have been studied in [10, 4]. The next theorem gives an upper bound
on the number of vertices of any spectrahedral shadow. To the best of our knowledge this is
the first such bound.

Theorem 2.3. If C is a convex body having a semidefinite representation of size m, then
C has at most 2m

2
vertices.

Proof. Any vertex of C will contribute a linear factor in the algebraic boundary of Co:
indeed if x is a vertex of C then the algebraic boundary of C must contain the hyperplane
{c ∈ Rn : cTx = 1} (see e.g., Figure 2.1(right)). Thus the degree of ∂aC

o is greater than
or equal the number of vertices of C. The result follows since the degree of ∂aC

o is at most
2m

2
.

C

NC(x)

x

Co

Figure 2.1. Left: A vertex of a convex set C. Right: The polar of C. We see that each vertex contributes
a hyperplane in the algebraic boundary ∂aC

o.

3. Tightness of lower bound, and algebraic degree of semidefinite programming. In
this section we prove Theorem 1.2. We will show that the lower bound of Theorem 1.1 is tight
up to a constant factor on certain random spectrahedra of appropriate dimension n, namely
n ≈ tm/2.

Let S be a spectrahedron defined using matrices A := (A0, . . . , An). In the previous
section we saw that if we project the following KKT equations

(3.1) KKT :

{
X = A0 +A(x), A∗(Z) + c = 0, XZ = 0

cTx = 1

on c ∈ Cn we get an algebraic variety

V(A) = elimc(Sols(KKT))

that vanishes on the boundary of So. This variety could coincide exactly with ∂aS
o but it can

also contain spurious components that do not intersect ∂So and thus are not in its Zariski
closure (see Section 4 later for an example).
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In order to prove our result we need to understand the irreducible components of the
variety V(A). If we can show that there is an irreducible component W of V(A) whose
intersection with the boundary of So has dimension the one of W then we know that the
degree of the algebraic boundary of So is at least degW. When A is generic, the irreducible
components of V(A) have been studied in [11] where it was shown that they are obtained
by imposing rank conditions on the matrices X and Z in the KKT equations, namely by
considering the following system for a fixed r:

(3.2) KKTr :


X = A(x) +A0, A∗(Z) + c = 0, XZ = 0

cTx = 1,

rank(X) ≤ r, rank(Z) ≤ m− r.

We think of (3.2) as a system of equations in (x,X,Z, c). If we eliminate the variables (x,X,Z)
from the above equations we get an algebraic variety in Cn that is contained in V(A). We call
this variety Vr(A):

(3.3) Vr(A) = elimc(Sols(KKTr)) ⊆ V(A).

For generic A, it was shown in [11, Theorem 13] that Vr(A) is a hypersurface provided r
satisfies the Pataki bounds:

(3.4) n ≥ tm−r and tr ≤ tm − n.

Using Bertini theorem one can show that this variety is also irreducible over C provided
n > tm−r.

Lemma 3.1. For generic A0, . . . , An the variety Vr(A) is irreducible over C provided n >
tm−r.

Before proving this lemma we first explain the reason for the condition n > tm−r (which is
stronger than the condition imposed by the Pataki bound (3.4)). The variety Vr(A) is the
dual of the determinantal variety {x ∈ Cn : rank(A0 +x1A1 + · · ·+xnAn) ≤ r}. The condition
n > tm−r rules out the case where this determinantal variety is zero-dimensional, in which
case the dual variety Vr(A) is a union of hyperplanes and is thus not irreducible. Note that
if we are only interested in irreducibility statements over Q (assuming that A0, . . . , An are
generic with entries in Q) then we do not need to impose such a condition. See [18, Remark
2.2] for more on this.

Proof of Lemma 3.1. The main ingredient of the proof is Bertini’s irreducibility theorem
[5, Theorem 4.23]. We will start by showing that the variety

(3.5) X = A(x) +A0, XZ = 0, rank(X) ≤ r, rank(Z) ≤ m− r

is irreducible for a generic choice of A0, . . . , An. In [11, Lemma 6] it was shown that {XZ =
0}r := {(X,Z) : XZ = 0, rank(X) ≤ r, rank(Z) ≤ m − r} is irreducible. Consider the
projection map u(X,Z) = X. We know that u({XZ = 0}r) is the determinantal variety
consisting of symmetric matrices of rank ≤ r and has dimension tm − tm−r. By Bertini
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theorem [5, Theorem 4.23] we know that for a generic affine subspace L of dimension n the
variety u−1(L) is going to be irreducible provided tm− tm−r ≥ 1 + codimL = 1 + tm− n, i.e.,
provided that n ≥ tm−r + 1. In other words this tells us that (3.5) is irreducible for a generic
choice of A0, . . . , An.

Consider now the map φ(x,X,Z) = (x,X,−Z/(A∗(Z)Tx),A∗(Z)/(A∗(Z)Tx)) (where the
last coordinates stand for c). Observe that the image of the restriction of φ to the solution set
of (3.5) is exactly the variety defined by (3.2). Since φ is rational at all points, it is regular [16,
Thm 4, Sec. 3.2]. Because the solution set of (3.5) is irreducible, its image by φ is irreducible.
Since Vr(A) is the projection of an irreducible variety it is also irreducible.

The degrees of the irreducible components Vr(A) were computed in [11, 19] for generic
A = (A0, . . . , An) and are denoted by δ(n,m, r). The resulting formulas involve minors of the
matrix of binomial coefficients. An elementary analysis of these formulas allows us to show
that in a special regime for n and r, the algebraic degree is at least 2m

2/20.

Lemma 3.2. Assume m even and large enough and consider n = tm/2 +1 and r = m/2+1.

Then for generic A = (A0, . . . , An) ∈ (Sm(C))n+1 the variety Vr(A) has degree ≥ 2m
2/20.

Proof. The proof is in Appendix A.

In order to use Lemma 3.2 we need to show that there is at least one choice of A =
(A0, . . . , An) with n = tm/2 + 1 such that the variety Vr(A) with r = m/2 + 1 will actually
belong to ∂aS

o, where S = {x : A0 +x1A1 + · · ·+xnAn � 0}. We can prove this by appealing
to results by Amelunxen and Bürgisser [1] where random semidefinite programs were analyzed
and where it was shown that every value of rank in the Pataki range occurs with “positive
probability”.

Lemma 3.3. Let m and 1 ≤ n ≤ tm be fixed. Let r in the associated Pataki range (3.4)
with the additional constraint n > tm−r. Let Γ be any Zariski open set in (Sm(C))n+1. Then
there exists A = (A0, . . . , An) ∈ Γ ∩ (Sm(R))n+1 such that the variety Vr(A) is contained in
∂aS

o where S = {x ∈ Rn : A0 + x1A1 + · · ·+ xnAn � 0}.
Proof. See Appendix B.

The proof of Theorem 1.2 is now complete:

Proof of Theorem 1.2. Let m be even and large enough and let n = tm/2 + 1. Lemma
3.3 with r = m/2 + 1 tells us that there is a spectrahedron such that the variety Vr(A) is
contained in ∂aS

o where S = {x : A0 +x1A1 + · · ·+xnAn � 0}. By Lemma 3.2 we know that
the degree of this variety is at least 2m

2/20 and so d = deg(∂aC
o) ≥ 2m

2/20. But this means
that rankpsd(S) ≤ m ≤

√
20 log d as desired.

4. Example. In this section we consider an example of spectrahedral shadow to illustrate
some of the ideas presented in the proofs of Theorem 1.1 and Theorem 1.2.

Consider the following linear matrix inequality:

A(x, y, s, t) :=


1 + s t x+ s y − t
t 1− s −y − t x− s

x+ s −y − t 1 + x −y
y − t x− s −y 1− x

 .
8



One can show that the projection of the associated spectrahedron on the variables (x, y) is
the regular pentagon in the plane, i.e., if we let S be the spectrahedron associated to A and
π(x, y, s, t) = (x, y) then:

(4.1) C := π(S) = conv

{(
cos

(
2kπ

5

)
, sin

(
2kπ

5

))
, k = 0, . . . , 4

}
.

It is not difficult to see that the polar of C is another regular pentagon but slightly rotated
and scaled:

Co =
1

cos(π/5)
conv

{(
cos

(
2(k + 1/2)π

5

)
, sin

(
2(k + 1/2)π

5

))
, k = 0, . . . , 4

}
.

From Section 2 we know that the KKT equations allow us to get a polynomial that vanishes
on the boundary of Co. The associated variety (denoted by V in (2.5)) in this case is shown
in Figure 4.1. We see that the variety V contains the algebraic boundary of the polar Co (red

Figure 4.1. Variety V defined in (2.5) that vanishes on the boundary of Co, where C is the regular pentagon,
see (4.1). We see that ∂aC

o ⊂ V and that V has extra components not in ∂aC
o. These are shown in blue.

lines). However we also see that it has extra components that are not in ∂aC
o: these extra

components are shown in blue in Figure 4.1.

5. Discussion. The algebraic argument given in this paper can also be used to lower
bound the size of second-order cone lifts, or more generally lifts using products of Sk

+. More
precisely one can show that if C has a lift using r copies of Sk

+ then r ≥ 1
k2

log d where d is
the degree of the algebraic boundary of Co. In particular we recover the result of Goemans
(Theorem 1.3) with k = 1.

There are a couple of questions that we believe it would be interesting to pursue further:
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• Polytopes: One important question is to know whether the lower bound rankpsd(C) ≥√
log d can be improved in the case where C is a polytope? In particular can the lower

bound be improved to log d in this special case? Recall that if C is a polytope then
d = deg ∂aC

o is simply its number of vertices.
• Vertices of spectrahedra: A related question is to know whether the bound of 2m

2

on the number of vertices of spectrahedral shadows (Theorem 2.3) is tight? In words,
can we find a spectrahedron (or a spectrahedral shadow) that has 2Ω(m2) vertices?
We believe that a natural candidate to try are random spectrahedra of appropriate
dimension n ≈ tm/2. Results in [1] can be useful for this question.
• Explicit example: Thirdly, is there an explicit example of a spectrahedron whose

polar has an algebraic boundary of degree 2Ω(m2)?
• Analysis of algebraic degree: Finally we believe it would be useful to have an

(asymptotic) analysis of the formulas for the algebraic degrees of semidefinite pro-
gramming δ(n,m, r). For this paper we have used elementary manipulations to show
that when n ≈ tm/2 and for certain values of r then δ(n,m, r) is 2Ω(m2), but we believe
a more complete and systematic study of these quantities can be undertaken. For
example we conjecture that in the regime n ≈ tm/2 the value of δ(n,m, r) for any r in

the Pataki range is 2Ω(m2). Proving such a result would allow us to simplify the proof
of Theorem 1.2 by bypassing the need for Lemma 3.3 (it suffices to take any generic
spectrahedron of dimension say n = tm/2 + 1 and to observe that at least one of the
Vr(A) must belong to ∂aS

o). An analysis of the values of δ(n,m, r) would also allow
us to improve the constants in Theorems 1.1 and 1.2. For example, where we used the
Bézout bound in Lemma 2.1 one can instead use the quantity

∑
r δ(n,m, r) (where r

ranges over the Pataki range) as an upper bound on the number of solutions of the
KKT system.
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Appendix A. Proof of Lemma 3.2: analysis of the formula for the algebraic degree of
semidefinite programming.

In this subsection we prove Lemma 3.2 which we restate below.

Lemma A.1 (Restatement of Lemma 3.2). Assume m even and large enough and consider
n = tm/2 + 1 and r = m/2 + 1. Then for generic A = (A0, . . . , An) ∈ (Sm(C))n+1 the variety

Vr(A) has degree ≥ 2m
2/20.

For this we rely on the formula for the algebraic degree of semidefinite programming proved
in [19].

Let δ(n,m, r) be the degree of the variety Vr(A) where A is a generic pencil (A0, . . . , An) ∈
(Sm(R))n+1. A formula for δ(n,m, r) was given in [19] which we describe now. Let Ψ be the
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(infinite) matrix of binomial coefficients, i.e., Ψi,j =
(
i
j

)
for i, j ≥ 0. For I ⊆ {1, . . . ,m} define

ψI to be the sum of all the |I| × |I| minors of Ψ[I, ·]. For example if I is a singleton we have
ψ{i} = 2i−1.

Theorem A.2 ([19], see also [12]). For a generic A = (A0, . . . , An) the algebraic degree of
Vr(A) (see Equation (3.3)) is given by:

(A.1) δ(n,m, r) =
∑

I⊆{1,...,m}
|I|=m−r,s(I)=n

ψIψIc

where for I ⊆ {1, . . . ,m} we denote by s(I) the sum of the elements of I, and Ic = {1, . . . ,m}\
I.

The main purpose of this Appendix is to prove the following lower bound on δ(n,m, r) in
a special regime.

Lemma A.3. For all large enough even m, n = tm/2 + 1 and r = m/2 + 1 we have

δ(n,m, r) ≥ 2m
2/20.

The bounds we give in this appendix are very crude and are not meant to be optimal. We
actually conjecture that in the regime n ≈ tm/2, we have δ(tm/2,m, r) ≥ 2Ω(m2) for any r in
the Pataki range (3.4).

In order to prove our result we will first analyze the value of ψ on intervals. We will show

Lemma A.4. For any integers p ≤ q we have ψ[p+1,q] ≥ (1 + q−p
2p−1)tp.

Before proving Lemma A.4, we first see how to use it to prove Lemma A.3.

Proof of Lemma A.3. Consider I = {1, . . . ,m/2− 2} ∪ {m}. Then |I| = m/2− 1 = m− r
and s(I) = tm/2 + 1 = n. Thus δ(n,m, r) ≥ ψIψIc ≥ ψIc = ψ[m/2−2,m−1]. Using Lemma A.4
we get

ψ[m/2−2,m−1] ≥
(

1 +
m/2 + 1

m− 3

)tm/2−2

.

We now use the fact that 1 + m/2+1
m−3 ≥ 1 + 1/2 = 3/2 and tm/2−2 ≥ m2/9 for large enough m

to get ψ[m/2−1,m−2] ≥ 2(log2(3/2)/9)m2 ≥ 2m
2/20.

It thus remains to prove Lemma A.4. We can get the value of ψ on intervals by considering
the case n = tm−r in (A.1). Indeed in this case there is only one set I that satisfies the
constraints of the summation (A.1) which is I = {1, . . . ,m− r}. Since ψ[1,m−r] = 1 it follows
that δ(tm−r,m, r) = ψ[m−r+1,m]. On the other hand a simpler formula for δ(tm−r,m, r) was
provided in [11, Corollary 15], based on a result by Harris and Tu [9]. This tells us that

(A.2) δ(tm−r,m, r) = ψ[m−r+1,m] =
m−r−1∏
i=0

(
m+i

m−r−i
)(

2i+1
i

) .
The formula on the right-hand side can be simplified further using simple manipulations to

11



get

(A.3) ψ[m−r+1,m] =
∏

0≤i≤j≤m−r−1

r + i+ j + 1

i+ j + 1
.

To see why this holds, first use the definition of binomial coefficient
(
n
k

)
= n...(n−k+1)

k! to get

(A.4) ψ[m−r+1,m] =

m−r−1∏
i=0

(
m+i

m−r−i
)(

2i+1
i

) =

r−1∏
i=0

(m+ i) . . . (r + 2i+ 1)

(m− r − i)!
· i!

(2i+ 1) . . . (i+ 2)

Separating the terms in (A.4) we get

(A.5) ψ[m−r+1,m] =

 ∏
0≤i≤j≤m−r−1

(r + i+ j + 1)

 · [m−r−1∏
i=0

i!

(m− r − i)!(2i+ 1) . . . (i+ 2)

]
.

Noting that
∏m−r−1

i=0 i!/(m − r − i)! = 1
(m−r)! =

∏m−r−1
i=0

1
(i+1) we see that the second factor

in (A.5) is equal to

(A.6)
m−r−1∏
i=0

1

(2i+ 1) . . . (i+ 2)(i+ 1)
=

m−r−1∏
i=0

i∏
j=0

1

i+ j + 1
.

By doing an appropriate change of variables and plugging this back in (A.5) we get (A.3).
Now to prove the bound of Lemma A.4 note that each term in the product (A.3) is at

least 1 + r
2(m−r)−1 and that there are tm−r terms in the product. The statement of Lemma

A.4 corresponds to p = m− r and q = m. This completes the proof.

Appendix B. Proof of Lemma 3.3: occurrence of each value of rank in the Pataki
range.

In this Appendix we prove Lemma 3.3 which we restate here for convenience.

Lemma B.1 (Restatement of Lemma 3.3). Let m and 1 ≤ n ≤ tm be fixed. Let r in the
associated Pataki range (3.4) with the additional constraint n > tm−r. Let Γ be any Zariski
open set in (Sm(C))n+1. Then there exists a pencil A = (A0, . . . , An) ∈ Γ ∩ (Sm(R))n+1 such
that the variety Vr(A) is contained in ∂aS

o, where S = {x ∈ Rn : A0 +x1A1 + · · ·+xnAn � 0}.
Proof. For convenience in this proof we let, for A = (A0, . . . , An) ∈ (Sm(R))n+1, S(A) ⊂

Rn denote the associated spectrahedron:

S(A) = {x ∈ Rn : A0 + x1A1 + · · ·+ xnAn � 0}.

In the paper [1, Remark 4.1] it is shown that for any r satisfying the Pataki bounds (3.4)
we have

(B.1) Pr
A0,...,An,c

[
rank

(
argmax
x∈S(A)

cTx

)
= r

]
> 0

12



where A0, . . . , An, c are standard Gaussian with respect to the Euclidean inner product. In
other words, each value in the Pataki range occurs with positive probability. Fix r in the
Pataki range satisfying n > tm−r and consider

Ωr =

{
(A0, . . . , An) ∈ (Sm(R))n+1 : Pr

c

[
rank

(
argmax
x∈S(A)

cTx

)
= r

]
> 0

}
.

By (B.1) we know that Ωr has positive probability (otherwise the complement of Ωr has
probability 1 which would contradict (B.1)). Thus this means that Ωr must meet Γ since Γ is
Zariski open.

Let A := (A0, . . . , An) ∈ Ωr∩Γ and let S = S(A) = {x ∈ Rn : A0+x1A1+· · ·+xnAn � 0}.
To prove our claim we will show that Vr(A) intersects the boundary ∂So along a semialgebraic
set of dimension n − 1. This will prove our claim because if we let U be this semialgebraic
set we then have on the one hand ∂aS

o ⊇ ŪZ (where ŪZ denotes the Zariski closure) and on
the other hand ŪZ = Vr(A), the latter following from the fact that Vr(A) is irreducible of
dimension n−1 and that dimC(ŪZ) = n−1 since U is a semialgebraic set of dimension n−1,
see [3, Proposition 2.8.2].

It remains to show that Vr(A) intersects ∂So along a semialgebraic set of dimension n−1.
To see why this holds let

U = Ũ ∩ ∂So where Ũ =

{
c ∈ Rn : rank

(
argmax

x∈S
cTx

)
= r

}
.

By definition of Vr(A) (recall that Vr(A) is defined in terms of rank-constrained KKT equa-
tions) we have U ⊆ Vr(A) ∩ ∂So. Now observe that U is a semialgebraic set of dimension
n − 1: indeed note that Ũ has nonempty interior (since it is a semialgebraic set with pos-
itive probability, see Lemma B.2) and so U = Ũ ∩ ∂So has dimension n − 1 since for any
α ∈ ∂So and neighborhood A of α, dim(A ∩ ∂So) = n− 1 (because ∂So is the boundary of a
full-dimensional convex set). This completes the proof.

Lemma B.2. If W ⊆ RN is semialgebraic and W has positive probability under the standard
Gaussian measure, then W has nonempty interior.

Proof. Any semialgebraic set can be decomposed as a disjoint union of semialgebraic sets
that are homeomorphic to (0, 1)d (see [3, Theorem 2.3.6]). Since Pr[W ] > 0, W must have a
component that is homeomorphic to (0, 1)N and thus W has nonempty interior.
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