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ABSTRACT

We consider the problem of optimizing a parametric linear function
over a non-compact real trace of an algebraic set V. Our goal is
to compute a representing polynomial which defines a hypersurface
containing the graph of the optimal value function. Rostalski and
Sturmfels showed that when V is irreducible and smooth with a com-
pact real trace, then the least degree representing polynomial is given
by the defining polynomial of the irreducible hypersurface dual to the
projective closure of the V.

First, we generalize this approach to non-compact situations. We
prove that the graph of the opposite of the optimal value function
is still contained in the affine cone over a dual variety similar to the
one considered in compact case. In consequence, we present an algo-
rithm for solving the considered parametric optimization problem for
generic parameters’ values. For some special parameters’ values, the
representing polynomials of the dual variety can be identically zero,
which give no information on the optimal value. We design a dedi-
cated algorithm that identifies those regions of the parameters’ space
and computes for each of these regions a new polynomial defining
the optimal value over the considered region.

Categories and Subject Descriptors

1.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation—Algorithms; G.1.6 [Numerical Analysis]: Global opti-
mization
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Dual variety; polynomial optimization; recession pointed cone

1. INTRODUCTION

Parametric optimization problems widely arise in both theoretical
problems and practical applications, like the maximum likelihood
estimation and the model predictive control [S]. It is worthwhile to
express the optimal value as an explicit or implicit function of the
parameters in the region of interest.
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In this paper, we consider the problem of optimizing a parametric
linear function over a real algebraic variety

co:=sup cz=cizi+ +Cnn
zERN (1)
st. hi(z)=---=hy(z) =0,
where hi,...,h, € R[Xq,..., X,] are polynomials in the decision
variables (X1,...,X») and ¢ = (c1,...,cy) denotes unspecified
parameters.

The optimal value ¢ can be regarded as a function of the parame-
ters c, i.e. the optimal value function. Our goal is to compute a poly-
nomial that defines a hypersurface in the parameters’ space which
contains the graph of this function.

Typically, the cylindrical algebraic decomposition (CAD) [8] can
be applied to solve (1).

More precisely, by introducing the Boolean operators A (and), we
associate (1) with a Boolean expression

(hi(X)=0)A---A(hp(X)=0)A(co—c"X >0) (2

with X = (X1,..., X,).

Indeed, recall that a CAD can be used to describe the projection
of a semi-algebraic set (which is equivalent to eliminating one block
of quantifiers).

By computing the CAD of the semi-algebraic set in R"*! de-
fined by (2) with an ordering where the X -variables are larger than
the c-variables, the projection phase provides us a set of polynomi-
als in R[co, ¢, X|, called projection level factors, which defines the
boundaries of cells in the parameters’ space R". However, the com-
plexity of CAD algorithms is doubly exponential in the number of
variables which limits its practical application to nontrivial problems
involving 4 variables at most and this general approach may return
numerous irrelevant polynomials.

In the last decade, several approaches have been developed to de-
sign dedicated algebraic techniques for polynomial optimization (see
[31, 17, 16, 18, 2, 34] and references therein). In the non-parametric
case, they allow to compute polynomials defining the optimum of
a polynomial optimization problem whose degrees are singly expo-
nential in the number of decision variables.

Here, our goal is to extend these techniques to the parametric case.
We denote by ® € QJco, c1,...,Cn] a polynomial defining a hy-
persurface in the parameters’ space which contains the graph of the
optimal value function.

The smallest possible degree for ® in the variable co is called
the algebraic degree of the optimization problem (1). This number
measures the complexity of (1). Therefore, a lot of interest has been
attracted on finding the polynomial ® and the algebraic degree [6,
15, 20, 24, 25, 27, 30].

We denote h = {hq,...
pearing in (1) and let

,hp} the sequence of polynomials ap-

V={veC"|hi(v)="---=hyp(v) =0}. 3



We assume below that h generates a radical and equidimensional
ideal. The regular points of V are those points at which the rank of
Jacobian matrix associated to h is the codimension of V.

We let V* be the dual variety associated with V), which is the
Zariski closure of the vectors in the projective space tangent to the
projective closure of V at its regular points. Its defining polynomials
can be seen as polynomials with coefficients in Q[co, ¢, ..., Cn].
Rostalski and Sturmfels in [30, Theorem 5.23] show that, when V is
irreducible, compact in R” and smooth, the optimal value function ®
is represented by the defining polynomial of V*. Therefore, when V
is compact in R", the defining polynomial of V* can fulfill our goal
mentioned above. The compactness in the assumption is included to
ensure that the optimum ¢{ is well-defined and achieved which are
essential in the proof of [30, Theorem 5.23].

However, when ¥V N R"™ is non-compact, the optimal value cj
for some (v1,...,7») € R™ could be infinite or finite but can not
be attained, i.e. c¢j is an asymptotic critical value at infinity [21,
22, 26]. Hence, the proof of [30, Theorem 5.23] is not valid in
this case. Another issue with the defining polynomials of V* is
that they might vanish on a Zariski closed set of parameters’ values
(Y1, .-.,7vn) € R™. In other words, they give no information about
the optimal values for these parameters’ values. We aim to explore
the treatment of the above difficulties.

Main contributions. We consider the problem of optimizing a para-
metric linear function over a non-compact real trace of an algebraic
set V. Supposing V is smooth, we show that the graph of the oppo-
site of the optimal value function is contained in the affine cone over
a dual variety V*,i.e. (—c§ : 71 : -+ : yn) € V* whenever the opti-
mal value cj is bounded at (1, . . ., 7). We design an algorithm for
solving the optimization problem (1) for generic parameters’ values.
It returns a set of two polynomials (®, Z) such that

e & € Qco,c] and Z € Q[c];

e forany v = (71,...,7) € V(2), if the associated optimum
¢ of (1) is bounded, then ®(co,y) is not zero and its set of
roots contains the optimum c{ of (1).

If V is irreducible, smooth and the closure of the convex hull of VN
R™ contains no lines, then similar to [30, Theorem 5.23], we show
that V* is an irreducible hypersurface and its defining polynomial
represents the optimal value function of (1).

When V is not smooth but its real trace is compact, we construct
recursively a finite number of dual varieties such that (—cj : 71 :
-+ 1 7yn) lies in the union of these dual varieties. We design an
algorithm which returns a finite sequence of (®;, Z;) with the prop-
erty that for any v = (71, ..., v») whose associated optimum cg is
bounded, there exists an 4, if Z;(y) # 0, then ¢g is contained in the
roots of ®;(co, ).

It may happen that for some special parameters’ values, the poly-
nomials obtained with the above approach are identically 0. Then,
they provide no information on the optimization problem when the
parameters are instantiated to these values.

We design a parametric variant of [18] that solves this problem.
Under the assumption that V' is smooth and when the parameters
are instantiated, the algorithm in [18] allows to obtain a polynomial
of degree singly exponential in the number of decision variables X
whose set of roots contains the global optimum of the instantiated
polynomial optimization problem.

We use the algebraic nature of the algorithm in [18] to design a
parametric variant that returns a list of triples

(¢17 Z17P1)7 LR} (q)]w Zk:7Pk)
such that

e &, € Q[co,c], Z; € Q[c] and P; C Q|c] generates a prime
ideal for 1 <1 < k;

e U, V(P,) is the whole parameters’ space and V (P;)—V (Z;)
isnotempty for 1 < i < k;

e forany v = (v1,...,7) € R™ such that v € V(P;) —
V(Z;), the set of roots of ®(co, 1, . . . , 7n) contains the global

optimum of the polynomial optimization problem (1) when
ci,...,Cn are instantiated to 1, ..., Vn.

This paper is organized as follows. In Section 2, we recall some
background in convex analysis, algebraic geometry and dual vari-
eties needed in this paper. In Section 3, we investigate the relation
between the graph of the optimal value function and the dual variety
V* when the algebraic variety V is not compact in R™ or not smooth.
In Section 4, we present the parametrized variant of [18].

2. PRELIMINARIES

2.1 Convex sets and cones

We first present some ingredients from convex analysis [28]. A
non-empty subset C' C R™ is said to be convex if (1—\)z+ Ay € C
whenever z € C,y € C'and 0 < A < 1. We denote cl(C') and
int (C) as the closure and interior of C, respectively. The affine hull
of a convex set C, denoted by aff (C'), is the unique smallest affine
set containing C. The relative interior of a convex set C C R",
denoted by ri (C'), is defined as the interior of C regarded as a subset
of aff (C). For an arbitrary set C' C R", denote co (C) as its convex
hall.

The polar of a non-empty convex set C' C R" is a closed convex
set defined as

C°={zeR"|Vy e C (z,y) <1}

We have C*° = ¢l (co (C U {0})).

A subset K C R"™ is called a cone if it is closed under positive
scalar multiplication, i.e. Az € K forallz € K and A > 0. A
convex cone K is pointed if it is closed and K N —K = {0}. The
polar of a non-empty convex cone K is defined as

K°={z eR" |Vy e K, {(x,y) <0}.

The recession cone 07 C' of a non-empty convex set C' is the set
including all vectors y satisfying x + Ay € C for every A > 0
and x € C. Importantly, a closed convex set C C R™ is bounded
if and only if 0T C consists of the zero vector alone. A closed and
unbounded convex set C' contains no lines if and only if 0T C is
pointed.

Let f be a function whose domain is a subset S C R™ and values
are real or +00. The epigraph of f is defined as

epi(f) = {(z,p) eR"™ |z €S, pneR, p> f(z)}.
We say that f is a convex function on S if epi(f) is convex as a

subset of R™ !, The effective domain of a convex function f on S
is the projection of epi(f) on R™:

dom(f)={z € R" | Ju e R s.t (z,pn) € epi(f)}
={z eR"| f(z) < +o0}.

THEOREM 2.1. [19, Theorem 1.2] Let C' C R" be a closed and
unbounded convex set, then

o . . .
1. (O+ C’) is an n-dimensional convex set;

2. int ((07C)°) C dom(ci(c | C)) C (07C)°. Moreover,
we have f(x) = a™x attains its supremum on C for every
a € int ((O*C)O).

2.2 Dual varieties

Denote X = (X1i,...,Xy). For any ideal (homogeneous ideal)
I in R[X] (R[Xo, X]), denote V(I) as the affine (projective) va-
riety defined by I in C™ (P"(C)). Now let us review some back-
ground about dual varieties in P"(C) [29, 30]. In the following,
we abbreviate P™(C) as P" for convenience. Let I = (f1,..., fp)
be a homogeneous radical ideal in the polynomial ring R[Xo, X]
and V = V(I) C P". The singular locus sing(V') is defined
by the vanishing of the ¢ X ¢ minors of the p X (n + 1) Jaco-
bian matrix Jac(I) = (9fi/0X;), where ¢ = codim(V). Let
Viee = V'\sing(V') denote the set of regular points in V. The pro-
jective variety V' is smooth if V' = V.



A pointu = (ug : u1 : -+ : un) in the dual projective space
(P™)* represents the hyperplane {z € P" | >°" ju;z; = 0}.
We say that w is tangent to V' at a regular point z € Vg if ©
lies in the hyperplane "  wiz; = 0 and its representing vector
(uo,u1, ..., un) lies in the row space of the Jacobian matrix Jac([)
at the point x. The conormal variety CN(V) is the closure of the set

{(w,u) € P" x

The dual variety V* is the projection of CN(V') onto the second
factor. More precisely, the dual variety is the closure of the set

(P™)* | € Vieg and w is tangent to V at x}.

{u € (P")" | wis tangent to V at some regular point} .

2.3 Generalized critical values

For a vector v € R"™, ||v|| denotes the standard Euclidean norm
of v. Let V be a smooth affine variety, and let f : V' — R be
a polynomial dominant mapping. Denote Ko(f, V') as the critical
values of f on V. The set of asymptotic critical values at infinity
[21, 22, 26] of f on V is defined as

Koo(f,V):{ y €R

3z® e V, s.t. z® 00,
F@®) =y, 2P v d,0 f) =0 |

where d_ ) f stands for the differential of f evaluated at #® and
v stands for the distance of d_,(x) f to the space of degenerate linear

maps on the tangent space to V" at z® ., The set of generalized critical
values of f is defined as

K(f,V) :Ko(f,V) UKoo(fvv)'

It has been shown in [22, Theorem 3.1] and [21, Theorem 3.3, Corol-
lary 4.1] that K (f, V) is a finite set.

THEOREM 2.2. [21, 26] If f is bounded above, i.e.
™ =sup,cy f(x) is finite, then f* € K(f,V).

3. DUALITY IN NON-COMPACT CASE
For the algebraic variety V defined in (3), let

Ch =cl(co (VNR")),

i.e. the closure of the convex hull of V N R™. Then, the problem (1)
is equivalent to

et =sup ¢’z stz € Ch. 4)

Let V* be the dual variety to the projective closure of V. When Ch,
contains no lines, i.e. 07Ch is pointed, the relation between the
optimal value function of (1) and the defining polynomial of V* is
investigated in [19]. Now we prove the correctness of some results
therein without the assumption of pointedness. It will yield an algo-
rithm for solving parametric optimization problem (1) with generic
parameters.

3.1 Smooth Case

In this subsection, we assume the algebraic variety V in (3) is
smooth. Recall that dom(cj(c | Cn)) denotes the collection of the

parameters’ values v € R™ such that the supremum of v7z on Cl,
is finite. We generalize Rostalski and Sturmfels’ result [30, Theorem
5.23] to the non-compact case as follows.

THEOREM 3.1. Suppose that 'V in (3) is smooth, then

(mco:yrieeim) €V )

for every v € dom(cj(c | Cn)).

PROOF. Fix a v € dom(cy(c | Cn)). By the definition, the
supremum ¢ of f(X) = 77X on V N R" is finite. For the case
when ¢g is a critical value which can be attained, see the proof of
[30, Theorem 5.23]. Now by Theorem 2.2, we suppose that cj is
an asymptotic critical value of f over V N R™. Then, there exists a
sequence {z¥} C V N R" such that [|z®)|| — oo, f(z¥)) — ¢
and [|2®||v(d, ) f) — 0. By [36, Lemma 2.1], for each 2(¥), we

can find a vector v*) in the normal space of V at {a:(">} such that

W™ =4l = v, f). Then, 2@ ||y = 5] — 0, which
implies ||v*) — || — 0and (v*)T2® — ¢f. Tt can be checked
that

(—(y*) ey

Since V* is closed, we have (—cg : y1 @ -

-:fy,(lk)) eV
) €V O

COROLLARY 3.2. If V is irreducible, smooth and Cy, contains
no lines, then V* is an irreducible hypersurface and its defining poly-
nomial represents the optimal value function of (1).

PROOF. Since C, contains no lines, 07 (C4,) is pointed. Accord-
ing to Theorem 2.1, (07 Cy)° is a n-dimensional convex set and
int ((0*Ch)°) is contained in dom(ci(c | Cn)). Therefore, the
affine cone of the Zariski closure of

{(—CS ty1 i) € (PM)Y | v € int ((0+Ch)°)} (6)

has dimension > n. By [9, Theorem 12 (i), §3, Chpt. 9], the Zariski
closure of (6) is of dimension > n — 1. By Theorem 3.1 and [30,
Proposition 5.10], we have dim(V*) = n — 1. As V is irreducible,
V™ is an irreducible hypersurface [13, Proposition 1.3], and coincides
with the Zariski closure of (6) according to [9, Proposition 10 (ii), §4,
Chpt. 9]. Then, the conclusion follows. [

In the sequel, we say that a property depending on some indeter-
minates is generic if there exists a non-empty Zariski open subset of
the space endowed by these indeterminates over which the property
holds (we will also say that the property holds for generic values of
these indeterminates).

An algorithm can be derived from Theorem 3.1 for solving the
parametric optimization (1) for generic parameter as described be-
low. Denote p = (1, ..., pp). Let J C Q[eo, ¢, 1, X| be the ideal
generated by

T "L Ohy
cX—co7h17...,hp,ci—E ujﬁ,zzl,...7n.
j=1 '

Since h generates a radical ideal, for any (cj,, &, T) € V(J), ¢ is
a critical value of the function v X on V at a critical point Z.

ALGORITHM 3.1. GenericParametricOptimization(h)
Input: h, ..., h, € Q[X] which generate a radical ideal
Output: (O, Z) such that

o & € Qfco,c]and Z € Qlc]

e Forany~y € dom(cj(c | Cn)) such that Z(vy) # 0, ®(co, )
is not zero and its set of roots contains the optimum cg, of (1).

Step 1 Compute the reduced Grobner basis G of J N Q|co, ] with
block lex order X > > ¢ > co.

Step 2 Set I to be the set of polynomials in G containing the variable
Co.

Step 3 Set ® o be the polynomial in T with the lowest degree in co.

Step 4 Set Z to be the sum of squares of all coefficients of ® in view
of Q[ca, . . ., €nllco).

THEOREM 3.3. In Algorithm 3.1, we have I # (, V* = V(I')
and the algorithm is correct.

PROOF. By the definition of dual varieties and Theorem 3.1, it
suffices to show that I" # ). Let mn41(V (J)) be the projection of
points in 'V (J) on their first n 4 1 coordinates, then G is the corre-
sponding elimination ideal. By the Closure Theorem [9], 7, +1(V (J))
C V(@) and there exists a subvariety W G V(G such that V(G)\W
C mn41(V(J)). Fix a point (cj,v) € V(G). Suppose to the
contrary that I' = (), then C x v C V(G). By Sard’s Theorem,
C x vy N mp41(V(J)) is an empty set or a finite set. Therefore,
Cx~v C V(@) \mnt1(V(J)) € W except for at most finitely many
points in C x . Since W is closed, C x v C W. In particular,
(co,7) € W which means V(G) = W, a contradiction. []



REMARK 3.1. As proved in Corollary 3.2, when 'V is irreducible,
smooth and Cy, contains no lines, there is only one polynomial in the
set I in Algorithm 3.1. If Cn, contains lines, I might consist of more
than one polynomial and V™ may not be the Zariski closure of the set
(6), see Example 3.1.

Similar to [31, Theorem 6], with Algorithm 3.1 and procedures of
deciding the emptiness of real algebraic varieties, we can determine
whether a generic v (7 € V(Z)) belongs to dom(cg(c | Cn)) and
the associated optimum c¢; if it does.

EXAMPLE 3.1. Consider the algebraic variety V defined by
h(X1,X2) = X7 X2 — 1

which is irreducible, smooth, non-compact in R? and Chw contains
lines. Let v = (0, —1), then clearly ¢; = 0. Running Algorithm 3.1,
we get T' = {4cd + 27cica} and hence

® = 4¢3 + 27c3ca, V(Z)=0.

Hence, V* = V(I') CP?and (0:0: —1) € V*.
Since dom(cj(c | Cn)) = {y € R® | 11 = 0,92 < 0} and
¢y = 0 forany v € dom(cy(c | Cn)), the Zariski closure of

{(=co 171 :72) € (P*)" | v € dom(cs(c | Cn))} ()

is {(0:0: ) € (P*)* | v2 € C} which is of dimension 0. Since
we have dim V* = 1, V* is not the Zariski closure of the set (7).

3.2 Singular case

Now we suppose that V is irreducible, compact in R™ but is not
smooth. We point out that the inclusion (5) might not hold in this
case.

EXAMPLE 3.2. Consider the astroid which is a real locus of a
plane algebraic curve V defined by

h(X1, X2) = (X7 4+ X% —1)" + 27X2X3.

It is obvious that for any linear function on V N\ R?, its optimizer is
one of the four singular points {(£1,0), (0,£1)}. We have V* =
V(T') where

2 2 2 2 2 2
I' = {—C102 =+ CpCq + CQCO}.

For a given v € R?, we have ¢ = max{|y1], |y2|} > 0. It is easy
to check (—cb : 71 : v2) &€ V* whenv1 # 0 ory2 # 0, i.e. (5) does
not hold.

Next we recursively construct a finite number of dual varieties
such that (5) holds for the union of these varieties. For similar treat-
ment, see [35]. The following algorithm has the same input as Algo-
rithm 3.1 and returns a finite sequence of (P, Zy) with the property
that for any v € dom(cg(c | Cn)), there exists a k, such that if
Zi(7y) # 0, then ¢j is contained in the roots of @5 (co, ).

ALGORITHM 3.2. SingularParametricOptimization(h)

SteplLetk=1and Vi, = V.

Step 2 Compute an equidimensional decomposition Vi, = U;Vy ;
with Vi, o = V(Ii,;) and each Iy, ; is a radical ideal.

Step 3 Run GenericParametricOptimization ([ ;) for each i and set
V) = UiV

Step 4 Compute the set Ty, C Q[co, c] such that V(T'y,) = (VH®)*,

Step 5 Set Oy, to be the polynomial in Ty, with the lowest degree in

Co.

Step 6 Set Zy, to be the sum of squares of all coefficients in Py, in
view of Q[c1, . . ., ex][co]-

Step 7 Compute the singular locus Vi, ; of each Vi, ; and set Vi1 =
Ui Vi If Vi1 # 0, then let k = k + 1 and go to Step 2.

The next theorem shows the correctness of Algorithm 3.2.

THEOREM 3.4. The algorithm terminates in a finite number of
steps and for every v € R", we have

(—co iy i) € Uk (V)"

PROOF. Since Vi ; is the singular locus of Vi ;, dim(Vi:) <
dim(V,;) and then the algorithm terminates in a finite number of
steps. Since V is compact in R™, for every parameter -y, the optimum
¢ is finite and attainable. If the optimizer z* is a smooth point, by
Theorem 3.1, (—c§ : y1 : ... : yn) € V*. If z¥ is a singular point
of V. Then there exist k and 4 such that ™ is regular in V} ; and
(mco:m:...iym) €V, O

EXAMPLE 3.2 (CONTINUED) The singular locus of V is defined by
{h,X? — X1, X{ X2 + X1 X2,3X] — X7 +2X3 — 2},

and has four real points {(+1,0), (0, £1)}. Running Algorithm 3.2,
we get ['1 consisting of

(co — c2)(co + c2)(co — ¢1)(co + €1)(cg + ¢f — 2c1¢2 + ¢3)
(c5 + i + 2cic2 + c3).

By the discussion in Example 3.2, it is easy to check that (—cg : 1 :
v2) € V(1) = (WI)* for every v € R2.

3.3 “Bad” parameters

It is clear that the polynomial ® in Algorithm 3.1 gives no infor-
mation about the optimal value of (1) with parameters belonging to
V(Z). In particular, it might happen for the problem (1) reformu-
lated from a general polynomial optimization problem by introduc-
ing a new variable.

Consider the polynomial optimization problem

= max f(x) st hi(z)=---=hy(z) =0,

where f € R[X]. If f is bounded from above on V N R", then we
have f* € K(f,V NR"). Let

Vh,f = {($,$n+1) € (Cn+1 | T € men-kl - f(x) = 0}
By Theorem 3.1, we have (—f* : 0:---:0:1) € V}, ;.

EXAMPLE 3.3. [22, Example 2.1] Let f = (X, + X7 X2 +
Xi‘Xng)Q. Running Algorithm 3.1 for Vy y with p = 0, we get
I' = {®} where

® =1073741824c5?caca + 268435456¢5 cicica—
+ 9865003008c’ cacsch + - - - + 520093696¢) c1cacacs.

We have ®(co,0,0,0,1) = 0 which gives no information about f*.
In fact, we have V (Z) = V(cac4, c3€4a, c3C2¢1). Hence, for ca =
0,c3 = 0, we always have ®(co,c1,0,0,c4) = 0, i.e. co can be
arbitrary values.

In next section, we aim to design a complete algorithm to solve
this problem.

4. COMPLETE ALGORITHM

4.1 Overview

As above, let h = (h1,...,hy) C Q[Xy,...,X,] that gener-
ates a radical and equidimensional ideal and V be the algebraic set
defined by h1 = --- = h, = 0; we assume that V is smooth and
denote by 7 its codimension.

It might happen that for some “bad” parameters’ values v = (71,

.,7n), the defining polynomials of the dual variety V* become

identically zero. For such values, this gives no information about
the optimum ¢, of the map z — 7z on V N R™. For instance, in
Example 3.3, the polynomial & is a zero polynomial for any v =
(71,0,0,74), 71,74 € R. In this section, we describe an algorithm
that allows to avoid this problem. It can be seen as a parametric
version of [18] that provides a complete algorithm for polynomial
optimization.



Our algorithm starts by computing a couple of the form (®, Z, P)
where ® € Q[co, c], P C Q|c|]and Z € Q[c]—(P) such that for any
(71,---,7m) € V(P)=V(Z), ®(co,71,- - - ,¥n) is not identically
0 and the optimum of the restriction of the map 2 — 7« to VNR™ is
aroot of ®(co, 71, - . ., n). Next, the algorithm is called recursively
to study the parametric optimization problem under each constraint

P; which is a prime component of y/(P) + (Z). Hence, we are
led to run our algorithm over an integral domain Q[cy, ..., c,]/P
where P C QJc1,...,cy] is a prime ideal. Since the domain on
which the computations are performed is integral, all operations that
we need to manipulate polynomial ideals are available; the only dif-
ference is that we need to compute pseudo-inverse of polynomials
modulo P, hence simulating computations over the fraction field of
Qlci, - .., ¢n)/P.

The routine that handles these computations over these integral
rings is called BasicParametricOptimization. It is a parametric vari-
ant of Algorithm SetContainingLocalExtrema in [18, Section 3].
One of its advantages is that in the fraction field of the integral do-
mains Q[cy, ..., c,]/P, it performs a number of operations that is
singly exponential in n (see [18, Section 6, Lemma 6.8]) to be com-
pared with the doubly exponential complexity in n that is needed by
Cylindrical Algebraic Decomposition.

Note that one can also use lazy representations of ideals and dy-
namic evaluation techniques (see e.g. [10, 23]) to work with these
parameters as well as comprehensive Grobner bases or comprehen-
sive triangular sets (see e.g. [7, 37] and references therein). The
description below is done assuming that our domain is integral for
simplicity; this allows us to focus more on objects and properties
related to polynomial optimization and introduced in [18].

Before describing in detail the recursive procedure that is sketched
above, let us describe the objects and subroutines that we need and
which are extracted from [18].

4.2 Basic objects and properties

We start with polar varieties (see e.g. [1, 3] and references therein)
and their Noether position properties (see [32]). Let P C Q|c] be a
finite polynomial sequence generating a prime ideal P and let A =
QI[c]/P. Hence A is an integral ring.

For v € V(P), we consider the canonical projections 7; : (z1,. ..
ZTn) = (z1,...,x;) for 1 <4 < n and the following projections

JTn) = T =@+ Yndn
andfor1 <4 <dim(V)=n-—r,

my i = (T1,...

) wz)
For ¥ € C, we denote by V. » the algebraic set defined by V N

75 *(9). We consider

it @ = (T1,...,ZTn) = (fyTa:,azl,a:g,...

e the set of all (r + 1)-minors of the truncated Jacobian ma-
trix Jac([hiy, - ., hi,, 77 X],X>i) (columns corresponding
to partial derivatives w.r.t X1, ..., X; are omitted) for all sub-

sets {i1,...,ir} C{1,...,p}forl <i<n—r—1;wede-
note it by M(h, ~, 7). For convenience, let M(h, v, n—r) = (.
When the entries of  are parameters ¢ = (c1,...,Cy), the
set of minors is denoted by M(h, c, ¢).

e the set of all (r + 1)-minors of the Jacobian matrix
Jac([hiy, - . -, hi,, 77 X]) for all subsets
{i1,...,ir} C{1,...,p}; we denote it by S(h, ).
When the entries of v are parameters ¢ = (c1,...,Cy), the

set of minors is denoted by S(h, c).

Lety € C" — {0} and ¥ € C. Assume that V. » is smooth and
that the ideal (h,y"X — ¥9) is radical and equidimensional. The
polar variety W (h, v, ¥, ¢) associated to V., ¢ and 7,; is the critical
locus of the restriction to V., y of ;. It is defined by the vanishing of
the polynomials in h and M(h, v, i) and the polynomial v X — 1.

We will denote by W (h, ~, 7) the algebraic set defined by the van-
ishing of the polynomials in h and M(h, v, ), for 1 <i <n —r.

The polar variety C'(h, ) associated to V and =, is the critical
locus of the restriction to V of 7. It is defined by the vanishing of
the polynomials in h and S(h, 7).

In the sequel, we will use some properties of polar varieties that
hold under generic changes of coordinates.

For A € GL,(C) and S C C", we denote by S* the image of S
by the map z — A" 1x.

Let A € GL,(Q), we are interested in the parameters’ values
~ € V(P) such that there exists a non-empty Zariski open set O C
C such that for any ¥ € O, the following holds:

PB1: (h, 47 X — ) is radical and equidimensional and V, g is
smooth; note that by the Jacobian criterion, this is equivalent
to saying that at any point of V. o, the rank of (h,y* X — )
isr+1.

P2(A): for 1 < i < n — r, the polar variety W (h*™,~,,17)
is in Noether position with respect to the projection ;1.

For those parameters’ values for which 91 and 93,(A) hold, we
simply say that B(A) holds.

We recall now the statement of [18, Proposition 4.2]. It empha-
sizes the interest of these properties for polynomial optimization.

PROPOSITION 4.1. [18, Proposition 4.2] Let A € GL,(C) and
let v € C™ — {0} such that \B(A) holds. Then the following holds:

o the algebraic set Cf? defined as the Zarsiki closure of

U (Wmh,5,0) - e ) i (0)
has dimension at most 1;

o the union of ©,(C'(h® ~)) and the set of non-properness of
the restriction of T to C$ is finite and contains the extremum
of the restriction of the map m to V N R"™.

From [18, Proposition 4.3], for any v € V(P) there exists a non-
empty Zariski open set &/ C GL,(C) such that for any A € &/ N
GL,»(Q), B(A) holds.

However, note that in order to use Proposition 4.1 for parametric
optimization, we need to prove a stronger statement: there exists a
non-empty Zariski open subset &7 C GL, (C) such that the follow-
ing holds. For any A € &/ N GL,,(Q), there exists a Zariski dense
subset U C V(P) such that for v € U, ‘B(A) holds.

Basically, our algorithm BasicParametricOptimization identifies
a polynomial Z such that V(P) — V(Z) is non-empty and com-
putes a polynomial ®(co, ¢) such that for any v € V(P) — V(Z),
®(cp,y) defines the union of the finite algebraic sets in the second
item of Proposition 4.1.

This is what we prove below but before doing that we introduce
the data-structure and subroutines used by our algorithm.

4.3 Data-structures and subroutines

From now on, P C QJc] is a polynomial sequence that generates
a prime ideal P. We denote by A the integral ring Q[c]/P, by K the
fraction field of A and by K the algebraic closure of K.
Data-structures. Let F C Q[X7, ..., X,] that defines a finite alge-
braic set V' in C™. Then, V' can be encoded with a zero-dimensional
rational parametrization which is a sequence of polynomials Q =
(¢,90,q1,---,q,) C Q[U], i.e. V is defined by

q(U) =0, Xi = qi(U)/q0(U), qo(U) #0 forl <i<m,

with ged(q, go) = 1 and ¢ is unitary and its degree is the cardinality
of V.
When F defines an algebraic curve V' C C", then a rational
parametrization for V' is a sequence of polynomials Q = (g, qo, g1,
..yqn) C Q[U,T7] such that V is the algebraic closure of the set
defined by

qU,T)=0, X; = %, q@(U,T)#0 forl<i<mn
0 )



with g unitary in U and T, its degree is the degree of the algebraic
curve V and ged(q, o) = 1.

Below, we will also consider polynomial systems in the ring A[ X1,

.., X»n] where A is an integral ring. We denote by K the fraction

field of A and by K the algebraic closure of K. Hence, the algebraic
sets defined by these polynomial systems lie in K™ ; whenever they
define finite algebraic sets or algebraic curves, they can be encoded
with rational parametrizations with coefficients in K, which up to
normalization can be turned into rational parameterizations with co-
efficients in A.
Basic routines. We need to introduce the following routines.

The routine SingularMinors takes as input h and P and it returns

G = (h,S(h,c)).

The routine SpecialCurve takes as input h and P and returns F =
(F1,...,Fy_;)such thatfor 1 <4 < n —r, F;is h,M(h,c,1),
X, X1

These systems will allow us to compute parametrized representa-
tions of the sets C for «y lying in a Zariski dense subset.

The routine PointsPerComponents takes as input h € Q[ X1,

.., Xx] and it returns a zero-dimensional rational parametrization
that encodes a finite set of points contained in V = V(h) and meet-
ing all the connected components of ¥V N R".

The routine ValuesTakenByPoly takes as input a zero-dimensional
rational parametrization Q C Q[U] that encodes a finite set of points
V in C", the sequence of polynomials P C Q[c]. It returns & C
Q][co, c] and a polynomial Z € Q[c] — (P) such that for v €
V(P) — V(Z), ®(co, ) defines the set {772 | 2 € V'}. It essen-
tially consists of substituting the parametrization in the polynomial
c” X — co, clearing the denominators and eliminating the variable U
with a resultant computation to get . Note that these computations
are done modulo P (hence in A). Keeping track of exact divisions
performed during the resultant computation needed to do this com-
putation (or using specialization theorems, see e.g. [12]) yields the
polynomial Z. Note that Z does not belong to P (else we wouldn’t
use its factors for performing divisions).

As above, the routine ParametricValues TakenByPoly takes as in-
put a zero-dimensional rational parametrization Q but with coeffi-
cients in A, the sequence of polynomials P C @Q[c]. The parametriza-
tion Q encodes a finite set of points V in K". It returns ® C Q|cy, c]
and a polynomial Z € Q[c] — (P) such that fory € V(P) -V (2),
®(co,y) defines the set {y7x | 2 € V}. As ValuesTakenByPoly
does, this routine works using substitutions and resultant computa-
tions.

The following lemma is immediate.

LEMMA 4.2. Let Q and P be as above and (®, Z) be the output
of ParametricValuesTakenByPoly(Q, P). Then, Z ¢ (P).

Properness. We describe now a routine CheckProperness that
takes as input h, a matrix A € GL,(Q) and P C Q|c] as above.

When there are no generic parameters’ values in V (P) for which
PB(A) holds, the routine CheckProperness simply returns (0). Else
it returns Z € Q[c] — (P) such that for any v € V(P) — V(Z),
property B(A) holds.

Roughly speaking, the above routine identifies those parameters’
values + for which 3(A) holds.

LEMMA 4.3. We use the above notation and assumptions. Then,
there exists a non-empty Zariski open set &/ C GLy(C) such that
forany A € o/ N GLy(Q) the following holds.

Let Z be the output of CheckProperness(h, A, P). Then, V(P)—
V(Z) is Zariski dense in V (P) and for v € V(P) — V(Z), prop-
erty PB(A) holds.

PROOF. Note that by construction, under our assumptions, Z ¢
(P). Hence, since (P) is prime, V(P) — V(Z) is Zariski dense in
V(P).

It remains to prove that there exists a non-empty Zariski open set
o/ C GLy(C) such thatforany A € &#/NGL,(Q)andy € V(P)—
V(Z), property ‘B(A) holds.

By [18, Proposition 4.3], for any v € V(P), there exists a non-
empty Zariski open set &7 € GL,(C) such that B(A) holds for ~.

We prove below that there exists Z ¢ (P) such that for any A € o/
andy € V(P) — V(Z),B(A) holds for .

Consider a minimal Grobner basis G of the ideal generated by
(h,c”X — co) and all (r + 1)-minors of Jac(h, ¢’ X — co) with
K(co) as a ground field. We claim that G is (1). Indeed, if it was
not the case, this would imply that for any v € V(P) which does
not cancel the finitely many denominators that appear in a computa-
tion of GG, P does not hold; hence a contradiction. We deduce that
G is (1) as claimed and let Z’ be the product of all denominators
appearing during the computation of G.

Now let 2( be an n x n matrix with entries 2(; ; as indeterminates.

By [33], one can ensure Noether position properties by setting the
non-vanishing of some denominators of a minimal reduced Grobner
basis of the ideals generated by

h* M(h*,c,i),c"AX — co

with K(2; ;) as a ground field. The coefficients of these denomina-
tors lie in K which contains Q. Now, we define the Zariski open set
o/ C GL, (C) by the non-vanishing of the coefficients of the mono-
mials in ¢, cg. This set is non-empty because, as above, it would
contradict that for any v € V(P), B(A) holds for A generic.

Now, remark that for A € .7, one can define Z"’ as the denomina-
tors that appear in the computation of the minimal reduced Grobner
basis of the ideals generated by

h®* M(h*, c,i),c"AX — co

with K as a ground field.
Taking Z = Z’Z" ends the proof. [

Rational parametrizations. Consider a sequence of polynomials
polynomials F = (f1,..., fs)and G = (g1,...,95) in A[X1,...,
Xyn]and I C K[X4,...,X,] be the saturation of (F) by (G); we
denote it by (F') : (G)°°. We assume that  has dimension 1 and is
equidimensional.

We are interested in studying the complex solutions of F' that are
not solutions of G where the admissible values for the parameters
c lie in the irreducible algebraic set associated to P. We consider
a routine ParametricCurveRepresentation that takes as input F,
G and P and which returns a finite sequence of polynomials Q =
(¢,90,q1,---,9n) C K[U,T] and a polynomial Z in Q[c] — P such
that for any v = (71, ...,7vn) € V(P)—V(Z) the curve associated
to () : (G)°° is the Zariski closure of the set defined by

5% (Uv T) =0, Xi = qu’Y(Uv T)/qov’Y(Uv T)7 qU»’Y(U7 T) 7& 0

for 1 < ¢ < n (where ¢y and ¢; 4 denote the polynomials of Q
obtained by instantiating ¢ to -y in ¢ and g; ~ fori € {0,...,n}).

LEMMA 4.4. LetF and G be as above and let (Q, Z) be the out-
put of ParametricCurveRepresentation(F, G, P). Then the Krull
dimension of (P) + (Z) is less than the Krull dimension of (P).

PROOF. Without loss of generality, one can assume that we are
in generic coordinates. Using Grobner bases with K as ground field
and linear algebra in K(X1)[X2, ..., X,] one can compute a ratio-
nal parametrization of I (see e.g. [11, 4]). During this computation,
some polynomials (which are not 0 modulo P by construction) are
used to perform divisions. Taking Z as the product of these polyno-
mials is a valid output and since these polynomials are not 0 modulo
‘P, Z is not. Since P is prime, we deduce that P+ (Z) has dimension
less than the dimension of P.

Reusing the above notations and ParametricCurveRepresen-
tation, it is straightforward to obtain a routine UnionParametric-
Curve that takes as input a sequence of sequences of polynomials
F = (F4,...,F;) a sequence of polynomials G and P such that
the ideal (Fy) : (G)* C K[X},...,X,] has dimension 1 and is
equidimensional for 1 < k < [. It returns a finite sequence of poly-
nomials Q = (¢, 9o, q1,--.,9») C K[U,T] and a polynomial Z in
Q[c] — P such that for any v = (y1,...,vn) € V(P) — V(Z) the

curve associated to (. _, (Fx,) : (G)™ is the Zariski closure of the
set defined by

q"/(Uv T) =0, Xi = Qi,'y(U, T)/qO,W(Uv T) qO,’Y(U7 T) 7é 0



for 1 < 4 < n (where g, and ¢; , denotes the polynomials of Q

obtained by instantiating ¢ to v in ¢ and ¢;,, for i € {0,...,n}).
The following lemma is an immediate consequence of Lemma 4.4.

LEMMA 4.5. LetF and G be as above and let (Q, Z) be the out-
put of UnionCurveParametric(F, G, P). Then the Krull dimension
of (P) + (Z) is less than the Krull dimension of (P).

Intersection of a curve with a variety. We describe now the rou-
tine Parametriclntersection which takes as input a one-dimensional
rational parametrization Q of a curve C C K", a polynomial se-
quence G € A[Xq,...,X,] and P. The sequence G defines an
algebraic set H in K”. Assume that the intersection of C' and H
is finite. Then, following [14] one can compute a parametric zero-
dimensional rational parametrization Q' that encodes C'N H. This is
done by substituting in G the parametrizations of the X;’s hence re-
ducing the computation to computing the intersection defined by the
vanishing of two bivariate polynomials with coefficients in K (using
resultant computations). Again, keeping track of the denominators
appearing during the computation or using specialization theorems,
one can finally return a parametric zero-dimensional parametrization
Q and a polynomial Z ¢ (P) such that forany v € V(P) — V(Z),
Q/, encodes Cy N H,.

LEMMA 4.6. Let Q, G and P as above and (®, Z) be the out-
put of Parametriclntersection(Q, f, P). Then, dim((P) + (Z)) <
dim(P).

Computing a set of non-properness. Let Q be a one dimensional
rational parametrization with coefficients in A; it defines an algebraic
curve C; C K™. Then, there exists a Zariski dense subset U of
V(P) such that for v € U, V(Q,) defines an algebraic curve C. .
The routine ParametricSetOfNonProperness computes (@, Z)
such that V(P) — V(Z) C U and is non-empty and such that for
v € V(P)—V(Z), ®(co,~) is not 0 and its set of roots contains
the set of non-properness of the restriction of the map z — v7z to
C,.
We denote by C the algebraic curve {(vo, ) | z € Cy and

Yo = cTz}. We also denote by € the projective closure of C} in
Forz = (xo : 1 : -+ : Tn) € €1 with zg # 0, we

P*(K).
denote by Z the point ﬁ—é, ceey fc—; and by €, the quasi-projective

set {(70,z) | = € € and & = o }.
Following algorithm given in [9] our routine reduces to the fol-
lowing steps:

e compute a representation of the projective closure €»; this can
be done using Grobner bases with K as a ground field;

e compute the intersection of €, with the hyperplane at infinity
defined by Xo = O; this is a finite set of points and again it
can be done using Grobner bases with K as a ground field.

Keeping track of all denominators that appear during the computa-
tions yields the polynomial Z ¢ (P) as above.
The following lemma is immediate.

LEMMA 4.7. Let Q and P be as above and let (9, Z) be the out-
put of ParametricSetOfNonProperness(Q, P). Then dim((P) +
(Z)) < dim(P).

4.4 Basic routine for parametric optimization

We describe now our basic subroutine BasicParametricOptimiza-
tion. It can be seen as a parametrized version of Algorithm SetCon-
tainingLocalExtrema in [18].

This latter algorithm consists in reducing the problem of comput-
ing the optimum of a polynomial function restricted to a real alge-
braic set V N R™ to the problem of computing the optimum of the
same polynomial function restricted to a curve. Obviously, this is
done in such a way that both optimization problems share the same
optimum.

We describe the main steps and refer to the steps of algorithm
BasicParametricOptimization corresponding to their parametric vari-
ants. The algorithm starts by computing sample points in VNR" and

gets (i) the values attained by the polynomial function to optimize at
those points (this corresponds to Steps 1-2). Next, it computes rep-
resentations of linear sections of polar varieties that define algebraic
curves (Step 5-6). Finally, it computes (ii) the set of non-properness
of the restriction of the considered function to the curve (Step 7) and
gets (iii) the critical values of this function restricted to the curve
(Step 8-9). All this is done in such a way that the optimum lies in the
set of values (i), (ii) and (iii).

Input: h = (h1,...,hp) C Q[X1,..., Xy] and P C Q|c]
Properties: P generates a prime ideal and (h1, ..., hp) generates a
radical equidimensional ideal defining a smooth algebraic set.
Output: (@, Z) such that

e & € Q[co,c]and Z € Q[c];
e 7 is not 0 modulo (P);

e Forany v € V(P) — V(Z) such that Z(v) # 0, ®(co,7)
is not zero and its set of roots contains the optimum of the
restriction of 7 to V N R™.

BasicParametricOptimization(h, P)

1. R = PointsPerComponents(h)

2. (®o, Zo) = ValuesTakenByPoly(R,c” X, P)

3. Choose randomly A € GL,(C)

4. 7} = CheckProperness(h, A, P)

5. F = SpecialCurve(h®,P), G = SingularMinors(h®, P)
6. (R1,Z1) = UnionParametricCurve(F, G, P)

7. (®1, Z}) = ParametricSetofNonProperness(R1, P, c” X)
8. Ry = ParametricIntersection(R;, G, P)

9. (P2, Z2) = ParametricValuesTakesByPoly(R2, ¢ X, P)
10. Take Z = ZoZ{Z17Z1Z2 and ® = PP D,
11. return (®, Z)

THEOREM 4.8. Let h and P be as above and (P, Z) be the out-
put of BasicParametricOptimization(h, P). Then, Z ¢ (P) and its
output is correct.

PROOF. The fact that Z ¢ (P) is an immediate consequence of
the fact that (P) is prime and that its factors Zo, Z(,, Z1, Z; and Z»
do not belong to (P) from Lemmata 4.2, 4.3, 4.5, 4.6 and 4.7.

It remains to prove the correctness of the output. Since A is cho-
sen at random at Step 3, one can assume that A belongs to the non-
empty Zariski open set <7 defined in Lemma 4.3.

Now, remark that for any v € V(P) — V(Z). By Lemma 4.3,
property B(A) holds.

Hence, without loss of generality one can assume that algorithm
SetContaininglLocalExtrema in [18] runs by choosing the matrix A
selected at Step 3 of BasicParametricOptimization. On input 47 X
and h the output of SetContaininglLocalExtrema is a polynomial
¢ € Q[co] whose set of roots contains the optimum of the restriction
of the map x — 7« to V N R™. From Lemmata 4.2, 4.5, 4.6 and
4.7 this polynomial ¢ is exactly ®(co, ). Hence, correctness of al-
gorithm SetContaininglLocalExtrema [18, Proposition 4.2] implies
the one of BasicParametricOptimization.

4.5 Recursive procedure

We present now our recursive procedure. It uses the routine Basic-
ParametricOptimization presented above. It also uses a routine
PrimeDecomposition which takes as input a polynomial family P C
QIc] and a polynomial Z € Q|c]. It returns polynomial families
Pi,..., Py such that

VvV (P)+(Z) = ﬁ§:1<P¢>

and (P;) is prime for 1 <14 < k.



Input: h = (hy,...,hpy) C Q[X1,...,Xn] and Py C Q[c]
Properties: P generates a prime ideal and (h1, ..., hp) generates
a radical equidimensional ideal defining a smooth algebraic set.
Output: a list of triples (®, Z, P) such that

e P C Qc] generates a prime ideal; Z € Q[c] — (P) and
® € Q[co, c;

e forany v € V(P) — V(Z), ®(co, ") is not identically 0 and
its set of roots contains the optimum of the restriction of the
map z — vz to VNR"®

and the union of the algebraic sets defined by the families P in the
output is V(Py).
When calling this recusive algorithm with input h and (0) € Q|c]

we get a list of triples (®;, Z;, P;) for 1 < i < k such that U¥_, V(P;)

is the whole parameters’ space. Remark that with the above proper-
ties of the output, given v € C", the optimum of the restrition of

the map z — ~7x is a root of the non-zero polynomial D;(co, ) if
v € V(P;) — V(Z;).
ParametricOptimizationRec(h, Pg)

1. if (Po) = (1) then return []

2. (®, Z) = BasicParametricOptimization(h, Pg)
3. (Py,..
4

. Let L; = ParametricOptimizationRec(h, P;)
forl1 <i<k

5. return the union of (®, Z, Po) with L, . ..

., Px) = PrimeDecomposition(P, Z)

7Li

THEOREM 4.9. Algorithm ParametricOptimizationRec termi-
nates and is correct.

PROOF. Correctness follows straightforwardly from an induction
on the depth of the recursion and the correctness of BasicParamet-
ricOptimization (see Theorem 4.8).

We prove now termination. Using again Theorem 4.8, note that the
polynomial Z obtained at Step 2 is such that dim((Po) + (Z)) <
dim(Py) since Py is prime and Z ¢ (P,). We deduce that at each
recursive call, the dimension decreases which ends the proof. [

EXAMPLE 3.3 (CONTINUED) Since (c2€4, C3C4, C3C2C1 ) represents
the bad parameters’ values for Algorithm 3.1, we need to consider its

prime components (c1, c4), (C2, €4), (C3, c4) and (cz, c3) in our re-

cursive procedure described above. Due to the limit of space, we

do not provide all details. We only present the results obtained with

P = (c2,c3), especially those of Step 7 in the subroutine Basic-

ParametricOptimization but all the computations take a few min-

utes using Macaulay?2 while the best implementations of CAD don’t
tackle this example. Following the paragraph on computing sets of
non-properness, we obtain that the square-free parts of ®; and Z1 2]

are respectively cocics and cicy. Thus, we need recursive routines

with P1 = (c1, c2, c3) and P2 = (c2, c3, c4), repectively. In both

cases, all parameters are instantiated; the objective function is X4 in

the case of P; and X in the case of Ps. In the case of P, the prob-

lem is reduced to the non-parametric optimization problem with the

objective X4. Running the algorithm in [18], we get ®; = cg which

represents the asymptotic optimum that we are concerned about.
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