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ABSTRACT
We consider systems of polynomial equations and inequalities in
Q[𝒚] [𝒙] where 𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑡 ). The 𝒚 inde-
terminates are considered as parameters and we assume that when
specialising them generically, the set of common complex solutions,
to the obtained equations, is finite.

We consider the problem of real root classification for such
parameter-dependent problems, i.e. identifying the possible number
of real solutions depending on the values of the parameters and
computing a description of the regions of the space of parameters
over which the number of real roots remains invariant.

We design an algorithm for solving this problem. The formulas it
outputs enjoy a determinantal structure. Under genericity assump-
tions, we show that its arithmetic complexity is polynomial in both
the maximum degree 𝑑 and the number 𝑠 of the input inequalities
and exponential in 𝑛𝑡 + 𝑡2. The output formulas consist of polyno-
mials of degree bounded by (2𝑠 +𝑛)𝑑𝑛+1. This is the first algorithm
with such a singly exponential complexity. We report on practical
experiments showing that a first implementation of this algorithm
can tackle examples which were previously out of reach.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms; • The-
ory of computation→ Design and analysis of algorithms.
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1 INTRODUCTION
Problem statement. We consider polynomials 𝒇 = (𝑓1, . . . , 𝑓𝑝 )

and 𝒈 = (𝑔1, . . . , 𝑔𝑠 ) in Q[𝒚] [𝒙] with 𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 =

(𝑦1, . . . , 𝑦𝑡 ). The variables 𝒙 (resp.𝒚) are seen as the unknowns (resp.
parameters) of the system. Further, we denote by 𝜋 the canonical
projection (𝒚, 𝒙) → 𝒚 on the space of parameters. We denote by
V ⊆ C𝑡+𝑛 the (complex) algebraic variety defined by 𝒇 = 0, and by
VR its real traceV ∩ R𝑡+𝑛 . In this paper, we assume the following.
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Assumption A. There exists a nonempty Zariski open subset O ⊆
C𝑡 such that for all 𝜂 ∈ O, 𝜋−1 (𝜂) ∩ V is nonempty and finite.

In other words, for a generic specialization point𝜂, the specialized
system 𝒇 (𝜂, ·) = 0 is zero-dimensional. Besides, can assume that
the cardinality of 𝜋−1 (𝜂) ∩ V remains invariant when 𝜂 ranges
over O. This is not the case for the set of real solutions.

We consider the (basic) semi-algebraic set S ⊆ R𝑡+𝑛 defined by
𝑓1 = · · · = 𝑓𝑝 = 0, 𝑔1 > 0, . . . , 𝑔𝑠 > 0. (1)

The goal of this paper is to provide an efficient algorithm for solving
the real root classification problem over S as stated below.

Problem 1 (Real solution classification). On input (𝒇 ,𝒈)
with 𝒇 satisfying Assumption A, compute (Φ𝑖 , 𝜂𝑖 , 𝑟𝑖 )1≤𝑖≤ℓ such that,
for 1 ≤ 𝑖 ≤ ℓ , Φ𝑖 is a semi-algebraic formula in Q[𝒚] defining the
semi-algebraic set T𝑖 ⊆ R𝑡 , with 𝜂𝑖 ∈ T𝑖 and 𝑟𝑖 ≥ 0 such that
• for all 𝜂 ∈ T𝑖 , the number of points in S ∩ 𝜋−1 (𝜂) is 𝑟𝑖 ,
• ⋃ℓ

𝑖=1 T𝑖 is dense in R𝑡 .
Such a sequence (Φ𝑖 , 𝜂𝑖 , 𝑟𝑖 )1≤𝑖≤ℓ is said to be a solution to Prob-

lem 1which arises in many applications (see e.g. [4, 9, 13, 19, 24, 29]).

Prior works. First, as noticed in [21], the cylindrical algebraic
decomposition (CAD) algorithm due to Collins [8] could be used
to solve Problem 1. However, its doubly exponential complexity
[5, 10] in the total number of variables makes it difficult to use.

More efficient approaches have been devised by using polyno-
mial elimination methods combined with real algebraic geome-
try. They consist in computing some nonzero polynomials, say
ℎ1, . . . , ℎ𝑘 inQ[𝒚], such that the number of points in S∩𝜋−1 (𝜂) re-
mains invariant when 𝜂 ranges over some connected component of
the semi-algebraic set defined by ℎ1 ≠ 0, . . . , ℎ𝑘 ≠ 0. Such polyno-
mials are called border polynomials, in the context of methods using
the theory of regular chains (see e.g. [22, 27, 28]), or discriminant
polynomials in the context of methods using algebraic elimination
algorithms based on Gröbner bases (see e.g. [18, 23]) when the ideal
generated by 𝒇 is assumed to be radical and equidimensional. When
𝑑 is the maximum degree of the input polynomials in 𝒇 and 𝒈, these
ℎ𝑖 ’s can be proven to have degree bounded by 𝑛(𝑑 − 1)𝑑𝑛 .

Once these polynomials are computed one then needs to describe
the connected components of the set where none of them vanish.
When this is done through the CAD algorithm, the cost of this is
doubly exponential in 𝑡 , the number of parameters. Using more
advanced algorithms for computing semi-algebraic descriptions of
connected components of semi-algebraic sets (see [2, Chap. 16])
through parametric roadmaps, one can obtain a complexity using
(𝑛(𝑑 − 1)𝑑𝑛)𝑂 (𝑡4 ) arithmetic operations in Q and which would
output polynomials of degree lying in (𝑛(𝑑 − 1)𝑑𝑛)𝑂 (𝑡3 ) .

All in all, just a few is known about the complexity of these
methods and it has been an open problem to obtain better complex-
ity estimates or degree bounds on the polynomials of the output
formulas required to solve Problem 1.
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A first step towards this goal comes from the analysis of the
algorithm in [21]. This algorithm is restricted to the case where
the ideal generated by 𝒇 is radical and the sequence 𝒈 is empty.
Under genericity assumptions on the input 𝒇 , this algorithm runs in
time quasi-linear in 𝑛𝑂 (𝑡 )𝑑3𝑛𝑡+𝑂 (𝑛+𝑡 ) and the degrees of the poly-
nomials in the output formulas lie in 𝑛(𝑑 − 1)𝑑𝑛 . This is achieved
using classical real root counting methods (through Hermite’s qua-
dratic forms) but combined in an innovative way with the theory
of Gröbner bases. Additionally, the output formulas enjoy a nice
determinantal encoding which allows one to evaluate them easily.
This is at the foundations of new efficient algorithms for one-block
quantifier elimination [20]. We also note that these techniques
can lead to a new geometric approach for Cylindrical Algebraic
Decomposition [7].

Still, several open problems remain. One is to obtain similar
complexity bounds which do not depend on the aforementioned
genericity assumptions. Another open problem is to extend such an
approach to real root classification problems involving inequalities,
hence extending significantly the range of applications which could
be reached. In this paper, we tackle this second open problem.

Contributions. We present an algorithm solving Problem 1 revis-
iting the ideas in [21] to handle the case of systems of equations
and inequalities. It uses a real root counting machinery based on
Hermite’s quadratic form [16] in some appropriate basis. In order to
take the polynomial inequalities defined by 𝒈 into account, this algo-
rithm relies on a method originated in [3] using the so-called Tarski-
query [2, Sec. 10.3] for determining the sign conditions realized by
a family of polynomials on a finite set of points. These methods are
devised to count the number of real solutions to some system of
polynomial equations (with coefficients in R), with finitely many
complex roots, which do satisfy some extra polynomial inequalities.

Our contribution combines these methods with Gröbner bases
computations in our context where the coefficients of our input
polynomials depend on the parameters 𝒚. A second key ingredient,
used to control the number of calls to Tarski queries, in a way that
is similar to the one used in [2, Chap. 10], is the use of efficient
routines for computing sample points per connected components
in semi-algebraic sets lying in the space of parameters [21, Sec.
3]. Hence, the semi-algebraic constraints depending on 𝒚 actually
encode some constraints on the signature of parameter-dependent
Hermite matrices and thus, enjoy a nice determinantal structure.

Note that, by contrast with [18], this algorithm does not assume
that the ideal generated by 𝒇 is radical and equidimensional.

Since this algorithm makes use of Gröbner bases computations,
extra genericity assumptions are needed to control its complexity.
Hence, we assume that the homogeneous component of the 𝑓𝑖 ’s of
highest degree forms a regular sequence, which we abbreviate by
the saying that 𝒇 is a regular sequence. In addition, letting G be a
reduced Gröbner basis for the ideal generated by 𝒇 and the graded
reverse lexicographical ordering, we assume the following.

Assumption B. For any 𝑝 ∈ G , we have deg𝑝 = deg𝒙 𝑝 .

These assumptions are known to be satisfied generically (see
[21, Prop. 20]) and to enable nicer complexity bounds on Gröbner
bases. Our main complexity result is the following one. We use the
notation 𝑔 = Õ(𝑓 ) meaning that 𝑔 = O(𝑓 log𝜅 (𝑓 )) for some 𝜅 > 0.

Theorem 1.1. Let 𝒇 ⊂ Q[𝒚] [𝒙] be a regular sequence such that
𝒇 satisfies both Assumptions A and B. Let𝔇 B (2𝑠𝑑 + 𝑛(𝑑 − 1))𝑑𝑛 .
There exists an algorithm which computes a solution to Problem 1
using

Õ
((
𝑡 +𝔇
𝑡

) (
𝑠

𝑡

)𝑡+1
23𝑡

2+𝑛𝑡+8𝑡+𝑛𝑠𝑡+2 (2𝑠 + 𝑛)2𝑡+1𝑑𝑡
2+4𝑛𝑡+3(𝑛+𝑡 )+1

)
arithmetic operations in Q and outputs at most (4𝑑𝑛𝑠𝑟𝔇)𝑡 formulas
that consists of O(𝑑𝑛𝑠𝑟 ) polynomials of degree at most𝔇.

We report on practical experiments performed with a first imple-
mentation of this algorithm. That implementation makes no use of
the genericity assumptions made to enable a complexity analysis,
it only uses Assumption A. Benchmark tests include random dense
polynomial systems (hence, these are presumably generic). Prac-
tical performances which are achieved show that this algorithm
outperforms the state-of-the-art software for solving Problem 1.
We also fully solve an application related to the Perspective-Three-
Point problem for which computing semi-algebraic formulas for
the real root classification was an open problem.

Plan of the paper. Section 2 recalls the basics on Hermite’s qua-
dratic forms, using materials mostly from [2, Chap. 4]. Section 3
generalizes constructions and results on parametric Hermite matri-
ces from [21] to the case where inequalities are involved. Section 4
describes the algorithm on which Theorem 1.1 relies and proves the
complexity statements. Section 5 reports on practical experiments.

2 HERMITE’S QUADRATIC FORM
We recall some basic definitions and properties on Hermite’s qua-
dratic forms. For more details, we refer to [2, Chap. 4].

2.1 Definition
Let K be a field of characteristic 0 and 𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊂ K[𝒙] be
generating a zero-dimensional ideal, denoted by ⟨𝒇 ⟩K. The quotient
ring AK B K[𝒙]/⟨𝒇 ⟩K is a finite dimensional K-vector space [2,
Theorem 4.85] of dimension 𝛿 . A monomial basis 𝐵 = (𝑏1, . . . , 𝑏𝛿 )
of AK can be derived from a Gröbner basis 𝐺 of ⟨𝒇 ⟩K with respect
to (w.r.t.) an admissible monomial ordering ≻ over K[𝒙]: it is the
set of monomials that are not divisible by any leading monomial of
elements in 𝐺 . For 𝑞 ∈ K[𝒙], we denote by 𝑞 the class of 𝑞 in AK
and by 𝐿𝑞 : 𝑝 ∈ AK ↦→ 𝑝 · 𝑞 ∈ AK the multiplication by 𝑞 in AK.

Definition 2.1 (Hermite’s qadratic form). For 𝑔 ∈ AK,
Hermite’s bilinear form herm(𝒇 , 𝑔) is defined by

herm(𝒇 , 𝑔) : AK × AK → K
(𝑝, 𝑞) ↦→ Tr(𝐿𝑔𝑝𝑞),

where Tr denotes the trace. The corresponding quadratic form 𝑝 ↦→
Tr(𝐿𝑔𝑝2 ) is called Hermite’s quadratic form Herm(𝒇 , 𝑔). The Her-
mite matrix associated to (𝒇 , 𝑔) w.r.t. the basis 𝐵 is the matrixH =

(ℎ𝑖, 𝑗 )1≤𝑖, 𝑗≤𝛿 ∈ K𝛿×𝛿 of Herm(𝒇 , 𝑔) w.r.t. 𝐵, i.e. ℎ𝑖, 𝑗 = Tr(𝐿𝑔𝑏𝑖𝑏 𝑗
).

For a matrixH ,H𝑖, 𝑗 is its element at the 𝑖-th row and 𝑗-th column.

Proposition 2.2. Let 𝐵 = (𝑏1, . . . , 𝑏𝛿 ) be a basis ofAK, 𝑔 ∈ AK,
H andH𝑔 be the matrices ofHerm(𝒇 , 1) andHerm(𝒇 , 𝑔) w.r.t. 𝐵. Let
𝑀 = (𝑚𝑖, 𝑗 ) be the matrix of 𝐿𝑔 w.r.t. 𝐵. Then,H𝑔 = H𝑀 .
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Proof. For 𝑝, 𝑞 ∈ AK, we have herm(𝒇 , 𝑔) (𝑝, 𝑞) = Tr(𝐿𝑔𝑝𝑞) =
herm(𝒇 , 1) (𝑝,𝑔𝑞). Thus, it holds that

(H𝑔)𝑖, 𝑗 = herm(𝒇 , 1) (𝑏𝑖 , 𝑔𝑏 𝑗 ) = herm(𝒇 , 1)
(
𝑏𝑖 ,

𝛿∑︁
𝑘=1

𝑚𝑘,𝑗𝑏𝑘

)
=

𝛿∑︁
𝑘=1

𝑚𝑘,𝑗H𝑖,𝑘 = (H𝑀)𝑖, 𝑗 . □

2.2 Real root counting
For now, we assume K = R or Q (or any ordered field). For 𝑟 ∈ K,
sign(𝑟 ) is −1, 0 or 1 if 𝑟 < 0, 𝑟 = 0 or 𝑟 > 0 respectively.

Definition 2.3 (Tarski-qery). Let 𝑍 be a finite set in K𝑛 and
𝑔 ∈ K[𝒙]. We define the Tarksi-query, TaQ(𝑔, 𝑍 ) of 𝑔 for 𝑍 by∑︁

𝑥∈𝑍
sign(𝑔(𝑥)) = ♯{𝑥 ∈ 𝑍 | 𝑔(𝑥) > 0} − ♯{𝑥 ∈ 𝑍 | 𝑔(𝑥) < 0}.

When 𝑍 is the finite set of real roots of a zero-dimensional system
𝒇 = 0, we denote it by TaQ(𝑔,𝒇 ).

We denote the signature of a real quadratic form 𝑞 by Sign(𝑞).
Theorem 2.4 ([2, Thm. 4.100]). Let 𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊂ K[𝒙] be

as above and 𝑔 ∈ K[𝒙]. Then, Sign(Herm(𝒇 , 𝑔)) = TaQ(𝑔,𝒇 ).
Hence, Tarski-queries are given by signatures of Hermite ma-

trices. From TaQ(1,𝒇 ) TaQ(𝑔,𝒇 ) and TaQ(𝑔2,𝒇 ), one can compute
the number of real roots of 𝒇 that satisfy a given sign condition for
𝑔. We define 𝑐 (𝑔 ♦ 0) for ♦ ∈ {<,=, >} as ♯{𝑥 | 𝒇 (𝑥) = 0∧𝑔(𝑥) ♦ 0}.
We have the following invertible system

1 1 1
0 1 −1
0 1 1

 ·

𝑐 (𝑔 = 0)
𝑐 (𝑔 > 0)
𝑐 (𝑔 < 0)

 =


TaQ(1,𝒇 )
TaQ(𝑔,𝒇 )
TaQ(𝑔2,𝒇 )

 . (2)

Theorem 2.5 ([15, Thm. 1.9]). Let 𝑀 be a symmetric matrix in
R𝑚×𝑚 and for 0 ≤ 𝑖 ≤ 𝑚 let 𝑀𝑖 denote its 𝑖-th leading principal
minor. We assume that𝑀𝑖 ≠ 0 for all 0 ≤ 𝑖 ≤ 𝑚. Then we have

Sign(𝑀) =𝑚 − 2Var(𝑀0, 𝑀1, . . . , 𝑀𝑚),
where Var stands for the number of sign variations in the sequence.

3 PARAMETRIC HERMITE MATRICES
3.1 Basic construction and properties
Let 𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊂ Q[𝒚] [𝒙] such that 𝒇 satisfies Assumption A
and𝑔 ∈ Q[𝒚] [𝒙].We take as a base fieldK the rational function field
Q(𝒚). By [21, Lem. 4], as 𝒇 satisfies Assumption A, the ideal ⟨𝒇 ⟩K
generated by 𝒇 in K[𝒙] is zero-dimensional. Hence one can define
Hermite’s quadratic form Herm(𝒇 , 𝑔) and compute a parametric
Hermite matrixH𝑔 ∈ K𝛿×𝛿 representing Herm(𝒇 , 𝑔) (once a basis
𝐵 of AK is fixed). We start by making explicit how these can be
computed and next prove some nice specialization properties of
these matrices. We follow and extend the approach in [21].

Gröbner basis and monomial basis. We denote grevlex(𝒙) for
the graded reverse lexicographical ordering (grevlex) among the
variables 𝒙 (with 𝑥1 ≻ · · · ≻ 𝑥𝑛) and grevlex(𝒙) ≻ grevlex(𝒚)
(with 𝑦1 ≻ · · · ≻ 𝑦𝑡 ) for the elimination ordering. For 𝑝 ∈ C(𝒚) [𝒙],
lc𝒙 (𝑝) (resp. lm𝒙 (𝑝)) denotes the leading coefficient (resp. mono-
mial) of 𝑝 for the ordering grevlex(𝒙). We let G be the reduced

Gröbner basis of ⟨𝒇 ⟩ ⊂ Q[𝒚] [𝒙] w.r.t. this elimination ordering. By
[21, Lem. 6], G is also a Gröbner basis of ⟨𝒇 ⟩K w.r.t. grevlex(𝒙).
Hence the set B of all monomials in 𝒙 that are not reducible by
the leading monomials of G (w.r.t. grevlex(𝒙)) is finite since ⟨𝒇 ⟩K
is zero-dimensional. It forms a basis of AK. We define H𝑔 as the
parametric Hermite matrix associated to (𝒇 , 𝑔) w.r.t. the basis B.

Algorithm for computing Hermite matrices. In [21], an algorithm
is described to compute the parametric Hermite matrixH1. Actu-
ally this does not only compute the matrixH1 but also the family
of matrices (𝑀𝑏 )𝑏∈B such that𝑀𝑏 is the matrix of the multiplica-
tion map 𝐿𝑏 w.r.t. the basis B. We explain now how we can com-
puteH𝑔 fromH1. We first compute 𝑔 the normal form of 𝑔 by the
Gröbner basis G (w.r.t. grevlex(𝒙) and K as a base field), namely
𝑔 =

∑
𝑏∈B 𝑐𝑏𝑏, with 𝑐𝑏 ∈ Q(𝒚). Then we have 𝑀𝑔 =

∑
𝑏∈B 𝑐𝑏𝑀𝑏 ,

where𝑀𝑔 denotes the matrix of the multiplication by 𝑔 in the basis
B. By Proposition 2.2, we obtainH𝑔 = H1 ·𝑀𝑔 .

Specialization properties. We prove now specialization properties
of these parametric Hermite matrices. The Gröbner basis G is a
subset of Q[𝒚] [𝒙], thus for all 𝑝 ∈ G , lc𝒙 (𝑝) ∈ Q[𝒚]. We denote
by 𝑉 (lc𝒙 (𝑝)) its vanishing set in C𝑡 . We consider the following
algebraic setW∞ ⊆ C𝑡 :

W∞ B
⋃
𝑝∈G

𝑉 (lc𝒙 (𝑝)). (3)

Proposition 3.1. For all 𝜂 ∈ C𝑡 \W∞, the specializationH𝑔 (𝜂)
coincides with the Hermite matrixH𝜂

𝑔 associated to (𝒇 (𝜂, ·), 𝑔(𝜂, ·))
w.r.t. the basis B.

Proof. Let 𝜂 ∈ C𝑡 \W∞. By [21, Lem. 9] which is a consequence
of [17, Thm. 3.1], the specialization G (𝜂, ·) B {𝑝 (𝜂, ·) | 𝑝 ∈ G }
is a Gröbner basis of the ideal ⟨𝒇 (𝜂, ·)⟩ ⊆ C[𝒙] w.r.t. the ordering
grevlex(𝒙). Since 𝜂 ∈ C𝑡 \W∞, the leading coefficient lc𝒙 (𝑝) does
not vanish at 𝜂 for all 𝑝 ∈ G . Thus, the set of leading monomials of
G in the variables 𝒙 w.r.t. grevlex(𝒙) is exactly the set of leading
monomials of G (𝜂, ·) w.r.t. grevlex(𝒙). Therefore, the finite set B
is also the set of monomials in 𝒙 that are not reducible by G (𝜂, ·).
Hence B is a basis of the quotient ring C[𝒙]/⟨𝒇 (𝜂, ·)⟩. So, ⟨𝒇 (𝜂, ·)⟩
is zero-dimensional and one can defineH𝜂

𝑔 as the Hermite matrix
associated to (𝒇 (𝜂, ·), 𝑔(𝜂, ·)) w.r.t. the basis B.

Moreover, the specialization property for the Gröbner basis G
implies that when dividing some polynomial w.r.t. G , none of the
denominators which appear vanish at 𝜂 ∈ C𝑡 . Hence, given ℎ ∈
Q[𝒚] [𝒙] and its normal form ℎ w.r.t. G (computed with K as a
base field and w.r.t. grevlex(𝒙)), for any 𝜂 ∈ C𝑡 \ W∞, ℎ(𝜂, ·)
coincides with the normal form of ℎ(𝜂, ·) w.r.t. G (𝜂, ·). This implies
thatH𝑔 (𝜂) = H𝜂

𝑔 . □

Corollary 3.2. For all 𝜂 ∈ C𝑡 \W∞, the signature ofH𝑔 (𝜂) is
the Tarski-query of 𝑔(𝜂, ·) for the zero-dimensional system 𝒇 (𝜂, ·).

Proof. By Proposition 3.1,H𝑔 (𝜂) is a Hermite matrix associated
to (𝒇 (𝜂, ·), 𝑔(𝜂, ·)). The result follows from Theorem 2.4 . □

Note thatW∞ does not depend on 𝑔. One can compute the num-
ber of real roots of the specialized system 𝒇 (𝜂, ·) satisfying some
sign condition for𝑔 by computing the signatures of three parametric
Hermite matrices evaluated in 𝜂 and inverting the system (2).
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3.2 Degree bounds
We bound the degrees of the entries of the parametric Hermite
matrixH𝑔 under some assumptions that we make explicit below.
We start by recalling the definition of a regular sequence.

Definition 3.3 (Regular seqence). Let (𝑓1, . . . , 𝑓𝑝 ) ⊂ K[𝒙]
with 𝑝 ≤ 𝑛 be a homogeneous polynomial sequence. We say that
(𝑓1, . . . , 𝑓𝑝 ) is a homogeneous regular sequence if for all 1 ≤ 𝑖 ≤ 𝑝 ,
𝑓𝑖 is not a zero-divisor in K[𝒙]/⟨𝑓1, . . . , 𝑓𝑖−1⟩.

A polynomial sequence (𝑓1, . . . , 𝑓𝑝 ) ⊂ K[𝒙] is called an affine
regular sequence if (𝑓 𝐻1 , . . . , 𝑓 𝐻𝑝 ) is a homogeneous regular sequence,
where for a polynomial 𝑞 ∈ K[𝒙], 𝑞𝐻 denotes the homogeneous
component of largest degree of 𝑞.

First we bound the degrees of the entries of the matrix H𝑔 .
For 𝑝 ∈ Q[𝒚] [𝒙] we denote by deg(𝑝) the total degree of 𝑝 and
deg𝒙 (𝑝) (resp. deg𝒚 (𝑝)) the degree of 𝑝 w.r.t. 𝒙 (resp. 𝒚). Let 𝑑 B
max1≤𝑖≤𝑝 deg(𝑓𝑖 ). We consider the reduced Gröbner basis G as
above and the associated monomial basis B of monomials in 𝒙
of the finite dimensional vector space AK. The quotient ring AK
has dimension 𝛿 . Note that by the regularity assumption, the codi-
mension of the ideal generated by 𝑓1, . . . , 𝑓𝑝 is 𝑝 if this ideal is not
⟨1⟩. Hence, combined with Assumption A, this forces 𝑝 = 𝑛 and by
Bézout’s inequality, we have 𝛿 ≤ 𝑑𝑛 . We recall below Assumption B.

For any 𝑝 ∈ G , we have deg𝑝 = deg𝒙 𝑝 .
By [21, Prop. 20], Assumption B holds for generic sequences 𝒇 .

Lemma 3.4. Under Assumption B, deg𝒚 (lc𝒙 (𝑝)) = 0 for all 𝑝 ∈ G .

Proof. Let 𝑝 ∈ G , by definition of the ordering grevlex(𝒙) ≻
grevlex(𝒚), lc𝒙 (𝑝) is obtained from a term 𝜏 in 𝑝 s.t. deg𝒙 (𝜏) =
deg𝒙 (𝑝). By Assumption B, deg𝒙 (𝑝) = deg(𝑝), so deg𝒚 (𝜏) = 0. □

Lemma 3.5. If Assumption B holds, then for any 𝑞 ∈ Q[𝒚] [𝒙], the
normal form 𝑞 of 𝑞 w.r.t. G lies in Q[𝒚] [𝒙] and deg(𝑞) ≤ deg(𝑞).

Proof. Let 𝑞 ∈ Q[𝒚] [𝒙], 𝑞 is the remainder of successive di-
visions of 𝑞 by polynomials in G . As Assumption B holds, by
Lemma 3.4, those divisions do not introduce any denominator. So,
every term appearing during these reductions are polynomials in
Q[𝒚] [𝒙]. By Assumption B, for any 𝑝 ∈ G , the total degree of every
term of 𝑝 is bounded by deg𝒙 (𝑝) = deg(lm𝒙 (𝑝)) by Lemma 3.4.
Thus, a division of 𝑞 by 𝑝 involves only terms of total degree deg(𝑞).
Therefore, during the normal form reduction of 𝑞 by G , only terms
of degree at most deg(𝑞) will appear. Hence deg(𝑞) ≤ deg(𝑞). □

We prove now degree bounds on the entries of 𝐿𝑔 andH𝑔 .

Lemma 3.6. Under Assumption B, let 𝑔 ∈ Q[𝒚] [𝒙] and let us
denote by (𝑔𝑖, 𝑗 )1≤𝑖, 𝑗≤𝛿 the matrix of 𝐿𝑔 in the basis B. Then, for all
1 ≤ 𝑖, 𝑗 ≤ 𝛿 ,𝑔𝑖, 𝑗 ∈ Q[𝒚] and deg(𝑔𝑖, 𝑗 ) ≤ deg(𝑔)+deg(𝑏 𝑗 )−deg(𝑏𝑖 ).

Proof. We have for all 1 ≤ 𝑗 ≤ 𝛿 , 𝑔𝑏 𝑗 =
∑𝛿
𝑖=1 𝑔𝑖, 𝑗𝑏𝑖 and 𝑔𝑖, 𝑗 ∈

Q[𝒚] by Lemma 3.5. Also, deg(𝑔𝑏 𝑗 ) = max deg(𝑔𝑖, 𝑗𝑏𝑖 ) because
𝑔𝑖, 𝑗 ∈ Q[𝒚] and the 𝑏𝑖 ’s are distinct monomials in 𝒙 . In particular,
for all 1 ≤ 𝑖 ≤ 𝛿 , deg(𝑔𝑖, 𝑗𝑏𝑖 ) = deg(𝑔𝑖, 𝑗 ) + deg(𝑏𝑖 ) ≤ deg(𝑔𝑏 𝑗 ) ≤
deg(𝑔𝑏 𝑗 ) ≤ deg(𝑔) +deg(𝑏 𝑗 ) by Lemma 3.5. The result follows. □

Proposition 3.7. Under Assumption B, let 𝑔 ∈ Q[𝒚] [𝒙] and let
us denote by (ℎ𝑖, 𝑗 )1≤𝑖, 𝑗≤𝛿 the Hermite matrixH𝑔 associated to (𝒇 , 𝑔)
in the basis B. Then, for all 1 ≤ 𝑖, 𝑗 ≤ 𝛿 , ℎ𝑖, 𝑗 ∈ Q[𝒚] and

deg(ℎ𝑖, 𝑗 ) ≤ deg(𝑔) + deg(𝑏𝑖 ) + deg(𝑏 𝑗 ).
As a direct consequence, the degree of a minor ofH𝑔 defined by the
rows (𝑟1, . . . , 𝑟𝑘 ) and the columns (𝑐1, . . . , 𝑐𝑘 ) is bounded by

𝑘 deg(𝑔) +
𝑘∑︁
𝑖=1
(deg(𝑏𝑟𝑖 ) + deg(𝑏𝑐𝑖 )) .

Hence, the determinant ofH𝑔 has degree bounded by 𝛿 deg(𝑔) +
2
∑𝛿
𝑖=1 deg(𝑏𝑖 ) and 𝛿 ≤ 𝑑𝑛 .

Proof. We have ℎ𝑖, 𝑗 = Tr(𝐿𝑔𝑏𝑖𝑏 𝑗
). Let 𝐶 = (𝑐𝑘,ℓ )1≤𝑘,ℓ≤𝛿 denote

the entries of the matrix of 𝐿𝑔𝑏𝑖𝑏 𝑗
w.r.t.B. By Lemma 3.6, as𝑔𝑏𝑖𝑏 𝑗 ∈

Q[𝒚] [𝒙], 𝐶 ∈ Q[𝒚]𝛿×𝛿 . So, ℎ𝑖, 𝑗 = Tr(𝐶) =
∑𝛿
𝑘=1 𝑐𝑘,𝑘 ∈ Q[𝒚].

By Lemma 3.6, deg(ℎ𝑖, 𝑗 ) ≤ max𝑘 deg(𝑐𝑘,𝑘 ) ≤ max𝑘 deg(𝑔𝑏𝑖𝑏 𝑗 ).
Therefore, deg(ℎ𝑖, 𝑗 ) ≤ deg(𝑔) + deg(𝑏𝑖 ) + deg(𝑏 𝑗 ).

The degree bound for the minors of H𝑔 is clear by expanding
the expression for determinants. □

Corollary 3.8. Assume that 𝒇 is an affine regular sequence satis-
fying B. For 𝑔 ∈ Q[𝒚] [𝒙], the degree of any minor ofH𝑔 is bounded
by (deg(𝑔) + 𝑛(𝑑 − 1))𝑑𝑛 .

Proof. Since 𝒇 is an affine regular sequence, one can apply [21,
Lem. 23]. Hence, the highest degree among the elements of B

is bounded by 𝑛(𝑑 − 1) and it holds that 2
∑𝛿
𝑖=1 deg(𝑏𝑖 ) ≤ 𝑛(𝑑 −

1)𝑑𝑛 . Substituting these degree bounds on the 𝑏𝑖 ’s in the ones of
Proposition 3.7 ends the proof. □

4 ALGORITHM
Let Q = (𝑄1, . . . , 𝑄𝑠 ) ⊂ Q[𝑿 ] for 𝑿 = (𝑋1, . . . , 𝑋𝑘 ). Let Z be
a subset of R𝑘 . We say that an element 𝜎 ∈ {0, 1,−1}𝑠 is a sign
condition for Q. A sign condition 𝜎 for Q is said to be realizable
overZ if the following set is nonempty

Reali(𝜎,Z) B {𝑥 ∈ Z |
𝑠∧
𝑖=1

sign(𝑄𝑖 (𝑥)) = 𝜎 (𝑖)}.

We consider the set SIGN(Q,Z) ⊆ {0, 1,−1}𝑠 of realizable sign
conditions for Q overZ.

Let 𝒇 and 𝒈 be an instance of Problem 1. We are interested in the
set of sign conditions SIGN(𝒈,VR). We describe an algorithm for
the determination of the realizable sign conditions for𝒈 over the real
solutions of 𝒇 = 0 when 𝒇 satisfies Assumption A. This algorithm
does not recover the whole set SIGN(𝒈,VR), but only the set of
realizable conditions for 𝒈 overVR ∩W whereW is a nonempty
Zariski open subset of C𝑡+𝑛 . It means that we potentially miss some
elements of SIGN(𝒈,VR) but they can only occur for (𝒚, 𝒙) lying
in a Zariski closed set. Also, as a by-product our algorithm enables
us to compute a valid solution to Problem 1 for (𝒇 ,𝒈).

This algorithm is a variant of [2, Chap. 10] for determining the
sign conditions realized by a family of polynomials on a finite set of
points in R𝑘 using Tarski-queries. Tarski-queries are expressed as
signatures of parametric Hermite matrices as in Corollary 3.2. We
also use sample points algorithms as in [21, 26]. In the case where
𝒈 is empty, this algorithm coincides with the one in [21].
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4.1 Sign determination on a finite set of points
We are given a family of polynomials Q = (𝑄1 (𝑿 ), . . . , 𝑄𝑠 (𝑿 )) ⊂
Q[𝑿 ] with 𝑿 = (𝑋1, . . . , 𝑋𝑘 ) and an implicit finite set of points
𝑍 in R𝑘 of size 𝑟 . By implicit we mean that we have no explicit
description for the points in 𝑍 . Typically, the set 𝑍 designates the
roots of the system 𝒇 (𝜂, ·) = 0 with 𝜂 in the space of parameters
and Q is the family 𝒈(𝜂, ·). For now we assume that we have access
to a black-box for computing the Tarski-queries TaQ(𝑄,𝑍 ) for any
𝑄 ∈ Q[𝑿 ]. We aim at computing SIGN(Q, 𝑍 ).

For a sign condition 𝜎 ∈ {0, 1,−1}𝑠 for Q, define 𝑐 (𝜎, 𝑍 ) B
♯ Reali(𝜎, 𝑍 ) and, for 𝛼 ∈ {0, 1, 2}𝑠 , denote Q𝛼 B ∏𝑠

𝑖=1𝑄
𝛼 (𝑖 )
𝑖

, and
𝜎𝛼 B

∏𝑠
𝑖=1 𝜎 (𝑖)𝛼 (𝑖 ) . One can notice that on Reali(𝜎, 𝑍 ), the sign

of Q𝛼 is fixed and equal to 𝜎𝛼 .
We also order {0, 1,−1}𝑠 with the lexicographic order induced

by 0 < 1 < −1 and {0, 1, 2}𝑠 with the lexicographic order in-
duced by 0 < 1 < 2. Let Σ = {𝜎1, . . . , 𝜎𝑝 } ⊂ {0, 1,−1}𝑠 with
𝜎1 <lex · · · <lex 𝜎𝑝 , we denote by 𝑐 (Σ, 𝑍 ) the column vector
(𝑐 (𝜎1, 𝑍 ), . . . , 𝑐 (𝜎𝑝 , 𝑍 ))𝑡 . Similarly, let𝐴 = {𝛼1, . . . , 𝛼𝑚} ⊂ {0, 1, 2}𝑠
with 𝛼1 <lex · · · <lex 𝛼𝑚 , we denote by TaQ(Q𝐴, 𝑍 ) the column
vector (TaQ(Q𝛼1 , 𝑍 ), . . . ,TaQ(Q𝛼𝑚 , 𝑍 ))𝑡 .

We define the matrix of signs of 𝐴 on Σ as the 𝑚 × 𝑝 matrix
Mat(𝐴, Σ) whose entry (𝑖, 𝑗) is 𝜎𝛼𝑖

𝑗
.

Proposition 4.1 ([2, Prop. 10.59]). If SIGN(Q, 𝑍 ) ⊆ Σ, then it
holds thatMat(𝐴, Σ) · 𝑐 (Σ, 𝑍 ) = TaQ(Q𝐴, 𝑍 ).

Hence, when Mat(𝐴, Σ) is invertible, one can determine 𝑐 (Σ, 𝑍 )
and thus SIGN(Q, 𝑍 ) = {𝜎 ∈ Σ | 𝑐 (𝜎, 𝑍 ) > 0} from TaQ(Q𝐴, 𝑍 ) by
linear system solving. In this case, we say that the set 𝐴 is adapted
to Σ for sign determination. If one chooses Σ = {0, 1,−1}𝑠 to be
the whole set of possible sign conditions for Q, the only adapted
set to Σ is 𝐴 = {0, 1, 2}𝑠 as we needMat(𝐴, Σ) to be square. In this
caseMat(𝐴, Σ) is invertible [2, Prop. 10.60]. However, we need to
compute 3𝑠 Tarski-queries to perform sign determination. Yet the
number of realizable sign conditions is bounded by the number 𝑟
of elements in 𝑍 and often 𝑟 ≪ 3𝑠 . So when Σ = {0, 1,−1}𝑠 , many
entries in 𝑐 (Σ, 𝑍 ) are equal to 0. To avoid to compute an exponential
number of Tarski-queries, we want to avoid unrealizable sign con-
ditions. To do so, we use the incremental approach of [2, Sec. 10.3].
Let Q𝑖 B (𝑄𝑠−𝑖+1, . . . , 𝑄𝑠 ) be the last 𝑖 polynomials in Q. At step 𝑖 ,
we compute SIGN(Q𝑖 , 𝑍 ) the realizable sign conditions for Q𝑖 , for 𝑖
from 1 to 𝑠 , so that we get rid of the empty sign conditions at each
step of the computation.

First for any Σ ⊆ {0, 1,−1}𝑠 , we explain how to construct a
set 𝐴 ⊆ {0, 1, 2}𝑠 that is adapted to Σ. For 𝜎 = (𝜎 (1), . . . , 𝜎 (𝑠)) ∈
{0, 1,−1}𝑠 , we denote by 𝜎′ the vector obtained by removing the
first coordinate of 𝜎 , i.e. 𝜎′ B (𝜎 (2), . . . , 𝜎 (𝑠)) ∈ {0, 1,−1}𝑠−1.

Definition 4.2. For Σ ⊆ {0, 1,−1}𝑠 , we define Σ′1 B {𝜎
′ | 𝜎 ∈

Σ}, and the subsets Σ′2, Σ
′
3 ⊆ Σ′1 such that Σ′2 (resp. Σ

′
3) contains the

elements of Σ′1 that can be extended to an element of Σ in at least two
different ways (resp. exactly three different ways).

Definition 4.3. Let Σ ⊆ {0, 1,−1}𝑠 , we defineAda(Σ) ∈ {0, 1, 2}𝑠
by induction on 𝑠 ≥ 1 as follows:
− if 𝑠 = 1, let ℎ ∈ {1, 2, 3} be the size of Σ, and set Ada(Σ) =
{0, . . . , ℎ − 1};

− if 𝑠 > 1, Ada(Σ) = 0×Ada(Σ′1) ∪ 1×Ada(Σ
′
2) ∪ 2×Ada(Σ

′
3).

Algorithm 1: One step of sign determination
Input :Q = {𝑄} ∪ Q′, the sets Σ B SIGN(Q′, 𝑍 ) and

Ada(Σ), the associated matrix of signs
Mat(Ada(Σ), Σ)

Output :The sets SIGN(Q, 𝑍 ),Ada(SIGN(Q, 𝑍 )) and the
associated matrix of signs

1 Compute 𝑆 B SIGN(𝑄,𝑍 ) from the Tarski-queries
TaQ(1, 𝑍 ),TaQ(𝑄,𝑍 ),TaQ(𝑄2, 𝑍 ) by solving (2). 𝑆
corresponds to the nonzero entry of the solution

2 Deduce 𝐴 B Ada(𝑆) from Definition 4.3
3 Compute the vector 𝑇 B TaQ(Q𝐴×Ada(Σ) , 𝑍 )
4 𝑀 ← Mat(𝐴×Ada(Σ), 𝑆×Σ) = Mat(𝐴, 𝑆) ⊗Mat(Ada(Σ), Σ)
5 Compute 𝑐 B 𝑐 (𝑆 × Σ, 𝑍 ) by solving𝑀 · 𝑐 = 𝑇

6 Deduce SIGN(Q, 𝑍 ) # given by the nonzero entries in 𝑐
7 Delete in𝑀 the columns whose index is not in SIGN(Q, 𝑍 )
8 Deduce Ada(SIGN(Q, 𝑍 )) from the row rank profile of𝑀

and delete the other rows.

Proposition 4.4. [2, Prop. 10.65] The set Ada(Σ) is adapted to Σ
for sign determination.

Now suppose that for 1 ≤ 𝑖 < 𝑠 , we have built SIGN(Q𝑖 , 𝑍 ) and
Ada(SIGN(Q𝑖 , 𝑍 )), we explain howwe can compute SIGN(Q𝑖+1, 𝑍 )
and Ada(SIGN(Q𝑖+1, 𝑍 )). It is based on the two following lemmas.

Lemma 4.5. Let 𝑠1, 𝑠2 ≥ 0, and 𝐴1 ⊆ {0, 1, 2}𝑠1 , 𝐴2 ⊆ {0, 1, 2}𝑠2 ,
Σ1 ⊆ {0, 1,−1}𝑠1 , Σ2 ⊆ {0, 1,−1}𝑠2 . The matrix of signs of 𝐴1 ×𝐴2
on Σ1 × Σ2 isMat(𝐴1 ×𝐴2, Σ1 × Σ2) = Mat(𝐴1, Σ1) ⊗Mat(𝐴2, Σ2).
As a consequence, if 𝐴1 is adapted to Σ1 and 𝐴2 is adapted to Σ2 then
𝐴1 ×𝐴2 is adapted to Σ1 × Σ2.

Proof. Let 𝛼 = (𝛼1, 𝛼2) ∈ 𝐴1 × 𝐴2 and 𝜎 = (𝜎1, 𝜎2) ∈ Σ1 × Σ2.
By definition, we have 𝜎𝛼 = 𝜎

𝛼1
1 · 𝜎

𝛼2
2 . Since rows and columns

of matrices of signs are ordered with the lexicographic orderings
induced by 0 < 1 < 2 for the rows and 0 < 1 < −1 for the columns,
the result holds. □

Lemma 4.6 (See [2, Lem. 10.66]). Let Σ ⊆ Γ ⊆ {0, 1,−1}𝑠 and 𝑝 =

♯Σ. The matrix Mat(Ada(Σ), Σ) is the matrix obtained by extracting
the first 𝑝 linearly independent rows ofMat(Ada(Γ), Σ).

The computation of SIGN(Q𝑖+1, 𝑍 ) and Ada(SIGN(Q𝑖+1, 𝑍 )) is
described in Algorithm 1. After 𝑠 iterations of this algorithm we
get SIGN(Q, 𝑍 ). This is [2, Alg. 10.11].

4.2 General sign determination
We design an algorithm based on Algorithm 1 to solve Problem 1.

Let 𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊂ Q[𝒚] [𝒙] such that 𝒇 satisfies Assump-
tion A and let 𝒈 = (𝑔1, . . . , 𝑔𝑠 ) ⊂ Q[𝒚] [𝒙] define the inequalities of
our input system. As before, let G be the reduced Gröbner basis of
⟨𝒇 ⟩ w.r.t. the ordering grevlex(𝒙) ≻ grevlex(𝒚). We also denote
byK the fieldQ(𝒚) andB ⊂ Q[𝒙] is the basis ofAK B K[𝒙]/⟨𝒇 ⟩K
derived from G of dimension 𝛿 .

Let 𝑔 ∈ Q[𝒚] [𝒙], H𝑔 ∈ K𝛿×𝛿 denotes the Hermite matrix as-
sociated to (𝒇 , 𝑔) in B. We consider as in (3), the algebraic set
W∞ = ∪𝑝∈G𝑉 (lc𝒙 (𝑝)) ⊂ C𝑡 .
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Lemma 4.7. Let 𝑟 denotes the rank of H𝑔 . There exists a Zariski
dense subsetU𝑔 of GL𝛿 (C) such that for𝑈 ∈ U𝑔 , the first 𝑟 leading
principal minors ofH𝑈

𝑔 B 𝑈 𝑡H𝑔𝑈 are not identically zero.

Proof. The matrixH𝑔 has rank 𝑟 so there exists 𝜂 ∈ R𝑡 \W∞
such that the evaluationH𝑔 (𝜂) is a matrix of rank 𝑟 . Moreover, for
all𝑈 ∈ GL𝛿 (C),H𝑈

𝑔 (𝜂) = 𝑈 𝑡H𝑔 (𝜂)𝑈 . We show that there exists a
Zariski dense subsetU𝑔 such that for all𝑈 ∈ U𝑔 , the first 𝑟 leading
principal minors ofH𝑈

𝑔 (𝜂) are nonzero. This would imply that the
first 𝑟 leading principal minors ofH𝑈

𝑔 are not identically zero.
For 1 ≤ 𝑗 ≤ 𝑟 , let us denote byM 𝑗 the set of all 𝑗 × 𝑗 minors of

H𝑔 (𝜂). We consider the matrix𝑈 B (𝔲𝑖, 𝑗 )1≤𝑖, 𝑗≤𝛿 where 𝔲 = (𝔲𝑖, 𝑗 )
are new indeterminates. Then, the 𝑗-th leading principal minor
𝑀𝑗 (𝔲) of the matrixH𝑈

𝑔 (𝜂) can be written as

𝑀𝑗 (𝔲) =
∑︁

𝑚∈M 𝑗

𝑢𝑚 ·𝑚,

where the 𝑢𝑚 ’s are elements of Q[𝔲]. AsH𝑔 (𝜂) is a real symmetric
matrix of rank 𝑟 there exists a matrix 𝑄 ∈ GL𝛿 (R) such that

H𝑄
𝑔 (𝜂) = 𝑄𝑡H𝑔 (𝜂)𝑄 =

[
Δ 0
0 0

]
,

where Δ is a diagonal matrix of size 𝑟 with nonzero real entries
on its diagonal. Hence the evaluation of 𝔲 at the entries of 𝑄 gives
𝑀𝑗 (𝔲) a nonzero value. So we conclude that𝑀𝑗 (𝔲) is not identically
zero.

Finally, letU𝑗 be the nonempty Zariski open subset of GL𝛿 (C)
defined as the non-vanishing set of 𝑀𝑗 (𝔲). We define U𝑔 as the
intersection ofU𝑗 for 1 ≤ 𝑗 ≤ 𝑟 , and for 𝑈 ∈ U𝑔 , none of the first
𝑟 leading principal minors ofH𝑈

𝑔 (𝜂) is zero. Thus, none of the first
𝑟 leading principal minors ofH𝑈

𝑔 is identically zero. □

Lemma 4.8. Let 𝑆 be a symmetric matrix in R𝛿×𝛿 of rank 𝑟 and
let 𝑆𝑖 be its 𝑖-th leading principal minor for 0 ≤ 𝑖 ≤ 𝛿 . We assume
that 𝑆𝑖 ≠ 0 for 𝑖 ≤ 𝑟 . Then, the signature of 𝑆 equals 𝑟 − 2𝑣 where 𝑣
is the number of sign variations in 𝑆0, . . . , 𝑆𝑟 .

Proof. We have

𝑆 =

[
𝑆 𝑉 𝑡

𝑉 𝑊

]
=

[
𝐼𝑟 0

𝑉𝑆−1 𝐼𝛿−𝑟

] [
𝑆 0
0 𝑊 −𝑉𝑆−1𝑉 𝑡

]
︸                   ︷︷                   ︸

𝑅

[
𝐼𝑟 𝑆−1𝑉 𝑡

0 𝐼𝛿−𝑟 .

]
.

Thus 𝑆 and 𝑅 have the same signature. Since det(𝑆) = 𝑆𝑟 ≠ 0, we
have rk(𝑆) = 𝑟 = rk(𝑆) = rk(𝑅). Therefore,𝑊 −𝑉𝑆−1𝑉 𝑡 = 0 and
Sign(𝑅) = Sign(𝑆). By Theorem 2.5, Sign(𝑆) = 𝑟 − 2𝑣 . □

Weuse the previous lemmas as follows. Assume that after picking
randomly a matrix𝑈 ∈ GL𝛿 (C), the first 𝑟 leading principal minors
of H𝑈

𝑔 B 𝑈 𝑡 · H𝑔 · 𝑈 are not identically zero, with 𝑟 the rank
of H𝑔 . Then over a connected component of the semi-algebraic
set defined by the complementary ofW∞ and the non-vanishing
set of these minors, the sign of each leading principal minor is
invariant. Consequently the Tarski-query TaQ(𝒇 (𝜂, ·), 𝑔(𝜂, ·)) is
invariant when 𝜂 ranges over this connected component. Then by
sampling at least one point in each connected component using
the algorithm in [21] originating from [26], we are able to recover

all the sign conditions satisfied by a family of polynomials 𝒈 on a
dense subset ofVR the real algebraic set defined by 𝒇 = 0.

Algorithm 2 for solving Problem 1 uses the subroutines:
• FirstHermiteMatrix follows from Algorithm 1 in [21]. It takes
as input a polynomial sequence 𝒇 that satisfies Assumption A and
outputs a Gröbner basis G of ⟨𝒇 ⟩ for the ordering grevlex(𝒙) ≻
grevlex(𝒚), a monomial basisB ofAK derived from G , the family
of multiplicationmatrices (𝑀𝑏 )𝑏∈B inB, a polynomial𝑤∞ ∈ Q[𝒚]
whose vanishing set isW∞ defined in (3), and the Hermite matrix
H1 associated to (𝒇 , 1) in B.
• LeadPrincMinors returns the list of the numerators of the nonzero
leading principal minors of a matrix with entries in Q(𝒚).
• SamplePoints that takes as input a sequence of polynomials
(ℎ1, . . . , ℎℓ ) ⊂ Q[𝒚] and sample a finite set of points that meets
every connected component of the semi-algebraic set defined by
ℎ1 ≠ 0, . . . , ℎℓ ≠ 0.
For a family of polynomials (𝑄1, . . . , 𝑄ℓ ) ⊂ Q[𝒚] and 𝜂 ∈ R𝑡 the
sign pattern of (𝑄𝑖 (𝜂))1≤𝑖≤ℓ is the semi-algebraic formula Φ below

Φ B
ℓ∧

𝑖=1
sign(𝑄𝑖 ) = sign(𝑄𝑖 (𝜂)) . (4)

Theorem 4.9 (Correction). Assume that 𝒇 satisfies Assump-
tion A. Let 𝒈 = (𝑔1, . . . , 𝑔𝑠 ) be a polynomial sequence. There ex-
ists a Zariski dense subset U of GL𝛿 (C) such that if 𝑈 is sam-
pled in U ∩ Q𝛿×𝛿 , Algorithm 2 outputs a set Σ that is equal to
SIGN(𝒈,VR ∩ 𝜋−1 (W)) whereVR is the real algebraic set defined
by 𝒇 andW is a nonempty Zariski open subset of C𝑡 ; and a solution
to Problem 1 for (𝒇 ,𝒈).

Proof. For 1 ≤ 𝑖 ≤ 𝑠 , let Σ𝑖 be the value of Σ and Ada𝑖 the value
of Ada after the 𝑖-th iteration of the loop in line 5. We also define
Σ0 B ∅ and 𝒈0 B ∅.

We prove the following loop invariant: for all 0 ≤ 𝑖 ≤ 𝑠 , there
exists a Zariski dense subsetU𝑖 of GL𝛿 (C) s.t. if𝑈 was sampled in
U𝑖 ∩ Q𝛿×𝛿 , then Σ𝑖 = SIGN(𝒈𝑖 ,VR ∩ 𝜋−1 (W𝑖 )) whereW𝑖 is the
nonempty Zariski open subset in C𝑡 defined as the non-vanishing
locus of𝑤∞ and the polynomials in the set Minors obtained after
performing the for loop starting at line 9.

This is true when entering the loop as Σ0 = ∅ = SIGN(∅,VR).
Now suppose that the result holds for 0 ≤ 𝑖 − 1 < 𝑠 . Let

Σ∗ B {0, 1,−1}×Σ𝑖−1 andAda∗ B {0, 1, 2}×Ada𝑖−1. By Lemma 4.7,
for each 𝛼 ∈ Ada∗ there exists a Zariski dense subset U𝛼 of
GL𝛿 (C) such that if 𝑈 ∈ U𝛼 , the first rk𝛼 (see line 10) lead-
ing principal minors of 𝑈 𝑡 · H𝒈𝛼

𝑖
· 𝑈 are not identically 0. Let

U𝑖 B U𝑖−1 ∩
⋂

𝛼∈Ada∗ U𝛼 . It is a Zariski dense subset of GL𝛿 (C)
and we further suppose that 𝑈 was sampled in U𝑖 ∩ Q𝛿×𝛿 . In
particular 𝑈 ∈ U𝑖−1, so by the induction hypothesis, Σ𝑖−1 =

SIGN(𝒈𝑖−1,VR ∩𝜋−1 (W𝑖−1)). Note thatW𝑖 is nonempty since all
its defining polynomials are not identically 0 andW𝑖 ⊆ W𝑖−1 as
the set Minors can only increase along the iterations. We now
show that Σ𝑖 = SIGN(𝒈𝑖 ,VR ∩ 𝜋−1 (W𝑖 )). Let R be the semi-
algebraic set defined as the real trace ofW𝑖 . Then the signs of
the first rk𝛼 leading principal minors of 𝑈 𝑡 · H𝒈𝛼

𝑖
(𝜂) · 𝑈 are in-

variant when 𝜂 ranges over a connected component C of R. By
Lemma 4.8, the vector 𝑇𝜂 B (Sign(H𝒈𝛼

𝑖
(𝜂)))𝛼∈Ada∗ is invariant

when 𝜂 varies over C. However, the set 𝐿 defined at line 14 contains
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Algorithm 2: Classification
Input :
− A polynomial sequence 𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊂ Q[𝒚] [𝒙] such

that 𝒇 satisfies Assumption A
− A polynomial sequence 𝒈 = (𝑔1, . . . , 𝑔𝑠 ) ⊂ Q[𝒚] [𝒙]

Output :
− A set Σ ⊆ {0, 1,−1}𝑠 of sign conditions satisfied by 𝒈 on the

real algebraic set defined by 𝒇
− The description of a collection of semi-algebraic sets T𝑖

solving Problem 1
1 H1,𝑤∞,G ,B, (𝑀𝑏 )𝑏∈B ← FirstHermiteMatrix(𝒇 )
2 Choose randomly a matrix𝑈 ∈ Q𝛿×𝛿
3 Σ← ∅, Ada← ∅, 𝑀 ← Mat(Ada, Σ)
4 Minors← ∅
5 for 𝑖 from 1 to 𝑠 do
6 𝒈𝑖 ← (𝑔𝑠−𝑖+1, . . . , 𝑔𝑠 )
7 Σ← {0, 1,−1} × Σ, Ada← {0, 1, 2} × Ada,
8 𝑀 ← Mat(Ada, Σ) = Mat({0, 1, 2}, {0, 1,−1}) ⊗ 𝑀
9 for 𝛼 ∈ Ada do
10 ComputeH𝒈𝛼

𝑖
using the algorithm of Section 3.1

and let rk𝛼 be its rank
11 (ℎ𝛼1 , . . . , ℎ

𝛼
rk𝛼
) ← LeadPrincMinors(𝑈 𝑡 · H𝒈𝛼

𝑖
·𝑈 )

12 Minors←Minors ∪ {ℎ𝛼1 , . . . , ℎ
𝛼
rk𝛼
}

13 end
14 𝐿 ← SamplePoints(𝑤∞ ≠ 0 ∧Minors ≠ 0)
15 for 𝜂 ∈ 𝐿 do
16 𝑇𝜂 ←

(
Sign(H𝒈𝛼

𝑖
(𝜂))

)
𝛼∈Ada

17 Solve𝑀 · 𝑐𝜂 = 𝑇𝜂 to compute 𝑐𝜂
18 Deduce Σ𝜂 corresponding to nonzero entries in 𝑐𝜂
19 end
20 Σ← ⋃

𝜂∈𝐿 Σ𝜂
21 Delete in𝑀 columns whose index is not in Σ

22 Deduce Ada = Ada(Σ) from the rank row profile of𝑀
and delete the other rows

23 end
24 for 𝜂 ∈ 𝐿 do
25 Φ𝜂 ← Sign pattern of (ℎ𝛼

𝑗
(𝜂)) for 𝛼 ∈ Ada and

1 ≤ 𝑗 ≤ rk𝛼 as in (4)
26 𝑟𝜂 ← entry of 𝑐𝜂 corresponding to

(1, 1, . . . , 1) ∈ {0, 1,−1}𝑠
27 end
28 return Σ, (Φ𝜂 ∧𝑤∞ ≠ 0 ∧Minors ≠ 0, 𝜂, 𝑟𝜂 )𝜂∈𝐿

at least one point in each connected component of R. So we have
{𝑇𝜂 | 𝜂 ∈ R} = {𝑇𝜂 | 𝜂 ∈ 𝐿}. Moreover, by the induction hypothe-
sis, for all 𝜂 ∈ R, we have SIGN(𝒈𝑖−1,VR ∩ 𝜋−1 (𝜂)) ⊆ Σ𝑖−1 since
𝜂 ∈ W𝑖−1. Thus for all 𝜂 ∈ R, we have

Σ𝜂 B SIGN(𝒈𝑖 ,VR ∩ 𝜋−1 (𝜂)) ⊆ {0, 1,−1} × Σ𝑖−1 C Σ∗ .

As a consequence of Proposition 4.1, Σ𝜂 corresponds to the nonzero
entries of 𝑐𝜂 B Mat(Σ∗,Ada∗)−1 · 𝑇𝜂 = 𝑀−1 · 𝑇𝜂 . Since 𝑀 does
not depend on 𝜂, it holds that Σ𝜂 is invariant over a connected

component of R. Finally,
SIGN(𝒈𝑖 ,VR ∩ 𝜋−1 (W𝑖 )) = SIGN(𝒈𝑖 ,VR ∩ 𝜋−1 (R))

=
⋃
𝜂∈R

Σ𝜂 =
⋃
𝜂∈𝐿

Σ𝜂 = Σ𝑖 .

Hence Algorithm 2 outputs a set Σ describing all the sign conditions
realised by 𝒈 onVR ∩ 𝜋−1 (W) forW a nonempty Zariski open
subset of C𝑡 . Finally, we show that the output of Algorithm 2:
(Φ𝜂 ∧𝑤∞ ≠ 0 ∧Minors ≠ 0, 𝜂, 𝑟𝜂 )𝜂∈𝐿 is a solution for Problem 1.
For 𝜂 ∈ 𝐿, let T𝜂 be the semi-algebraic set defined by Φ𝜂 ∧𝑤∞ ≠

0 ∧ Minors ≠ 0. By construction, 𝑐𝜂′ is invariant when 𝜂′ varies
over T𝜂 and its first entry equals 𝑟𝜂 that is exactly ♯VR ∩ 𝜋−1 (𝜂′).
The union of the sets T𝜂 is R𝑡 \W; it is dense in R𝑡 . □

4.3 Complexity analysis
Further, we use the following notation for integers 𝑎, 𝑏, 𝑐:

T𝑎,𝑏,𝑐 =

(
𝑎 + 𝑏 + 𝑐

𝑎

)
and M𝑎,𝑏 =

(
𝑎 + 𝑏
𝑎

)
.

Note that one can evaluate a multivariate polynomial of degree at
most 𝐷 in 𝑘 variables within O(M𝐷,𝑘 ) arithmetic operations.

Let 𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊆ Q[𝒚] [𝒙] be a regular sequence satisfying
Assumptions A and B and 𝒈 = (𝑔1, . . . , 𝑔𝑠 ) ⊆ Q[𝒚] [𝒙] a polynomial
sequence. Let 𝑑 be a bound on the degree of the polynomials in 𝒇
and 𝒈. We further assume that 𝑛, 𝑡 and 𝑑 are at least 2 as we are
dealing with asymptotics. Let 2 < 𝜔 ≤ 3 be an admissible exponent
for matrix multiplication. We also denote 𝜆 B 𝑛(𝑑 − 1).

We prove that the arithmetic cost of each loop iteration in Algo-
rithm 2 is dominated by the computation of the sample points at
line 14. By [21, Prop. 26], the cost in terms of arithmetic operations
in Q of the call to FirstHermitematrix at line 1 is at most

Õ
(
M𝑡,2𝜆

(
𝑛T𝑑,𝑡,𝑛 + 𝑛𝜔+1𝑑𝜔𝑛+1 + 𝑑 (𝜔+1)𝑛

))
. (5)

Note that at loop iteration 𝑖 the newly computed Hermite matrices
are of the formH · 𝐿𝑔𝑖 ,H · 𝐿2𝑔𝑖 , whereH is a Hermite matrix that
has already been computed at the previous iteration and 𝐿𝑔𝑖 is the
matrix of the multiplication by 𝑔𝑖 w.r.t. the basis B in AK. So,
each Hermite matrix is computed by multiplying a known Hermite
matrix by one matrix of multiplication 𝐿𝑔𝑖 for 1 ≤ 𝑖 ≤ 𝑠 .

Lemma 4.10. Under the above assumptions, let 𝑔 be one of the 𝑔𝑖 ’s,
one can compute the matrix of multiplication 𝐿𝑔 w.r.t. basis B within

Õ
(
T𝑡,𝑑,𝜆

(
T𝑑,𝑡,𝑛 +M𝑛,𝑑𝑑

𝜔𝑛 + 𝑛𝜔+1𝑑𝜔𝑛+1
))

arithmetic operations in Q.

Proof. Let 𝛿 be the size of the Hermite matrix 𝐿𝑔 . We already
observed that 𝛿 ≤ 𝑑𝑛 . We compute 𝐿𝑔 by evaluation and interpola-
tion using the multivariate interpolation algorithm of [6]. Because
𝒇 satisfies Assumption B and is regular, by Lemma 3.6 and [21,
Lem. 23], the matrix 𝐿𝑔 has polynomial entries in 𝒚 of degree at
most 𝑑 + 𝜆. Thus we need T𝑡,𝑑,𝜆 interpolation points 𝜂 ∈ Q𝑡 .

First we bound the cost of computing 𝐿𝑔 (𝜂) for 𝜂 ∈ Q𝑡 . We
start by computing all the matrices 𝐿𝑥𝑖 (𝜂). This is done in time
O(𝑑𝑛𝜔+1𝛿𝜔 ) = O(𝑛𝜔+1𝑑𝜔𝑛+1) using [11, Algo. 4]. Then we eval-
uate 𝑔 at 𝜂 in time O

(
T𝑑,𝑡,𝑛

)
. We write 𝑔(𝜂, 𝒙) = ∑

𝑚 𝑐𝑚𝑚 where
𝑐𝑚 ∈ Q and𝑚 ranges over the set of monomials in 𝒙 of degree at



ISSAC 2024, July 16–19, 2024, Raleigh, USA L. Gaillard, and M. Safey El Din

most 𝑑 . There are M𝑛,𝑑 such monomials. We compute all the matri-
ces 𝐿𝑚 (𝜂) using 𝑂 (M𝑛,𝑑𝑑

𝜔𝑛) arithmetic operations by multiply-
ing appropriately the matrices 𝐿𝑥𝑖 (𝜂). Then, we compute 𝐿𝑔 (𝜂) =∑
𝑚 𝑐𝑚𝐿𝑚 (𝜂) in time O(𝑑2𝑛M𝑛,𝑑 ). All in all, computing 𝐿𝑔 (𝜂)

uses O
(
T𝑑,𝑡,𝑛 +M𝑛,𝑑𝑑

𝜔𝑛 + 𝑛𝜔+1𝑑𝜔𝑛+1
)
arithmetic operations in

Q. Hence, the whole evaluation step has an arithmetic cost lying in

O
(
T𝑡,𝑑,𝜆

(
T𝑑,𝑡,𝑛 +M𝑛,𝑑𝑑

𝜔𝑛 + 𝑛𝜔+1𝑑𝜔𝑛+1
))

.

Finally, we interpolate 𝛿2 entries which are polynomials in Q[𝒚] of
degree at most 𝑑 + 𝜆. So using multivariate interpolation [6], this is
done in time O

(
𝛿2T𝑡,𝑑,𝜆 log2 T𝑡,𝑑,𝜆 log logT𝑡,𝑑,𝜆

)
. Summing the

cost of the two steps together ends the proof. □

Proposition 4.11. Suppose that 𝒇 = (𝑓1, . . . , 𝑓𝑝 ) ⊂ Q[𝒚] [𝒙]
is a regular sequence satisfying Assumptions A and B. Then any
parametric Hermite matrix H𝑔 occurring in Algorithm 2 with 𝑔 ∈
Q[𝒚] [𝒙] of degree 𝑑𝑔 can be computed within

Õ
(
T𝑡,𝑑𝑔,2𝜆

(
𝑑2𝑛T𝑡,𝑑𝑔,2𝜆 + 𝑑

𝜔𝑛
))

(6)

arithmetic operations in Q. Moreover, any minor ofH𝑔 can be com-
puted using

Õ
(
M𝑡,(𝑑𝑔+𝜆)𝑑𝑛

(
𝑑2𝑛T𝑡,𝑑𝑔,2𝜆 + 𝑑

𝜔𝑛
))

(7)

arithmetic operations in Q.

Proof. Again let 𝛿 ≤ 𝑑𝑛 be the size of the Hermite matrixH𝑔 .
We write 𝑔 = 𝑔′𝑔𝑖 so thatH𝑔 = H𝑔′ ·𝐿𝑔𝑖 for some 1 ≤ 𝑖 ≤ 𝑠 andH𝑔′

a parametric Hermite matrix that is already known. By Lemma 3.6
and Proposition 3.7, the matricesH𝑔,H𝑔′ and 𝐿𝑔𝑖 have entries in
Q[𝒚]. Moreover, by [21, Lem. 23] the largest degree among the
entries ofH𝑔 andH𝑔′ is bounded by Λ B 𝑑𝑔 + 2𝜆 and 𝐿𝑔𝑖 has all
its entries of degree at most 𝑑 + 𝜆. We compute the evaluations
H𝑔 (𝜂) = H𝑔′ (𝜂) · 𝐿𝑔𝑖 (𝜂) for M𝑡,Λ distinct points 𝜂 ∈ Q𝑡 , and then
we interpolate the matrixH𝑔 using the algorithm of [6].

Let 𝜂 ∈ Q𝑡 . We first estimate the cost of computing 𝐿𝑔𝑖 (𝜂). It is
the evaluation of 𝛿2 polynomials in Q[𝒚] of degree at most 𝑑 + 𝜆.
So its cost is in O

(
T𝑡,𝑑,𝜆𝛿

2) arithmetic operations in Q.
Similarly, we estimate the cost for computingH𝑔′ (𝜂). We obtain

O
(
M𝑡,Λ𝛿

2) arithmetic operations in Q.
Finally, we need to compute the matrix product H𝑔′ (𝜂)𝐿𝑔𝑖 (𝜂)

and this is done in time O(𝛿𝜔 ). Notice that 𝜆 − 𝑑 = 𝑛(𝑑 − 1) − 𝑑 =

𝑛𝑑 −𝑛−𝑑 ≥ 0, as 𝑛 ≥ 2 and 𝑑 ≥ 2. So 𝑑 +𝜆 ≤ Λ. Summing up every
step together we obtain that the evaluationH𝑔 (𝜂) can be computed
within O

(
𝛿2M𝑡,Λ + 𝛿𝜔

)
arithmetic operations inQ. Since there are

M𝑡,Λ evaluation points, the whole evaluation step uses

O
(
M𝑡,Λ

(
𝑑2𝑛M𝑡,Λ + 𝑑𝜔𝑛

))
arithmetic operations inQ at most. Finally, we interpolate 𝛿2 entries
which are polynomials in Q[𝒚] of degree at most Λ. Using [6], the
complexity of this step lies in O

(
𝛿2M𝑡,Λ log2 M𝑡,Λ log logM𝑡,Λ

)
.

Summing up these costs, we obtain the claimed complexity forH𝑔 .

To compute the minors, we again use an evaluation-interpolation
scheme. Any minor ofH𝑔 has degree at most (𝑑𝑔 + 𝜆)𝑑𝑛 by Corol-
lary 3.8, so we need M𝑡,(𝑑𝑔+𝜆)𝑑𝑛 interpolation points. Each evalu-
ation of the matrix costs O

(
𝛿2M𝑡,Λ

)
and the computation of the

minors lies in O(𝛿𝜔 ). We deduce the bound as before. □

One shows that the cost for computing the minors ofH𝑔 domi-
nates the cost for computing the matrixH𝑔 . First note that

M𝑛,𝑑 =
(𝑑 + 𝑛) . . . (𝑑 + 1)

𝑛! = 𝑑𝑛
𝑛∏

𝑘=1

(
1
𝑑
+ 1
𝑘

)
≤ 2𝑑𝑛,

since 1
𝑑
+1 ≤ 2 and 1

𝑑
+ 1
𝑘
≤ 1 for𝑘 ≥ 2. Then, the cost in Lemma 4.10

is bounded by the cost (5) of FirstHermiteMatrix. In [21, Sec. 6.2],
it is shown that (5) is bounded by Õ

(
M𝑡,𝜆𝑑𝑛M𝑡,2𝜆𝑑

2𝑛 ) . Thus the
cost for computing 𝐿𝑔𝑖 is bounded by (7). In addition, it holds that
(6) is bounded by (7). Hence we can conclude that computing the
minors dominates the cost of computing the matrices.

Now let us bound the cost of computing the set of sample points
at Line 14. In Algorithm 2, we compute parametric Hermite matrices
H𝒈𝛼 , with 𝒈𝛼 =

∏
𝑔
𝛼𝑖
𝑖

with 𝛼 ∈ {0, 1, 2}𝑠 . So, the degree of 𝑔
is bounded by 2𝑑𝑠 . Hence, the degree of any minor in Minors is
bounded by𝔇 B (2𝑑𝑠 + 𝜆)𝑑𝑛 . Let 𝑟𝑖 be the size of Σ at the end of
iteration 𝑖 of the loop. By [1], we have

𝑟𝑖 ≤ 𝑟 B

(
𝑠

𝑡

)
4𝑡+1𝑑 (2𝑑 − 1)𝑛+𝑡−1 .

At iteration 𝑖 , we compute at most 2𝑟 new Hermite matrices, so
we add at most 2𝛿𝑟 new minors in the set Minors. Let 𝑀𝑖 be the
size of the set Minors after the loop iteration 𝑖 . We have 𝑀𝑖 ≤
2𝛿𝑖𝑟 ≤ 2𝛿𝑠𝑟 . So we call the routine SamplePoints with at most
2𝑑𝑛𝑠𝑟 polynomials, because as 𝒇 satisfies Assumption B, we can
omit𝑤∞ = 1. By [21, Thm. 2], the set of sample points 𝐿 contains
at most (4𝑑𝑛𝑠𝑟𝔇)𝑡 points and this set can be computed using

Õ
(
M𝑡,𝔇 (2𝑑𝑛𝑠𝑟 )𝑡+123𝑡𝔇2𝑡+1

)
(8)

arithmetic operations in Q. We can now prove Theorem 1.1.

Proof of Theorem 1.1. The sequence 𝒇 is regular and satisfies
both Assumptions A and B. At each iteration of Algorithm 2, the
call to SamplePoints has a cost bounded by (8). We also compute at
most 2𝑟 new Hermite matrices and their 𝛿 ≤ 𝑑𝑛 leading principal
minors. By Proposition 4.11, this can be done using

Õ
(
𝑑𝑛𝑟M𝑡,𝔇

(
𝑑2𝑛T𝑡,2𝑠𝑑,2𝜆 + 𝑑𝜔𝑛

))
arithmetic operations. Since T𝑡,2𝑠𝑑,2𝜆 ∈ O

(
𝔇𝑡

)
, the above estimate

is bounded by (8). Next, we have to evaluate the signatures of at
most 3𝑟 Hermite matrices for every points 𝜂 ∈ 𝐿. This is done by
evaluating the sign patterns of the minors. There are at most 3𝛿𝑟
minors of degree at most𝔇 to evaluate at at most (4𝑑𝑛𝑠𝑟𝔇)𝑡 points.
This is done within O

(
𝑑𝑛𝑟 (4𝑑𝑛𝑠𝑟𝔇)𝑡M𝑡,𝔇

)
arithmetic operations

in Q and this is bounded by (8). The linear algebra to solve the
linear systems 𝑀 · 𝑐𝜂 = 𝑇𝜂 or to compute the rank row profile of
𝑀 has a negligible cost in front of the evaluations of the minors.
Finally we sum the costs for each of the 𝑠 iterations and substitute
the values of 𝜆, 𝑟,𝔇 to get the complexity estimate. The algorithm
outputs ♯𝐿 ≤ (4𝑑𝑛𝑠𝑟𝔇)𝑡 formulas. Each formula contains O(𝑑𝑛𝑠𝑟 )
minors of degree at most𝔇. This completes the proof. □
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5 PRACTICAL EXPERIMENTS
We report here on the practical behaviour of our algorithm and
compare it with existing Maple packages based on other meth-
ods for solving parametric semi-algebraic systems. In Algorithm 2,
we need to compute sample points per connected components of
the non-vanishing set of leading principal minors of several Her-
mite matrices. Once we have computed these sample points, the
semi-algebraic conditions for the classification are derived from
the sign patterns of the minors on these points. However when
facing practical problems, calling the SamplePoints routine with
this number of minors is often the bottleneck of Algorithm 2. If
we assume that for each inequality 𝑔𝑖 with 1 ≤ 𝑖 ≤ 𝑠 , the Hermite
matrixH𝑔𝑖 is nonsingular, one can get better timings in practice
with the following approach:

• Compute a set {𝜂1, . . . , 𝜂ℓ } of sample points in the non-
vanishing set of the determinants of (H1,H𝑔1 , . . . ,H𝑔𝑠 ). For
1 ≤ 𝑖 ≤ ℓ , perform sign determination to obtain 𝑟𝑖 the num-
ber of solutions of the specialized system (𝒇 (𝜂𝑖 , ·),𝒈(𝜂𝑖 , ·)).
One can show that we obtain all the possible number of
solutions that the input system can admit.
• Next in order to get semi-algebraic conditions, compute the
3𝑠 Hermite matricesH𝒈𝛼 for all 𝛼 ∈ {0, 1, 2}𝑠 and all their
leading principal minors. From each sign pattern 𝜏 on this
family of minors, the signatures of the Hermite matrices are
determined and one can associate 0 ≤ 𝑟𝜏 ≤ 𝛿 the number of
solutions of the input system. Finally we derive a classifica-
tion from the sign patterns 𝜏 such that 𝑟𝜏 ∈ {𝑟1, . . . , 𝑟ℓ }.

Notice that we get a classification with semi-algebraic formulas
that contain clauses that may be infeasible. Yet we only need one
call to the SamplePoints routine with 𝑠 + 1 polynomials in input.

The timings are given in hours (h.), minutes (m.) and seconds (s.)
and the computations have been performed on a PC Intel (R) Xeon
(R) Gold 6244 CPU 3.6GHz with 1.5Tb of RAM. In our implemen-
tation, we compute Hermite matrices using FGb package [12] for
Gröbner basis computation. For the sample points routine, we use
RAGlib [25]. In Table 1, we analyse the costs on dense generic inputs,
i.e. the input polynomials (𝑓1, . . . , 𝑓𝑛) and (𝑔1, . . . , 𝑔𝑠 ) ⊂ Q[𝒚] [𝒙]
are dense and randomly chosen among polynomials of degree 𝑑 . We
collect results for various values of (𝑛, 𝑡, 𝑠, 𝑑). We focus on the tim-
ings for computing all the Hermite matrices (hm), all their leading
principal minors (min). We also report in column det the timings
for computing only the (𝑠 + 1) matrices (H1,H𝑔1 , . . . ,H𝑔𝑠 ) and
their determinants; and for computing sample points (column sp)
in the non-vanishing locus of these determinants. We compare our
algorithm with the Maple packages RootFinding[Parametric] [14]
(the column RF) and RegularChains[ParametricSystemTools] [27].

In the column RF, we give the timings for the command Discrim-
inantVariety (dv) that computes a set of polynomials defining a
discriminant variety D of the input system. For generic systems,
the output of DiscriminantVariety coincides with the irreducible
factors of the determinants of (H1, . . . ,H𝑔𝑠 ) and the border poly-
nomials returned by the command BorderPolynomial (bp) contains
these polynomials. We also collect the results for the command
CellDecomposition (cad) that outputs semi-algebraic formulas by
computing an open CAD for R𝑡 \ D.

Hermite RF
𝑛 𝑡 𝑠 𝑑 hm min det sp dv cad bp
2 2 2 2 0.15 s 0.4 s 0.1 s 5 s 0.14 s 2 s 0.11 s
2 2 3 2 0.7 s 2 s 0.1 s 10 s 0.9 s 10 s 1 s
3 2 1 2 0.5 s 9 s 0.4 s 33 s 10 m 11 m 7 m
3 2 2 2 3 s 1 m 0.4 s 57 s 10 m 13 m 14 m
2 3 2 2 0.3 s 4 s 0.1 s 18m 0.7 s >50 h 0.2 s
3 3 1 2 1 s 4 m 6 s >50 h >50 h >50 h >50 h
2 2 1 3 0.9 s 30 s 0.8 s 3m 52 m 57 m 47 s
2 2 2 3 5 s 5 m 1 s 6m 57 m 1h 16 m 2 m

Table 1: Generic dense system

The column det has to be compared with the two columns dv and
bp as they are three different approaches to compute polynomials
that defines the boundary of semi-algebraic sets over which the
number of solutions of the input system is invariant.

We observe that our method outperforms DiscrimantVariety and
BorderPolynomial. With our approach based on the minors of the
Hermite matrices, we are not only able to solve the classification
problem for systems faster by several orders ofmagnitude thanwhat
can be achievedwith CellDecomposition (cad) and the command Re-
alRootClassification of the RegularChains[ParametricSystemTools]
library. We can also tackle problems that were previously out of
reach.

Perspective-Three-Point Problem (P3P). We now consider a system
coming from the P3P problem and apply our algorithm to find a
classification. The problem consists in determining the position of
a camera given the relative spatial location of 3 control points. As
in [13], we want to compute a classification of the real solutions of
the following system:

1 = 𝐴2 + 𝐵2 −𝐴𝐵𝑢
𝑡 = 𝐵2 +𝐶2 − 𝐵𝐶𝑣
𝑥 = 𝐴2 +𝐶2 −𝐴𝐶𝑤

with 𝐴 > 0, 𝐵 > 0,𝐶 > 0, (P3P)

subject to the following constraints: 𝑥, 𝑡 > 0, −2 < 𝑢, 𝑣,𝑤 < 2,
where 𝐴, 𝐵,𝐶 are the variables and 𝑥, 𝑡,𝑢, 𝑣,𝑤 are parameters.

In [13], a special case of (P3P) is studied where 𝑡 = 1. This
restriction corresponds to the case where the three controls points
form an isosceles triangle. In this case, a discriminant varietyD for
the system is computed in [13]. Sample points in the semi-algebraic
set R4 \ D in order to deduce all the possible number of solutions
of (P3P) in the isosceles case are computed using RAGlib but this is
not sufficient to obtain semi-algebraic conditions that prescribe the
number of real solutions to the input parametric system.

With our method, we are able to derive these semi-algebraic
descriptions for each possible number of solutions from the signs
of the leading principal minors of parametric Hermite matrices. In
less than one hour, we compute all the minors and sample points in
R4 \ D whence we obtain a complete classification in the isosceles
case.

We also studied the general case. The system (P3P) has 3 variables
and 5 parameters. We compute the first Hermite matrix H1 and
the ones corresponding to each inequalityH𝐴,H𝐵,H𝐶 and their
determinants in a few seconds. This gives polynomials defining
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a discriminant variety of the system (P3P). Already this first step
was out of reach using the Maple commands DiscriminantVariety
or BorderPolynomial. Next we are able to compute the leading
principal minors of all Hermite matrices of the formH𝐴𝛼1𝐵𝛼2𝐶𝛼3

with (𝛼1, 𝛼2, 𝛼3) ∈ {0, 1, 2}3 and get semi-algebraic conditions for
a classification. One further step would be to sample points outside
the discriminant variety to get all the possible number of solutions
of the system (P3P).
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