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Abstract

We study the complexity of solving the generalized MinRank problem, i.e. computing the set of points
where the evaluation of a polynomial matrix has rank at most r. A natural algebraic representation of this
problem gives rise to a determinantal ideal: the ideal generated by all minors of size r+ 1 of the matrix.
We give new complexity bounds for solving this problem using Gröbner bases algorithms under genericity
assumptions on the input matrix. In particular, these complexity bounds allow us to identify families of
generalized MinRank problems for which the arithmetic complexity of the solving process is polynomial in
the number of solutions. We also provide an algorithm to compute a rational parametrization of the variety
of a 0-dimensional and radical system of bi-degree (D,1). We show that its complexity can be bounded by
using the complexity bounds for the generalized MinRank problem.

Key words: MinRank, Gröbner basis, determinantal, bi-homogeneous, structured algebraic systems.

1. Introduction

We focus in this paper on the following problem:

Generalized MinRank Problem: given a field K, a n×m matrix M whose entries are poly-
nomials of degree D in K[x1, . . . ,xk], and r < min(n,m) an integer, compute the set of points at
which the evaluation of M has rank at most r.

This problem arises in many applications and this is what motivates our study. In cryptology,
the security of several multivariate cryptosystems relies on the difficulty of solving the classical
MinRank problem (i.e. when the entries of the matrix are linear (Bettale et al., 2012; Faugère
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et al., 2008; Kipnis and Shamir, 1999)). In coding theory, rank-metric codes can be decoded by
computing the set of points where a polynomial matrix has rank less than a given value (Faugère
et al., 2008; Ourivski and Johansson, 2002). In non-linear computational geometry, many inci-
dence problems from enumerative geometry can be expressed by constraints on the rank of a
matrix whose entries are polynomials of degree frequently larger than 1 (see e.g. (Macdonald
et al., 2001; Sottile, 2002, 2003)). Also, in real geometry and optimization (Bank et al., 2010;
Greuet et al., 2011; Safey El Din and Schost, 2003) the critical points of a map are defined by
the rank defect of its Jacobian matrix (whose entries have degrees larger than 1 most of the
time in applications). Moreover, this problem is also underlying other problems from symbolic
computation (for instance solving multi-homogeneous systems, see e.g. Faugère et al. (2011)).

The ubiquity of this problem makes the development of algorithms solving it and complexity
estimates of first importance. When K is finite, the generalized MinRank problem is known to
be NP-complete (Buss et al., 1999); thus one can consider this problem as a hard problem.

To study the Generalized MinRank problem, we consider the algebraic system of all the (r+
1)-minors of the input matrix. Indeed, these minors simultaneously vanish on the locus of rank
defect and hence give rise to a section of a determinantal ideal.

Several solving tools can be used to solve this algebraic system by taking profit of the under-
lying structure. For instance, the geometric resolution in Giusti et al. (2001) can use the fact that
these systems can be evaluated efficiently. Also, recent works on homotopy methods (Verschelde,
1999) show that numerical algorithms can solve determinantal problems.

In this paper, we focus on Gröbner bases algorithms. A representation of the locus of rank
defect is obtained by computing a lexicographical Gröbner basis by using the algorithms F5
(Faugère, 2002) and FGLM (Faugère et al., 1993). Indeed, experiments suggest that these algo-
rithms take profit of the determinantal structure. The aim of this work is to give an explanation
of this behavior from the viewpoint of asymptotic complexity analysis.

Related works
An important related theoretical issue is to understand the algebraic structure of the ideal

J r ⊂K[U ] (where U is the set of variables {u1,1, . . . ,un,m}) generated by the (r+1)-minors of
the matrix:

U =


u1,1 . . . u1,m

...
. . .

...

un,1 . . . un,m

 .

The ideal J r has been extensively studied during last decades. In particular, explicit formulas
for its degree and for its Hilbert series are known (see e.g. Fulton (1997, Example 14.4.14) and
Conca and Herzog (1994)), as well as structural properties such as Cohen-Macaulayness and
primality (Hochster and Eagon, 1970, 1971).

In cryptology, Kipnis and Shamir (1999) have proposed a multi-homogeneous algebraic mod-
eling which can be seen as a generalization of the Lagrange multipliers and is designed as fol-
lows: a polynomial n×m matrix M ∈K[X ]n×m (where X denotes the set of variables {x1, . . . ,xk})
has rank at most r if and only if the dimension of its right kernel is greater than m− r−1. Con-
sequently, by introducing r(m− r) fresh variables y1,1, . . . ,yr,m−r, we can consider the system of
bi-degree (D,1) in K[x1, . . . ,xk,y1,1, . . . ,yr,m−r] defined by
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M ·



1 0 . . . 0

0 1 . . . 0
...

. . . . . .
...

0 0 . . . 1

y1,1 y1,2 . . . y1,m−r
...

...
. . .

...

yr,1 yr,2 . . . yr,m−r


= 0.

If (x1, . . . ,xk,y1,1, . . . ,yr,m−r) is a solution of that system, then the evaluation of the matrix M
at the point (x1, . . . ,xk) has rank at most r.

In (Faugère et al., 2010), the case of square linear matrices is studied by performing a com-
plexity analysis of the Gröbner bases computations. In particular, this investigation showed that
the overall complexity is polynomial in the size of the matrix when the rank defect n− r is con-
stant. This theoretical analysis is supported by experimental results. The proofs were complete
when the system has positive dimension, but depended on a variant of a conjecture by Fröberg in
the 0-dimensional case.

Main results
We generalize in several ways the results from (Faugère et al., 2010) where only the case of

square linear matrices was investigated: our contributions are the following.
• We deal with non-square matrices whose entries are polynomials of degree D with generic

coefficients; this is achieved by using more general tools than those considered in (Faugère
et al., 2010) (weighted Hilbert series). This generalization is important for applications in
geometry and optimization for instance.

• When n = (p− r)(q− r), the solution set of the generalized MinRank problem has dimension
0. In that case, our proofs in this paper do not rely on Fröberg’s conjecture; this has been
achieved by modifying our proof techniques and using more sophisticated and structural prop-
erties of determinantal ideals. This is important for applications in cryptology (see e.g. the sets
of parameters A, B and C in the MinRank authentication scheme (Courtois, 2001)).
Our results are complexity bounds for Gröbner bases algorithms when the input system is

the set of (r+1)-minors of a n×m matrix M , whose entries are polynomials of degree D with
generic coefficients.

By generic, we mean that there exists a non-identically null multivariate polynomial h such
that the complexity results hold when this polynomial does not vanish on the coefficients of the
polynomials in the matrix. Therefore, from a practical viewpoint, the complexity bounds can be
used for applications where the base field K is large enough: in that case, the probability that the
coefficients of M do not belong to the zero set of h is close to 1.

We start by studying the homogeneous generalized MinRank problem (i.e. when the entries of
M are homogeneous polynomials) and by proving an explicit formula for the Hilbert series of the
ideal Ir generated by the (r+1)-minors of the matrix M . The general framework of the proofs
is the following: we consider the ideal J r ⊂ K[U ] generated by the (r+1)-minors of a matrix
U = (ui, j) whose entries are variables. Then we consider the ideal J̃ r = J r +〈g1, . . . ,gnm〉 ⊂
K[U,X ], where the polynomials gi are quasi-homogeneous forms that are the sum of a linear form
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in K[U ] and of a homogeneous polynomial of degree D in K[X ]. If some conditions on the gi are
verified, by performing a linear combination of the generators there exists f1,1, . . . , fn,m ∈ K[X ]
such that

J̃ r = J r +〈u1,1− f1,1, . . . ,un,m− fn,m〉.
Then we use the fact that

(
J r +〈u1,1− f1,1, . . . ,un,m− fn,m〉

)
∩K[X ] = Ir to prove that proper-

ties of generic quasi-homogeneous sections of J r transfer to Ir when the entries of the matrix
M are generic. This allows us to use results known about the ideal J r to study the algebraic
structure of Ir.

We study separately three different cases:
• k > (n−r)(m−r). Under genericity assumptions on the input, the solutions of the generalized

MinRank problem are an algebraic variety of positive dimension. Recall that the complexity
results were only proven for D = 1 and n = m in Faugère et al. (2010). We generalize here for
any D ∈ N.

• k = (n− r)(m− r). This is the 0− dimensional case, where the problem has finitely-many
solutions under genericity assumptions. Recall that the results in Faugère et al. (2010) were
only stated for D = 1 and n = m, and they depended on a variant of Fröberg’s conjecture. In
this paper, we give complete proofs for D ∈ N which do not rely on any conjecture.

• k < (n− r)(m− r). In the over-determined case, we still need to assume a variant of Fröberg’s
conjecture to generalize the results in Faugère et al. (2010).
In particular, we prove that, for k≥ (n− r)(m− r), the Hilbert series of Ir is the power series

expansion of the rational function

HSIr(t) =
detAr(tD)(1− tD)(n−r)(m−r)

tD(r
2)(1− t)k

,

where Ar(t) is the r× r matrix whose (i, j)-entry is ∑k
(m−i

k

)(n− j
k

)
tk. Assuming w.l.o.g. that

m≤ n, we also prove that the degree of Ir is equal to

DEG(Ir) = D(n−r)(m−r)
m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

.

These explicit formulas permit to derive complexity bounds on the complexity of the problem.
Indeed, one way to get a representation of the solutions of the problem in the 0-dimensional case
is to compute a lexicographical Gröbner basis of the ideal generated by the polynomials. This
can be achieved by using first the F5 algorithm (Faugère, 2002) to compute a Gröbner basis for
the so-called grevlex ordering and then use the FGLM algorithm (Faugère et al., 1993) to convert
it into a lexicographical Gröbner basis. The complexities of these algorithms are governed by the
degree of regularity and by the degree of the ideal.

Therefore the theoretical results on the structure of Ir yield bounds on the complexity of
solving the generalized MinRank problem with Gröbner bases algorithms. More specifically,
when k = (n− r)(m− r) and under genericity assumptions on the input polynomial matrix, we
prove that the arithmetic complexity for computing a lexicographical Gröbner basis of Ir is
upper bounded by

O
((

n
r+1

)(
m

r+1

)(
Dreg+k

k

)ω

+ k (DEG(Ir))
3
)
,

where 2≤ ω ≤ 3 is a feasible exponent for the matrix multiplication, and

Dreg = Dr(m− r)+(D−1)k+1.
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This complexity bound permits to identify families of Generalized MinRank problems for
which the number of arithmetic operations during the Gröbner basis computations is polynomial
in the number of solutions.

In the over-determined case (i.e. k < (n− r)(m− r)), we obtain similar complexity results, by
assuming a variant of Fröberg’s conjecture which is supported by experiments.

Finally, we show that complexity bounds for solving systems of bi-degree (D,1) can be ob-
tained from these results on the generalized MinRank problem. We give an algorithm whose
arithmetic complexity is upper bounded by

O

((
nx +ny

ny +1

)(
D(nx +ny)+1

nx

)ω

+nx

(
Dnx

(
nx +ny

nx

))3
)
,

for solving systems of nx+ny equations of bi-degree (D,1) in K[x1, . . . ,xnx ,y1, . . . ,yny ] which are
radical and 0-dimensional.

Organization of the paper
Section 2 provides notations used throughout this paper and preliminary results. In Section 3,

we show how properties of the ideal J r generated by the (r+ 1)-minors of U transfer to the
ideal Ir. Then, the case when the homogeneous Generalized MinRank Problem has non-trivial
solutions (under genericity assumptions) is studied in Section 4. Section 5 is devoted to the study
of the over-determined MinRank Problem (i.e. when k < (n− r)(m− r)). Then, the complexity
analysis is performed in Section 6. Some consequences of this complexity analysis are drawn in
Section 7. Experimental results are given in Section 7.4 and applications to the complexity of
solving bi-homogeneous systems of bi-degree (D,1) are investigated in Section 8.
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2. Notations and preliminaries

Let K be a field and K be its algebraic closure. In the sequel, n, m, r and k and D are positive
integers with r < m ≤ n. For d ∈ N, Mon(d,k) denotes the set of monomials of degree d in the
polynomial ring K[x1, . . . ,xk]. Its cardinality is #Mon(d,k) =

(d−1+k
d

)
.

We denote by a the set of parameters {a(i, j)t : 1≤ i≤ n,1≤ j ≤m, t ∈Mon(D,k)}. The set of
variables {ui, j : 1≤ i≤ n,1≤ j ≤ m} (resp. {x1, . . . ,xk}) is denoted by U (resp. X).

For 1≤ i≤ n,1≤ j ≤ m, we denote by fi, j ∈K(a)[X ] a generic form of degree D

fi, j = ∑
t∈Mon(D,k)

a
(i, j)
t t.

Let Ir ⊂K(a)[X ] be the ideal generated by the (r+1)-minors of the n×m matrix

M =


f1,1 . . . f1,m
...

. . .
...

fn,1 . . . fn,m

 ,
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and J r ⊂K(a)[U,X ] be the determinantal ideal generated by the (r+1)-minors of the matrix

U =


u1,1 . . . u1,m

...
. . .

...

un,1 . . . un,m

 .

We define Ĩr as the ideal J r +〈ui, j− fi, j〉1≤i≤n,1≤ j≤m ⊂K(a)[U,X ]. Notice that Ĩr = Ir +

〈ui, j− fi, j〉1≤i≤n,1≤ j≤m ⊂K(a)[U,X ]. Therefore, Ir = Ĩr ∩K(a)[X ].

By slight abuse of notation, if I is a proper homogeneous ideal of a polynomial ring K[X ], we
call Hilbert series of I and we note HSI ∈ Z[[t]] the Hilbert series of its quotient algebra K[X ]/I
with the grading defined by deg(xi) = 1 for all i:

HSI(t) = ∑
d≥0

dimK (K[X ]d/Id) td ,

where K[X ]d denotes the vector space of homogeneous polynomials of degree d and Id = I ∩
K[X ]d .

We call dimension of I the Krull dimension of the quotient ring K[X ]/I.

Quasi-homogeneous polynomials.
We need to balance the degrees of the entries of the matrix U with the degrees of the en-

tries of M . This can be achieved by putting a weight on the variables ui, j, giving rise to quasi-
homogeneous polynomials. A polynomial f ∈ K[U,X ] is called quasi-homogeneous (of type
(D,1)) if the following condition holds (see e.g. Greuel et al. (2007, Definition 2.11, page 120)):

f (λ Du1,1, . . . ,λ
Dun,m,λx1, . . . ,λxk) = λ

d f (u1,1, . . . ,un,m,x1, . . . ,xk).

The integer d is called the weight degree of f and denoted by wdeg( f ).
An ideal I ⊂ K[U,X ] is called quasi-homogeneous (of type (D,1)) if there exists a set of

quasi-homogeneous generators. In this case, we denote by K[U,X ]d the K-vector space of quasi-
homogeneous polynomials of weight degree d, and Id denote the set K[U,X ]d ∩ I.

Proposition 1. Let I ⊂K[U,X ] be an ideal. Then the following statements are equivalent:
(1) there exists a set of quasi-homogeneous generators of I;
(2) the sets Id are subspaces of K[U,X ]d , and I =

⊕
d∈N Id .

Proof. See e.g. Miller and Sturmfels (2005, Chapter 8).
2

If I is a quasi-homogeneous ideal, then its weighted Hilbert series wHSI(t) ∈ Z[[t]] is defined
as follows:

wHSI(t) = ∑
d∈N

dim(K[U,X ]d/Id)td .

3. Transferring properties from J r to Ir

In this section, we prove that generic structural properties (such as the dimension, the struc-
ture of the leading monomial ideal,. . . ) of the ideal Ĩr are the same as properties of the ideal J r
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where several generic forms have been added. Hence several classical properties of the determi-
nantal ideal J r transfer to the ideal Ĩr. For instance, this technique permits to obtain explicit
forms of the Hilbert series of the ideal Ĩr.

In the following, we denote by b and c the following sets of parameters:

b = {b(`)t | t ∈Mon(D,k),1≤ `≤ nm};

c = {c(`)i, j | 1≤ i≤ n,1≤ j ≤ m,1≤ `≤ nm}.

Also, g1, . . . ,gnm ∈K(b,c)[U,X ] are generic quasi-homogeneous forms of type (D,1) and of
weight degree D:

g` = ∑
t∈Mon(D,k)

b
(`)
t t + ∑

1≤i≤n
1≤ j≤m

c
(`)
i, j ui, j.

We let J̃ r denote the ideal J r +〈g1, . . . ,gnm〉 ⊂ K(b,c)[U,X ]. Here and subsequently, for

a = (ai, j) ∈Knm(D−1+k
D ), we denote by ϕa the following evaluation morphism:

ϕa : K[a] −→ K

f (a1,1, . . . ,an,m) 7−→ f (a1,1, . . . ,an,m)

Also, for (b,c) ∈Knm
(
(D−1+k

D )+nm
)
, we denote by ψb,c the evaluation morphism:

ψb,c : K[b,c] −→ K

f (b,c) 7−→ f (b,c)

By abuse of notation, we let ϕa(Ĩr) (resp. ψb,c(J̃ r)) denote the ideal J r +〈ui, j−ϕa( fi, j)〉⊂
K[U,X ] (resp. J r +〈ψb,c(g1), . . . ,ψb,c(gnm)〉 ⊂K[U,X ]).

We call property a map from the set of ideals of K[U,X ] to {true,false}:

P : Ideals(K[U,X ]) → {true,false} .

Definition 2. Let P be a property. We say that P is

• Ĩr-generic if there exists a non-empty Zariski open subset O⊂Knm(D−1+k
D ) such that

a ∈ O⇒P
(

ϕa

(
Ĩr

))
= true;

• J̃ r-generic if there exists a non-empty Zariski open subset O⊂Knm
(
(D−1+k

D )+nm
)

such that

(b,c) ∈ O⇒P
(

ψb,c

(
J̃ r

))
= true.

The following lemma is the main result of this section:

Lemma 3. A property P is Ĩr-generic if and only if it is J̃ r-generic.

Proof. To obtain a representation of ϕa

(
J̃ r

)
for a generic a as a specialization of Ĩr (and

conversely), it is sufficient to perform a linear combination of the generators. The point of this
proof is to show that genericity is preserved during this linear transform.
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In the sequel we denote by A,B and C the following matrices (of respective sizes nm×(D−1+k
D

)
, nm×

(D−1+k
D

)
and nm×nm):

A =


a
(1)
xD

1
a
(1)
xD−1

1 x2
. . . a

(1)
xD

k
...

...
...

...

a
(nm)

xD
1

a
(nm)

xD−1
1 x2

. . . a
(nm)

xD
k



B =


b
(1)
xD

1
b
(1)
xD−1

1 x2
. . . b

(1)
xD

k
...

...
...

...

b
(nm)

xD
1

b
(nm)

xD−1
1 x2

. . . b
(nm)

xD
k



C =


c
(1)
1,1 . . . c

(1)
n,m

...
...

...

c
(nm)
1,1 . . . c

(nm)
n,m

 .

Therefore, we have


u1,1− f1,1

...

un,m− fn,m

 = Idnm ·


u1,1

...

un,m

−A ·


xD

1

xD−1
1 x2

...

xD
k




g1
...

gnm

 = C ·


u1,1

...

un,m

+B ·


xD

1

xD−1
1 x2

...

xD
k


In this proof, for a ∈Knm(D−1+k

D ) (resp. b ∈Knm(D−1+k
D ),c ∈Kn2m2

), the notation A (resp. B,C)
stands for the evaluation of the matrix A (resp. B,C) at a (resp. b,c). Also, we implicitly identify
A with a (resp. B with b, C with c, A with a, B with b, C with c).
• Let P be a Ĩr-generic property. Thus there exists a non-zero polynomial h1(A) ∈ K[a] such

that if h1(A) 6= 0 then P
(

ϕa(Ĩr)
)
= true.

Let adj(C) denote the adjugate of C (i.e. adj(C) = det(C) · C−1 in K(c)). Consider the
polynomial h̃1 defined by h̃1(B,C) = h1(−adj(C) ·B) ∈ K[b,c]. The polynomial inequal-

ity det(C)h̃1(B,C) 6= 0 defines a non-empty Zariski open subset O ⊂ Knm
(
(D−1+k

D )+nm
)
. Let

(B,C) ∈O be an element in this set, then C is invertible since det(C) 6= 0. Let Ã be the matrix
Ã = −adj(C) ·B. Therefore the generators of the ideal ϕã

(
Ĩr

)
are an invertible linear com-

bination of the generators of ψb,c

(
J̃ r

)
. Consequently, ϕã

(
Ĩr

)
= ψb,c

(
J̃ r

)
. Moreover,
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h1(Ã) = h̃1(B,C) 6= 0 implies that the polynomial h̃1 is not identically 0. Therefore,

∀(b,c) ∈ O,P
(

ψb,c

(
J̃ r

))
= P

(
ϕã

(
Ĩr

))
= true,

and hence P is a J̃ r-generic property.
• Conversely, consider a J̃ r-generic property P . Thus, there exists a non-zero polynomial

h2(B,C) ∈ K[b,c] such that if h2(b,c) 6= 0 then P
(

ψb,c(J̃ r)
)
= true. Since P is J̃ r-

generic, there exists (b,c) such that h2(b,c)det(c) 6= 0. Let h̃2 be the polynomial h̃2(b) =

h2(−C ·B,C).
Since det(C) 6= 0, the matrix C is invertible and h̃2(−C−1 ·B) = h2(B,C) 6= 0 and hence the

polynomial h̃2 is not identically 0. Moreover, if a ∈ Knm(D−1+k
D ) is such that h̃2(A) 6= 0, then

h2(−C ·A,C) 6= 0 and thus P
(

ψ−C·A,C(J̃ r)
)
= true. Finally, ψ−C·A,C(J̃ r) = ϕA(Ĩr)

since the generators of ψ−C·A,C(J̃ r) are an invertible linear combination of that of ϕa(Ĩr)

(the linear transformation being given by the invertible matrix C) and hence they generate the
same ideal. Therefore, the property P is Ĩr-generic.
2

In the sequel, ≺ is an admissible monomial ordering (see e.g Cox et al. (1997, Chapter 2,
§2, Definition 1)) on K[U,X ], and for any polynomial f ∈ K[U,X ], LM( f ) denotes its leading
monomial with respect to ≺. If I is an ideal of K[U,X ], K(a)[U,X ], or K(b,c)[U,X ], we let
LM(I) denote the ideal generated by the leading monomials of the polynomials.

By slight abuse of notation, if I1 and I2 are ideals of K[U,X ], K(a)[U,X ], or K(b,c)[U,X ]

(I1 and I2 are not necessarily ideals of the same ring), we write LM(I1) = LM(I2) if the sets
{LM( f ) | f ∈ I1} and {LM( f ) | f ∈ I2} are equal.

Lemma 4. Let P
Ĩr

and P
J̃ r

be the properties defined by

P
Ĩr
(I) =

{
true if LM(I) = LM

(
Ĩr

)
;

false otherwise.

P
J̃ r

(I) =

{
true if LM(I) = LM

(
J̃ r

)
;

false otherwise.

Then P
Ĩr

(resp. P
J̃ r

) is a Ĩr-generic (resp. J̃ r-generic) property.

Proof. We prove here that P
Ĩr

is Ĩr-generic (the proof for P
J̃ r

is similar).

The outline of this proof is the following: during the computation of a Gröbner basis G of
Ĩr in K(a)[U,X ] (for instance with Buchberger’s algorithm), a finite number of polynomials
are constructed. Let ϕa be a specialization. If the images by ϕa of the leading coefficients of
all non-zero polynomials arising during the computation do not vanish, then ϕa(G)⊂ ϕa(Ĩr) is
a Gröbner basis of the ideal it generates. It remains to prove that ϕa(G) is a Gröbner basis of
ϕa(Ĩr). This is achieved by showing that generically, the normal form (with respect to ϕa(G))
of the generators of ϕa(Ĩr) is equal to zero.

9



For polynomials f1, f2, we let LC( f1) (resp. LC( f2)) denote the leading coefficient of f1 (resp.
f2) and Spol( f1, f2) =

LCM(LM( f1),LM( f2))
LC( f1)LM( f1)

f1− LCM(LM( f1),LM( f2))
LC( f2)LM( f2)

f2 denote the S-polynomial of f1

and f2.

We need to prove that there exists a non-empty Zariski open subset O1 ⊂Knm(D−1+k
D ) such that

a ∈ O1⇒ LM(ϕa(Ĩr)) = LM(Ĩr).

To do so, consider a Gröbner basis G ⊂ K(a)[U,X ] of Ĩr such that each polynomial g can be
written as a combination g = ∑h` f`, where the f`’s range over the set of minors of size r + 1
of U and the polynomials ui, j− fi, j, and h` ∈ K[a][U,X ]. Buchberger’s criterion states that S-
polynomials of polynomials in a Gröbner basis reduce to zero (Cox et al., 1997, Chapter 2, §6,
Theorem 6). Thus each S-polynomial of gi,g j ∈ G can be rewritten as an algebraic combination

Spol(gi,g j) = ∑
`

h′`g`,

where the polynomials h′` belongs to K(a)[U,X ] and such that {g1, . . . ,gti, j} ⊂ G and for each
1≤ s≤ ti, j, LM(gs) divides LM(Spol(g,g′)−∑

s−1
`=1 h′`g`). Next, consider:

• the product Q1(a) = ∏g∈GLC(g) of the leading coefficients of the polynomials in the Gröbner
basis;

• for all (gi,g j) ∈ G2 such that Spol(gi,g j) 6= 0, the product Q2(a) of the numerators and de-
nominators of the leading coefficients arising during the reduction of Spol(gi,g j).
These coefficients belongs to K[a]. Denote by Q(a) = Q1(a)Q2(a) ∈K[a] their product. The

inequality Q(a) 6= 0 defines a non-empty Zariski open subset O1 ⊂Knm(D−1+k
D ). If a ∈ O1, then

ϕa(Spol(g,g′)) =
t

∑
`=1

ϕa(h′`)ϕa(g`),

and for each 1 ≤ i ≤ t, LM(ϕa(gi)) divides LM(ϕa(Spol(g,g′))−∑
i−1
`=1 ϕa(h′`)ϕa(g`)). Thus

ϕa(G) is a Gröbner basis of the ideal it spans. Moreover, 〈ϕa(G)〉 ⊂ ϕa(Ĩr).
We prove now that there exists a non-empty Zariski open set where the other inclusion

ϕa(Ĩr)⊂ 〈ϕa(G)〉 holds. Let NFG(·) be the normal form associated to this Gröbner basis (as de-
fined as the remainder of the division by G in Cox et al. (1997, Chapter 2, §6, Proposition 1)). For
each generator f of Ĩr (i.e. either a maximal minor of the matrix U , or a polynomial ui, j− fi, j),
we have that NFG( f ) = 0. During the computation of NFG( f ) by using the division Algorithm
in Cox et al. (1997, Chapter 2, §3), a finite set of polynomials (in K(a)[U,X ]) is constructed.
Let Q3 ∈ K[a] denote the product of the numerators and denominators of all their nonzero co-
efficients. Consequently, if Q( f )

3 (a) 6= 0, then NFϕa(G)(ϕa( f )) = 0 and hence ϕa( f ) ∈ 〈ϕa(G)〉.
Repeating this operation for all the generators of Ĩr yields a finite set of non-identically null
polynomials Q( f )

3 ∈ K[a]. Let Q4 ∈ K[a] denote their product. Therefore, if Q4(a) 6= 0, then
ϕa(Ĩr)⊂ 〈ϕa(G)〉.

Finally, consider the non-empty Zariski open subset O⊂Knm(D+k−1
D ) defined by the inequality

Q1 ·Q2 ·Q4 6= 0. For all a ∈ O, we have ϕa(Ĩr) = 〈ϕa(G)〉.
2

Corollary 5. The leading monomials of Ĩr are the same as that of J̃ r:

LM
(
Ĩr

)
= LM

(
J̃ r

)
.

10



Proof. By Lemmas 3 and 4, the property P
Ĩr

(resp. P
J̃ r

) is Ĩr-generic and J̃ r-generic.

Since P
J̃ r

(resp. P
Ĩr

) is J̃ r-generic, there exists a non-empty Zariski open subset O1 ⊂

Knm
(
(D−1+k

D )+nm
)

(resp. O2⊂Knm
(
(D−1+k

D )+nm
)
) such that, for (b,c)∈O1 (resp. O2), LM

(
ψ(b,c)(J̃ r)

)
=

LM
(
J̃ r

)
(resp. LM

(
ψ(b,c)(J̃ r)

)
= LM

(
Ĩr

)
).

Notice that O1 ∩O2 is not empty, since for the Zariski topology, the intersection of finitely-
many non-empty open subsets is non-empty. Let (b,c) be an element of O1∩O2. Then

LM
(
Ĩr

)
= LM

(
ψ(b,c)(J̃ r)

)
= LM

(
J̃ r

)
.

2

Corollary 6. The weighted Hilbert series of Ĩr is the same as that of J̃ r.

Proof. It is well-known that, for any positively graded ideal I and for any monomial order-
ing, wHSI(t) = wHSLM(I)(t) (see e.g. the proof of Cox et al. (1997, Chapter 9, §3, Proposition

9) which is also valid for quasi-homogeneous ideals). By Corollary 5, LM
(
Ĩr

)
= LM

(
J̃ r

)
,

which implies that
wHS

LM
(
Ĩr

)(t) = wHS
LM
(
J̃ r

)(t),
and hence wHS

Ĩr
(t) = wHS

J̃ r
(t). 2

4. The case k ≥ (n− r)(m− r)

As we will see in the sequel, the Krull dimension of the ring K(a)[X ]/Ir is equal to max(k−
(n− r)(m− r),0). This section is devoted to the study of the case k ≥ (n− r)(m− r).

We show here that the algebraic structure of the ideal Ir is closely related to that of a generic
section of a determinantal variety.

We recall that the polynomials g` are defined by

g` = ∑
t∈Mon(D,k)

b
(`)
t t + ∑

1≤i≤n
1≤ j≤m

c
(`)
i, j ui, j.

Lemma 7. Let 1≤ `≤ nm be an integer. If g` divides zero in K(b,c)[U,X ]/
(
J r +〈g1, . . . ,g`−1〉

)
,

then there exists a prime ideal P associated to J r +〈g1, . . . ,g`−1〉 such that dim(P) = 0.

Proof. If g` divides zero in K(b,c)[U,X ]/
(
J r +〈g1, . . . ,g`−1〉

)
, then there exists a prime ideal

P associated to J r +〈g1, . . . ,g`−1〉 such that g` ∈ P. For ` ≤ nm, let b(≤`) and c(≤`) denote the
sets of parameters

b(≤`) = {b(s)t | t ∈Mon(D,k),1≤ s≤ `}

c(≤`) = {c(s)i, j | 1≤ i≤ n,1≤ j ≤ m,1≤ s≤ `}.

Since
(
J r +〈g1, . . . ,g`−1〉

)
is an ideal of K(b(≤`−1),c(≤`−1))[U,X ], and P is an associated

prime, there exists a Gröbner basis GP of P (for any monomial ordering ≺) which is a finite
subset of K(b(≤`−1),c(≤`−1))[U,X ].

11



Let NFP(·) denote the normal form associated to this Gröbner basis (as defined as the remain-
der of the division by GP in Cox et al. (1997, Chapter 2, §6, Proposition 1)).

Since g` ∈ P, we have NFP(g`) = 0. By linearity of NFP(·), we obtain

∑
t∈Mon(D,k)

b
(`)
t NFP(t)+ ∑

1≤i≤n
1≤ j≤m

c
(`)
i, j NFP(ui, j) = 0.

Since Gp ⊂ K(b(≤`−1),c(≤`−1))[U,X ], we can deduce that for any monomial t, NFP(t) ∈
K(b(≤`−1),c(≤`−1))[U,X ]. Therefore, by algebraic independence of the parameters, the following
properties hold: for all t ∈Mon(D,k), NFP(t) = 0, and for all i, j, NFP(ui, j) = 0. Consequently,
all monomials of weight degree D in K(b,c)[U,X ] are in P, and hence P has dimension 0. 2

Lemma 8. For all `∈{2, . . . ,nm}, the polynomial g` does not divide zero in K(b,c)[U,X ]/(J r +〈g1, . . . ,g`−1〉)
and dim(J r +〈g1, . . . ,g`〉) = k+(n+m− r)r− `.

Proof. We prove the Lemma by induction on `. According to Hochster and Eagon (1970, Corol-
lary 2 of Theorem 1), the ring K(b,c)[U,X ]/J r is Cohen-Macaulay and purely equidimen-
sional. First, notice that the dimension is equal to k+(n+m− r)r for ` = 0 since the dimen-
sion of the ideal J r ⊂ K[U ] is (n+m− r)r (see e.g. Conca and Herzog (1994) and references
therein). Now, suppose that the dimension of the ideal J r +〈g1, . . . ,g`−1〉 ⊂ K(b,c)[U,X ] is
k+(n+m− r)r−`+1. Since the ring K(b,c)[U,X ]/J r is Cohen-Macaulay and 〈g1, . . . ,g`−1〉
has co-dimension `− 1 in K(b,c)[U,X ], the Macaulay unmixedness Theorem (Eisenbud, 1995,
Corollary 18.14) implies that 〈g1, . . . ,g`−1〉 has no embedded component and is equidimen-
sional in K(b,c)[U,X ]/J r. Hence J r +〈g1, . . . ,g`−1〉 as an ideal in K(b,c)[U,X ] has no em-
bedded component and is equidimensional. By contradiction, suppose that g` divides zero in
K(b,c)[U,X ]/(J r +〈g1, . . . ,g`−1〉). By Lemma 7, there exists a prime P associated to J r +〈g1, . . . ,g`−1〉
such that dim(P) = 0, which contradicts the fact that J r +〈g1, . . . ,g`−1〉 is purely equidimen-
sional of dimension k+(n+m− r)r− `+1 > 0. 2

Lemma 9. The Hilbert series of the Ir ⊂ K(a)[X ] equals the weighted Hilbert series of Ĩr ⊂
K(a)[X ,U ].

Proof. Let ≺lex denote a lexicographical ordering on K(a)[X ,U ] such that xk ≺lex ui, j for all
k, i, j. By Cox et al. (1997, Section 9.3, Proposition 9), HSIr(t)=HSLM≺lex (Ir)(t) and wHS

Ĩr
(t)=

wHS
LM≺lex (Ĩr)

(t). Since LM≺lex(ui, j− fi, j) = ui, j, we deduce that all monomials which are mul-

tiples of a variable ui, j are in LM≺lex(Ĩr). Therefore, the remaining monomials in LM≺lex(Ĩr)
are in K(a)[X ]:

LM≺lex(Ĩr) =
〈
{ui, j}∪LM≺lex(Ĩr ∩K(a)[X ])

〉
=
〈
{ui, j}∪LM≺lex(Ir)

〉
.

Therefore, K(a)[U,X ]

LM≺lex (Ĩr)
is isomorphic (as a graded K(a)-algebra) to K(a)[X ]

LM≺lex (Ir)
. Thus

HSLM≺lex (Ir)(t) = wHS
LM≺lex (Ĩr)

(t),

and hence
HSIr(t) = wHS

Ĩr
(t).

2
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In the sequel, Ar(t) denotes the r× r matrix whose (i, j)-entry is ∑k
(m−i

k

)(n− j
k

)
tk. The follow-

ing theorem is the main result of this section:

Theorem 10. The dimension of the ideal Ir is k− (n− r)(m− r) and its Hilbert series is

HSIr(t) =
det
(
Ar(tD)

)
(1− tD)(n−r)(m−r)

tD(r
2)(1− t)k

.

Proof. According to Conca and Herzog (1994, Corollary 1) (and references therein), the ideal
J r seen as an ideal of K[U ] has dimension (m+n− r)r and its Hilbert series (for the standard
gradation: deg(ui, j) = 1) is the power series expansion of

HSJ r⊂K[U ](t) =
detAr(t)

t(
r
2)(1− t)(n+m−r)r

.

By putting a weight D on each variable ui, j (i.e. deg(ui, j) = D), the weighted Hilbert series of
J r ⊂K[U ] is

wHSJ r⊂K[U ](t) =
detAr(tD)

tD(r
2)(1− tD)(n+m−r)r

.

By considering J r as an ideal of K(b,c)[U,X ], the dimension becomes k+(m+n− r)r and its
weighted Hilbert series is

wHSJ r⊂K(b,c)[U,X ](t) =
detAr(tD)

tD(r
2)(1− t)k(1− tD)(n+m−r)r

.

According to Lemma 8, for each ` ≤ nm, the polynomial g` does not divide zero in the ring
K(b,c)[U,X ]/(J r +〈g1, . . . ,g`−1〉). This implies the following relations:

dim
(
J r +〈g1, . . . ,g`〉

)
= dim

(
J r +〈g1, . . . ,g`−1〉

)
−1

wHSJ r +〈g1,...,g`〉(t) = (1− tD)wHSJ r +〈g1,...,g`−1〉(t).

Therefore the dimension of J̃ r is k− nm+ (n+m− r)r and its quasi-homogeneous Hilbert
series is

wHS
J̃ r

(t) =
det
(
Ar(tD)

)
tD(r

2)(1− t)k(1− tD)(n+m−r)r−nm
=

det
(
Ar(tD)

)
(1− tD)(n−r)(m−r)

tD(r
2)(1− t)k

.

By Corollary 6, the ideal Ĩr has the same weighted Hilbert series. Finally, by Lemma 9, the
Hilbert series of Ir = Ĩr ∩K(a)[X ] is the same as that of Ĩr. 2

Corollary 11. The degree of the ideal Ir is:

DEG(Ir) = D(n−r)(m−r)
m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

= D(n−r)(m−r)
m−r−1

∏
i=0

(n+m−r−1
r+i

)(n+m−r−1
i

) .

13



Proof. From Fulton (1997, Example 14.4.14), the degree of the ideal J r is

m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

.

Since the degree is equal to the numerator of the Hilbert series of J r evaluated at t = 1,

detAr(1) =
m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

.

By Theorem 10, the Hilbert series of Ir is

HSIr(t) =
det
(
Ar(tD)

)
(1− tD)(n−r)(m−r)

tD(r
2)(1− t)k

=
det
(
Ar(tD)

)
(1+ t + · · ·+ tD−1)(n−r)(m−r)

tD(r
2)(1− t)k−(n−r)(m−r)

.

Thus, the evaluation of the numerator in t = 1 yields

DEG(Ir) = D(n−r)(m−r)
m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

.

To prove the second equality, notice that
m−r−1

∏
i=0

(n+m−r−1
r+i

)(n+m−r−1
i

) = m−r−1

∏
i=0

i!(n+m− r− i−1)!
(r+ i)!(n+m−2r− i−1)!

.

By substituting i by m− r−1− i, we obtain that
m−r−1

∏
i=0

(n+m− r− i−1)! =
m−r−1

∏
i=0

(n+ i)!

m−r−1

∏
i=0

(r+ i)! =
m−r−1

∏
i=0

(m− i−1)!

m−r−1

∏
i=0

(n+m−2r− i−1)! =
m−r−1

∏
i=0

(n− r+ i)!.

Consequently,
m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

=
m−r−1

∏
i=0

(n+m−r−1
r+i

)(n+m−r−1
i

) .
2

5. The over-determined case

To study the over-determined case (k < (n− r)(m− r)), we need to assume a variant of
Fröberg’s conjecture (Fröberg, 1985):

Conjecture 12. Let J `,i denote the vector space of quasi-homogeneous polynomials of weight
degree i in J r +〈g1, . . . ,g`〉. Then the linear map

K(b,c)[U,X ]i/J `,i −→ K(b,c)[U,X ]i+D/J `,i+D

f 7−→ f g`+1

14



has maximal rank, i.e. it is either injective or onto.

Remark 13. If k + (n+m− r)r− ` > 0, then Conjecture is proved by Lemma 8: g`+1 does
not divide zero in K(b,c)[U,X ]/

(
J r +〈g1, . . . ,g`〉

)
and hence the linear map is injective for all

i ∈ N.

Notation. Given a power series S(t) ∈ Z[[t]], we let [S(t)]+ denote the power series obtained
by truncated S(t) at its first non positive coefficient.

Lemma 14. If Conjecture 13 is true, then the Hilbert series of J r +〈g1, . . . ,g`+1〉 is

wHSJ r +〈g1,...,g`+1〉(t) =
[
(1− tD)wHSJ r +〈g1,...,g`〉(t)

]
+
.

Proof. In this proof, for simplicity of notation, we let R denote the ring K(b,c)[U,X ]. If S(t) =
∑i∈N sit i ∈ Z[[t]] is a power series, [S(t)]≥0 denotes the series

[S(t)]≥0 = ∑
i∈N

max(si,0)t i.

Let ann(g`+1) be the ideal { f ∈ R : f g`+1 ∈J r +〈g1, . . . ,g`〉}. For i∈N, consider the following
exact sequence:

0→ ann(g`+1)i→ Ri/J `,i
×g`+1−−−→ Ri+D/J `,i+D→

→ Ri+D/J `+1,i+D→ 0.
By Conjecture 13, we obtain

dim(ann(g`+1)i) = max(0,dim(Ri/J `,i)−dim(Ri+D/J `,i+D)).

The alternate sum of the dimensions of the vector spaces occurring in an exact sequence is zero;
it follows that

dim(Ri+D/J `+1,i+D) = dim(Ri+D/J `,i+D)−dim(Ri/J `,i)+

max(0,dim(Ri/J `,i)−dim(Ri+D/J `,i+D))

= max(0,dim(Ri+D/J `,i+D)−dim(Ri/J `,i)).

Multiplying this identity by t i+D yields[
t i+D

]
wHSJ r +〈g1,...,g`+1〉(t) = dim

(
Ri+D/J `+1,i+D)

)
= max

(
0,dim(Ri+D/J `,i+D)−dim(Ri/J `,i)

)
= max

(
0, [t i+D](1− tD)wHSJ r +〈g1,...,g`〉(t)

)
= [t i+D]

[
(1− tD)wHSJ r +〈g1,...,g`〉(t)

]
≥0

.

Since any monomial in K(a)[X ,U ] of weight degree greater that D is a multiple of a monomial
of weight degree D, we deduce that if there exists i0 ≥ D such that[

t i0
]
wHSJ r +〈g1,...,g`+1〉(t) = 0,

then for all i > i0,
[
t i
]
wHSJ r +〈g1,...,g`+1〉(t) = 0. Therefore[

t i+D]wHSJ r +〈g1,...,g`+1〉(t) = [t i+D]
[
(1− tD)wHSJ r +〈g1,...,g`〉(t)

]
+
,
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Finally, by summing over i, we get

wHSJ r +〈g1,...,g`+1〉(t) =
[
(1− tD)HSJ r +〈g1,...,g`〉(t)

]
+
.

2

Theorem 15. If Conjecture 13 is true, then the Hilbert series of Ir is

HSIr(t) =

[
(1− tD)(n−r)(m−r) det

(
Ar(tD)

)
tD(r

2)(1− t)k

]
+

,

where Ar(t) is the r× r matrix whose (i, j)-entry is
min(m−i,n− j)

∑
k=0

(
m− i

k

)(
n− j

k

)
tk.

Proof. By applying nm times Lemma 14, we obtain that

wHS
J̃ r

(t) =

(1− tD)

[
(1− tD) . . .

[
(1− tD)

detAr(tD)

tD(r
2)(1− t)k(1− tD)(n+m−r)r

]
+

. . .

]
+


+

.

Let S = ∑0≤i ait i ∈ Z[[t]] be a power series such that a0 > 0, and let i0 ∈ N∪{∞} be defined as

i0 =

{
∞ if for all i≥ 0,ai > 0;
min({i | ai ≤ 0}) otherwise.

Therefore, [S(t)]+ = ∑0≤i<i0 ait i. By convention, for i < 0, we put ai = 0. Then

(1− tD)S(t) = ∑0≤i(ai−ai−D)t i

(1− tD) [S(t)]+ = ∑0≤i<i0(ai−ai−D)t i
.

Consequently, the coefficients of (1− tD)S(t) and of (1− tD) [S(t)]+ are equal up to the index i0.
• If i0 = ∞, then (1− tD)S(t) = (1− tD) [S(t)]+ and hence[

(1− tD)S(t)
]
+
=
[
(1− tD) [S(t)]+

]
+

;

• if i0 < ∞, then ai0−D is positive and thus ai0 − ai0−D is negative. Let i1 be the index of
the first non-positive coefficient of (1− tD)S(t). Then i1 < i0, and hence

[
(1− tD)S(t)

]
+
=[

(1− tD) [S(t)]+
]
+

.
Therefore, for all power series S ∈ Z[[t]] such that S(0)> 0, we have[

(1− tD) [S]+
]
+
=
[
(1− tD)S

]
+
.

Consequently, an induction shows that

wHS
J̃ r

(t) =

[
(1− tD)(n−r)(m−r) detA(tD)

tD(r
2)(1− t)k

]
+

.

Then, by Corollary 6, wHS
J̃ r

(t)=wHS
Ĩr
(t). Finally, by Lemma 9, we conclude that HSIr(t)=

wHS
Ĩr
(t). 2
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6. Complexity analysis

Using the previous results on the Hilbert series of Ir, we analyze now the arithmetic com-
plexity of solving the generalized MinRank problem with Gröbner bases algorithms. In the first
part of this section (until Section 6.2), we consider the homogeneous MinRank problem (i.e. the
polynomials fi, j are homogeneous).

Computing a Gröbner basis of the ideal ϕa(Ir) for the lexicographical ordering yields an
explicit description of the set of points V such that the matrix

ϕa(M ) =


ϕa( f1,1) . . . ϕa( f1,m)

...
. . .

...

ϕa( fn,1) . . . ϕa( fn,m)


has rank less than r + 1. In this section, we study the complexity of this computation when

a∈Knm(k+D−1
D ) is generic (i.e. a belongs to a given non-empty Zariski open subset of Knm(k+D−1

D ))
by using the theoretical results from Sections 4 and 5. We focus on the 0-dimensional cases
k = (n− r)(m− r) and k < (n− r)(m− r) (over-determined case). Therefore, the set of points
where the evaluation of the matrix ϕa(M ) has rank less than r+1 is finite.

In order to compute this set of points, we use the following strategy:
• compute a Gröbner basis of ϕa(Ir) for the grevlex (graded reverse lexicographical) ordering

with the F5 algorithm (Faugère, 2002);
• convert it into a lexicographical Gröbner basis of ϕa(Ir) by using the FGLM algorithm

(Faugère et al., 1993; Faugère and Mou, 2011).
First, we recall some results about the complexity of the algorithms F5 and FGLM. The two

quantities which allow us to estimate their complexity are respectively the degree of regularity
and the degree of the ideal. The degree of regularity of a 0-dimensional homogeneous ideal I
is the smallest integer d such that all monomials of degree d are in I; it is independent on the
monomial ordering and it bounds the degrees of the polynomials in a minimal Gröbner basis of
I. Moreover, in the 0-dimensional case, the Hilbert series is a polynomial from which the degree
of regularity can be read off: Dreg(I) = deg(HSI(t))+1.

In the sequel, ω denotes a feasible exponent for the matrix multiplication (i.e. a number such
that there exists an deterministic algorithm which computes the product of two n× n matrices
in O(nω) arithmetic operations in K). The best known bound on this exponent is ω < 2.3727
(Williams, 2011).

The following proposition and its proof are a variant of a result known in the context of semi-
regular sequences (see e.g. Lazard (1983) and Faugère (1999) for the relation between Gröbner
basis computation and linear algebra, Bardet et al. (2004, Proposition 10) and Bardet (2004,
Section 3.4) for the complexity analysis).

Proposition 16 (Bardet (2004); Bardet et al. (2004)). Let h1, . . . ,h` ∈ K[x1, . . . ,xk] be homo-
geneous polynomials of degrees d1, . . . ,d`, and I = 〈h1, . . . ,h`〉. The complexity of computing a
Gröbner basis of I for a monomial ordering ≺ is upper bounded by

O

(((
k+Dreg(I)
Dreg(I)

)
−DEG(I)

)ω−2(k+Dreg(I)
Dreg(I)

) `

∑
i=1

(
k+Dreg(I)−di

Dreg(I)−di

))
.
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Proof. Since I is homogeneous, a Gröbner basis can be obtained by computing the row eche-
lon form of the so-called Macaulay matrix of the system up to degree Dreg(I). This matrix is
constructed as follows:
• the rows are indexed by the products thi, where 1≤ i≤ ` and t ∈K[x1, . . . ,xk] is a monomial

of degree at most Dreg(I)−di;
• the columns are indexed by the monomials m ∈K[x1, . . . ,xk] of degree at most Dreg(I) and are

sorted in descending order with respect to ≺;
• the coefficient at the intersection of the row thi and the column m is the coefficient of m in the

polynomial thi.
The number of columns of this matrix is the number of monomials in K[x1, . . . ,xk] of degree at

most Dreg(I), namely
(k+Dreg(I)

Dreg(I)

)
. The number of rows is ∑

`
i=1
(k+Dreg(I)−di

Dreg(I)−di

)
, and its rank is equal

to
((k+Dreg(I)

Dreg(I)

)
−DEG(I)

)
.

According to Storjohann (2000, Theorem 2.10), the complexity of computing the row echelon
form of a p×q matrix of rank r is upper bounded by O(rω−2 pq).

Consequently, the complexity of computing a Gröbner basis of I is upper bounded by

O

(((
k+Dreg(I)
Dreg(I)

)
−DEG(I)

)ω−2(k+Dreg(I)
Dreg(I)

) `

∑
i=1

(
k+Dreg(I)−di

Dreg(I)−di

))
.

2

Remark 17. Notice that(
k+Dreg(I)
Dreg(I)

)
−DEG(I) ≤

(
k+Dreg(I)
Dreg(I)

)
`

∑
i=1

(
k+Dreg(I)−di

Dreg(I)−di

)
≤ `

(
k+Dreg(I)
Dreg(I)

)
.

Therefore, the complexity of computing a Gröbner basis of I can also be upper bounded by the
simpler expression O

(
`
(k+Dreg(I)

Dreg(I)

)ω
)

.

Lemma 18. If k = (n− r)(m− r), then the degree of regularity of Ir is

Dreg (Ir) = Dr(m− r)+(D−1)k+1.

Proof. According to Theorem 10, the Hilbert series of Ir is

HSIr(t) =
detAr(tD)(1− tD)(n−r)(m−r)

tD(r
2)(1− t)k

.

By definition of the matrix Ar(t), the highest degree on each row is reached on the diagonal.
Thus, the degree of det(Ar(t)) is the degree of the product of its diagonal elements:

deg(det(Ar(t))) =
r

∑
i=1

(min(n,m)− i) = rm−
(

r+1
2

)
.

Therefore, we can compute the degree of the Hilbert series which is a polynomial since the ideal
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is 0-dimensional:

Dreg (Ir) = deg(HSIr(t))+1

= deg(det(Ar(tD)))+D(n− r)(m− r)−D
(r

2

)
− k+1

= D(rm−
(r+1

2

)
+nm− (n+m− r)r−

(r
2

)
)− k+1

= Dr(m− r)+(D−1)k+1.

2

Corollary 19. If k = (n− r)(m− r), then there exists a non-empty Zariski open subset O ⊂
Knm(D−1+k

D ) such that for all a ∈ O, the degree of regularity of ϕa(Ir) is

Dreg (ϕa(Ir)) = Dr(m− r)+(D−1)k+1.

Proof. According to Lemma 4, there exists a Zariski open subset O such that for all a ∈ O,
LM(Ir) = LM(ϕa(Ir)). Consequently, the polynomials in minimal Gröbner bases of Ir and
ϕa(Ir) have the same leading monomials. Since the degree of regularity is the highest degree
of the polynomials in a minimal Gröbner basis, we have Dreg (ϕa(Ir)) = Dreg (Ir). Lemma 18
concludes the proof. 2

The degree of regularity governs the complexity of the Gröbner basis computation with re-
spect to the grevlex ordering. The complexity of the algorithm FGLM is upper bounded by
O(k ·DEG(I)3) which is polynomial in the degree of the ideal (Faugère et al., 1993; Faugère and
Mou, 2011).

We can now state the main complexity result:

Theorem 20. There exists a non-empty Zariski open subset O ⊂ Knm(D−1+k
D ) such that for any

a ∈ O, the arithmetic complexity of computing a lexicographical Gröbner basis of the ideal
generated by the (r+1)× (r+1)-minors of the matrix ϕa(M ) is upper bounded by

O
((

n
r+1

)(
m

r+1

)(
Dreg(ϕa(Ir)+ k

k

)ω

+ k (DEG(ϕa(Ir)))
3
)
,

where 2≤ ω ≤ 3 is a feasible exponent for the matrix multiplication, and
• if k = (n− r)(m− r), then

Dreg(ϕa(Ir) = deg(HSϕa(Ir)(t))+1 = Dr(m− r)+(D−1)k+1

and DEG(ϕa(Ir)) = HSϕa(Ir)(1) = Dnm−(n+m−r)r
∏

m−r−1
i=0

i!(n+i)!
(m−1−i)!(n−r+i)! .

• if k < (n− r)(m− r), then assuming that Conjecture 13 is true,

Dreg(ϕa(Ir) = deg(HSϕa(Ir)(t))+1

and DEG(ϕa(Ir)) = HSϕa(Ir)(1) where

HSϕa(Ir)(t) =

[
(1− tD)nm−(n+m−r)r detA(tD)

tD(r
2)(1− t)k

]
+

.

Proof. The number of (r + 1)-minors of the matrix ϕa(M ) is
( n

r+1

)( m
r+1

)
. Consequently, the

theorem is a straightforward consequence of the bounds on the complexity of the F5 algorithm
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(Proposition 16) and of the FGLM algorithm (Faugère et al., 1993; Faugère and Mou, 2011), to-
gether with the formulas for the degree of regularity (Corollary 19) and for the degree (Corollary
11). 2

Remark 21. There exists a polynomial h(a) in Z[a] when the characteristic of K is 0, such that

h(a) 6= 0⇒ a ∈ O.

Also note that this polynomial does not depend on the field K: if K = Fq is a finite field (q =

pe), then the polynomial h̄(a) (where all coefficients are taken modulo p) verifies the requested

property. Schwartz-Zippel’s Lemma states that, if a is chosen uniformly at random in Fnm(D−1+k
D )

q ,
the probability that h(a) = 0 is upper bounded by deg(h)/q and therefore tends towards 0 when
the cardinality q of the field tends to infinity. This explains why these complexity results can be
used for practical applications when char(K) = 0 or K is a sufficiently large finite field.

6.1. Positive dimension

When k > (n− r)(m− r), the ideal Ir has positive dimension. To achieve complexity bounds
in that case, we need upper bounds on the maximal degree in a minimal Gröbner basis of Ir.

Lemma 22. If k > (n− r)(m− r), then the maximal degree in a minimal Gröbner basis of Ir is
bounded by

Dr(m− r)+(D−1)(n− r)(m− r)+1.

Proof. Consider the ideal J obtained by specializing the last k− (n− r)(m− r) variables to zero
in Ir. We prove now that LM(Ir) = LM(J). First, notice that for the grevlex ordering, LM(J)⊂
LM(Ir). According to Theorem 10, the Hilbert series of the ideal J∩K(a)[x1, . . . ,x(n−r)(m−r)] is
equal to

detAr(tD)(1− tD)(n−r)(m−r)

tD(r
2)(1− t)(n−r)(m−r)

.

By construction, J ⊂K(a)[x1, . . . ,x(n−r)(m−r)], thus the Hilbert series of J as an ideal of the ring
K(a)[x1, . . . ,xk] is equal to

detAr(tD)(1− tD)(n−r)(m−r)

tD(r
2)(1− t)k

,

which is equal to the Hilbert series of Ir.
Since HSJ(t) = HSIr(t) and LM(J)⊂ LM(Ir), we can deduce that LM(J) = LM(Ir).
Consequently, the leading monomials in minimal Gröbner bases of J and Ir are the same.

Hence, the polynomials in both Gröbner bases have the same degrees since they are homoge-
neous.

Finally, notice that the Gröbner basis of the ideal J is the same as that of the ideal J ∩
K(a)[x1, . . . ,x(n−r)(m−r)] which, by Lemma 18, is a zero-dimensional ideal whose degree of regu-
larity is Dr(m−r)+(D−1)(n−r)(m−r)+1. Therefore the maximal degree of the polynomials
in the minimal reduced Gröbner basis of Ir is bounded by Dr(m− r)+(D−1)(n− r)(m− r)+
1. 2

Using exactly the same argumentation as in the proof of Corollary 19, we deduce that
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Corollary 23. If k > (n− r)(m− r), then there exists a non-empty Zariski open subset O ⊂
Knm(D−1+k

D ) such that, for a ∈ O, the maximal degree of the polynomials in a minimal grevlex
Gröbner basis of ϕa(Ir) is

Dr(m− r)+(D−1)(n− r)(m− r)+1.

Theorem 24. If k > (n− r)(m− r), then there exists a non-empty Zariski open subset O ⊂
Knm(D−1+k

D )such that for any a ∈ O, the arithmetic complexity of computing a grevlex Gröbner
basis of ϕa(Ir) is upper bounded by

O
((

n
r+1

)(
m

r+1

)(
Dr(m− r)+(D−1)(n− r)(m− r)+1+ k

k

)ω)
.

Proof. This is a consequence of Proposition 16 and Corollary 23. 2

6.2. The 0-dimensional affine case

For practical applications, the affine case (i.e. when the entries of the input matrix M are
affine polynomials of degree D) is more often encountered than the homogeneous one. In this
case, the matrix M is defined as follows

M =


f1,1 . . . f1,m
...

. . .
...

fn,1 . . . fn,m

 fi, j =
D

∑
`=0

∑
t∈Mon(`,k)

a
(i, j)
t t.

We show in this section that the complexity results (Theorems 20 and 24) still hold in the affine
case. This is achieved by considering the homogenized system:

Definition 25. (Cox et al., 1997, Chapter 8, §2, Proposition 7) Let (q1, . . . ,q`) ∈ K[x1, . . . ,xk]
`

be an affine polynomial system. We let (q̃1, . . . , q̃`) ∈K[x1, . . . ,xk,xk+1]
` denote its homogenized

system defined by

∀i, s.t. 1≤ i≤ `, q̃i(x1, . . . ,xk,xk+1) = xdeg(qi)
k+1 qi

(
x1

xk+1
, . . . ,

xk

xk+1

)
.

Notice that if an affine polynomial system has solutions, then the dimension of the ideal
generated by its homogenized system is positive.

The study of the homogenized system is motivated by the fact that, for the grevlex order-
ing, the dehomogenization of a Gröbner basis of 〈q̃1, . . . , q̃`〉 is a Gröbner basis of 〈q1, . . . ,q`〉.
Therefore, in order to compute a Gröbner basis of the affine system, it is sufficient to compute a
Gröbner basis of the homogenized system (for which we have complexity estimates by Theorems
20 and 24).

To estimate the complexity of the change of ordering, we need bounds on the degree of the
ideal in the affine case:

Lemma 26. The degree of the ideal 〈q1, . . . ,q`〉 is upper bounded by that of 〈q̃1, . . . , q̃`〉.

Proof. The rings K[x1, . . . ,xk]/〈q1, . . . ,q`〉 and K[x1, . . . ,xk,xk+1]/〈q̃1, . . . , q̃`,xk+1− 1〉 are iso-
morphic. Therefore the degrees of the ideals 〈q1, . . . ,q`〉 and 〈q̃1, . . . , q̃`,xk+1−1〉 are equal. Since
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deg(xk+1−1) = 1, we obtain:

DEG(〈q1, . . . ,q`〉) = DEG(〈q̃1, . . . , q̃`,xk+1−1〉)

≤ DEG(〈q̃1, . . . , q̃`〉) .

2

Lemma 27. The degree of regularity with respect to the grevlex ordering of the ideal 〈q1, . . . ,q`〉
is upper bounded by that of 〈q̃1, . . . , q̃`〉.

Proof. Let χ denote the dehomogenization morphism:

χ : K[x1, . . . ,xk+1] −→ K[x1, . . . ,xk]

f (x1, . . . ,xk,xk+1) 7−→ f (x1, . . . ,xk,1)

If G is a grevlex Gröbner basis of 〈q̃1, . . . , q̃`〉, then χ(G) is a grevlex Gröbner basis of 〈q1, . . . ,q`〉
(this is a consequence of the following property of the grevlex ordering: ∀ f ∈K[x1, . . . ,xk+1] ho-
mogeneous, LM(χ( f )) = χ(LM( f ))). Also, notice that for each g∈G, any relation g = ∑

`
i=1 qihi

gives a relation χ(g) = ∑
`
i=1 χ(qi)χ(hi) of lower degree since

deg(χ(qi)χ(hi))≤ deg(qihi).

Consequently, a Gröbner basis of 〈q1, . . . ,q`〉 can be obtained by computing the row echelon
form of the Macaulay matrix of (q1, . . . ,q`) in degree Dreg(〈q̃1, . . . , q̃`〉). Therefore, the degree of
regularity with respect to the grevlex ordering of the ideal 〈q1, . . . ,q`〉 is upper bounded by that
of 〈q̃1, . . . , q̃`〉. 2

We can now state the main complexity result for the affine generalized MinRank problem:

Theorem 28. Suppose that the matrix M contains generic affine polynomials of degree D:

M =


f1,1 . . . f1,m
...

. . .
...

fn,1 . . . fn,m

 fi, j =
D

∑
`=0

∑
t∈Mon(`,k)

a
(i, j)
t t.

There exists a non identically null polynomial h ∈K[a] such that for any a ∈Knm(D+k
D ) such that

h(a) 6= 0, the overall arithmetic complexity of computing the set of points such that the matrix
ϕa(M ) has rank less than r+1 with Gröbner basis algorithms is upper bounded by

O
((

n
r+1

)(
m

r+1

)(
Dreg(ϕa(Ir))+ k

k

)ω

+ k (DEG(ϕa(Ir))
3
)
,

where 2≤ ω ≤ 3 is a feasible exponent for the matrix multiplication and
• if k = (n− r)(m− r), then

Dreg(ϕa(Ir))≤ Dr(m− r)+(D−1)k+1,

DEG(ϕa(Ir))≤ D(n−r)(m−r)
m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

.
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• if k < (n− r)(m− r), then assuming that Conjecture 13 is true,

Dreg(ϕa(Ir))≤ deg(P(t))+1,

and DEG(ϕa(Ir))≤ P(1) where

P(t) =

[
(1− tD)(n−r)(m−r) detA(tD)

tD(r
2)(1− t)k

]
+

.

Proof. This is a direct consequence of Proposition 16, Lemma 26, Lemma 27 and the complexity
of the FGLM algorithm (Faugère et al., 1993; Faugère and Mou, 2011) (O(kDEG(ϕa(Ir)

3)). 2

7. Case studies

The aim of this section is to compare the complexity of the grevlex Gröbner basis compu-
tation with the degree of the ideal in the 0-dimensional case (i.e. the number of solutions of
the MinRank problem counted with multiplicities). Since the “arithmetic” size (i.e. the number
of coefficients) of the lexicographical Gröbner basis is close to the degree of the ideal in the
0-dimensional case, it is interesting to identify families of parameters for which the arithmetic
complexity of the computation is polynomial in this degree under genericity assumptions.

Throughout this section, we focus on the 0-dimensional case: k = (n−r)(m−r). Under gener-
icity assumptions, we recall that, by Corollary 11 and Lemma 18,

Dreg = Dr(m− r)+(D−1)k+1

DEG = D(n−r)(m−r)
m−r−1

∏
i=0

i!(n+ i)!
(m−1− i)!(n− r+ i)!

.

According to Theorem 28, the complexity of the computation of the grevlex Gröbner basis is
then upper bounded by

O
((

n
r+1

)(
m

r+1

)(
Dr(m− r)+(D−1)k+1

k

)ω

+ k (DEG(ϕa (Ir)))
3
)
.

In this section, Ω and O are the Landau notations: for any positive functions f and g, we write
f = Ω(g) (resp. f = O(g)) if there exists a positive constant C such that f ≥C ·g (resp. f ≤C ·g).

7.1. D grows, n, m, r are fixed

We first study the case where n, m and r are fixed (and thus k = (n− r)(m− r) is constant
too), and D grows. In that case, the arithmetic complexity of the grevlex Gröbner basis computa-
tion is O(Dkω), and the degree is Ω(Dk). Therefore the arithmetic complexity has a polynomial
dependence in the degree for these parameters.

7.2. n grows, m,r,D are fixed

This paragraph is devoted to the study of the subfamilies of Generalized MinRank problems
when the parameters m, r and D are constant values and n grows. Let ` denote the constant value
`= m− r. First, we assume that D = 1. When n grows, by Corollary 11 we have

log(DEG) = log

(
`−1

∏
i=0

(n+`−1
r+i

)(n+`−1
i

))
∼

n→∞
r` log(n)
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On the other hand,

log(Compl) = ω log
(
(n− r)`+ r`+1

(n− r)`

)
+ log

(
n

r+1

)
+ log

(
m

r+1

)
= ω log

(
n`+1
r`+1

)
+ log

(
n

r+1

)
+ log

(
m

r+1

)
∼

n→∞
(ω(r`+1)+ r+1) log(n).

Therefore, log(Compl)/ log(DEG) ∼
n→∞

ω(r`+1)+ r+1
r`

and hence the number of arithmetic
operations is polynomial in the degree of the ideal.

Also, if D≥ 2 is constant, a similar analysis yields

log(DEG) = (n− r)` log(D)+ log

(
`−1

∏
i=0

(n+`−1
r+i

)(n+`−1
i

))
∼

n→∞
log(D)`n.

log(Compl) = ω log
(

k+Dr`+(D−1)k+1
k

)
+ log

(
n

r+1

)
+ log

(
m

r+1

)
= ω log

(
Dn`+1
(n− r)`

)
+ log

(
n

r+1

)
+ log

(
m

r+1

)
∼

n→∞
ω log

(
Dn`
n`

)
.

Then, using the fact that
(

αn
βn

)
∼

n→∞
n(α log(α)−β log(β )− (α−β ) log(α−β )), we obtain

that
log(Compl) ∼

n→∞
nω`(D log(D)− (D−1) log(D−1)).

Therefore, log(Compl)/ log(DEG) is upper bounded by a constant value and hence the arith-
metic complexity of the Gröbner basis computation is also polynomial in the degree of the ideal
for this subclass of Generalized MinRank problems under genericity assumptions.

7.3. The case r = m−1

The case r =m−1 is a special case of the setting studied in Section 7.2 which arises in several
applications, since it is the problem of finding at which points the evaluation of a polynomial
matrix is rank defective. In this setting, the formulas in Theorem 28 are much simpler:
• the 0-dimensional condition yields k = n−m+1;
• Dreg ≤ Dn− (n−m);

• DEG≤ Dn−m+1
(

n
m−1

)
.

Therefore, the arithmetic complexity of the Gröbner basis computation is

Compl= O(

(
n
m

)(
Dn+1

n−m+1

)ω

).

If D > 1 and m are fixed, log
((n

m

)( Dn+1
n−m+1

)ω
)
∼

n→∞
m log(n)+ω log

(Dn
n

)
and a direct applica-

tion of Stirling’s formula shows that

ω log
(

Dn
n

)
∼

n→∞
ω(D logD− (D−1) log(D−1))n.
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(n,m,D,r,k) DEG Dreg F4 time(Magma)FGLM time(Magma)F5 time/nb.ops(FGb)FGLM time(FGb)

(6,5,2,4,2) 60 11 0.001s 0.001s 0.00s/213.32 0.00s

(6,5,3,4,2) 135 17 0.002s 0.019s 0.00s/215.29 0.00s

(6,5,4,4,2) 240 23 0.004s 0.09s 0.01s/216.79 0.01s

(5,5,2,3,4) 800 17 0.25s 6.3s 0.24s/225.56 0.19s

(8,5,2,4,4) 1120 13 0.7s 20s 0.43s/226.71 0.58s

(5,5,3,3,4) 4050 27 6.7s 567s 5.43s/230.68 3s

(6,5,2,3,6) 11200 19 479s 17703s 94.85s/235.7 203s
Table 1. Experimental results

On the other hand, log(DEG) ∼
n→∞

n logD. Therefore, log(Compl)/ log(DEG) has a finite limit
when n grows and m is fixed, showing that, in this setting, the arithmetic complexity is polyno-
mial in the degree of the ideal.

7.4. Experimental results

In this section, we present some experimental results obtained by using the Gröbner bases
package FGb (using the F5 algorithm) and the implementation of the F4 algorithm in the MAGMA
computer algebra system (Bosma et al., 1997). All instances were constructed as random (with
uniform distribution) 0-dimensional MinRank problems (i.e. nm− (n+m− r)r = k) over the
finite field F65521. All experiments were conducted on a 2.93 GHz Intel Xeon with 132 GB
RAM.

Useful information can be read from Table 1. First, the experimental values of the degree
of regularity and of the degree match exactly the theoretical values given in Lemma 18 and in
Corollary 11. Also, it can be noted that the most relevant indicator of the complexity of the
Gröbner basis computation seems to be the degree of the ideal.

The comparison between the complexity bound and the degree of the ideal is illustrated in
Figures 1 and 2. First, Figure 1 shows that the bound on the complexity of the Gröbner com-
putation is polynomial in the degree of the ideal when D grows (n = m = 20, r = 10 fixed),
since log(ComplF5)/ log(DEG) is upper bounded by 5. This is in accordance with the analysis
performed in Section 7.1.

Then Figure 2 shows empirically that if m = bβnc and r = bαnc−1 (with α ≤ β ≤ 1) and n
grows, then the complexity bound is also polynomial in the degree of the ideal.

However, there also exist families of generalized MinRank problem where the complexity
bound for the Gröbner basis computation is not polynomial in the degree of ideal. For instance,
taking n = m and fixing the values of r and D yields such a family.

The experimental behavior of log(ComplF5)/ log(DEG) is plotted in Figure 3. We would
like to point out that this does not necessarily mean that the complexity of the Gröbner ba-
sis computation is not polynomial in the degree of the ideal. Indeed, the complexity bound
O
(( n

r+1

)( m
r+1

)(k+Dreg
k

)ω
)

is not sharp and the figure only shows that the bound is not polyno-
mial.

The problem of showing whether the actual arithmetic complexity of the F5 algorithm is
polynomial or not in the degree of the ideal for any families of parameters of the generalized
MinRank problem remains an open problem.
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8. Application to bi-homogeneous systems of bi-degree (D,1)

In this section, we show that the previous complexity analysis can be used to obtain bounds
on the complexity of solving bi-homogeneous systems of bi-degree (D,1) by using Gröbner
bases algorithms. These structured systems can appear naturally in some applications, for in-
stance in geometry and in optimization. Indeed the classical technique of Lagrange multipliers
– when used to optimize a polynomial function under polynomial constraints – gives rise to a
bi-homogeneous system of bi-degree (D,1).

Bi-homogeneous polynomials are defined as follows: given two finite sets of variables X =
{x0, . . . ,xnx} and Y = {y0, . . . ,yny}, a polynomial f ∈K[X ,Y ] is called bi-homogeneous if for any
λ ,µ ∈K, there exist dx,dy ∈ N such that

f (λX ,µY ) = λ
dx µ

dy f (X ,Y ).
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The couple (dx,dy) is called the bi-degree of f .
In this section, we focus on generic systems of nx+ny bi-homogeneous equations of bi-degree

(D,1). Such systems have a finite number of solutions on the biprojective space Pnx ×Pny . One
way to compute them is to start by computing their projection on Pnx , and then lift them to
Pnx ×Pny by solving linear systems (this can be done since the equations are linear with respect
the variables y0, . . . ,yny ).

The following proposition shows that computing the projection on Pny can be computed by
solving a homogeneous MinRank problem.

Proposition 29. Let f1, . . . , fm ∈ K[X ,Y ] be a bi-homogeneous system of bi-degree (D,1). If
m > ny, then (x0 : . . . : xnx ,y0 : . . . : yny) ∈ Pnx ×Pny is a zero of this system if and only if the
matrix

jacY (x0, . . . ,xnx) =


∂ f1
∂y0

. . . ∂ f1
∂yny

...
...

...
∂ fm
∂y0

. . . ∂ fm
∂yny


is rank defective.

Proof. First, notice that 
f1
...

fm

= jacY (x0, . . . ,xnx) ·


y0
...

yny

 .

Therefore, (x0 : . . . : xnx ,y0 : . . . : yny)∈ Pnx×Pny is a zero of the system if and only if (y0, . . . ,yny)
belongs to the kernel of jacY . Since m > ny, the number of rows is greater than or equal to the
number of columns of jacY , and hence jacY is rank defective. 2

In applications, most of bi-homogeneous systems occurring are affine: A polynomial f ∈
K[x1, . . . ,xnx ,y1, . . . ,yny ] is called affine of bi-degree (D,1) if there exists a bi-homogeneous
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polynomial f h ∈K[x0, . . . ,xnx ,y0, . . . ,yny ] of bi-degree (D,1) such that

f (x1, . . . ,xnx ,y1, . . . ,yny) = f h(1,x1, . . . ,xnx ,1,y1, . . . ,yny).

This means that each monomial occurring in f has bi-degree (i, j) with i≤ D and j ≤ 1. Notice
that the polynomial f h is uniquely defined and that Proposition 29 also holds in the affine context:

Proposition 30. Let f1, . . . , fm ∈K[x1, . . . ,xnx ,y1, . . . ,yny ] be an affine system of bi-degree (D,1).
If m > ny and (x1, . . . ,xnx ,y1, . . . ,yny) ∈ Knx ×Kny is a zero of the system, then the m× (ny +1)
matrix

jaca
Y (x1, . . . ,xnx) =


f1(x1, . . . ,xnx ,0, . . . ,0)

∂ f1
∂y1

. . . ∂ f1
∂yny

...
...

...

fm(x1, . . . ,xnx ,0, . . . ,0)
∂ fm
∂y0

. . . ∂ fm
∂yny


is rank defective.

Proof. The proof is similar to that of 29 since


f1
...

fm

= jaca
Y (x1, . . . ,xnx) ·


1

y1
...

yny

 .

Therefore, if (x1, . . . ,xnx ,y1, . . . ,yny) is a zero of the system then there is a non-zero vector in the
kernel of jaca

Y (however in the affine case, the converse is not true). 2

An algebraic description of the variety V of a 0-dimensional polynomial system can be ob-
tained by computing a rational parametrization, i.e. a polynomial g(u)∈K[u] and a set of rational
functions g1, . . . ,gnx ,h1, . . . ,hny ∈K(u) such that

(x1, . . . ,xnx ,y1, . . . ,yny) ∈V

m

∃u ∈K,s.t.g(u) = 0,∀i ∈ {1, . . . ,nx},xi = gi(u),∀ j ∈ {1, . . . ,ny},y j = h j(u).

To obtain a rational parametrization, we need a separating element: a linear form which takes
different values on all points of V . Therefore, a rational parametrization exists only if the cardi-
nality of the field K is infinite or large enough.

Under the assumption that the field K is sufficiently large, Algorithm 1 uses the property
described in Proposition 30 to find a rational parametrization of the zeroes of a radical and 0-
dimensional system of nx+ny affine polynomials of bi-degree (D,1). The algorithm proceeds by
computing first a rational parametrization of the projection of the zero set on Knx . This is done
by computing a lexicographical Gröbner basis of a Generalized MinRank Problem. Then this
parametrization is lifted to the whole space by solving a linear system (this can be done since the
equations are linear with respect to the variables y1, . . . ,yny ).

The success of Algorithm 1 depends on the choice of the parameters α (a linear change of
coordinates such that xn is a separating element) and M. However, as we will see in Theorem 31,

28



Algorithm 1 Rational parametrization of systems of bi-degree (D,1)
Input: f1, . . . , fnx+ny ∈K[X ,Y ] a system of affine polynomials of bi-degree (D,1) such that the

ideal they generate is radical and 0-dimensional;
(α1, . . . ,αnx−1) ∈Knx−1;
a full rank matrix M = (mi, j) ∈Kny×(nx+ny).

Output: Returns a rational parametrization of the variety of the system or “fail”.
1: Compute for each i ∈ {1, . . . ,nx +ny},

f̃i(x1, . . . ,xnx−1,u,y1, . . . ,yny) = fi(x1, . . . ,xnx−1,u−
nx−1

∑
`=1

α`x`,y1, . . . ,yny).

2: Compute the matrix jaca
Y ( f̃1, . . . , f̃nx+ny).

3: Compute a lex Gröbner basis G of the ideal I ⊂K[x1, . . . ,xnx−1,u] generated by the maximal
minors of the matrix jaca

Y ( f̃1, . . . , f̃nx+ny). If the Gröbner basis has the following shape (the
shape position):

x1−g1(u)

x2−g2(u)
...

xnx−1−gnx−1(u)

g(u),

then continue to Step 4, else return “fail”.
4: Using M, compute a linear combination of the polynomials of the system evaluated at

(g1(u), . . . ,gnx−1(u)):
f̂1(y1, . . . ,yny ,u)

...

f̂ny(y1, . . . ,yny ,u)

= M ·


f̃1(g1(u), . . . ,gnx−1(u),u,y1, . . . ,yny) mod g(u)

...

f̃nx+ny(g1(u), . . . ,gnx−1(u),u,y1, . . . ,yny) mod g(u)


5: If the linear system f̂1 = . . .= f̂ny = 0 has rank ny (as a linear system in K(u)[Y ] where the

variables are y1, . . . ,yny ), continue to Step 6, else return “fail”.
6: Using Cramer’s rule, solve the system f̂1 = . . .= f̂ny = 0 as a linear system in K(u)[Y ]. This

yields rational functions hi(u) ∈K(u) such that, for i ∈ {1, . . . ,ny}, yi−hi(u) = 0.
7: Return the rational parametrization

g(u) = 0

x1 = g1(u) y1 = h1(u)
...

...

xnx−1 = gnx−1(u) yny−1 = hny−1(u)

xnx = u−
nx−1

∑
`=1

α`g`(u) yny = hny(u)
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if the cardinality of K is infinite or large enough, then almost all choices of α and M are good.
Therefore, these parameters can be chosen at random. If Algorithm 1 unluckily fails, then it can
be restarted with the same algebraic system and different values of α and M.

We now prove that the complexity of Algorithm 1 is bounded by the complexity of the un-
derlying generalized MinRank problem and that most choices of (α1, . . . ,αnx−1) and M do not
fail.

Theorem 31. Let f1, . . . , fnx+ny ∈ K[X ,Y ] be an affine system of bi-degree (D,1) such that
the ideal 〈 f1, . . . , fnx+ny〉 is radical and 0-dimensional. Then there exists non-identically null
polynomials h1 ∈ K[z1, . . . ,znx−1] and h2 ∈ K[z1,1, . . . ,zny,nx+ny ] such that, for any choice of
(α1, . . . ,αnx−1) and M = (mi, j) ∈Kny×(nx+ny) verifying:

• the matrix jaca
Y ( f̃1, . . . , f̃nx+ny) verifies the conditions of Theorem 28;

• h1(α1, . . . ,αnx−1)h2(m1,1, . . . ,mny,nx+ny) 6= 0,
Algorithm 1 returns a rational parametrization of the variety of the system and its complexity is
upper bounded by

O

((
nx +ny

nx−1

)(
D(nx +ny)+1

nx

)ω

+nx

(
Dnx

(
nx +ny

nx

))3
)
.

Proof. In this proof, Õ() stands for the soft-Oh notation: if f and g are positive functions,
f = Õ(g) means that there exists k ∈ N such that f = O(g · logk(g)). Let I denote the ideal
generated by f1, . . . , fnx+ny . According to Becker et al. (1994); Lakshman (1990), for any radical
0-dimensional ideal, there exists a polynomial h1 such that if h1(α1, . . . ,αnx−1) 6= 0, then the
system is in shape position after the change of coordinates

xnx 7→ xnx −
nx−1

∑
`=1

α`x`.

The polynomial h2 is chosen such that if h2(mi, j) 6= 0, then the linear system f̂1 = · · ·= f̂ny = 0
in K(u)[Y ] has rank exactly ny. Consider now the following linear system (where the variables
are y1, . . . ,yny ):

z1,1 . . . z1,nx+ny

...
...

...

zny,1 . . . zny,nx+ny

 ·


f̃1(g1(u), . . . ,gnx−1(u),u,y1, . . . ,yny) mod g(u)
...

f̃nx+ny(g1(u), . . . ,gnx−1(u),u,y1, . . . ,yny) mod g(u)

= 0.

Its determinant (which lies in K[z1,1, . . . ,zny,nx+ny ,u]) is not zero since the ideal generated by the
input system ( f1, . . . , fnx+ny) is 0-dimensional and proper. By considering this determinant as
a polynomial in K[z1,1, . . . ,zny,nx+ny ][u], the polynomial h2 ∈ K[z1,1, . . . ,zny,nx+ny ] is chosen as a
non-zero coefficient of a term uβ . Consequently, the algorithm does not fail if h1(α1, . . . ,αnx−1) 6=
0 and h2(mi, j) 6= 0.

Now we proceed with the complexity analysis:
• the complexity of the substitution step to compute the polynomials f̃i is upper bounded by

Õ((nx +ny)Dnxny).
• By Theorem 28, the complexity of the Gröbner basis computation is upper bounded by

O
((

nx +ny

nx−1

)(
D(nx +ny)+1

nx

)ω

+nx (DEG(I))
3
)
.
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• Since deg(gnx)≤ DEG(I), a monomial unx ∏
nx−1
i=1 xαi

i of degree D can be evaluated in the uni-
variate polynomials (g1(u), . . . ,gnx−1(u)) modulo g(u) in complexity Õ(DDEG(I)) by using
a subproduct tree (Bostan and Schost, 2005), quasi-linear multiplication of univariate polyno-
mials and quasi-linear modular reduction. Since there are at most (nx+ny)(ny+1)

(nx+D
nx

)
such

monomials in the system f1, . . . , fnx+ny , the Step 4 of the Algorithm needs at most

Õ
(
(nx +ny)ny

(
nx +D

nx

)
DDEG(I)

)
arithmetic operations in K.
Notice that nx +ny ≤

(nx+ny
nx−1

)
and DEG(I)≤

(D(nx+ny)+1
nx

)
.

· If D≥ 2: for any a,b,c∈N such that b< a,
(a

b

)
c≤
(a+c

b

)
. Therefore, Dny

(nx+D
nx

)
≤
(nx+ny+2D

nx

)
.

Also, notice that, for D ≥ 2 and for any nx,ny such that nxny > 1, nx + ny + 2D ≤ D(nx +
ny)+1. Therefore,

Õ
(
(nx +ny)ny

(
nx +D

nx

)
DDEG(I)

)
≤ Õ

((
nx +ny

nx−1

)(
D(nx +ny)+1

nx

)2
)
.

· If D = 1: (nx +ny)ny
(nx+1

nx

)
= (nx +ny)nynx is bounded by

(nx+ny
nx−1

)((nx+ny)+1
nx

)
.

Therefore, the complexity of the Step 4 of Algorithm 1 is upper bounded by the complexity of
the Gröbner basis computation: O

((nx+ny
nx−1

)(D(nx+ny)+1
nx

)ω
)
.

• To solve the linear system by using Cramer’s rule, we need to compute nx +1 determinants of
(nx×nx)-matrices whose entries are univariate polynomials of degree D. This can be achieved
by using a fast evaluation-interpolation strategy with complexity Õ

(
Dnω+1

x
)

(since multi-set
evaluation and interpolation of univariate polynomials can be done in quasi-linear time, see
e.g. Bostan and Schost (2005)).

Since DEG(I) is bounded by Dnx
(nx+ny

nx

)
, the sum of all these complexities is upper bounded by

O

((
nx +ny

nx−1

)(
D(nx +ny)+1

nx

)ω

+nx

(
Dnx

(
nx +ny

nx

))3
)
.

2

Remark 32. According to Faugère et al. (2011, Lemma 15) and Faugère et al. (2011, Lemma
16), if D = 1, there exists a non-empty Zariski open subset O1 of the set of systems of bi-degree
(1,1), such that any system ( f1, . . . , fnx+ny) ∈ O1 is 0-dimensional and radical. This statement
also holds for systems of bi-degree (D,1) with D ∈ N, and the proof is similar.
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Bardet, M., Faugère, J.-C., Salvy, B., 2004. Asymptotic expansion of the degree of regularity for
semi-regular systems of equations. In: Effective Methods in Algebraic Geometry (MEGA).
pp. 71–74.

Becker, E., Mora, T., Marinari, M., Traverso, C., 1994. The shape of the shape lemma. In: Pro-
ceedings of the International Symposium on Symbolic and Algebraic Computation. ISSAC
’94. ACM, New York, NY, USA, pp. 129–133.
URL http://doi.acm.org/10.1145/190347.190382
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Lazard, D., 1983. Gröbner bases, Gaussian elimination and resolution of systems of algebraic
equations. In: Computer Algebra, EUROCAL’83. Vol. 162 of LNCS. Springer, pp. 146–156.

Macdonald, I. G., Pach, J., Theobald, T., 2001. Common tangents to four unit balls in r 3. Discrete
& Computational Geometry 26 (1), 1–17.

Miller, E., Sturmfels, B., 2005. Combinatorial commutative algebra. Vol. 227. Springer Verlag.
Ourivski, A., Johansson, T., 2002. New technique for decoding codes in the rank metric and its

cryptography applications. Problems of Information Transmission 38 (3), 237–246.
Safey El Din, M., Schost, E., 2003. Polar varieties and computation of one point in each con-

nected component of a smooth real algebraic set. In: Proceedings of the 2003 international
symposium on Symbolic and algebraic computation. ACM, pp. 224–231.

Sottile, F., 2002. From enumerative geometry to solving systems of polynomial equations. Com-
putations in algebraic geometry with Macaulay 2, 101–129.

Sottile, F., 2003. Enumerative real algebraic geometry. Algorithmic and Quantitative Real Alge-
braic Geometry, 139–179.

Storjohann, A., 2000. Algorithms for matrix canonical forms. Ph.D. thesis, University of Water-
loo.

Verschelde, J., 1999. Polynomial homotopies for dense, sparse and determinantal systems.
Williams, V., 2011. Breaking the coppersmith-winograd barrier.

33


