
SPECTRA - a Maple library for solving
linear matrix inequalities in exact arithmetic∗

Didier Henrion† Simone Naldi‡ Mohab Safey El Din§

Abstract

This document describes our freely distributed Maple library spectra, for Semidefinite
Programming solved Exactly with Computational Tools of Real Algebra. It solves
linear matrix inequalities with symbolic computation in exact arithmetic and it is
targeted to small-size, possibly degenerate problems for which symbolic infeasibility or
feasibility certificates are required.

Keywords

Computer algebra, symbolic computation, linear matrix inequalities, semidefinite pro-
gramming, low rank matrices, real algebraic geometry.

∗This work was partly supported by project GeoLMI of the French National Research Agency (ANR). The
first author was partly supported by project 16-19526S of the Grant Agency of the Czech Republic (GAČR)
The second author was partly supported by grant PL 549/3-1 (Convexity in Real Algebraic Geometry) of
the German Research Foundation (DFG).
†LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France; Faculty of Electrical Engineering, Czech

Technical University in Prague, Czech Republic.
‡Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, 44227 Dortmund, Ger-

many.
§Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6, PolSys Team, F-75005, Paris, France.

1

1 Introduction

Given symmetric matrices A0, A1, . . . , An of size m with rational coefficients, let

S := {x ∈ Rn : A(x) := A0 + A1x1 + · · ·+ Anxn � 0}

denote the corresponding convex spectrahedron, defined by the linear matrix inequality (LMI)
enforcing that A is positive semidefinite, or equivalently that the eigenvalues of A, as func-
tions of x, are all nonnegative. Spectrahedra are a broad generalization of polyhedra [21].
Like polyhedra, spectrahedra have facets, edges and vertices. However, while the facets of
a polyhedron are necessarily flat, the facets of a spectrahedron can be curved outwards or
inflated, see Figure 1 for an example of a spectrahedron of dimension n = 3 defined by an
LMI of size m = 5.

Figure 1: A spectrahedron.

Optimization of a linear function on a spectrahedron is called semidefinite programming
(SDP), a broad generalization of linear programming (LP) with many applications in con-
trol engineering, signal processing, combinatorial optimization, mechanical structure design,
etc, see [22, 20]. The algebra and geometry of spectrahedra is an active area of study in
real algebraic geometry, especially in connection with the problem of moments and the de-
composition of real multivariate polynomials as sums-of-squares (SOS), see [11, 1, 17] and
references therein. SDP-based methods have recently been developed in the setting of error
analysis of roundoff during floating-point computations, see [12, 3], or in non-commutative
real algebraic geometry, see [4, 10].

Our software spectra aims at either proving that S is empty, or finding at least one point
in S , using exact arithmetic. Indeed, spectra is exclusively based on computations with
exact arithmetic. This is in sharp contrast with existing SDP solvers which are based on
approximate computations and floating point arithmetic, such as the projection and rounding
heuristics of e.g. [16] or [9], the primal-dual interior-point SDP solvers in SeDuMi [19] or

2

NCAlgebra [7], or the implementation in arbitrary precision arithmetic of the interior-point
SDP solver in SDPA-GMP [23, 13]. Since exact computations are potentially expensive,
spectra should be used when the number n of variables or the size m of the LMI are small.
It should not be considered as a competitor to numerical algorithms such as interior-point
methods in terms of practical performance when the input has large size (measured by matrix
size and number of unknowns). Finite or multiple-precision implementations of the interior
point method can handle examples of LMI that are unreachable by spectra.

However, spectra should be primarily used either in potentially degenerate situations,
for example when it is expected that S has empty interior, or when a rigorous certificate
of infeasibility or feasibility is required. In these situations, finite precision or arbitrary
precision implementations of interior point methods are not able to guarantee the existence
of a feasible solution and hence to solve the associated LMI rigorously. For instance, the
tests performed in [13, Sec.V] on ill-posed instances from SDPLIB [2] show that the absence
of interior point leads to numerical instabilities.

We describe now how we represent exactly the solution of an LMI. The input provided
to spectra is the set of matrices A0, A1, . . . , An with rational coefficients describing the
pencil A and hence the spectrahedron S . If S is empty, spectra returns the empty list.
Otherwise, the output generated by spectra is a finite set

Z :=

{(
q1(z)

q0(z)
,
q2(z)

q0(z)
, · · · , qn(z)

q0(z)

)
: q(z) = 0, z ∈ C

}
. (1)

described by a collection of univariate polynomials with integer coefficients q, q0, q1, . . . , qn ∈
Z[z] and such that Z meets S in at least one real point x∗. Such a description is called a
rational parametrization. It allows to isolate the (generally irrational) coordinates of x∗ in
rational intervals of length given a priori, as small as required.

If S is not empty, spectra is guaranteed to compute a point x∗ minimizing the rank of A
in S . It solves exactly the (non-convex) optimization problem

r(A) := min rank A(x)
s.t. x ∈ S .

(2)

This is in sharp contrast with interior-point methods which are designed to compute a point
of maximal rank. As detailed below in Section 2, the rank of the matrix A(x∗), respectively
the algebraic degree of the entries of A(x∗), can be certified exactly by spectra. This
cannot be achieved with classical approaches via interior-point methods, even in arbitrary
precision arithmetic.

The outline of the remainder of the paper is as follows. In Section 2 we survey some back-
ground material and extract the essential theoretical results of [8] on which spectra relies.
In Section 3 we provide instructions to download and install spectra, and we illustrate its
use on two elementary examples. More advanced examples are described in Section 4. The
performance of spectra on larger examples is reported in Section 5. Finally, in Section 6
we describe formally the exact input and output syntaxes of SolveLMI, the main function
of spectra.

3

2 Background material and main theoretical results

The algorithm implemented in spectra computes points in the determinantal varieties

Dr := {x ∈ Cn : rank A(x) ≤ r}

for r = 0, 1, . . . ,m− 1. By construction it holds

D0 ⊂ D1 ⊂ · · ·Dm−1.

Since the determinant of A vanishes on the boundary ∂S of S , it holds

∂S ⊂ Dm−1 ∩ Rn.

When S is not empty, the value r(A) of the optimization problem (2) is the minimum
integer r such that Dr ∩ Rn intersects S , namely the smallest rank on the spectrahedron.
Our main geometrical result [8, Theorem 2] states that the spectrahedron contains at least
one of the connected components of the real part of the determinantal variety of smallest
rank:

Theorem 1 (Smallest rank on a spectrahedron) Assume that S is not empty. Let C
be a connected component of Dr(A)∩Rn such that the intersection C ∩S is not empty. Then
C ⊂ S and hence C ⊂ (Dr(A)\Dr(A)−1) ∩ Rn.

As a consequence of this result, an algorithm computing at least one point in each connected
component of Dr(A) ∩ Rn will compute at least one point in the spectrahedron S . Since
the value of r(A) is not known beforehand in general, spectra proceeds iteratively by
computing at least one point in the real determinantal variety Dr ∩Rn for increasing values
of the expected rank r = 0, 1, . . . ,m− 1.

More specifically, spectra computes points in the determinantal varieties Dr by projecting
onto the subspace of x variables the incidence varieties

Vr := {(x, y) ∈ Cn × Cm(m−r) : A(x)Y (y) = 0, rank Y (y) = m− r}

for r = 0, 1, . . . ,m − 1. The reader familiar with SDP duality will recognize the classical
complementarity conditions, see e.g. [22, 20]. The dual matrix

Y (y) =

 y1,1 · · · y1,m−r
...

...
ym,1 · · · ym,m−r


depends linearly on the dual variables y, and some normalization constraint should be added
to ensure that rank Y (y) = m − r. Unlike Dr, the incidence variety Vr, up to genericity
conditions on the pencil A , turns to be smooth and equidimensional. This crucial geometric
property allows for the application of a recursive method which is guaranteed to find at least
one point in each connected component of the incidence variety. This leads to the main
algorithmic result [8, Theorem 3] on which spectra relies:

4

Theorem 2 (Exact algorithm for finding a point in a spectrahedron) Suppose that
for each r = 0, 1, . . . ,m−1, the incidence variety Vr is smooth and equidimensional and that
its defining polynomial system generates a radical ideal. Suppose also that the determinantal
variety Dr has the expected dimension n−

(
m−r+1

2

)
. Then, there is a probabilistic algorithm

that takes A as input and returns:

1. either the empty list, if and only if S is empty, or

2. a vector x∗ such that A(x∗) = 0, if and only if the linear system A(x) = 0 has a
solution, or

3. a rational parametrization q, q0, q1, . . . , qn ∈ Z[z] such that there exists z∗ ∈ R with
q(z∗) = 0 and:

• A(q1(z
∗)/q0(z

∗), . . . , qn(z∗)/q0(z
∗)) � 0 and

• rank A(q1(z
∗)/q0(z

∗), . . . , qn(z∗)/q0(z
∗)) = r(A).

The probabilistic nature of the algorithm comes from random changes of variables performed
during the procedure, allowing to put the sets Dr in generic position.

Recall that the incidence varieties Vr are defined by enforcing a full column rank constraint
on the dual matrix Y (y). In spectra this is achieved as follows [8, Section 3.1]: given a
subset of m− r dinstinct integers between 1 and r, we enforce the submatrix of Y (y) whose
rows are indexed by these integers to be equal to the identity matrix of size m − r. For a
given value of r, there are

(
m
r

)
distinct choices of row indices and hence the same number

of normalized incidence varieties. For each value of r, the algorithm in spectra processes
iteratively these normalized incidence varieties.

Finally, let us explain briefly how spectra is able to certify the correctness of the output.
This explanation was not included in our paper [8], but we believe it is useful for readers
interested in the implementation details. For each computed solution (x∗, y∗) belonging to
a connected component of an incidence variety, spectra uses exact arithmetic to decide
whether A(x∗) is positive semidefinite and to evaluate the rank of A(x∗). If A(x∗) is not
positive semidefinite, then the point x∗ is discarded. From Theorem 1 we know that at least
one computed point x∗ lies on the spectrahedron S , and this point is of minimal rank, i.e.
it solves problem (2).

We first build the following characteristic polynomial:

s 7→ p(s, x) = det(sIm + A(x)) = sm + p1(x)sm−1 + · · ·+ pm−1(x)s + pm(x),

where Im is the identity matrix of size m. The coefficient pk(x) ∈ Q[x] has degree k in x and it
is the k-th elementary symmetric polynomial of the eigenvalues of A(x), for k = 1, . . . ,m. For
example, p1(x) is the trace of A(x) and pm(x) is the determinant of A(x). This computation
is done only once.

Let x∗ ∈ Rn be given. The rank defect of A(x∗) is equal to the number of consecutive zeros
in the sequence pm(x∗), pm−1(x

∗), . . . Moreover, by Descartes’ rule of signs, A(x∗) � 0 if
and only if pk(x∗) ≥ 0 for all k = 1, . . . ,m. Hence, computing exactly the rank of A(x∗)

5

and checking its positive semidefiniteness amounts to determining the signs of pk(x∗) for
k = 1, . . . ,m.

Whereas this sign determination is a delicate issue when using floating arithmetic and ap-
proximate computation, it can be done exactly with spectra, since we represent the point
x∗ with a rational univariate parametrization with coefficients in Z. Indeed, suppose that
x∗ belongs to the finite set Z described as in (1) by the integer coefficient polynomials
q, q0, q1, . . . , qn. Together with the rational intervals isolating each entry of x∗, spectra
computes rational intervals isolating each coefficient pk(x∗). Each isolating interval is grad-
ually reduced, until it is so small that at the interval bounds the coefficient takes 1) distinct
signs, in which case it vanishes somewhere in the interval, or 2) the same sign, in which case
it does not vanish in the whole interval.

3 Getting started

spectra is freely available as a library for Maple version 16 and above. It can be downloaded
in the form of single binary file SPECTRA.mla from the following page

homepages.laas.fr/henrion/software/spectra

spectra relies on FGb, a library for fast computation of Gröbner bases, whose Maple
interface must be installed, see [6]. spectra does not work without FGb.

In a Maple worksheet, from the directory containing the file SPECTRA.mla, please type the
command

> with(SPECTRA);

to activate the main function SolveLMI.

3.1 Half disk

Let

A(x) =

1 + x1 x2 0
x2 1− x1 0
0 0 x1


with n = 2 and m = 3. The corresponding spectrahedron

S = {x ∈ R2 : A(x) � 0} = {x ∈ R2 : 1− x2
1 − x2

2 ≥ 0, x1 ≥ 0}

is a half disk. To find a point in S , we use spectra as follows:

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1]]):

> SolveLMI(A);

[[x1 = [0, 0], x2 = [1, 1]]]

6

This returns the point
x = [0, 1] ∈ S

in interval arithmetic notation, i.e.

x1 ∈ [0, 0], x2 ∈ [1, 1]

and for each component in x we obtain rational (exact) lower and upper bounds. Here the
bounds coincide as the point has rational coordinates.

At this point, matrix A(x) is guaranteed to have minimal rank over all points in S . This
rank can be obtained as follows:

> SolveLMI(A,{rnk});

[[x1 = [0, 0], x2 = [1, 1], rnk = 1]]

3.2 Degenerate spectrahedra

Let us modify the bottom right entry in the matrix of the previous section, so that now

A(x) =

1 + x1 x2 0
x2 1− x1 0
0 0 x1 − 1


and the corresponding spectrahedron S = {x ∈ R2 : A(x) � 0} = {[1, 0]} reduces to a point
in the plane. spectra can easily deal with such a degenerate case:

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-1]]):

> SolveLMI(A);

[[x1 = [1, 1], x2 = [0, 0]]]

Now let us modify further the bottom right entry, letting

A(x) =

1 + x1 x2 0
x2 1− x1 0
0 0 x1 − 2


so that the corresponding spectrahedron is empty. spectra returns the empty list, and this
is a certificate of emptiness:

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-2]]):

> SolveLMI(A);

[]

Since spectra is based on exact arithmetic, it is not sensitive to numerical roundoff errors
or small parameter changes:

7

> A := Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-1-10^(-20)]]):

> SolveLMI(A);

[]

> A:=Matrix([[1+x1, x2, 0], [x2, 1-x1, 0], [0, 0, x1-1+10^(-20)]]):

> SolveLMI(A);

[[x1 = [36893488147418995335 / 36893488147419103232,

4611686018427401391 / 4611686018427387904],

x2 = [-350142318592414077 / 2475880078570760549798248448,

-2801138548739304423 / 19807040628566084398385987584]]

Displayed with 10 significant digits, the latter point reads:

x1 ∈ [3689348814741899533
36893488147419103232

, 4611686018427401391
4611686018427387904

] ≈ 1.000000000,

x2 ∈ [−350142318592414077
2475880078570760549798248448

, −2801138548739304423
19807040628566084398385987584

] ≈ −0.1414213562 · 10−9.

The above point is an irrational solution, and the rational intervals are provided so that
their floating point approximations are correct up to the number of digits specified in the
Maple environment variable Digits, which is by default equal to 10. Use the command

> Digits:=100:

prior to calling SolveLMI if you want an approximation correct to 100 digits. At the price
of increased computational burden, spectra then provides larger integer numerators and
denominators in the coordinate intervals.

4 Examples

4.1 Irrational spectrahedron

In general, each coordinate of a point computed by spectra is an algebraic number, i.e.
the root of a univariate polynomial with integer coefficients.

For the classical univariate matrix

A(x1) =


1 x1 0 0
x1 2 0 0
0 0 2x1 2
0 0 2 x1


the spectrahedron reduces to the irrational point x1 =

√
2. The simple call

> A:=Matrix([[1, x1, 0, 0], [x1, 2, 0, 0], [0, 0, 2*x1, 2], [0, 0, 2, x1]]):

> SolveLMI(A);

[[x1 = [26087635650665550353 / 18446744073709551616,

13043817825332807945 / 9223372036854775808]]]

8

returns an interval enclosure valid to 10 digits. We can however obtain an exact representa-
tion of this point via a rational parametrization:

> SolveLMI(A, {par});

[[x1 = [..], par = [_Z^2-2,_Z,[2]]]]

The output parameter par contains three univariate polynomials q, q0, q1 such that the com-
puted point is contained in the finite set

Z = {q1(z)/q0(z) : q(z) = 0} = {2/z : z2 − 2 = 0} = {±
√

2}

as in (1). Here obviously the rational interval isolates the irrational point x1 =
√

2.

4.2 Algebraic degree

The algebraic degree of semidefinite programming was studied in [15]. Let us consider the
spectrahedron of Example 4 in this reference, for which

A(x) =


1 + x3 x1 + x2 x2 x2 + x3

x1 + x2 1− x1 x2 − x3 x2

x2 x2 − x3 1 + x2 x1 + x3

x2 + x3 x2 x1 + x3 1− x3


The following point can be easily found with spectra, and it has rank 2, which is guaranteed
to be the minimal rank achieved in the spectrahedron:

> A:=Matrix([[1+x3, x1+x2, x2, x2+x3], [x1+x2, 1-x1, x2-x3, x2],

[x2, x2-x3, 1+x2, x1+x3], [x2+x3, x2, x1+x3, 1-x3]]):

> SolveLMI(A, {rnk});

[[x1 = [29909558235590963953/36893488147419103232,

29909558235593946897/36893488147419103232],

x2 = [-18555206088021567643/36893488147419103232,

-9277603044010395249/18446744073709551616],

x3 = [-12556837519724045701/36893488147419103232,

-12556837519723709525/36893488147419103232],

rnk = 2]]

With the following instruction we can indeed certify that there is no point of rank 1 or less:

> SolveLMI(A, {}, [1]);

[]

The command

> SolveLMI(A, {par});

9

returns the following rational univariate parametrization (1) of the above rank 2 point:

q(z) = 16144z10 + 35160z9 + 14536z8 − 17690z7 − 16278z6 − 2001z5 + 1556z4 + 454z3 + 23z2 − 4z − 1
q0(z) = 161440z9 + 316440z8 + 116288z7 − 123830z6 − 97668z5 − 10005z4 + 6224z3 + 1362z2 + 46z − 4
q1(z) = 97248z9 + 146144z8 − 18192z7 − 134826z6 − 63302z5 + 4048z4 + 6758z3 + 846z2 − 49z − 14
q2(z) = 34456z9 + 37516z8 − 8734z7 − 22150z6 − 8223z5 − 3978z4 − 1324z3 + 104z2 + 103z + 13
q3(z) = −35160z9 − 29072z8 + 53070z7 + 65112z6 + 10005z5 − 9336z4 − 3178z3 − 184z2 + 36z + 10

The degree of the polynomial q in this parametrization can be obtained with the command

> SolveLMI(A, {deg});

We can obtain more points in the spectrahedron as follows:

> SolveLMI(A, {all, rnk, deg}, [2]);

This returns 4 feasible solutions of rank r = 2, all parametrized by the above degree 10 poly-
nomial. Notice that this degree matches with the algebraic degree of a generic semidefinite
programming problem with parameters (m,n, r) = (4, 3, 2), which is 10 according to [15,
Table 2].

4.3 Reproducibility

Consider the matrix

A(x) =

[
1 + x1 x2

x2 1− x1

]
modeling the unit disk. Two consecutive calls to SolveLMI return two distinct points:

> A:=Matrix([[1+x1,x2],[x2,1-x1]]):

> SolveLMI(A);

[[x1 = [-21201056044062027875/36893488147419103232, -662533001376936933/1152921504606846976],

x2 = [-7548363607018988253/9223372036854775808, -1887090901754742967/2305843009213693952]]]

> SolveLMI(A);

[[x1 = [-10862500438565607907/590295810358705651712, -21725000877131177215/1180591620717411303424],

x2 = [-576363141759828805/576460752303423488, -9221810268157244495/9223372036854775808]]]

After another call, or on your own computer, these intervals should still differ as spectra
makes random changes of coordinates to ensure that the geometric objects computed are in
general position. This kind of behavior is expected when there are infinitely many points of
minimal rank in the spectrahedron.

To generate reproducible outputs, the instruction randomize can be used to seed the random
number generator used by Maple:

> randomize(31415926):

> SolveLMI(A);

[[x1 = [-35204733513421104993/36893488147419103232, -35204733513421000447/36893488147419103232],

x2 = [-2758579864857623899/9223372036854775808, -5517159729715231413/18446744073709551616]]]

> randomize(31415926):

> SolveLMI(A);

[[x1 = [-35204733513421104993/36893488147419103232, -35204733513421000447/36893488147419103232],

x2 = [-2758579864857623899/9223372036854775808, -5517159729715231413/18446744073709551616]]]

10

4.4 Convex quartic

Let

A(x) =


1 + x1 x2 0 0
x2 1− x1 x2 0
0 x2 2 + x1 x2

0 0 x2 2− x1

 .

The spectrahedron S = {x ∈ R2 : A(x) � 0} is the orange region whose boundary is the
internal oval of the smooth quartic determinantal curve {x ∈ R2 : detA(x) = 0} represented
in black on Figure 2. With the following instructions

Figure 2: Quartic curve (black) with sample points (red) on the boundary of its spectrahe-
dron (orange).

> A:=Matrix([[1+x1,x2,0,0],[x2,1-x1,x2,0],[0,x2,2+x1,x2],[0,0,x2,2-x1]]):

> SolveLMI(A,{},[3]);

> SolveLMI(A,{},[3]);

> ...

we compute several points on the boundary of S , they are plotted in red on Figure 2. Note
the third input argument [3] which specifies to SolveLMI the expected rank of the computed
point. Since the determinantal curve is smooth, we know that the rank of A(x) equals 3
on the whole curve, and in particular on the boundary of S . Since the rank is specified,
spectra does not have to process iteratively the incidence varieties corresponding to points
of smaller ranks, thereby reducing the computational burden to find at least one point in
the spectrahedron.

11

Each of these points is represented by a rational univariate parametrization of degree 12,
obtained with the instruction

> SolveLMI(A,{par},[3]);

For example, for the point (x1, x2) ≈ (−0.9689884394,−0.2434013983) the polynomial q in
the rational parametrization (1) is

q(z) = 5506034827600 z12 − 4608031295324 z10 − 192908794368 z9 + 25693318717857 z8+

+ 4774492660608 z7 − 17188212283956 z6 − 23438418515712 z5 + 64967482316484 z4−
− 11285164470528 z3 − 11887630039728 z2 + 296990121024.

Recall that the algebraic degree of a point x∗ in S is the degree of the minimal algebraic
extension of the ground field (here the rational numbers) required to represent x∗. The
algebraic degree depends on the size of the pencil A but also on the rank r of A(x∗). With
(m,n, r) = (4, 2, 3) and generic data, the algebraic degree is 12, cf. [15, Table 2], which
indeed coincides with the degree of the exact representation of x∗ computed by spectra.

4.5 Polynomial sums of squares

Deciding whether a multivariate real polynomial is non-negative is difficult in general. A
sufficient condition, or certificate for non-negativity, is that the polynomial can be expressed
as a sum of squares (SOS) of other polynomials. Finding a polynomial SOS decomposition
amounts to finding a point in a specific spectrahedron called Gram spectrahedron, see e.g.
[5] and references therein.

Consider the homogeneous ternary quartic

f(u) = u4
1 + u1u

3
2 + u4

2 − 3u2
1u2u3 − 4u1u

2
2u3 + 2u2

1u
2
3 + u1u

3
3 + u2u

3
3 + u4

3.

The polynomial f belongs to a series of examples provided by C. Scheiderer in [18] to answer
(in the negative) the following question by B. Sturmfels: let f be a polynomial with rational
coefficients which is an SOS of polynomials with real coefficients; is it an SOS of polynomials
with rational coefficients? Scheiderer’s counterexamples prove that, generally speaking, there
is no hope in obtaining nonnegativity certificates over the rationals. However, certificates
exist in some algebraic extension of the field of rational numbers.

In the graded reverse lexicographic ordered monomial basis, the Gram matrix of f is the
matrix

A(x) =


1 0 x1 0 −3/2− x2 x3

0 −2x1 1/2 x2 −2− x4 −x5

x1 1/2 1 x4 0 x6

0 x2 x4 −2x3 + 2 x5 1/2
−3/2− x2 −2− x4 0 x5 −2x6 1/2

x3 −x5 x6 1/2 1/2 1


depending linearly on 6 real parameters. The Gram spectrahedron S = {x ∈ R6 : A(x) � 0}
parametrizes the set of all SOS decompositions of f . We deduce by the discussion above
that S does not contain rational points. In particular, its interior is empty.

Let us use spectra to compute points in S and hence to get positivity certificates for f :

12

> A := Matrix([[1,0,x1,0,-3/2-x2,x3], [0,-2*x1,1/2,x2,-2-x4,-x5], [x1,1/2,1,x4,0,x6],

[0,x2,x4,-2*x3+2,x5,1/2], [-3/2-x2,-2-x4,0,x5,-2*x6,1/2], [x3,-x5,x6,1/2,1/2,1]]):

> SolveLMI(A, {rnk, deg, par});

[[[x1 = [..], x2 = [..], x3 = [..], x4 = [..], x5 = [..], x6 = [..]],

rnk = 2, deg = 3,

par = [8*z^3+8*z+1, 24*z^2-8, [16*z+3, -24*z^2+8, 8*z^2+6*z+8, -16*z^2+6*z+16, -16*z-3, 16*z+3]]]

We obtain an irrational point x ∈ S whose coordinates are algebraic numbers of degree 3,
and which belongs to the finite set{(

16z + 3

24z2 − 8
,
−24z2 + 8

24z2 − 8
,
8z2 + 6z + 8

24z2 − 8
,
−16z2 + 6z + 16

24z2 − 8
,
−16z − 3

24z2 − 8
,

16z + 3

24z2 − 8

)
: 8z3 − 8z − 1 = 0

}
At this point, the Gram matrix A has rank 2, and hence f is an SOS of 2 polynomials.

Let us compute more non-negativity certificates of rank 2:

> SolveLMI(A,{rnk,deg,par,all},[2]);

In addition to the point already obtained above, we get another point. The user can compare
this output with [18, Ex. 2.8]: it turns out that these are the only 2 points of rank 2. Other
points in the Gram spectrahedron have rank 4 and they are convex combinations of these 2.

4.6 Application to computer arithmetic

In the paper [3] the authors need to check the following inequality in order to derive bounds
for roundoff errors of floating-point computation performed on complex numbers a0 + ib0
and a1 + ib1:

32

7

(
a20 + b20

) (
a21 + b21

)
− (2a0a1 − b0b1)

2 − (2a0b1 + 2a1b0)
2 ≥ 0. (3)

Relaxing positivity to sums of squares, as in the previous section, allows to derive a SOS-
certificate using spectra. The dense Gram matrix associated to the polynomial in (3) has
size 10× 10 and it is linear in 21 variables. The current implementation of spectra allows
to solve the associated LMI in 5 hours. However, exploiting the sparsity of the polynomial
in (3) allows to reduce the LMI description to a 4 × 4 linear matrix, and the computation
to a few seconds.

5 Performance

5.1 Exponential bit-size spectrahedron

For a given n ∈ N, consider the spectrahedron

Sn =

{
x ∈ Rn :

[
1 2
2 x1

]
� 0,

[
1 x1

x1 x2

]
� 0, · · · ,

[
1 xn−1

xn−1 xn

]
� 0

}
.

13

For every x∗ ∈ Sn it holds x∗
n ≥ (x∗

n−1)
2 ≥ · · · ≥ (x∗

1)
2n−1 ≥ 22n , which shows that exponen-

tially many bits are required to represent a point. It is elementary to check that each of the
above n matrices of size 2 can have rank 1, and hence that we can compute a point of rank
n as follows:

> with(LinearAlgebra):

> A:=DiagonalMatrix([<<1,2>|<2,x1>>,<<1,x1>|<x1,x2>>,<<1,x2>|<x2,x3>>,..]):

> SolveLMI(A,{},[n]);

Recall from Section 2 that spectra examines iteratively a family of
(
m
r

)
=
(
2n
n

)
incidence

varieties, a number growing exponentially with n. For example there are 12870 =
(
16
8

)
incidence varieties to test to solve our problem for n = 8. Hence we could expect spectra
to perform poorly on this example. However, on our standard desktop PC equipped with
Intel i7 processor at 2.5GHz and 16GB RAM, we were able to handle spectrahedra of size
2n = 10 in 29 seconds, and of size 2n = 12 in 505 seconds.

5.2 Random spectrahedra

Finally, we report on randomly generated examples. The rational entries of A are generated
as quotients of integers drawn uniformly in the interval [−100, 100]. Here is the script we
used to generate a random symmetric pencil given the number n of variables and the size
m:

> var:=[seq(cat(’x’,i),i=1..n)]:

> A:=Matrix(m,m):

> for i from 1 to m do

for j from i to m do

A[i,j]:=randpoly(var, degree=1, dense, coeffs=rand(-100..100)):

A[j,i]:=A[i,j];

od:

od:

For each instance, given the expected rank r, we execute the command

> SolveLMI(A,{},[r]);

For m = 2, r = 1 and values of n ranging from 30 to 100, we obtain the timings reported
on Figure 3. This corresponds to spectrahedra whose boundaries belong to determinantal
varieties of increasing dimension. Moreover, the singularity locus of the determinant has
positive dimension, it is a linear subspace of co-dimension 3. We observe a polynomial
dependence of the computational time as a function of the number of variables, with exponent
around 3.

When m = 3, r = m− 1 = 2 and values of n ranging from 30 to 80, we obtain the timings
reported on Figure 4, depending polynomially on n with an exponent around 4.

14

101.6 101.8 102

100.5

101

101.5

number of variables

ti
m

e
(s

ec
on

d
s)

Figure 3: Timings for random instances of size m = 2 and rank r = 1, as a function of the
number of variables n.

101.5 101.6 101.7 101.8 101.9

101

102

number of variables

ti
m

e
(s

ec
on

d
s)

Figure 4: Timings for random instances of size m = 3 and rank r = 2, as a function of the
number of variables n.

6 Input and output syntax

6.1 Input

The calling sequence of function SolveLMI is as follows:

> SolveLMI(A, options, ranks);

where

• A is a symmetric matrix of size m with rational coefficients, depending affinely on n
variables;

15

• options (optional) is a set that can contain the following keywords:

all : compute as many solutions as possible, which can be computationally demand-
ing; when this option is not specified, the algorithm is stopped as soon as one
solution is computed, which is typically much faster;

rnk : return the rank of A at every computed solution;

par : return the rational univariate parametrization of every computed solution;

deg : return the algebraic degree of every computed solution;

• ranks (optional) is a list of nonnegative integers corresponding to expected ranks of
computed solutions. The default value is [0, 1, . . . ,m − 1]. The algorithm is run for
each value r in ranks by solving the quadratic system of equations

A(x)Y (y) = 0

for a vector x and a matrix Y (y) with m rows and m − r columns whose entries are
stored in a vector y. It may happen that the rank of A(x) at a computed solution x is
strictly less than r.

6.2 Output

Let us denote by x1, x2, . . . , xn the variables on which matrix A depends affinely. They are
gathered in a vector x ∈ Rn. When the input argument options is empty, the output
returned by SolveLMI is

• eithter the empty list [] in which case S is empty, or

• a rational enclosure of a single point x ∈ S , in the form

> SolveLMI(A)

[[x1 = [a1, b1], x2 = [a2, b2], ..., xn = [an, bn]]]

where ai, bi are rational numbers, displayed as ratios of integers. This means that each
coordinate xi belongs to the interval [ai, bi] ensuring a floating point approximation of
x valid to a number of digits equal to the Maple environment variable Digits. When
ai = bi this implies that xi is a rational number.

When options contains the keyword all, more points can be returned, in the form of a list

> out := SolveLMI(A, {all})

[[x1 = [a11, b11], x2 = [a12, b12], ..., xn = [a1n, b1n]],

[x1 = [a21, b21], x2 = [a22, b22], ..., xn = [a2n, b2n]],

...]

such that nops(out) is the number of computed points, out[1] is the first point, out[2] is
the second point, etc.

When options contains the keyword rnk, the rank of A at x is returned:

16

> SolveLMI(A, {rnk})

[[x1 = [a1, b1], x2 = [a2, b2], ..., xn = [an, bn], rnk = r]]

These keywords and the following ones can be freely combined:

> SolveLMI(A, {all, rnk})

[[x1 = [a11, b11], x2 = [a12, b12], ..., xn = [a1n, b1n], rnk = r1],

[x1 = [a21, b21], x2 = [a22, b22], ..., xn = [a2n, b2n], rnk = r2],

...]

When options contains the keyword par, a rational univariate parametrization of x is
returned:

> SolveLMI(A, {par})

[[x1=[a1,b1], x2=[a2,b2], ..., xn=[an,bn], par=[q,q0,[q1,q2,...,qn]]]

This parametrization is such that q, q0, q1, q2, . . . , qn are univariate polynomials with integer
coefficients such that x belongs to the finite set{(

q1(z)

q0(z)
,
q2(z)

q0(z)
, · · · , qn(z)

q0(z)

)
: q(z) = 0, z ∈ C

}
.

The intervals [ai, bi] are provide to isolate the computed point from this set of points.

When options contains the keyword deg, the degree of the polynomial q in the rational
univariate parametrization of each computed point x is also returned:

> SolveLMI(A, {deg})

[[x1 = [a1, b1], x2 = [a2, b2], ..., xn = [an, bn], deg = d]]

References

[1] G. Blekherman, P. A. Parrilo, R. R. Thomas, editors. Semidefinite Optimization and
Convex Algebraic Geometry. MOS-SIAM Series on Optimization 13, 2012.

[2] B. Borchers. SDPLIB 1.2, a library of semidefinite programming test problems. Opti-
mization Methods and Software 11:683-690, 1999.

[3] R. Brent, C. Percival, and P. Zimmermann. Error bounds on complex floating-point
multiplication. Mathematics of Computation 76(259):1469–1481, 2007.

[4] K. Cafuta, I. Klep, J. Povh. Rational sums of hermitian squares of free noncommutative
polynomials. Ars Mathematica Contemporanea, 9:243–259, 2015.

[5] L. Chua, D. Plaumann, R. Sinn, C. Vinzant. Gram spectrahedra. Arxiv Preprint:
arXiv:1608.00234, July 2016.

17

[6] J.-C. Faugère. FGb: a library for computing Gröbner bases. In K. Fukuda, J. van der
Hoeven, M. Joswig, N. Takayama, editors, Mathematical Software - ICMS 2010, Lec-
ture Notes in Computer Science, vol. 6327, pp. 84–87, Springer, Berlin, 2010. Software
available at www-polsys.lip6.fr/~jcf/FGb

[7] J.W. Helton, M.C. de Oliveira, M. Stankus, R.L. Miller. NCAlgebra. Software available
at http://math.ucsd.edu/~ncalg

[8] D. Henrion, S. Naldi, M. Safey El Din. Exact algorithms for linear matrix inequalities.
Siam J. on Optimization. 26(4):2512–2539, 2017.

[9] E. L. Kaltofen, B. Li, Z. Yang, L. Zhi. Exact certification in global polynomial opti-
mization via sums-of-squares of rational functions with rational coefficients. J. Sym-
bolic Comput. 47(1):1–15, 2012.

[10] I. Klep, M. Schweighofer. Sums of Hermitian squares and the BMV conjecture. Journal
of Statistical Physics, 133(4):739–760, 2008.

[11] J. B. Lasserre. Moments, Positive Polynomials and Their Applications. Imperial Col-
lege Press, London, UK, 2010.

[12] V. Magron, M. Farid. Certified lower bounds of roundoff errors using semidefinite
programming. arXiv Preprint arXiv:1611.01318, 2016.

[13] M. Nakata. A numerical evaluation of highly accurate multiple-precision arithmetic
version of semidefinite programming solver: SDPA-GMP, -QD and -DD. Proceedings
of the IEEE Multi-Conference on Systems and Control, 2010.

[14] S. Naldi. Exact algorithms for determinantal varieties and semidefinite programming.
PhD thesis, Univ. Toulouse and Univ. Pierre et Marie Curie Paris, September 2015.
Available at tel.archives-ouvertes.fr/tel-01212502.

[15] J. Nie, K. Ranestad, B. Sturmfels. The algebraic degree of semidefinite programming.
Math. Prog. 122(2):379–405, 2010.

[16] H. Peyrl, P. A. Parrilo. Computing sum of squares decompositions with rational coef-
ficients. Theoretical Comput. Sci. 409:269–281, 2008

[17] M. Ramana, A.J. Goldman. Some geometric results in semidefinite programming. Jour-
nal of Global Optimization, 7(1):33–50, 1995.

[18] C. Scheiderer. Sums of squares of polynomials with rational coefficients. J. Eur. Math.
Soc. 18(7):1495–1513, 2016.

[19] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11/12(1–4):625–653, 1999.

[20] M. J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[21] C. Vinzant. What is... a spectrahedron ? Notices of the AMS, 61(5):492–494, 2014.

18

[22] L. Vandenberghe, S. P. Boyd. Semidefinite programming. SIAM Review 38(1):49–95,
1996.

[23] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakta, M. Nakata. Lat-
est developments in the SDPA Family for solving large-scale SDPs. In Handbook on
Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and
Applications. In M.F. Anjos and J.B. Lasserre (Editors). Springer, NY,USA. Chapter
24, pp. 687–714, 2011.

19

