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ABSTRACT
Certifying the positivity of trigonometric polynomials is of first

importance for design problems in discrete-time signal processing.

It is well known from the Riesz-Fejéz spectral factorization theo-

rem that any trigonometric univariate polynomial positive on the

unit circle can be decomposed as a Hermitian square with complex

coefficients. Here we focus on the case of polynomials with Gauss-

ian integer coefficients, i.e., with real and imaginary parts being

integers.

We design, analyze and compare, theoretically and practically,

three hybrid numeric-symbolic algorithms computing weighted

sums of Hermitian squares decompositions for trigonometric uni-

variate polynomials positive on the unit circle with Gaussian co-

efficients. The numerical steps the first and second algorithm rely

on are complex root isolation and semidefinite programming, re-

spectively. An exact sum of Hermitian squares decomposition is

obtained thanks to compensation techniques. The third algorithm,

also based on complex semidefinite programming, is an adaptation

of the rounding and projection algorithm by Peyrl and Parrilo.

For all three algorithms, we prove bit complexity and output size

estimates that are polynomial in the degree of the input and linear

in the maximum bitsize of its coefficients.

We compare their performance on randomly chosen benchmarks,

and further design a certified finite impulse filter.
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1 INTRODUCTION
In this paper, we denote by (resp.N) Z the set of (resp. non-negative)
integers and by Q (resp. Q+), R and C the fields of rational (resp.

positive rational), real and complex numbers. For a complex variable

or number 𝑓 , we denote by ¯𝑓 the associated conjugate variable or

number.

Letℋ [𝑧] be the set of trigonometric univariate polynomials de-

fined as a subset of Laurent polynomials with complex coefficients

and complex variable 𝑧 as follows:

𝑓 (𝑧) = 𝑓0 +
(
𝑓1

𝑧
+ ¯𝑓1𝑧

)
+ · · · +

(
𝑓𝑑

𝑧𝑑
+ ¯𝑓𝑑𝑧

𝑑

)
, (1)

with 𝑓0 ∈ R and 𝑑 ∈ N. By convention, when 𝑓𝑑 ≠ 0, 𝑑 is the degree

of 𝑓 ; the degree of the zero polynomial is −∞.

In this paper, since weworkwith base fields of characteristic zero,

we see more polynomials through the evaluation maps they define

than as algebraic objects. Note that for 𝑓 ∈ ℋ [𝑧], the restriction
of the map 𝜁 ↦→ 𝑓 (𝜁 ) over the unit circle 𝒞 := {𝜁 ∈ C : |𝜁 | = 1}
coincides with the evaluation map defined by the polynomial

𝑔(𝑧) = 𝑓0 +
(
𝑓1𝑧 + ¯𝑓1𝑧

)
+ · · · +

(
𝑓𝑑𝑧

𝑑 + ¯𝑓𝑑𝑧
𝑑
)
,

since
¯𝜁 = 𝜁−1

for 𝜁 ∈ 𝒞. Note also that for any 𝜁 ∈ 𝒞, 𝑔(𝜁 ) ∈ R so

that𝑔 is aHermitian polynomial. Finally, note that for anyHermitian

polynomial 𝑔, there exists 𝑓 ∈ ℋ [𝑧] such that the restrictions to

𝒞 of the maps 𝜁 ↦→ 𝑔(𝜁 ) and 𝜁 ↦→ 𝑓 (𝜁 ) coincide (this is due to the

fact that all points in 𝒞 satsify 𝜁 ¯𝜁 = 1).

For ℎ(𝑧) = ∑𝑑
𝑘=0

ℎ𝑘𝑧
𝑘 ∈ C[𝑧], we define ℎ★(𝑧) = ∑𝑑

𝑘=0

¯ℎ𝑘𝑧
−𝑘

.

One says that 𝑓 is a sum of Hermitian squares (SOHS) if there
exist some 𝑟 ∈ N−{0} and polynomials 𝑠1, . . . , 𝑠𝑟 in C[𝑧] such that

𝑓 (𝑧) =
𝑟∑
𝑗=1

𝑠 𝑗 (𝑧)𝑠★𝑗 (𝑧) .

This terminology of Hermitian squares comes from the above dis-

cussion as 𝑠★
𝑗
(𝜁 ) = 𝑠 𝑗 ( ¯𝜁 ) for all 𝜁 ∈ 𝒞. By the Riesz-Fejéz spectral

factorization theorem (see, e.g., [9, Theorem 1.1]), any trigonomet-

ric univariate polynomial which is non-negative over the unit circle

𝒞 can be written as an Hermitian square, i.e., an SOHS with a single

term.

Its proof [9, pp. 3–5] is constructive but requires to manipulate

exactly all 2𝑑 complex roots of the associated Laurent polynomial.

Usually, this algorithm is applied with approximate computations,

leading to approximate certificates of non-negativity over 𝒞.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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The subset ofℋ [𝑧] with Gaussian integers coefficients, i.e., all

coefficients 𝑓𝑖 lie in Z+𝑖 Z (where 𝑖 is the standard imaginary unit)

is denoted byℋ(Z) [𝑧]. In this paper, we focus on the computation

of exact certificates of non-negativity of polynomials inℋ(Z) [𝑧]
by means of exact SOHS decompositions.

Our motivation comes from design problems in discrete-time

signal processing. In particular, for the design of finite impulse

response (FIR) filters in signal processing, minimizing the stopband

energy is a crucial issue [9, Chapter 5]. Computing exact SOHS

decompositions of trigonometric univariate polynomials in this

context appears to be a natural computational issue.

Our contribution. We design three exact algorithms to compute

SOHS decompositions of polynomials inℋ(Z) [𝑧] that are positive
over the unit circle 𝒞. These algorithms are based on perturbation-

compensation or rounding-projection techniques. We analyze their

bit complexities and output size as well.

We use the height of a polynomial with rational coefficients

to measure its bitsize that is defined as follows. The bitsize of an

integer 𝑏 is denoted by ht(𝑏) := ⌊log
2
( |𝑏 |)⌋ + 1 with ht(0) := 1,

where log
2
is the binary logarithm. Given 𝑎 ∈ Z and 𝑏 ∈ Z with

𝑏 ≠ 0 and gcd(𝑎, 𝑏) = 1, we define ht (𝑎/𝑏) = ht(𝑎) + ht(𝑏). We

define the bitsize of a Gaussian rational number as ht(𝑎 + 𝑖𝑏) =

max(ht(𝑎), ht(𝑏)), where 𝑎, 𝑏 ∈ Q. For a non-zero polynomial 𝑓

withGaussian rational coefficients, we define ht(𝑓 ) as themaximum

bitsize of the non-zero coefficients of 𝑓 .

For two maps 𝑝, 𝑞 : N𝑚 → R, one writes “𝑝 (𝑣) = 𝑂 (𝑞(𝑣))" when
there exists 𝑏 ∈ N such that 𝑝 (𝑣) ≤ 𝑏𝑞(𝑣), for all 𝑣 ∈ N𝑚 . We use

the notation 𝑝 (𝑣) = 𝑂 (𝑞(𝑣)) when 𝑝 (𝑣) = 𝑂 (𝑞(𝑣) log
𝑘 𝑞(𝑣)) for

some 𝑘 ∈ N.
The first algorithm we design, called csos1, is a perturbation-

compensation one in which the numerical step computes an ap-

proximate SOHS decomposition for a well-chosen perturbation of

the input polynomial with complex root isolation.

Theorem 1. Let 𝑓 ∈ ℋ(Z) [𝑧] be positive on 𝒞 of degree 𝑑 and
coefficients of maximum bitsize 𝜏 . There exists an Algorithm csos1
which on input 𝑓 computes an SOHS decomposition of 𝑓 with Gaussian
(or Gaussian modulus) coefficients using at most

𝑂

(
𝑑6 (𝑑 + 𝜏)

)
bit operations. In addition, the maximum bitsize of the output coeffi-
cients is bounded from above by 𝑂 (𝑑5 (𝑑 + 𝜏)).

The two other algorithms, called csos2 and csos3, are based
on complex semidefinite programming (SDP). SDP consists of min-

imizing a linear function over a set of matrices constrained to

have non-negative eigenvalues; see [36]. In csos2, we compute

an approximate SOHS decomposition for the perturbation by us-

ing complex SDP solving. Algorithm csos3 is an adaptation of

the rounding-projection algorithm raised by Peyrl and Parrilo [29].

These algorithms are more expensive compared to the first one

because we replace complex root isolation by complex SDP solv-

ing. Despite their worse complexity, they allow one to handle con-

strained optimization problems and to design filters.

Theorem 2. Let 𝑓 ∈ ℋ(Z) [𝑧] be positive on 𝒞 of degree 𝑑 and
coefficients of maximum bitsize 𝜏 . There exist algorithms csos2 and

or csos3 which on input 𝑓 output an SOHS decomposition of 𝑓 with
(modulus) of Gaussian coefficients using at most

𝑂 (𝑑13 (𝑑 + 𝜏)2)

bit operations. In addition, the maximal bitsize of the output coeffi-
cients is bounded from above by 𝑂 (𝑑6 (𝜏 + 𝑑)).

These algorithms have been implemented using the Julia pro-

gramming language [5]. We report on practical experiments that

Algorithm csos1 runs faster than the other algorithms; that coin-

cides with the obtained complexity. Furthermore, we rely on csos3
to design filters in a certified way.

Related works. Computation of exact weighted sums of squares

decompositions of a univariate polynomial 𝑓 ∈ Q[𝑧] has been
studied in [8, 23, 33]. Many of the techniques developed in this paper

are borrowed from these previous works. We also mention [16]

which allows to compute certificates of non-negativity of univariate

polynomials sharing common real roots with another univariate

polynomials. Note that computing sums of squares decompositions

of non-negative univariate polynomials with rational coefficients

is easier from a complexity viewpoint, according to the estimate in

[23, Theorem 4.4].

It should be noted that our SOHS decomposition problems can

be translated into sums of squares decompositions of bivariate

polynomials with real variables, which are positive on 𝒞. This is a

topical computational issue popularized by the original papers of

Lasserre and Parrilo [19, 28] allowing to compute approximate sums

of squares decompositions based on semi-definite programming.

Hybrid symbolic-numeric turning these approximate certificates

to exact ones are given in [13, 15, 21, 22, 29]. Exact certificates for

several special families of polynomials have been given, for instance

SAGE/SONC polynomials [24, 35], polynomials lying in the interior

of the SOS cone [22], and polynomials whose gradient ideals are

zero-dimensional and radical [21].

Applying those results to the bivariate setting we can reduce

our problems to, [22, Theorem 16] yields bit complexity and output

bitsize estimates which are exponential in the input degree of 𝑓

and in the maximum bitsize of its coefficients.

Note that in our case, the degree of the SOHS decomposition

is known in advance and we estimate the bit complexity of the

coefficients involved in this decomposition. In the multivariate case,

the situation ismore delicate and providing degree bounds is already

a challenge. Recent efforts have been pursued for polynomials

positive over the unit sphere [11, 31], or for more general closed

sets of constraints defined by finitely many polynomials [3, 26].

Theorem 2 in [11] provides us a degree bound that is linear in

the number of variables while Theorem 1.7 in [3] and Corollary 1

in [26] give bounds that are polynomial in the input degrees and

exponential in the number of variables.

2 AUXILIARY RESULTS
For a polynomial 𝑓 = 𝑓0+· · ·+ 𝑓𝑑𝑧𝑑 ∈ C[𝑧] of degree 𝑑 , theminimal
distance between the roots 𝛼1, . . . , 𝛼𝑑 of 𝑓 is defined by

sep(𝑓 ) := min{|𝛼𝑖 − 𝛼 𝑗 |, 𝛼𝑖 ≠ 𝛼 𝑗 }.
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The norm of 𝑓 is defined as ∥ 𝑓 ∥ :=
√
|𝑓𝑑 |2 + · · · + |𝑓0 |2. The follow-

ing lemma is an immediate consequence of the discussion following

the corollary of Theorem 2 from [25].

Lemma 3. Let 𝑓 ∈ Z[𝑖] [𝑧] of degree 𝑑 and 𝜏 be the maximum
bitsize of its coefficients. The minimal distance between the roots of 𝑓
satisfies

sep(𝑓 ) ≥
√

3

𝑑
𝑑
2
+1∥ 𝑓 ∥𝑑−1

. (2)

Therefore, one needs an accuracy of 𝛿 = 𝑂 (𝜏𝑑) to compute distinct
approximations of the roots of 𝑓 with complex root isolation.

Proof. By [25, Theorem 2], the minimal distance between the

roots of 𝑓 satisfies:

sep(𝑓 ) ≥
√

3| Disc(𝑓 ) |

𝑑
𝑑
2
+1∥ 𝑓 ∥𝑑−1

, (3)

where Disc(𝑓 ) = 𝑓 2𝑑−2

𝑑

∏
𝑗<𝑘 (𝛼 𝑗 − 𝛼𝑘 )2

is the discriminant of 𝑓 .

Note that Disc(𝑓 ) can be written as a polynomial in 𝑓0, . . . , 𝑓𝑑 with

integer coefficients, thus Disc(𝑓 ) ∈ Z[𝑖]. Now we consider the two

following cases.

Case 1: 𝑓 has no multiple root in C. Then, Disc(𝑓 ) is nonzero.
SinceDisc(𝑓 ) ∈ Z[𝑖], one has | Disc(𝑓 ) | ≥ 1which from (3), implies

sep(𝑓 ) ≥
√

3| Disc(𝑓 ) |

𝑑
𝑑
2
+1∥ 𝑓 ∥𝑑−1

≥
√

3

𝑑
𝑑
2
+1∥ 𝑓 ∥𝑑−1

.

Case 2: 𝑓 has a multiple root inC. Let 𝑝 be the square-free part of

𝑓 . From [18, Corollary 2.2 ], the coefficients of 𝑝 lie in Z[𝑖]. Clearly,
sep(𝑝) = sep(𝑓 ) and ∥𝑝 ∥ ≤ ∥ 𝑓 ∥. Hence, by applying Case 1 for 𝑝 ,

where 𝑘 = deg𝑝 ≤ 𝑑 , we have

sep(𝑓 ) = sep(𝑝) ≥
√

3

𝑘
𝑘
2
+1∥𝑝 ∥𝑘−1

≥
√

3

𝑑
𝑑
2
+1∥ 𝑓 ∥𝑑−1

.

□

The following lemma provides a lower bound on the minimum

of a real bivariate polynomial over the unit circle in R2
.

Lemma 4. Let 𝑝 ∈ Z[𝑥,𝑦] be a real bivariate polynomial of degree
𝑑 and 𝜏 be the maximum bitsize of its coefficients. Assume that 𝑝 is
positive on the unit circle 𝒞. Then, the minimum of 𝑝 on 𝒞 satisfies
the following inequality:

𝑝min := min{𝑝 (𝑥,𝑦) : 𝑥2 + 𝑦2 = 1} ≥ 2
−𝑂 (𝑑3 (𝑑+𝜏)) . (4)

Proof. We consider the following algebraic set:

𝑉 := {(𝑥,𝑦,𝑚) ∈ C3
: 𝑝 (𝑥,𝑦) −𝑚 = 𝑦

𝜕𝑝

𝜕𝑥
− 𝑥

𝜕𝑝

𝜕𝑦
= 0, 𝑥2 + 𝑦2 = 1}.

Note that the projection of 𝑉 on the 𝑚-axis defines the critical

values of the restriction of the evaluation map 𝑧 ↦→ 𝑝 (𝑧) to 𝒞

which contains 𝑝min.

Assume first that 𝑉 is finite. By [32, Corollary 2], there is a

zero-dimensional parametrization of 𝑉 defined by real univariate

polynomials with bitsizes upper bounded by 𝑂 (𝑑3 (𝑑 + 𝜏)). Since
there exists (𝑥0, 𝑦0) on𝒞 such that (𝑥0, 𝑦0, 𝑝min) belongs to𝑉 , 𝑝min

is a (non-zero) root of a univariate polynomial of degree at most

𝑂 (𝑑3𝜏). Hence, the Cauchy bound [7] yields:

|𝑝min | ≥ 2
−𝑂 (𝑑3 (𝑑+𝜏)) .

Assume now that 𝑉 is not finite. By Krull’s theorem [17], this

implies that𝒞 is contained in the complex zero set defined by𝑦
𝜕𝑝
𝜕𝑥 −

𝑥
𝜕𝑝
𝜕𝑦 = 0, whence is a factor of this polynomial. This implies that

there exists a factorization 𝑝 = 𝑝1𝑝2 where 𝑝1 is a power of 𝑥
2+𝑦2−𝑐

(where 𝑐 is a constant) and the zero set of the polynomial 𝑦
𝜕𝑝2

𝜕𝑥 −
𝑥
𝜕𝑝2

𝜕𝑦 = 0 has a zero-dimensional intersection with 𝒞. This yields

the following analysis. The set 𝑉 is the union of a 1-dimensional

component containing points (𝑚, 𝑥,𝑦) where (𝑥,𝑦) ranges over 𝒞
and𝑚 = 𝑐 − 1, and a 0-dimensional component containing points

(𝑚, 𝑥,𝑦) which are solutions to

𝑝 (𝑥,𝑦) =𝑚, 𝑦
𝜕𝑝2

𝜕𝑥
− 𝑥

𝜕𝑝2

𝜕𝑦
= 0, 𝑥2 + 𝑦2 = 1.

Applying the first paragraph of the proof to the above system ends

the proof. □

The upcoming result will be used to estimate bit complexities of

the two algorithms csos1 and csos2.

Lemma 5. Let 𝑓 ∈ ℋ(Z) [𝑧] be positive on𝒞, of degree 𝑑 and 𝜏 be
the maximum bitsize of its coefficients. Then, there exists a positive
integer 𝑁 = 𝑂 (𝑑3 (𝑑 + 𝜏)) such that 𝑓 − 1

2
𝑁 is positive on 𝒞.

Proof. With 𝑧 = 𝑥 + 𝑖𝑦, let us define 𝑝 (𝑥,𝑦) := 𝑓 (𝑥 + 𝑖𝑦). Since
𝑓 ∈ ℋ(Z) [𝑧], one has 𝑝 ∈ Z[𝑥,𝑦] with degree 2𝑑 and bitsize

𝑂 (ht(𝑑) +𝜏). Clearly, min{𝑓 (𝑧) : |𝑧 | = 1} = min{𝑝 (𝑥,𝑦) : 𝑥2 +𝑦2 =

1} = 𝑝min. Let us choose a positive integer 𝑁 such that
1

2
𝑁 ≤ 𝑝min.

From Lemma 4, we conclude that 𝑁 = 𝑂 (𝑑3 (𝑑 + 𝜏)). □

The following result, stated in [2, Lemma 2.1 & Theorem 3.2],

will be used to investigate the bit complexity of the two algorithms

csos2 and csos3 based on SDP solving.

Lemma 6. Let 𝑄 be a Hermitian matrix indexed on {−𝑑, . . . , 𝑑},
with positive eigenvalues and rational entries. Let 𝐿 be the factor of𝑄
computed by Cholesky’s decomposition with finite precision 𝛿𝑐 . Then,
𝐿𝐿𝑇 = 𝑄 + 𝐻 , where

|𝐻𝑖 𝑗 | ≤
(𝑑 + 2)2−𝛿𝑐

√
|𝑄𝑖𝑖𝑄 𝑗 𝑗 |

1 − (𝑑 + 2)2−𝛿𝑐
. (5)

In addition, if the smallest eigenvalue ˜𝜆 of 𝑄 satisfies the inequality

2
−𝛿𝑐 <

˜𝜆

𝑑2 + 𝑑 + (𝑑 − 1) ˜𝜆
, (6)

Cholesky’s decomposition returns a rational nonsingular factor 𝐿.

3 ALGORITHM BASED ON ROOT ISOLATION
In this section, we propose an algorithm, called csos1, to com-

pute an SOHS decomposition of a polynomial inℋ(Z) [𝑧] which is

positive on the unit circle 𝒞. It puts into practice a perturbation-

compensation procedure based on complex roots isolation, and can

be viewed as the extension of the procedure univsos2 (stated in

[8] and analyzed in [23, § 4]) to the complex setting.
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3.1 Description
Description. Algorithm csos1 takes as input a polynomial 𝑓 ∈
ℋ(Z) [𝑧] of degree 𝑑 which is positive on 𝒞. It outputs two pos-

itive rational numbers 𝜀, 𝑎, a rational number 𝑢0, and two lists of

Gaussian numbers [𝑢1, . . . , 𝑢𝑑 ] and [𝛼1, . . . , 𝛼𝑑 ] such that

𝑓 (𝑧) =
(
𝜀 − 2

𝑑∑
𝑘=1

|𝑢𝑘 | − 𝑢0

)
+

𝑑∑
𝑘=1

|𝑢𝑘 |
(
𝑧𝑘 + 𝑢𝑘

|𝑢𝑘 |

) (
𝑧−𝑘 + 𝑢𝑘

|𝑢𝑘 |

)
+ 𝑎

𝑑∏
𝑘=1

(𝑧 − 𝛼𝑘 )
(
𝑧−𝑘 − 𝛼𝑘

)
with

(
𝜀 − 2

𝑑∑
𝑘=1

|𝑢𝑘 | − 𝑢0

)
> 0. (7)

Algorithm 1 csos1

Input: 𝑓 ∈ ℋ(Z) [𝑧] positive on 𝒞 of degree 𝑑

Output: 𝜀, 𝑎 ∈ Q+, 𝑢0 ∈ Q, two lists [𝑢1, . . . , 𝑢𝑑 ] and [𝛼1, . . . , 𝛼𝑑 ]
in Q[𝑖] providing an SOHS decomposition for 𝑓 on 𝒞 as in (7):

1: 𝛿 := 1, 𝜀 := 1 and 𝑝 := 𝑓 (𝑥 + 𝑖𝑦) ⊲ 𝑧 = 𝑥 + 𝑖𝑦
2: while hasrealrootoncircle(𝑝 − 𝜀) do 𝜀 := 𝜀

2

3: done
4: boo := false

5: while not boo do
6: [𝛼1, . . . , 𝛼𝑑 ] := complexroots(𝑓 − 𝜀, 𝛿)
7: 𝐹 :=

∏𝑑
𝑘=1

(𝑧 − 𝛼𝑘 )
(
𝑧−1 − 𝛼𝑘

)
8: 𝑎 := coeffs(𝑓 , 0)/coeffs(𝐹, 0), 𝑢 := 𝑓 − 𝜀 − 𝑎𝐹

9: [𝑢0, 𝑢1, . . . , 𝑢𝑑 ] := coeffs(𝑢)
10: if 𝜀 > 𝑢0 + 2

∑𝑑
𝑘=1

|𝑢𝑘 | then boo := true

11: else 𝛿 := 2𝛿

12: end
13: done
14: return 𝜀, 𝑎,𝑢0, [𝑢1, . . . , 𝑢𝑑 ], [𝛼1, . . . , 𝛼𝑑 ]

In Line 1 we replace 𝑧 by 𝑥 +𝑖𝑦 in 𝑓 where 𝑥,𝑦 are (real) variables

to obtain a real bivariate polynomial 𝑝 of degree 2𝑑 . Since, by

assumption, 𝑓 is positive over 𝒞, there exists 𝜀 > 0 small enough,

such that 𝑝 is positive on 𝒞. The first while loop from Line 2 to

3 computes such positive rational number 𝜀. To do so, it uses an

auxiliary procedure hasrealrootoncircle, which returns true if

𝑝 − 𝜀 cancels on the 𝒞 = {(𝑥,𝑦) ∈ R2
: 𝑥2 + 𝑦2 − 1 = 0}. Such a

procedure is easily obtained with any polynomial system solver

for bivariate polynomial systems. In practice we use the real root

solver msolve [4].

In the second while loop from Line 5 to 13, the algorithm com-

putes at Line 6 Gaussian approximations 𝛼1, . . . , 𝛼𝑑 (and their con-

jugates) of the complex roots of 𝑓 − 𝜀 with accuracy 𝛿 . This is done

using a procedure complexroots which on input a rational frac-

tion and a required accuracy 𝛿 returns all the complex roots of the

numerator of the fraction at accuracy 𝛿 (see, e.g., [6]).

The idea is to obtain (up to proper scaling) an approximate SOHS

decomposition 𝐹 of 𝑓 − 𝜀.

The auxiliary coeffs procedure provides the list of coefficients

of a polynomial, e.g., coeffs(𝑓 , 0) returns the constant term of 𝑓 .

We then consider the remainder 𝑢 at Line 8 which is the difference

between 𝑓 − 𝜀 and its approximate SOHS decomposition. As proved

in Section 3.2, if the precision of root isolation is large enough, the

stopping condition 𝜀 > 𝑢0 + 2

∑𝑑
𝑘=1

|𝑢𝑘 | is fulfilled, otherwise the
precision is increased.

To illustrate csos1, we use the following simple example.

Example 7. Let 𝑓 = 5 + (1 + 𝑖)𝑧−1 + (1 − 𝑖)𝑧 which is positive

on 𝒞. We obtain 𝑝 = 5 + 2𝑥 + 2𝑦. With 𝜀 = 1, we check with

hasrealrootoncircle that 𝑝 − 𝜀 is positive on 𝒞. With precision

𝛿 = 16, we compute complex approximation roots 𝛼1 = − 7

4
− 7

4
𝑖

and 𝛼1 of 𝑓 − 𝜀. Defining 𝐹 = (𝑧 − 𝛼1) (𝑧−1 − 𝛼1), we obtain 𝑎 = 32

57
,

𝑢 = 𝑓 − 𝜀 −𝑎𝐹 = ( 1

57
+ 𝑖

57
)𝑧−1 + ( 1

57
− 𝑖

57
)𝑧. Clearly, 𝜀 = 1 > 0+ 2

√
2

57

so the condition in Line 10 is satisfied. Then, 𝑓 has an exact SOHS

decomposition as follows:

𝑓 = (1− 2

√
2

57
) +

√
2

57
(𝑧+ 1+𝑖√

2

) (𝑧−1+ 1−𝑖√
2

) + 32

57
(𝑧+ 7

4
+ 7

4
𝑖) (𝑧−1+ 7

4
− 7

4
𝑖).

3.2 Proof of Theorem 1
Correctness of Algorithm csos1. We first prove that Algo-

rithm csos1 terminates and outputs an SOSH decomposition of 𝑓 .
By Lemma 5, there exits a positive rational 𝜀 such that 𝑓 − 𝜀 is

also positive on 𝒞. Thus, the first loop (from Line 2 to Line 3) of

Algorithm csos1 terminates. The magnitude of the coefficients of

the remainder polynomial 𝑢 defined in Line 9 converges to 0 as the

precision 𝛿 of the complex root finder goes to infinity (because of the

continuity of roots w.r.t. coefficients). This implies that the condition

of Line 10 is fulfilled after finitely many iterations, thus the second

loop (from Line 5 to Line 13) always terminates. Eventually, we

have

𝑓 = 𝜀 + 𝑢0 +
(
𝑢1𝑧

−1 + 𝑢1𝑧

)
+ · · · +

(
𝑢𝑑𝑧

−𝑑 + 𝑢𝑑𝑧𝑑
)
+ 𝑎𝐹 .

In addition,

𝑢𝑘𝑧
−𝑘 + 𝑢𝑘𝑧𝑘 = |𝑢𝑘 |

(
𝑧𝑘 + 𝑢𝑘

|𝑢𝑘 |

) (
𝑧−𝑘 + 𝑢𝑘

|𝑢𝑘 |

)
− 2|𝑢𝑘 |, (8)

yielding (7). From the proof of the Riesz-Fejéz theorem (see, e.g.,

[9, pp. 3–5]), 𝑓 can be decomposed as a single Hermitian square,

thus the constant term of 𝑓 lies in Q+. Similarly the constant term∏𝑑
𝑘=1

|𝛼𝑘 |2 of 𝐹 is also a positive rational number, so 𝑎 ∈ Q+.
Clearly, the polynomial 𝐹 and the first term on the right-hand side

of (8) are SOHS. Hence, as 𝜀 > 𝑢0 + 2

∑𝑑
𝑘=1

|𝑢𝑘 |, the right-hand side
of (7) is a sum of 𝑑 + 2 Hermitian squares involving Gaussian (or

Gaussian modulus) numbers. □

We now analyze the bit complexity of Algorithm csos1.

Proof of Theorem 1. Let us show that the bitsizes of 𝑢0, . . . , 𝑢𝑑 ,
𝛼1, . . . , 𝛼𝑑 and 𝑎 in (7) are bounded from above by 𝑂 (𝑑5 (𝑑 + 𝜏)).

The proof is almost the same as in the univariate real setting

[23, Theorem 4.3], thus we only provide the main ingredients and

skip some technical details. From Lemma 5, there exists a positive

integer 𝑁 = 𝑂 (𝑑3 (𝑑 + 𝜏)) such that 𝑓 − 𝜀 is positive on 𝒞, with

𝜀 = 1

2
𝑁 . Define 𝑚 := 2𝑑 and 𝑔(𝑧) := 𝑧𝑑 (𝑓 − 𝜀) = ¯𝑓𝑑𝑧

2𝑑 + · · · +
¯𝑓1𝑧

𝑑+1 + 𝑔𝑑𝑧𝑑 + 𝑓1𝑧
𝑑−1 + · · · + 𝑓𝑑 , with 𝑔𝑑 = 𝑓0 − 𝜀. Note that 𝑔 and

𝑓 − 𝜀 have the same roots. Denote by 𝜁1, . . . , 𝜁𝑚 the (exact) complex

roots of 𝑔 and by 𝜁 ′
1
, . . . , 𝜁 ′𝑚 their approximations with a precision

𝛿 , so that 𝜁 ′
𝑗
= 𝜁 𝑗 (1 + 𝑒 𝑗 ), where |𝑒 𝑗 | ≤ 𝑒 := 2

−𝛿
, for 𝑗 = 1, . . . ,𝑚.

Let 𝑔′ := ¯𝑓𝑑 (𝑧 − 𝜁 ′
1
) . . . (𝑧 − 𝜁 ′𝑚). The remainder polynomial 𝑢

defined in Line 8 of Algorithm csos1 satisfies 𝑧𝑑𝑢 = 𝑔 − 𝑔′.
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We now show that if 𝛿 = 𝑁 + log
2
((2𝑑 + 1)2∥ 𝑓 ∥) = 𝑂 (𝑑3 (𝑑 +𝜏)),

then the coefficients of 𝑢 satisfy the condition 𝜀 > 𝑢0 + 2

∑𝑑
𝑘=1

|𝑢𝑘 |.
We apply Lemma 3 to the polynomial obtained by multiplying

𝑧𝑑 (𝑓 − 𝜀) with the least common multiple of its coefficients. Hence,

we require an accuracy at least 𝑂 (𝑁𝑑) to compute distinct ap-

proximations of its roots in the worst case. We will actually need

an accuracy of larger bitsize 𝑂 (𝑑4 (𝑑 + 𝜏)) in the worst case. Let

𝑗 ∈ {0, 1, . . . , 𝑑}. Using Vieta’s formulas, we have∑
1≤𝑖1< · · ·<𝑖 𝑗 ≤𝑚

𝜁𝑖1 · · · 𝜁𝑖 𝑗 = (−1) 𝑗
𝑔𝑚−𝑗
𝑔𝑚

= (−1) 𝑗
𝑔𝑚−𝑗

¯𝑓𝑑
. (9)

Similarly, we have:∑
1≤𝑖1< · · ·<𝑖 𝑗 ≤𝑚

𝜁 ′𝑖1 · · · 𝜁
′
𝑖 𝑗
= (−1) 𝑗

𝑔′
𝑚−𝑗
¯𝑓𝑑

. (10)

We estimate an upper bound for the coefficient 𝑢𝑑−𝑗 of the differ-
ence polynomial 𝑢. Clearly, 𝑢𝑑−𝑗 = 𝑔𝑚−𝑗 −𝑔′

𝑚−𝑗 . From (9) and (10),

we see that

|𝑢𝑑−𝑗 | = | ¯𝑓𝑑 |

������ ∑
1≤𝑖1< · · ·<𝑖𝑑+𝑗 ≤𝑚

(𝜁𝑖1 · · · 𝜁𝑖𝑑+𝑗 − 𝜁 ′𝑖1 · · · 𝜁
′
𝑖𝑑+𝑗

)

������
= | ¯𝑓𝑑 |

������ ∑
1≤𝑖1< · · ·<𝑖𝑑+𝑗 ≤𝑚

𝜁𝑖1 · · · 𝜁𝑖𝑑+𝑗
©­«1 −

𝑑+𝑗∏
𝑘=1

(1 + 𝑒𝑖𝑘 )
ª®¬
������ .

Then, exactly as in the proof of [23, Theorem 4.3], we rely on

[14, Lemma 3.3] and the Cauchy bound [7] to obtain the desired

estimates.

We now prove the remaining assertion in Theorem 1: Algorithm
csos1 runs in 𝑂 (𝑑6 (𝑑 + 𝜏)) boolean operations. Again the proof

scheme is very similar as the one of [23, Theorem 4.4]. The algo-

rithm includes two steps.

We consider the first step checking that 𝑔(𝑧) defined in the

previous proof has no real root on the unit circle. Let 𝜀 be given

as in Lemma 5 with ht(𝜀) = 𝑂 (𝑑3 (𝑑 + 𝜏)). By relying on Sylvester–

Habicht sequences [20, Corollary 5.2], the check can be performed

using 𝑂 ((2𝑑)2
ht(𝜀)) = 𝑂 (𝑑5 (𝑑 + 𝜏)) boolean operations. In the

second step, we compute approximate complex roots of 𝑔(𝑧) and
check the condition at Line 10. It follows from [27, Theorem 4] that

isolating disks of radius less than 2
−𝛿

for all complex roots of 𝑔(𝑧)
can be computed in𝑂 (𝑑3 + 𝑑2

ht(𝜀) + 𝑑𝛿)) = 𝑂 (𝑑6 (𝑑 + 𝜏)) boolean
operations. The computation of all 𝑢𝑘 has a negligible cost w.r.t. to

the computation of the complex roots. Therefore, we conclude that

csos1 runs in 𝑂 (𝑑6 (𝑑 + 𝜏)) boolean operations. □

4 ALGORITHM BASED ON COMPLEX SDP
This section states and analyzes another perturbation-compensation

algorithm, named csos2, to compute an SOHS decomposition of a

trigonometric polynomial being positive on𝒞. In the algorithm, the

approximate SOHS decomposition for the perturbation is computed

by using complex SDP solving. It can be viewed as the adaptation

of the procedure intsos (stated and analyzed in [22, § 3]) to the

complex univariate setting. Let 𝐼 stands for the identity matrix

of size 𝑑 + 1. A Hermitian matrix 𝑄 is said to be positive semi-

definite (resp. definite) if 𝑄 has only non-negative (resp. positive)

eigenvalues, and in this case we use the notation 𝑄 ⪰ 0 (resp.

𝑄 ≻ 0). Given 𝑓 ∈ ℋ [𝑧] of degree 𝑑 , recall that a Hermitian ma-

trix 𝑄 ∈ C(𝑑+1)×(𝑑+1)
is called a Gram matrix associated with 𝑓 if

𝑓 = 𝑣★
𝑑
·𝑄 · 𝑣𝑑 , where 𝑣𝑑 (𝑧) := (1, 𝑧, . . . , 𝑧𝑑 ) contains the canonical

basis for polynomials of degree 𝑑 in 𝑧. By [9, Theorem 2.5], 𝑓 is

positive on 𝒞 if and only if there exists a positive definite Gram

matrix associated to 𝑓 .

4.1 Description
The input of Algorithm csos2 includes a polynomial 𝑓 ∈ ℋ(Z) [𝑧]
of degree 𝑑 which is positive on 𝒞. The outputs are 𝜀 ∈ Q+, a
list of Gaussian numbers [𝑢0, 𝑢1, . . . , 𝑢𝑑 ], and a list of polynomials

[𝑠1, . . . , 𝑠𝑑 ] in Q[𝑖] [𝑧] providing an SOHS decomposition of 𝑓 as

follows

𝑓 =

(
𝜀−𝑢0−2

𝑑∑
𝑘=1

|𝑢𝑘 |
)
+

𝑑∑
𝑘=1

|𝑢𝑘 |
(
𝑧𝑘 + 𝑢𝑘

|𝑢𝑘 |

) (
𝑧−𝑘 + 𝑢𝑘

|𝑢𝑘 |

)
+

𝑑∑
𝑘=0

𝑠★
𝑘
𝑠𝑘 . (11)

Algorithm 2 csos2

Input: 𝑓 ∈ ℋ(Z) [𝑧] positive on 𝒞 of degree 𝑑

Output: 𝜀 ∈ Q+, [𝑢0, 𝑢1, . . . , 𝑢𝑑 ] in Q[𝑖], [𝑠0, . . . , 𝑠𝑑 ] in Q[𝑖] [𝑧]
providing an SOHS decomposition of 𝑓 as in (11).

1: 𝛿 := 1, 𝑅 := 1, 𝛿𝑐 = 1, 𝜀 := 1 and 𝑝 := 𝑓 (𝑥 + 𝑖𝑦)
2: while hasrealrootoncircle(𝑝 − 𝜀) do 𝜀 := 𝜀

2

3: done
4: boo := false

5: while not boo do
6: (�̃�, ˜𝜆) := sdp(𝑓 − 𝜀, 𝛿, 𝑅)
7: [𝑠0, . . . , 𝑠𝑑 ] := cholesky(�̃�, ˜𝜆, 𝛿𝑐 ) ⊲ 𝑓𝜀 ≃

∑𝑑
𝑘=0

𝑠★
𝑘
𝑠𝑘

8: 𝑢 := 𝑓 − 𝜀 − ∑𝑑
𝑘=0

𝑠★
𝑘
𝑠𝑘 , [𝑢0, 𝑢1, . . . , 𝑢𝑑 ] := coeffs(𝑢)

9: if 𝜀 > 𝑢0 + 2

∑𝑑
𝑘=1

|𝑢𝑘 | then boo := true

10: else 𝛿 := 2𝛿, 𝑅 := 2𝑅, 𝛿𝑐 := 2𝛿𝑐
11: end
12: done
13: return 𝜀, [𝑢0, 𝑢1, . . . , 𝑢𝑑 ], [𝑠0, . . . , 𝑠𝑑 ]

The first steps of csos2 (Lines 1–3) are exactly the same as

csos1 to obtain 𝜀 ∈ Q+ such that 𝑓 − 𝜀 is positive on 𝒞. Then,

instead of using root isolation as in csos1, csos2 relies on complex

SDP (Line 6) and Cholesky’s decomposition (Line 7) to compute

an approximate SOHS decomposition of the perturbed polynomial.

With 𝑓 −𝜀, 𝛿 , and 𝑅, the sdp function calls an SDP solver to compute

a rational approximation �̃� of the Gram matrix associated to 𝑓 − 𝜀

and a rational approximation
˜𝜆 of its smallest eigenvalue. Its outputs

are obtained by solving the following complex SDP:

𝜆min = max

𝑄,𝜆
𝜆

s.t. tr(Θ𝑘𝑄) = 𝑓𝑘 − 1𝑘=0
𝜀 , 𝑘 = −𝑑, . . . , 𝑑 , (12)

𝑄 ⪰ 𝜆𝐼 , 𝜆 ≥ 0 , 𝑄 ∈ C(𝑑+1)×(𝑑+1) ,

where Θ𝑘 is the elementary Toeplitz matrix with ones on the 𝑘−th
diagonal and zeros elsewhere, 1𝑘=0

= 1 if 𝑘 = 0 and 0 other-

wise, tr(·) stands for the usual matrix trace operator. The equality

constraints of SDP (12) corresponds to the relation 𝑓 (𝑧) − 𝜀 =

𝑣★
𝑑
(𝑧) ·𝑄 · 𝑣𝑑 (𝑧). This SDP program (corresponding to SDP (2.14)

in [9]) computes the Gram matrix associated to 𝑓 with the largest
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minimal eigenvalue. The cholesky function computes first an ap-

proximate Cholesky’s decomposition 𝐿𝐿𝑇 of �̃� with precision 𝛿𝑐 ,

and provides as output a list of polynomials [𝑠0, . . . , 𝑠𝑑 ] ∈ Q[𝑖] [𝑧],
𝑠𝑘 is the inner product of the (𝑘+1)-th row of 𝐿 by 𝑣𝑑 . One would ex-

pect to have 𝑓 −𝜀 = ∑𝑑
𝑘=0

𝑠★
𝑘
𝑠𝑘 after using exact SDP and Cholesky’s

decomposition. Since the SDP solver is not exact, we have to con-

sider the remainder 𝑢 = 𝑓 − 𝜀 − ∑𝑑
𝑘=0

𝑠★
𝑘
𝑠𝑘 and proceed exactly as

in csos1 to obtain an exact SOHS decomposition.

4.2 Proof of Theorem 2
The lemma below prepares the bit complexity analysis of csos2.

Lemma 8. Let 𝑓 ∈ ℋ(Z) [𝑧] be positive on 𝒞 of degree 𝑑 and
bitsize 𝜏 . Assume that𝑄 is a positive definite Gram matrix associated
to 𝑓 . Then, there exist 𝜀 ∈ Q+ of bitsize𝑂 (𝑑3 (𝑑 +𝜏)) such that 𝑓 −𝜀 is
positive on𝒞, 𝛿 of bitsize𝑂 (𝑑3 (𝑑 + 𝜏)) and 𝑅 of bitsize𝑂 (ht(𝑑) + 𝜏)
such that 𝑄 − 𝜀/(𝑑 + 1)𝐼 is a Gram matrix associated to 𝑓 − 𝜀 with
𝑄 − 𝜀/(𝑑 + 1)𝐼 ≻ 2

−𝛿 𝐼 and
√

tr((𝑄 − 𝜀𝐼 )2) ≤ 𝑅.

Proof. By Lemma 5, there is a positive integer 𝑁 and 𝜀 = 2
−𝑁 =

𝑂 (𝑑3 (𝑑 +𝜏)) such that 𝑓 −3𝜀/2 > 0 on𝒞. Let 𝛿 := ⌈𝑁 +1+ log
2
(𝑑 +

1)⌉ = 𝑂 (𝑑3 (𝑑+𝜏)) so that 2
−𝛿 ≤ 𝜀

2(𝑑+1) . One has 𝑣
★
𝑑
(𝑧)𝑣𝑑 (𝑧) = 𝑑+1,

thus 𝑓 (𝑧) −𝜀 = 𝑣★
𝑑
(𝑧) (𝑄 −𝜀/(𝑑 +1)𝐼 )𝑣𝑑 (𝑧). Since 𝑓 (𝑧) −𝜀−2

−𝛿 (𝑑 +
1) > 0, we obtain 𝑣★

𝑑
(𝑧) (𝑄 − 𝜀/(𝑑 + 1)𝐼 − 2

−𝛿 𝐼 )𝑣𝑑 (𝑧) > 0.

Let 𝑅 :=
√
(𝑑 + 1) 𝑓0. Note that the equality constraint of SDP (12)

with 𝑘 = 0 reads tr(𝑄) = 𝑓0 − 𝜀 ≤ 𝑓0. The maximal eigenvalue of 𝑄

is less than 𝑓0 and tr((𝑄 − 𝜀𝐼 )2) ≤ tr(𝑄2) ≤ (𝑑 + 1) 𝑓 2

0
= 𝑅2

. □

The correctness and bit complexity proofs are very similar to

the ones for the intsos algorithm in [22, Proposition 10], so we

only provide a sketch with the main ingredients.

Proof of correctness for csos2. Since 𝑓 − 𝜀 is positive on

𝒞, SDP (12) has always a strictly feasible solution for precision

parameters (𝛿, 𝑅) with bitsizes as in Lemma 8 and the sdp function

returns an approximate Gram matrix �̃� of 𝑓 − 𝜀 such that �̃� ⪰ 2
−𝛿 𝐼

and tr(𝑄2) ≤ 𝑅2
. In particular, we obtain a rational approximation

˜𝜆 ≥ 2
−𝛿

of the smallest eigenvalue of �̃� .

At Line 6, we compute an approximate Cholesky decomposi-

tion of �̃� by using the cholesky procedure; we obtain a rational

nonsingular factor if there exists 𝛿𝑐 satisfying (6). Let 𝛿𝑐 be the

smallest integer such that 2
−𝛿𝑐 < 2

−𝛿

𝑑2+𝑑+(𝑑−1)2−𝛿 . Since the function

𝑡 ↦→ 𝑡
𝑑2+𝑑+(𝑑−1)𝑡 increases on [0, +∞) and ˜𝜆 ≥ 2

−𝛿
, (6) holds.

We now consider the polynomial 𝑢 = 𝑓 − 𝜀 − ∑𝑑
𝑘=0

𝑠★
𝑘
𝑠𝑘 . The

while loop (Lines 5–12) terminates when 𝜀 > 𝑢0 + 2

∑𝑑
𝑘=1

|𝑢𝑘 |. This
condition holds if |𝑢𝑘 | ≤ 𝜀

2𝑑+1
, for all 𝑘 = 0, . . . , 𝑑 . As in the proof

of [22, Proposition 10], we prove that this holds for large enough 𝛿

and 𝛿𝑐 , with bitsizes 𝑂 (𝑑3 (𝑑 + 𝜏)). □

Bit complexity estimate for csos2. We prove now that Al-

gorithm csos2 runs in 𝑂 (𝑑13 (𝑑 + 𝜏)2) boolean operations.

Assume that 𝜀, 𝛿, 𝑅 and 𝛿𝑐 are given as above so that, before

terminating, Algorithm csos2 performs a single iteration in each

while loop. From above results, the bitsize of each 𝜀, 𝛿, 𝛿𝑐 is upper

bounded by 𝑂 (𝑑3 (𝑑 + 𝜏)) and that of 𝑅 is 𝑂 (ht(𝑑) + 𝜏).

To investigate the computational cost of the call to sdp at Line 6,

let us note 𝑛
sdp

= 𝑑 + 1 the size of �̃� and𝑚
sdp

= 2𝑑 + 1 the number

of affine constraints of SDP (12). We rely on the bit complexity anal-

ysis of the ellipsoid method [30]. Solving SDP (12) is performed in

𝑂 (𝑛4

sdp
log

2
(2𝜏𝑛

sdp
𝑅 2

𝛿 )) iterations of the ellipsoid method, where

each iteration requires𝑂 (𝑛2

sdp
(𝑚

sdp
+ 𝑛

sdp
)) arithmetic operations

over log
2
(2𝜏𝑛

sdp
𝑅 2

𝛿 )-bit numbers (see, e.g., [12, 30]). We obtain

the following estimates: 𝑂 (𝑛4

sdp
log

2
(2𝜏𝑛

sdp
𝑅 2

𝛿 )) = 𝑂 (𝑑7 (𝑑 +
𝜏)), 𝑂 (𝑛2

sdp
(𝑚

sdp
+ 𝑛

sdp
)) = 𝑂 (𝑑3), and 𝑂 (log

2
(2𝜏𝑛

sdp
𝑅 2

𝛿 )) =

𝑂 (𝑑3 (𝑑 + 𝜏)). Therefore, the ellipsoid algorithm runs in boolean

time 𝑂 (𝑑13 (𝑑 + 𝜏)2) to compute the approximate Gram matrix �̃� .

Next, we compute the cost of calling cholesky in Line 7. Note

that Cholesky’s decomposition is performed in 𝑂 (𝑛3

sdp
) arithmetic

operations over 𝛿𝑐 -bit numbers. Because of 𝛿𝑐 = 𝑂 (𝑑3 (𝑑 + 𝜏)) and
𝑛
sdp

= 𝑑 + 1, cholesky runs in boolean time 𝑂 (𝑑6 (𝑑 + 𝜏)).
The other elementary arithmetic operations of Algorithm csos2

have a negligible cost w.r.t. to the sdp procedure. Hence, the algo-

rithm runs in boolean time 𝑂 (𝑑13 (𝑑 + 𝜏)2). □

5 ROUNDING-PROJECTION ALGORITHM
Here, we introduce Algorithm csos3 which is an adaptation of the

rounding-projection algorithm by Peyrl and Parrilo, stated in [29]

and analyzed in [22, § 3.4], and investigate its bit complexity.

The input of csos3 is a polynomial 𝑓 ∈ ℋ(Z) [𝑧] of degree 𝑑
which is positive over𝒞. The outputs consist of a list [𝑐0, . . . , 𝑐𝑑 ] ⊂
Q+ and a list of polynomials [𝑠0, . . . , 𝑠𝑑 ] in Q[𝑖] [𝑧] that provide an
SOHS decomposition of 𝑓 , namely 𝑓 =

∑𝑑
𝑘=0

𝑐𝑘𝑠
★
𝑘
𝑠𝑘 .

As in csos2, the first while loop from Lines 3–8 provides an

approximate Gram matrix �̃� associated to 𝑓 and an approximation

˜𝜆 of its smallest eigenvalue. In Line 11, we round the matrix �̃�

up to precision
ˆ𝛿 to obtain a matrix �̂� , with Gaussian coefficient

entries. The for loop from Line 12 to Line 15 is the projection step to

ensure that the equality constraints of SDP (12) hold exactly. Then

we compute the 𝐿𝐷𝐿𝑇 decomposition of 𝑄 . The list [𝑐0, . . . , 𝑐𝑑 ] is
the list of coefficients of the diagonal matrix 𝐷 and each 𝑠𝑘 is the

inner product of the (𝑘 + 1)-th row of 𝐿 and the vector 𝑣𝑑 of all

monomials up to degree 𝑑 . If all 𝑐𝑘 ’s are positive rationals and all

polynomials 𝑠𝑘 ’ have Gaussian coefficients, then the second while

loop ends, otherwise we increase the precision
ˆ𝛿 .

As emphasized in [22, § 3.4], it turns out that csos2 and csos3
have the same bit complexity. We omit any technicalities as the

proof is almost the same as [22, Theorem 12].

Bit complexity estimate for csos3. For 𝑓 ∈ ℋ(Z) [𝑧] posi-
tive over 𝒞 with degree 𝑑 and maximal bitsize 𝜏 , there exist 𝛿 , ˆ𝛿

with bitsizes upper bounded by 𝑂 (𝑑3 (𝑑 + 𝜏)), and 𝑅 with bitsize

upper bounded by𝑂 (ht(𝑑) +𝜏) such that Algorithm csos3 outputs
an SOHS decomposition of 𝑓 . The bitsize of the output coefficients

is upper bounded by the output bitsize of the 𝐿𝐷𝐿𝑇 decomposition

of the matrix 𝑄 , that is 𝑂 ( ˆ𝛿 (𝑑 + 1)3) = 𝑂 (𝑑6 (𝑑 + 𝜏)). The running
time is estimated as for csos2. □

6 PRACTICAL EXPERIMENTS
This section is dedicated to experimental results obtained by run-

ning our three certification algorithms, csos1, csos2 and csos3,
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Algorithm 3 csos3

Input: 𝑓 ∈ ℋ(Z) [𝑧] positive on 𝒞 of degree 𝑑

Output: lists [𝑐0, . . . , 𝑐𝑑 ] ⊂ Q+ and [𝑠0, . . . , 𝑠𝑑 ] ⊂ Q[𝑖] [𝑧] provid-
ing an SOHS decomposition of 𝑓 as follows:

𝑓 =

𝑑∑
𝑘=0

𝑐𝑘𝑠
★
𝑘
𝑠𝑘

1: 𝛿 := 1, 𝑅 := 1, 𝛿𝑐 = 1,
ˆ𝛿 := 1

2: boo := false

3: while not boo do
4: (�̃�, ˜𝜆) := sdp(𝑓 , 𝛿, 𝑅)
5: if ˜𝜆 > 0 then boo := true

6: else 𝛿 := 2𝛿 , 𝑅 := 2𝑅

7: end
8: done
9: boo := false

10: while not boo do
11: �̂� := round(�̃�, ˆ𝛿)
12: for 𝑗 ∈ {0, . . . , 𝑑}, 𝑘 ∈ {0, . . . , 𝑗} do
13: 𝑄 𝑗, 𝑗−𝑘 := �̂� 𝑗, 𝑗−𝑘 − 1

𝑑−𝑘+1
(∑𝑑

𝑖=𝑘
�̂�𝑖,𝑖−𝑘 − 𝑓𝑘 )

14: 𝑄 𝑗−𝑘,𝑗 := 𝑄★
𝑗, 𝑗−𝑘

15: done
16: [𝑐0, . . . , 𝑐𝑑 ; 𝑠0, . . . , 𝑠𝑑 ] := ldl(𝑄) ⊲ 𝑓 =

∑𝑑
𝑘=0

𝑐𝑘𝑠
★
𝑘
𝑠𝑘

17: if 𝑐0, . . . , 𝑐𝑑 ∈ Q+, 𝑠0, . . . , 𝑠𝑑 ∈ Q[𝑖] [𝑧] then boo := true

18: else ˆ𝛿 := 2
ˆ𝛿

19: end
20: done
21: return [𝑐0, . . . , 𝑐𝑑 ], [𝑠0, . . . , 𝑠𝑑 ]

stated in Section 3, 4 and 5 respectively. First, we compare their

performance to certify that trigonometric polynomials with Gauss-

ian coefficients are positive on the unit circle 𝒞. Next, we describe

how to extend our third algorithm csos3 to design a finite impulse

response (FIR) filter in a certified fashion. Our code is implemented

in Julia, freely available online
1
, and the results are obtained on an

Intel Xeon 6244 CPU (3.6GHz) with 1.5 TB of RAM. In csos1 and
csos2, we compute 𝜀 such that 𝑓 −𝜀 is positive on𝒞 in Lines 2–3 by

using msolve [4] within the Julia library GroebnerBasis.jl. The
corresponding running time is denoted by 𝑡𝜀 . We denote by 𝑡𝑢 the

running time spent to compute the remainder polynomial 𝑢 and to

perform the comparison involving its coefficients and 𝜀. In csos1,
we compute approximate roots of 𝑓 − 𝜀 with the arbitrary-precision

library PolynomialRoots.jl [34]. In csos2 and csos3, we model

SDP (12) via JuMP [10] and solve it withMosek [1]. Exact arithmetic

is performed with the Calcium library available in Nemo.jl.

6.1 Positivity verification
We consider a family of trigonometric polynomials having Gaussian

integer coefficients 𝑓𝑑 = 10𝑑 + ∑𝑑
𝑘=1

((1 − 𝑖)𝑧−𝑘 + (1 + 𝑖)𝑧𝑘 ). For
each 𝑑 ∈ {50, 100, 150, 200, 250}, we prove that 𝑓𝑑 is positive on 𝒞

by computing via csos1, csos2 and csos3 exact SOHS decomposi-

tions. Note that each such 𝑓𝑑 is positive on 𝒞 since 𝑧−𝑘 + 𝑧𝑘 ≥ −2.

1
https://homepages.laas.fr/vmagron/files/csos.zip

For csos1, we use a precision 𝛿 = 64 (bits) to isolate complex

roots. As a side note, we were not able to use arbitrary-precision

SDP solvers (e.g., SDPA-GMP) within csos2 and csos3, because
JuMP only allows us to rely on double floating-point arithmetic at

the moment. The running times (in seconds) of the 3 algorithms are

reported in Table 1. As expected from the theoretical bit complexity

results from Theorem 1 and Theorem 2, Algorithm csos1 performs

better than csos2 and csos3. The reason why csos2 is faster than

csos3 is due to the fact that the latter algorithm requires to perform

an exact Cholesky’s factorization. Even though csos1 happens to be
the best choice to verify the positivity of polynomials with known

coefficients, the use of an SDP solver is mandatory to optimize over

positive polynomials with unknown coefficients, as demonstrated

in the next subsection.

csos1 csos2 csos3

𝑑 𝑡𝜀 𝑡𝑢 total 𝑡𝜀 𝑡𝑢 total total

50 0.2 0.3 0.6 0.2 6.6 6.8 7.7

100 1.6 2.9 4.5 1.6 128 130 184

150 5.2 13 19 5.2 830 838 1460

200 24 26 51 24 3460 3485 7214

250 64 55 120 64 10553 10622 24852

Table 1: Performance of Algorithms csos1, csos2, and csos3

6.2 Design of a certified linear-phase FIR filter
This section is devoted to the design of a linear-phase finite im-

pulse response (FIR) filter. This boils down to solving an energy

minimization problem. To obtain a certified filter, we first solve

a semidefinite optimization problem (corresponding to SDP (5.12)

from [9]) and transform the numerical output into an exact certifi-

cate via a projection procedure similar to the one used in csos3.

Let 𝐻 (𝑧) =
∑𝑑
𝑘=−𝑑 ℎ𝑘𝑧

−𝑘
be an FIR filter of order 𝑑 , with real

coefficients. Letℎ = [ℎ0, . . . , ℎ𝑑 ] be the coefficient vector of𝐻 . Since

we work on the unit circle, we have 𝑧 = exp(𝑖𝜔), for 𝜔 ∈ R, and
we abuse notation by writing 𝐻 (𝜔) instead of 𝐻 (𝑧). The passband
and stopband are respectively [0, 𝜔𝑝 ] and [𝜔𝑠 , 𝜋], where𝜔𝑝 , 𝜔𝑠 are

given. The stopband energy of the FIR filter is

𝐸𝑠 =
1

𝜋

∫ 𝜋

𝜔𝑠

|ℎ(𝜔) |2𝑑𝜔.

To design such a linear-phase filter, we minimize the stopband

energy under modulus constraints involving two parameters 𝛾𝑝 , 𝛾𝑠 :

min

𝐻 ∈ℋ [𝑧 ]
𝐸𝑠

s.t. |𝐻 (𝜔) − 1| ≤ 𝛾𝑝 , ∀𝜔 ∈ [0, 𝜔𝑝 ],
|𝐻 (𝜔) | ≤ 𝛾𝑠 , ∀𝜔 ∈ [𝜔𝑠 , 𝜋] .

As shown in [9, § 5.1.1], the above problem can be reformulated as:

min

ℎ,𝑄1,...,𝑄7

ℎ𝑇𝐶ℎ

(1 + 𝛾𝑝 )1𝑘=0
− ℎ𝑘 = 𝐿𝑘 (𝑄1) ,

ℎ𝑘 − (1 − 𝛾𝑝 )1𝑘=0
= 𝐿𝑘,0,𝜔𝑝

(𝑄2, 𝑄3) ,
s.t. 𝛾𝑠1𝑘=0

− ℎ𝑘 = 𝐿𝑘,𝜔𝑠 ,𝜋 (𝑄4, 𝑄5) ,
𝛾𝑠1𝑘=0

+ ℎ𝑘 = 𝐿𝑘,0,𝜔𝑝
(𝑄6, 𝑄7) , 𝑘 = 0, . . . , 𝑑 ,

𝑄1 ⪰ 0, . . . , 𝑄7 ⪰ 0,

(13)

https://homepages.laas.fr/vmagron/files/csos.zip


ISSAC’22, July 2022, Lille, France Victor Magron, Mohab Safey El Din, Markus Schweighofer, and Trung Hieu Vu

where 𝑄1, 𝑄2, 𝑄4, 𝑄6 are real (𝑑 + 1) × (𝑑 + 1)-matrices, 𝑄3, 𝑄5, 𝑄7

are real (𝑑 − 1) × (𝑑 − 1)-matrices; 𝐿𝑘 (𝐴) := tr(Θ𝑘𝐴) and

𝐿𝑘,𝛼,𝛽 (𝐴, 𝐵) := tr(Θ𝑘𝐴) + tr

( (
𝑎+𝑏

2
(Φ𝑘−1

+ Φ𝑘+1
)

−(𝑎𝑏 + 1

2
)Φ𝑘 − 1

4
(Φ𝑘−2

+ Φ𝑘+2
)
)
𝐵

)
,

(14)

with 𝑎 = cos𝛼,𝑏 = cos 𝛽 ; Θ𝑘 ∈ R(𝑑+1)×(𝑑+1) ,Φ𝑘 ∈ R(𝑑−1)×(𝑑−1)

are the elementary Toeplitz matrices with ones on the 𝑘-th diagonal

and zeros elsewhere (they are zero matrices whenever 𝑘 is out of

range); 𝐶 = Toep(𝑐0, . . . , 𝑐𝑑 ) is the Toeplitz matrix with the first

row (𝑐0, . . . , 𝑐𝑑 ), where

𝑐𝑘 =

{
1 − 𝜔𝑠

𝜋 , if 𝑘 = 0,

− sin𝑘𝜔𝑠

𝑘𝜋
, if 𝑘 > 0,

𝐶 = 𝑃𝑇𝐶𝑃 ⪰ 0, 𝑃 =


0 𝐽𝑑
1 0

0 𝐼𝑑

 ,

where 𝐽𝑑 and 𝐼𝑑 denote the counter identity and identity matrices

of size 𝑑 , respectively. By contrast with the unconstrained case (Al-

gorithm csos3), this program involves 7 Gram real matrix variables

and 𝑑 + 1 real variables ℎ0, . . . , ℎ𝑑 , which are the coefficients of the

polynomial corresponding to the filter.

After solving (13), we obtain numerical values for the coefficients

of ℎ and the entries of 𝑄1, . . . , 𝑄7, which are further rounded to
ˆℎ

and �̂�1, . . . , �̂�7, respectively. To project �̂�1 to a matrix𝑄1 satisfying

exactly the first set of equality constraints in SDP (13), we apply

the formula in Line 13 of Algorithm csos3 after replacing 𝑓𝑘 by

𝑝𝑘 := (1 + 𝛾𝑝 )1𝑘=0
− ˆℎ𝑘 . Similarly, we obtain matrices 𝑄2 and

𝑄3 := 𝑄3 satisfying exactly the second set of equality constraints

in SDP (13), after substitution by

ˆℎ𝑘 − (1 − 𝛾𝑝 )1𝑘=0
− tr

( (
𝑎+𝑏

2
(Φ𝑘−1

+ Φ𝑘+1
) − (𝑎𝑏 + 1

2
)Φ𝑘

− 1

4
(Φ𝑘−2

+ Φ𝑘+2
)
)
𝑄3

)
,

Eventually, similar projection steps provide the remaining matrices

𝑄4, . . . , 𝑄7 so that all equality constraints in (13) hold exactly.

As in [9, Example 5.1], we design a filter with parameters 𝑑 = 25,

𝜔𝑝 = 𝜋/5, 𝜔𝑠 = 𝜋/4, 𝛾𝑝 = 1/10 (which corresponds to a passband

ripple of 1.74 dB), and 𝛾𝑠 = 0.0158 (a stopband attenuation of 36 dB).

We first obtain a numerical lower bound of the stopband energy

𝐸 ′𝑠 = 4.461501 × 10
−5
. However, this bound happens to be inexact

as the Gram matrices obtained after the projection step are not

positive semidefinite anymore. To overcome this certification issue,

we replace the last constraint in (13) by𝑄7 − 10
−9𝐼24 ⪰ 0. Doing so,

we can successfully project the approximate Gram matrices into

exact ones with positive eigenvalues, and obtain a certified exact

lower bound of 𝐸𝑠 = 4.461503 × 10
−5

in 0.74 seconds.

REFERENCES
[1] Erling D Andersen and Knud D Andersen. 2000. The MOSEK interior point opti-

mizer for linear programming: an implementation of the homogeneous algorithm.

In High performance optimization. Springer, 197–232.
[2] Z Bai, J Demmel, and A McKenney. 1989. On floating point errors in Cholesky.

[3] Lorenzo Baldi and Bernard Mourrain. 2021. On moment approximation and the

effective Putinar’s Positivstellensatz. arXiv preprint arXiv:2111.11258 (2021).
[4] Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. 2021. Msolve: A

library for solving polynomial systems. In Proceedings of ISSAC. 51–58.
[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A

fresh approach to numerical computing. SIAM review 59, 1 (2017), 65–98.

[6] Dario A Bini and Leonardo Robol. 2014. Solving secular and polynomial equations:

A multiprecision algorithm. J. Comput. Appl. Math. 272 (2014), 276–292.
[7] A. L. B. Cauchy. 1832. Calcul des indices des fonctions. Journal de l’Ecole

Polytechnique 15, 25 (1832), 176 – 229.

[8] Sylvain Chevillard, John Harrison, Mioara Joldeş, and Christoph Lauter. 2011.

Efficient and accurate computation of upper bounds of approximation errors.

Theoretical Computer Science 412, 16 (2011), 1523–1543.
[9] Bogdan Dumitrescu. 2017. Positive trigonometric polynomials and signal processing

applications. Springer.
[10] Iain Dunning, Joey Huchette, and Miles Lubin. 2017. JuMP: A modeling language

for mathematical optimization. SIAM review 59, 2 (2017), 295–320.

[11] Kun Fang and Hamza Fawzi. 2021. The sum-of-squares hierarchy on the sphere

and applications in quantum information theory. Mathematical Programming
190, 1 (2021), 331–360.

[12] M. Grötschel, L. Lovász, and A. Schrijver. 1993. Geometric Algorithms and Combi-
natorial Optimization (second corrected edition ed.). Algorithms and Combina-

torics, Vol. 2. Springer.

[13] Feng Guo, Erich L Kaltofen, and Lihong Zhi. 2012. Certificates of impossibility

of Hilbert-Artin representations of a given degree for definite polynomials and

functions. In Proceedings of the 37th International Symposium on Symbolic and
Algebraic Computation. 195–202.

[14] Nicholas J Higham. 2002. Accuracy and stability of numerical algorithms. SIAM.

[15] Erich L Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. 2012. Exact certification

in global polynomial optimization via sums-of-squares of rational functions with

rational coefficients. Journal of Symbolic Computation 47, 1 (2012), 1–15.

[16] Teresa Krick, Bernard Mourrain, and Agnes Szanto. 2021. Univariate rational

sums of squares. arXiv preprint arXiv:2112.00490 (2021).
[17] Wolfgang Krull. 1929. Idealtheorie in Ringen ohne Endlichkeitsbedingung. Math.

Ann. 101, 1 (1929), 729–744.
[18] Serge Lang. 1993. Algebra. Edition Addison–Wesley.

[19] Jean B Lasserre. 2001. Global optimization with polynomials and the problem of

moments. SIAM Journal on optimization 11, 3 (2001), 796–817.

[20] Thomas Lickteig and Marie-Francoise Roy. 2001. Sylvester–Habicht sequences

and fast Cauchy index computation. Journal of Symbolic Computation 31, 3 (2001),
315–341.

[21] Victor Magron, Mohab Safey El Din, and Trung-Hieu Vu. 2021. Sum of squares de-

compositions of polynomials over their gradient ideals with rational coefficients.

arXiv preprint arXiv:2107.11825 (2021).
[22] VictorMagron andMohab Safey El Din. 2021. On exact Reznick, Hilbert-Artin and

Putinar’s representations. Journal of Symbolic Computation 107 (2021), 221–250.

[23] Victor Magron, Mohab Safey El Din, and Markus Schweighofer. 2019. Algo-

rithms for weighted sum of squares decomposition of non-negative univariate

polynomials. Journal of Symbolic Computation 93 (2019), 200–220.

[24] Victor Magron, Henning Seidler, and Timo de Wolff. 2019. Exact optimization

via sums of nonnegative circuits and arithmetic-geometric-mean-exponentials.

In Proceedings of ISSAC. 291–298.
[25] Kurt Mahler. 1964. An inequality for the discriminant of a polynomial. Michigan

Mathematical Journal 11, 3 (1964), 257–262.
[26] Ngoc Hoang Anh Mai and Victor Magron. 2021. On the complexity of Putinar-

Vasilescu Positivstellensatz. arXiv preprint arXiv:2104.11606 (2021).
[27] Kurt Mehlhorn, Michael Sagraloff, and Pengming Wang. 2015. From approx-

imate factorization to root isolation with application to cylindrical algebraic

decomposition. Journal of Symbolic Computation 66 (2015), 34–69.

[28] Pablo A Parrilo. 2000. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. Ph.D. Dissertation. California Institute
of Technology.

[29] Helfried Peyrl and Pablo A Parrilo. 2008. Computing sum of squares decom-

positions with rational coefficients. Theoretical Computer Science 409, 2 (2008),
269–281.

[30] Lorant Porkolab and Leonid Khachiyan. 1997. On the complexity of semidefinite

programs. Journal of Global Optimization 10, 4 (1997), 351–365.

[31] Bruce Reznick. 1995. Uniform denominators in Hilbert’s seventeenth problem.

Mathematische Zeitschrift 220, 1 (1995), 75–97.
[32] Mohab Safey El Din and Éric Schost. 2018. Bit complexity for multi-homogeneous

polynomial system solving–Application to polynomial minimization. Journal of
Symbolic Computation 87 (2018), 176–206.

[33] Markus Schweighofer. 1999. Algorithmische beweise für nichtnegativ-und posi-

tivstellensätze. Master’s thesis, Universität Passau 136 (1999).

[34] Jan Skowron and Andrew Gould. 2012. General complex polynomial root solver

and its further optimization for binary microlenses. arXiv:1203.1034 (2012).
[35] Jie Wang and Victor Magron. 2020. A second order cone characterization for

sums of nonnegative circuits. In Proceedings of the 45th International Symposium
on Symbolic and Algebraic Computation. 450–457.

[36] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. 2012. Handbook of
semidefinite programming: theory, algorithms, and applications. Vol. 27. Springer
Science & Business Media.


	Abstract
	1 Introduction
	2 Auxiliary results
	3 Algorithm based on root isolation
	3.1 Description
	3.2 Proof of Theorem 1

	4 Algorithm based on complex SDP
	4.1 Description
	4.2 Proof of Theorem 2

	5 Rounding-projection algorithm
	6 Practical experiments
	6.1 Positivity verification
	6.2 Design of a certified linear-phase FIR filter

	References

