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Abstract

We consider the problem of finding exact sums of squares (SOS) decompositions for certain classes
of non-negative multivariate polynomials, relying on semidefinite programming (SDP) solvers.

We start by providing a hybrid numeric-symbolic algorithm computing exact rational SOS de-
compositions for polynomials lying in the interior of the SOS cone. It computes an approximate SOS
decomposition for a perturbation of the input polynomial with an arbitrary-precision SDP solver. An
exact SOS decomposition is obtained thanks to the perturbation terms. We prove that bit complex-
ity estimates on output size and runtime are both polynomial in the degree of the input polynomial
and simply exponential in the number of variables. Next, we apply this algorithm to compute exact
Polya and Putinar’s representations respectively for positive definite forms and positive polynomials
over basic compact semi-algebraic sets. We also compare the implementation of our algorithms with
existing methods in computer algebra including cylindrical algebraic decomposition and critical point
method.

Keywords: Semidefinite programming, sums of squares decomposition, Polya’s representation, Puti-
nar’s representation, hybrid numeric-symbolic algorithm, real algebraic geometry.

1 Introduction

Let Q (resp. R) be the field of rational (resp. real) numbers and X = (X1, . . . , Xn) be a sequence of
variables. We consider the problem of deciding the non-negativity of f ∈ Q[X] either over Rn or over a
semi-algebraic set S defined by some constraints g1 ≥ 0, . . . , gm ≥ 0 (with gj ∈ Q[X]). Further, d denotes
the maximum of the total degrees of these polynomials.

This problem is known to be NP hard [10]. The Cylindrical Algebraic Decomposition algorithm [13]
allows to solve it in time doubly exponential in n (and polynomial in d). This complexity result has
been improved later on, through the so-called critical point method, starting from [17] which culminates
with [8] to establish that this decision problem can be solved in time ((m + 1)d)O(n). These latter ones
have been developed to obtain implementations which reflect the complexity gain (see e.g. [3, 4, 40, 39,
6, 19, 5, 15, 16]) but still within a singly exponential complexity in n. Besides, these algorithms are “root
finding” ones: they try to find a point at which f is negative over the considered domain. When f is
positive, they return an empty list without a certificate that can be checked a posteriori.

To compute certificates of non-negativity, an approach based on sums of squares (SOS) decompositions
(and their variants) has been popularized by Lasserre [26] and Parillo [33] (see also the survey [27] and
references therein). In a nutshell, the idea is as follows.

A polynomial f is non-negative over Rn if it can be written as an SOS s2
1 + · · ·+s2

r with si ∈ R[X] for 1 ≤
i ≤ r. Also f is non-negative over the semi-algebraic set S if it can be written as s2

1 + · · ·+s2
r+
∑m
j=1 σjgj
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where σi is a sum of squares in R[X] for 1 ≤ j ≤ m. It turns out that, thanks to the “Gram matrix
method” (see e.g. [26, 33]), computing such decompositions can be reduced to solving Linear Matrix
Inequalities (LMI). This boils down to considering a semidefinite programming (SDP) problem.

For instance, on input f ∈ Q[X] of even degree d = 2k, the decomposition f = s2
1 + · · · + s2

r is a by-
product of a decomposition of the form f = vTk L

TDLvk where vk is the vector of all monomials of degree
≤ k in Q[X], L is a lower triangular matrix with non-negative real entries on the diagonal and D is a
diagonal matrix with non-negative real entries. The matrices L and D are obtained after computing a
symmetric matrix G (the Gram matrix), semidefinite positive, such that f = vTk Gvk. Such a matrix G
is found using solvers for LMIs. Such inequalities can be solved symbolically (see [22]), but the degrees
of the algebraic extensions needed to encode exactly the solutions are prohibitive on large examples [31].
Besides, there exist fast numerical solvers for solving LMIs implemented in double precision, e.g. Se-
DuMi [42], SDPA [43] as well as arbitrary-precision solvers, e.g. SDPA-GMP [30], successfully applied in
many contexts, including bounds for kissing numbers [1] or computation of (real) radical ideals [23].

But using uniquely numerical solvers yields “approximate” non-negativity certificates. On our example,
the matrices L and D (and consequently the polynomials s1, . . . , sr) are not known exactly.

This raises topical questions. The first one is how to let interact symbolic computation with these
numerical solvers to get exact certificates? Since not all positive polynomials are SOS, what to do when
SOS certificates do not exist? Also, given inputs with rational coefficients, can we obtain certificates with
rational coefficients?

For these questions, we inherit from previous contributions in the univariate case [11, 28] as well as in
the multivariate case [34, 25]. Diophantine aspects are considered in [41, 20]. In the univariate (un)-
constrained case, the algorithm from [11] computes an exact weighted SOS decomposition for a given
positive polynomial f ∈ Q[X]. The algorithm considers a perturbation of f , performs (complex) root
isolation to get an approximate SOS decomposition of f . When the isolation is precise enough, the
algorithm relies the perturbation terms to recover an exact rational decomposition. In the multivariate
unconstrained case, Parillo and Peyrl designed a rounding-projection algorithm in [34] to compute a
weighted rational SOS decompositon of a given polynomial f in the interior of the SOS cone. The
algorithm computes an approximate Gram matrix of f , and rounds it to a rational matrix. With sufficient
precision digits, the algorithm performs an orthogonal projection to recover an exact Gram matrix of f .
The SOS decomposition is then obtained with an exact LDLT procedure. This approach was significantly
extended in [25] to handle rational functions.

Main contributions. This work provides an algorithmic framework to handle (un)-constrained polynomial
problems with exact rational weighted SOS decompositions. The first contribution, given in Section 3, is
a hybrid numeric-symbolic algorithm, called intsos, providing rational SOS decompositions for polyno-
mials lying in the interior of the SOS cone. As for the algorithm from [11], the main idea is to perturbate
the input polynomial, then to obtain an approximate Gram matrix of the perturbation by solving an
SDP problem, and to recover an exact decomposition with the perturbation terms.

In Section 4, we rely on intsos to compute decompositions of positive definite forms into SOS of rational
functions, based on Polya’s representations, yielding a second algorithm, called Polyasos. In Section 5,
we rely on intsos to compute weighted SOS decompositions for polynomials positive over compact
semi-algebraic sets, yielding a third algorithm, called Putinarsos.

When the input is an n-variate polynomial of degree d with integer coefficients of maximum bit size τ , we
prove in Section 3 that Algorithm intsos runs in boolean time τ2dO (n) and outputs SOS polynomials
of bit size bounded by τdO (n). This also yields bit complexity analysis for Algorithm Polyasos (see
Section 4) and Algorithm Putinarsos (see Section 5). To the best of our knowledge, these are the first
complexity estimates for the output of algorithms providing exact multivariate SOS decompositions.

The three algorithms are implemented within a Maple library, called multivsos. In Section 6, we provide
numerical benchmarks to evaluate the performance of multivsos against existing methods based on CAD
or critical point methods.
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2 Preliminaries

Let Z be the set of integers. For α = (α1, . . . , αn) ∈ Nn, one has |α| := α1 + · · · + αn and Xα :=
Xα1

1 . . . Xαn
n . For all k ∈ N, we let Nnk := {α ∈ Nn : |α| ≤ k}, whose cardinality is the binomial

(
n+k
k

)
. A

polynomial f ∈ R[X] of degree d = 2k is written as f =
∑
|α|≤d fαX

α and we identify f with its vector
of coefficients f = (fα) in the basis (Xα), α ∈ Nnd . Let Σ[X] be the convex cone of sums of squares in R[X]

and Σ̊[X] be the interior of Σ[X]. We note ΣZ(X) := Z[X] ∩ Σ[X] and Σ̊Z[X] its interior. For instance,
the polynomial f = 4X4

1 + 4X3
1X2− 7X2

1X
2
2 − 2X1X

3
2 + 10X4

2 = (2X1X2 +X2
2 )2 + (2X2

1 +X1X2− 3X2
2 )2

belongs to ΣZ(X).

We rely on the bit complexity model for complexity estimates. The bit size of an integer b is denoted
by τ(b) := log2(|b|) + 1 with τ(0) := 1. For f =

∑
|α|≤d fαX

α ∈ Z[X] of degree d, we note ‖f‖∞ :=

max|α|≤d |fα| and τ(f) := τ(‖f‖∞) with slight abuse of notation. Given b ∈ Z and c ∈ Z\{0} with
gcd(b, c) = 1, we define τ(b/c) := max{τ(b), τ(c)}. For two mappings g, h : Nl → R, we use the notation
“g(v) = O (h(v))” to state the existence of b ∈ N such that g(v) ≤ bh(v), for all v ∈ Nl.

The Newton polytope or cage C (f) is the convex hull of the vectors of exponents of monomials that occur
in f ∈ R[X]. For the above example, C (f) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}. For a symmetric real
matrix G, we note G � 0 (resp. G � 0) when G has only non-negative (resp. positive) eigenvalues and
we say that G is positive semidefinite (SDP) (resp. positive definite).

With f ∈ R[X] of degree d = 2k, we consider the SDP program:

inf
G�0

Tr (GB0) s.t. Tr (GBγ) = fγ , ∀γ ∈ Nnd , (1)

where Bγ has rows (resp. columns) indexed by Nnk with (α, β) entry equal to 1 if α + β = γ and 0
otherwise.

Theorem 2.1. [26, Theorem 3.2] Let f ∈ R[X] of degree d = 2k and global minimum f? := infx∈Rn f(x).
Assume that SDP (1) has a feasible solution G? =

∑r
i=1 λiqi q

T
i , with the qi being the eigenvectors of

G? corresponding to the non-negative eigenvalues λi, for all i = 1, . . . , r. Then f − f? =
∑r
i=1 λiq

2
i .

For the sake of efficiency, one reduces the size of matrix G indexing its rows and columns by half of C (f):

Theorem 2.2. [37, Theorem 1] Let f ∈ Σ[X] with f =
∑r
i=1 s

2
i and P := C (f). Then for all i = 1, . . . , r,

C (si) ⊆ P/2.

Given f ∈ R[X], Theorem 2.1 states that one can theoretically certify that f lies in Σ[X] by solving
SDP (1). However, available SDP solvers are typically implemented in finite-precision and require the
existence of a strictly feasible solution G � 0 to converge. This is equivalent for f to lie in Σ̊[X] as stated
in [12, Proposition 5.5]:

Theorem 2.3. Let f ∈ Z[X] with P := C (f) and vk be the vector of all monomials in P/2. Then
f ∈ Σ̊[X] if and only if there exists a positive definite matrix G such that f = vTk Gvk.

3 Exact SOS representations

The aim of this section is to state and analyze a hybrid numeric-symbolic algorithm, called intsos,
computing weighted SOS decompositions of polynomials in Σ̊Z[X]. This algorithm relies on perturbations
of such polynomials.

Proposition 3.1. Let f ∈ Σ̊Z[X] of degree d = 2k, with τ = τ(f) and P = C(f). Then, there exists
N ∈ N− {0} such that for ε := 1

2N
, f − ε

∑
α∈P/2X

2α ∈ Σ̊[X]. Moreover, N = τ(ε) ≤ τdO (n).
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Proof. Let vk be the vector of all monomials Xα in P/2. Note that each monomial in vk has degree ≤ k
and that vTk vk =

∑
α∈P/2X

2α. Since f ∈ Σ̊[X], there exists by Theorem 2.3 a matrix G � 0 such that
f = vTk Gvk, with positive smallest eigenvalue λ. Let us define N := dlog2

1
λe+ 1, i.e. the smallest integer

such that ε = 1
2N
≤ λ

2 . Then, λ > ε and the matrix G− εI has only positive eigenvalues. Hence, one has

fε := f − ε
∑
α∈P/2

X2α = vTk Gvk − εvTk Ivk = vTk (G− εI)vk ,

yielding fε ∈ Σ̊[X].

For the second claim, let us consider the set A := {e ∈ R : ∀x ∈ Rn, f(x) − e
∑
α∈P/2 x

2α ≥ 0}. Using
[9, Thm 14.16], A is defined by univariate polynomials of degree in dO (n) with coefficients of bit size
bounded by τdO (n). Hence the bit size of the mimimum absolute value of their non-zero real roots is
below bounded by τdO (n).

The following can be found in [2, Lemma 2.1] and [2, Theorem 3.2].

Proposition 3.2. Let G̃ � 0 be a matrix with rational entries indexed on Nnr . Let L be the factor of G̃
computed using Cholesky’s decomposition with finite precision δc. Then LLT = G̃+ E where

|Eα,β | ≤ (r + 1)2−δc |G̃α,α G̃β,β |
1
2 /(1− (r + 1)2−δc) . (2)

In addition, if the smallest eigenvalue λ̃ of G̃ satisfies the inequality

2−δc < λ̃/(r2 + r + (r − 1)λ̃) , (3)

Cholesky’s decomposition returns a rational nonsingular factor L.

3.1 Algorithm intsos

We present our algorithm intsos computing exact weighted rational SOS decompositions for polynomials
in Σ̊Z[X].

Given f ∈ Z[X] of degree d = 2k, one first computes its Newton polytope P := C (f) (see line 1) using
standard algorithms such as quickhull [7]. The loop going from line 3 to line 4 finds a positive ε ∈ Q such
that the perturbed polynomial fε := f − ε

∑
α∈P/2X

2α is also in Σ̊[X]. This is done thanks to an oracle
based on SDP or computer algebra procedures (e.g. CAD or critical points). If f ∈ Σ̊Z[X], the existence
of ε is ensured as in the proof of Theorem 3.1 if A := {e ∈ R : ∀x ∈ Rn, f(x)− e

∑
α∈P/2 x

2α ≥ 0} is non
empty.

Next, we enter in the loop starting from line 6. Given fε ∈ Z[X], positive integers δ and R, the sdp
function calls an SDP solver and tries to compute a rational approximation G̃ of the Gram matrix
associated to fε together with a rational approximation λ̃ of its smallest eigenvalue. In practice, we
use an arbitrary-precision SDP solver implemented with an interior-point method. However, in order
to analyse the complexity of the procedure (see Remark 1), we assume that sdp relies on the ellipsoid
algorithm [18].

Remark 1. In [14], the authors analyze the complexity of the short step, primal interior point method,
used in SDP solvers. Within fixed accuracy, they obtain a polynomial complexity, as for the ellipsoid
method, but the exact value of the exponents is not provided.

SDP problems are solved with this latter algorithm in polynomial-time within a given accuracy δ and a
radius bound R on the Frobenius norm of G̃. The first step consists of solving SDP (1) by computing an
approximate Gram matrix G̃ � 2−δI such that |Tr (G̃Bγ)− (fε)γ | = |

∑
α+β=γ G̃α,β − (fε)γ | ≤ 2−δ and√

Tr (G̃2) ≤ R. We pick large enough δ and R to obtain G̃ � 0 and λ̃ > 0 when fε ∈ Σ̊[X].

The cholesky function computes the approximate Cholesky’s decomposition LLT of G̃ with precision
δc. In order to guarantee that L will be a rational nonsingular matrix, a preliminary step consists of
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Algorithm 1 intsos
Input: f ∈ Z[X], positive ε ∈ Q, precision parameters δ,R ∈ N for the SDP solver , precision δc ∈ N for

the Cholesky’s decomposition
Output: list c_list of numbers in Q and list s_list of polynomials in Q[X]
1: P := C (f)
2: t :=

∑
α∈P/2X

2α, fε := f − εt
3: while fε /∈ Σ̊[X] do ε := ε

2 , fε := f − εt
4: done
5: ok := false
6: while not ok do
7: (G̃, λ̃) := sdp(fε, δ, R)
8: (s1, . . . , sr) := cholesky(G̃, λ̃, δc) . fε '

∑r
i=1 s

2
i

9: u := fε −
∑r
i=1 s

2
i

10: c_list := [1, . . . , 1], s_list := [s1, . . . , sr]
11: for α ∈ P/2 do εα := ε
12: done
13: c_list, s_list, (εα) := absorb(u, P, (εα), c_list, s_list)
14: if minα∈P/2{εα} ≥ 0 then ok := true
15: else δ := 2δ, R := 2R, δc := 2δc
16: end
17: done
18: for α ∈ P/2 do
19: c_list := c_list ∪ {εα}, s_list := s_list ∪ {Xα}
20: done
21: return c_list, s_list

verifying that the inequality from (3) holds, which happens when δc is large enough. Otherwise, cholesky
selects the smallest δc such as (3) holds. Let vk be the vector of all monomials Xα belonging to P/2
with size r. The output is a list of rational polynomials [s1, . . . , sr] such that for all i = 1, . . . , r, si
is the inner product of the i-th row of L by vk. By Theorem 2.1, one would have fε =

∑r
i=1 s

2
i with

si ∈ R[X] after using exact SDP and Cholesky’s decomposition. Here, we have to consider the remainder
u = f − ε

∑
α∈P/2X

2α −
∑r
i=1 s

2
i , with si ∈ Q[X].

After these numeric steps, the algorithm starts to perform symbolic computation with the absorb sub-
routine at line 13. The loop from absorb is designed to obtain an exact weigthed SOS decomposi-
tion of εt + u = ε

∑
α∈P/2X

2α +
∑
γ uγX

γ , yielding in turn an exact decomposition of f . Each term
uγX

γ can be written either uγX2α or uγXα+β , for α, β ∈ P/2. In the former case (line 2), one has

Algorithm 2 absorb
Input: u ∈ Q[X], multi-index set P , lists (εα) and c_list of numbers in Q, list s_list of polynomials

in Q[X]
Output: lists (εα) and c_list of numbers in Q, list s_list of polynomials in Q[X]
1: for γ ∈ supp(u) do
2: if γ ∈ (2N)n then α := γ

2 , εα := εα + uγ
3: else
4: Find α, β ∈ P/2 such that γ = α+ β

5: εα := εα − |uγ |2 , εβ := εβ − |uγ |2

6: c_list := c_list ∪ { |uγ |2 }
7: s_list := s_list ∪ {Xα + sgn (uγ)Xβ}
8: end
9: done
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εX2α + uγX
2α = (ε+ uγ)X2α. In the latter case (line 4), one has

ε(X2α +X2β) + uγX
α+β = |uγ |/2(Xα + sgn (uγ)Xβ)2 + (ε− |uγ |/2)(X2α +X2β) .

If the positivity test of line 14 fails, then the coefficients of u are too large and one cannot ensure that
εt + u is SOS. So we repeat the same procedure after increasing the precision of the SDP solver and
Cholesky’s decomposition.

In prior work [28], the authors and Schweighofer formalized and analyzed an algorithm called univsos2,
initially provided in [11]. Given a univariate polynomial f > 0 of degree d = 2k, this algorithm computes
weighted SOS decompositions of f . With t :=

∑k
i=0X

2i, the first numeric step of univsos2 is to find
ε such that the perturbed polynomial fε := f − εt > 0 and to compute its complex roots, yielding an
approximate SOS decomposition s2

1+s2
2. The second symbolic step is very similar to the loop from line 1 to

line 9 in intsos: one considers the remainder polynomial u := fε−s2
1−s2

2 and tries to computes an exact
SOS decomposition of εt + u. This succeeds for large enough precision of the root isolation procedure.
Therefore, intsos can be seen as an extension of univsos2 in the multivariate case by replacing the
numeric step of root isolation by SDP and keeping the same symbolic step.

Example 1. We apply Algorithm intsos on f = 4X4
1 + 4X3

1X2− 7X2
1X

2
2 − 2X1X

3
2 + 10X4

2 , with ε = 1,
δ = R = 60 and δc = 10. Then P/2 := C (f)/2 = {(2, 0), (1, 1), (0, 2)} (line 1). The loop from line 3 to
line 4 ends and we get f − εt = f − (X4

1 +X2
1X

2
2 +X2

2 ) ∈ Σ̊[X]. The sdp (line 7) and cholesky (line 8)
procedures yield s1 = 2X2

1 +X1X2− 8
3X

2
2 , s2 = 4

3X1X2 + 3
2X

2
2 and s3 = 2

7X
2
2 . The remainder polynomial

is u = f − εt− s2
1 − s2

2 − s2
3 = −X4

1 − 1
9X

2
1X

2
2 − 2

3X1X
3
2 − 781

1764X
4
2 .

At the end of the loop from line 1 to line 9, we obtain ε(2,0) = (ε−X4
1 = 0, which is the coefficient of X4

1 in
εt+u. Then, ε(X2

1X
2
2 +X4

2 )− 2
3X1X

3
2 = 1

3 (X1X2−X2
2 )2 +(ε− 1

3 )(X2
1X

2
2 +X4

2 ). In the polynomial εt+u,
the coefficient of X2

1X
2
2 is ε(1,1) = ε− 1

3 −
1
9 = 5

9 and the coefficient of X4
4 is ε(0,2) = ε− 1

3 −
781
1764 = 395

1764 .

Eventually, we obtain the weighted rational SOS decomposition: 4X4
1 + 4X3

1X2 − 7X2
1X

2
2 − 2X1X

3
2 +

10X4
2 = 1

3 (X1X2 −X2
2 )2 + 5

9 (X1X2)2 + 395
1764X

4
2 + (2X2

1 +X1X2 − 8
3X

2
2 )2 + (4

3X1X2 + 3
2X

2
2 )2 + (2

7X
2
2 )2).

3.2 Correctness and bit size of the output

Let f ∈ Σ̊Z[X] of degree d = 2k, τ = τ(f) and P = C(f).

Proposition 3.3. Let G be a positive definite Gram matrix associated to f and 0 < ε ∈ Q be such that
fε = f − ε

∑
α∈P/2X

2α ∈ Σ̊[X]. Then, there exist positive integers δ, R such that G − εI is a Gram

matrix associated to fε, satisfies G− εI � 2−δI and
√

Tr (G− εI2) ≤ R. Also, the maximal bit sizes of
δ and R are upper bounded by τdO (n).

Proof. Let λ be the smallest eigenvalue of G. By Proposition 3.1, G � εI for ε = 1
2N
≤ λ

2 . With
δ = N + 1, 2−δ = 1

2N+1 ≤ λ
4 <

λ
2 , yielding G− ε �

λ
2 I � 2−δI. As N ≤ τdO (n), one has δ ≤ τdO (n).

As in the proof of Proposition 3.1, we consider the largest eigenvalue λ′ of the Gram matrix G of f and
prove that the set A′ := {e′ ∈ R : ∀x ∈ Rn,−f(x) + e′

∑
α∈P/2 x

2α ≥ 0} is not empty. We use again [9,
Thm 14.16] to prove that A′ contains an interval ]0, 1

2N
[ with N ≤ τdO (n). This allows in turn to obtain

a rational upper bound ε′ of λ′ with bit size τdO (n)). The size of G is bounded by
(
n+k
n

)
, thus the trace

of G2 is less than
(
n+k
n

)
ε′2. Using that for all k ≥ 2,(

n+ k

n

)
=

(n+ k) · · · (k + 1)

n!
= (1 +

k

n
)(1 +

k

n− 1
) · · · (1 + k) ≤ kn−1(1 + k) ≤ 2kn ≤ dn ,

one has
√

Tr (G− εI)2 ≤ dn2 ε′ = τdO (n).

Proposition 3.4. Let f be as above. When applying Algorithm intsos to f , the procedure always termi-
nates and outputs a weighted rational SOS decompositon of f . The maximum bit size of the coefficients
involved in this SOS decomposition is upper bounded by τdO (n).
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Proof. Let us first consider the loop of Algorithm intsos defined from line 3 to line 4. From Proposi-
tion 3.1, this loop terminates when fε ∈ Σ̊[X] for ε = 1

2N
and N ≤ τdO (n).

When calling the sdp function at line 7 to solve SDP (1) with precision parameters δ and R, we compute
an approximate Gram matrix G̃ of fε such that G̃ � 2δI and Tr (G̃2) ≤ R2. From Proposition 3.3, this
procedure succeeds for large enough values of δ and R of bitisze upper bounded by τdO (n). In this case,
we obtain a positive rational approximation λ̃ ≥ 2−δ of the smallest eigenvalue of G̃.

Then the Cholesky’s decomposition of G̃ is computed when calling the cholesky function at line 8. The
decomposition is guaranteed to succeed by selecting a large enough δc such that (3) holds. Let r be the size
of G̃ and δc be the smallest integer such that 2−δc < 2−δ

r2+r+(r−1)2−δ
. Since the function x 7→ x

r2+r+(r−1)x

is increasing on [0,∞) and λ̃ ≥ 2−δ, (3) holds. We obtain an approximate weighted SOS decomposition∑r
i=1 s

2
i of fε with rational coefficients.

Let us now consider the remainder polynomial u = fε −
∑r
i=1 s

2
i . The second loop of Algorithm intsos

defined from line 6 to line 17 terminates when for all α ∈ P/2, εα ≥ 0. This condition is fulfilled when
for all α ∈ P/2, ε −

∑
β∈P/2 |uα+β |/2 + uα ≥ 0. This latter condition holds when for all γ ∈ supp(u),

|uγ | ≤ ε
r .

Next, we show that this happens when the precisions δ of sdp and δc of cholesky are both large enough.
From the definition of u, one has for all γ ∈ supp(u), uγ = fγ − εγ − (

∑r
i=1 s

2
i )γ , where εγ = ε when

γ ∈ (2N)n and εγ = 0 otherwise. The positive definite matrix G̃ computed by the SDP solver is an
approximation of an exact Gram matrix of fε. At precision δ, one has for all γ ∈ supp(f), G̃ � 2−δI
such that

|fγ − εγ − Tr (G̃Bγ)| = |fγ − εγ −
∑

α+β=γ

G̃α,β | ≤ 2−δ .

In addition, it follows from (2) that the approximated Cholesky decomposition LLT of G̃ performed at
precision δ satisfies LLT = G̃ + E with |Eα,β | ≤ (r+1)2−δc

1−(r+1)2−δc
|G̃α,α G̃β,β |

1
2 , for all α, β ∈ P/2. Moreover,

by using Cauchy-Schwartz inequality, one has∑
α∈P/2

G̃α,α = Tr G̃ ≤
√

Tr I
√

Tr G̃2 ≤
√
rR .

For all γ ∈ supp(u), this yields

∣∣ ∑
α+β=γ

G̃α,α G̃β,β
∣∣ 1

2 ≤
∑

α+β=γ

G̃α,α + G̃β,β
2

≤ Tr G̃ ≤
√
rR ,

the first inequality coming again from Cauchy-Schwartz inequality.

Thus, for all γ ∈ supp(u), one has

∣∣ ∑
α+β=γ

G̃α,β − (

r∑
i=1

s2
i )γ
∣∣ =

∣∣ ∑
α+β=γ

G̃α,β −
∑

α+β=γ

(LLT )α,β
∣∣ =

∣∣ ∑
α+β=γ

Eα,β
∣∣ ,

which is bounded by

(r + 1)2−δc

1− (r + 1)2−δc

∑
α+β=γ

|G̃α,α G̃β,β |
1
2 ≤
√
r(r + 1)2−δc R

1− (r + 1)2−δc
.

Now, let us take the smallest δ such that 2−δ ≤ ε
2r = 1

2N+1r
as well as the smallest δc such that

√
r(r + 1)2−δc R

1− (r + 1)2−δc
≤ ε

2r
,

that is δ = dN + 1 + log2 re and δc = dlog2R+ log2(r + 1) + log2(2N+1r
√
r + 1)e.
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From the previous inequalities, for all γ ∈ supp(u), it holds that

|uγ | = |fγ − εγ − (

r∑
i=1

s2
i )γ | ≤ |fγ − εγ −

∑
α+β=γ

G̃α,β |+ |
∑

α+β=γ

G̃α,β − (

r∑
i=1

s2
i )γ | ≤

ε

2r
+

ε

2r
=
ε

r
.

This ensures that Algorithm intsos terminates.

Let us note
∆(u) := {(α, β) : α+ β ∈ supp(u) , α, β ∈ P/2 , α 6= β} .

When terminating, the first output c_list of Algorithm intsos is a list of non-negative rational numbers
containing the list [1, . . . , 1] of length r, the list

{ |uα+β |
2 : (α, β) ∈ ∆(u)

}
and the list {εα : α ∈ P

2 }. The
second output s_list of Algorithm intsos is a list of monomials containing the list [s1, . . . , sr], the list
{Xα + sgn (uα+β)Xβ : (α, β) ∈ ∆(u)} and the list {Xα : α ∈ P/2}. From the output, we obtain the
following weigthed SOS decomposition

f =

r∑
i=1

s2
i +

∑
(α, β) ∈ ∆(u)

|uα+β |
2

(Xα + sgn (uα+β)Xβ)2 +
∑
α ∈ P

2

εαX
2α .

Now, we bound the bit size of the coefficients. Since r ≤
(
n+k
n

)
≤ dn and N ≤ τdO (n), one has

δ ≤ τdO (n). Similarly, R, δc ≤ τdO (n). This bounds also the maximal bit size of the coefficients involved
in the approximate decomposition

∑r
i=1 s

2
i as well the coefficients of u. In the worst case, the coefficient

εα involved in the exact SOS decomposition is equal to ε −
∑
β∈P/2 |uα+β |/2 + uα for some α ∈ P/2.

Using again that the cardinal r of P/2 is less than
(
n+k
n

)
≤ dn, we obtain a maximum bit size upper

bounded by τdO (n).

3.3 Bit complexity analysis

Theorem 3.5. For f as above, there exist ε, δ, R, δc of bit sizes ≤ τdO (n) such that intsos(f, ε, δ, R, δc)
runs in boolean time τ2dO (n).

Proof. We consider ε, δ, R and δc as in the proof of Proposition 3.4, so that Algorithm intsos only
performs a single iteration within the two while loops before terminating. Thus, the bit size of each input
parameter is upper bounded by τdO (n).

Computing C(f) with the quickhull algorithm runs in boolean time O (V 2) for a polytope with V vertices.
In our case V ≤

(
n+d
n

)
≤ 2dn, so that this procedure runs in boolean time O (d2n). Next, we investigate

the computational cost of the call to sdp at line 7. Let us note nsdp = r (resp.msdp) the size (resp. number
of entries) of G̃. This step consists of solving SDP (1), which is performed in O (n4

sdp log2(2τnsdpR 2δ))

iterations of the ellipsoid method, where each iteration requires O (n2
sdp(msdp + nsdp)) arithmetic op-

erations over log2(2τnsdpR 2δ)-bit numbers (see e.g. [18]). Since msdp, nsdp ≤
(
n+d
n

)
≤ 2dn, one has

log2(2τnsdpR 2δ) ≤ τdO (n), n2
sdp(msdp + nsdp) ≤ O (τd3n) and n4

sdp log2(2τnsdpR 2δ) ≤ τdO (n). Overall,
the ellipsoid algorithm runs in boolean time τ2dO (n) to compute the approximate Gram matrix G̃. We
end with the cost of the call to cholesky at line 8. Cholesky’s decomposition is performed in O (n3

sdp)

arithmetic operations over δc-bit numbers. Since δc ≤ τdO (n), the function runs in boolean time τdO (n).
The other elementary arithmetic operations performed while running Algorithm intsos have a negligable
cost w.r.t. to the sdp procedure.

4 Exact Polya’s representations

Next, we show how to apply Algorithm intsos to decompose positive definite forms into SOS of rational
functions.

8



Let Gn :=
∑n
i=1X

2
i and Sn−1 := {x ∈ Rn : Gn(x) = 1} be the unit (n − 1)-sphere. A positive definite

form f ∈ R[X] is a homogeneous polynomial which is positive over Sn−1. For such a form, we set

ε(f) :=
minx∈Sn−1 f(x)

maxx∈Sn−1 f(x)
,

which measures how close f is to having a zero in Sn−1. While there is no guarantee that f ∈ Σ[X],
Reznick proved in [38] that for large enough D ∈ N, fGDn ∈ Σ[X]. The proof being based on prior work
by Polya [35], such SOS decompositions are called Polya’s representations and D is called the Polya’s
degree. Our next result states that for large enough D ∈ N, fGDn ∈ Σ̊[X].

Lemma 4.1. Let f be a positive definite form of degree d in Z[X] and D ≥ nd(d−1)
4 log 2 ε(f) −

n+d
2 . Then

f GD+1
n ∈ Σ̊[X].

Proof. Let P := C (f) and t :=
∑
α∈P/2X

2α. Since f is a form, then each term X2α has degree d, for all

α ∈ P/2, thus t is a form. First, we show that for any positive e < minx∈Sn−1 f(x)

maxx∈Sn−1 t(x) , the form (f − et) is
positive definite: for any nonzero x ∈ Rn, one has

f(x)− et(x) = Gn(x)d[f
( x

Gn(x)

)
− et

( x

Gn(x)

)
] > 0

since (f − et) is positive on Sn−1. Next, [38, Theorem 3.12] implies that for any positive integer De such
that

De ≥ De :=
nd(d− 1)

4 log 2 ε(f − et)
− n+ d

2
,

one has (f − et)GDen ∈ Σ[X]. As in the proof of Proposition 3.1, this yields f GDen ∈ Σ̊[X].

Next, with D = nd(d−1)
4 log 2 ε(f) −

n+d
2 , we prove that there exists N ∈ N such that for e =

minx∈Sn−1 f(x)

N maxx∈Sn−1 t(x) ,

De ≤ D + 1. Since f GDen ∈ Σ̊[X] for all De ≥ De, this will yield the desired result. For any x ∈ Sn−1,
one has

min
x∈Sn−1

f(x)− e max
x∈Sn−1

t(x) ≤ f(x)− et(x) ≤ max
x∈Sn−1

f(x) .

Hence we obtain the following:

ε(f − et) ≥ minx∈Sn−1 f(x)− emaxx∈Sn−1 t(x)

maxx∈Sn−1 f(x)
= ε(f)

N − 1

N
.

Therefore, one has De ≤ N
N−1

nd(d−1)
4 log 2 ε(f) −

n+d
2 , yielding De − D ≤ 1

N−1
nd(d−1)

4 log 2 ε(f) . By choosing N :=

b nd(d−1)
4 log 2 ε(f) − 1c, one ensures that De −D ≤ 1, which concludes the proof.

Algorithm Polyasos takes as input f ∈ Z[X], finds the smallest D ∈ N such that f GDn ∈ Σ̊[X], thanks
to an oracle as in intsos. Then, intsos is applied on f GDn .

Algorithm 3 Polyasos
Input: f ∈ Z[X], positive ε ∈ Q, precision parameters δ,R ∈ N for the SDP solver, precision δc ∈ N for

the Cholesky’s decomposition
Output: list c_list of numbers in Q and list s_list of polynomials in Q[X]
1: D := 0
2: while f GDn /∈ Σ̊[X] do D := D + 1
3: done
4: return intsos(f GDn , ε, δ, R, δc)

Example 2. Let us apply Polyasos on the perturbed Motzkin polynomial f = (1+2−20)(X6
3 +X4

1X
2
2 +

X2
1X

4
2 )− 3X2

1X
2
2X

2
3 . With D = 1, one has f Gn = (X2

1 +X2
2 +X2

3 ) f ∈ Σ̊[X] and intsos yields an SOS
decomposition of f Gn with ε = 2−20, δ = R = 60, δc = 10.
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Theorem 4.2. Let f ∈ Z[X] be a positive definite form of degree d, coefficients of bit size at most τ . On
input f , Algorithm Polyasos terminates and outputs a weighted SOS decomposition for f . The maximum
bit size of its coefficients involved and the boolean running time of the procedure are both upper bounded
by 2τd

O (n)

.

Proof. By Lemma 4.1, the while loop from line 2 to 3 is ensured to terminate for a positive integer
D ≥ nd(d−1)

4 log 2 ε(f) −
n+d

2 + 1. By Proposition 3.4, when applying intsos to f GDn , the procedure always
terminates. The outputs are a list of non-negative rational numbers [c1, . . . , cr] and a list of rational
polynomials [s1, . . . , sr] providing the weighted SOS decompositon f GDn =

∑r
i=1 cis

2
i . Thus, we obtain

f =
∑r
i=1 ci

s2i
GDn

, yielding the first claim.

Since, (X2
1 + · · · + X2

n)D =
∑
|α|=D

D!
α1!···αn! X

2α, each coefficient of GDn is upper bounded by∑
|α|=D

D!
α1!···αn! = nD. Thus τ(f GDn ) ≤ τ + D log n. Using again Proposition 3.4, the maximum

bit size of the coefficients involved in the weighted SOS decomposition of f GDn is upper bounded by
(τ +D log n)(d+ 2D)O (n). Now, we derive an upper bound of D. Since f is a positive form of degree d,
one has

min
x∈Sn−1

f(x) = max{e : ∀x ∈ Rn, f(x)− eGn(x)d ≥ 0} .

Again, we rely on [9, Theorem 14.16] to show that minx∈Sn−1 f(x) ≥ 2−τd
O (n)

. Similarly, we obtain
maxx∈Sn−1 f(x) ≤ 2τd

O (n)

and thus 1
ε(f) ≤ 2τd

O (n)

. We obtain nd(d−1)
4 log 2 ε(f) −

n+d
2 + 1 ≤ 2τd

O (n)

. This

implies that (τ +D log n)(d+ 2D)O (n) ≤ 2τd
O (n)

. From Theorem 3.5, the boolean running time is upper
bounded by (τ +D log n)2(d+ 2D)O (n), which ends the proof.

5 Exact Putinar’s representations

We let f, g1, . . . , gm in Z[X] of degree ≤ d and τ be a bound on the bit size of their coefficients. Assume
that f is positive over S := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} and reaches its infimum with
f? := minx∈S f(x) > 0. With f =

∑
|α|≤d fαx

α, we set ‖f‖ := max|α|≤d
fαα1!···αn!
|α|! and g0 := 1.

We consider the quadratic module Q(S) :=
{∑m

j=0 σjgj : σj ∈ Σ[x]
}
and, for D ∈ N, the D-truncated

quadratic module QD(S) :=
{∑m

j=0 σjgj : σj ∈ Σ[x] , deg(σjgj) ≤ D
}
generated by g1, . . . , gm. We say

that Q(S) is archimedean if N −Gn ∈ Q(S) for some N ∈ N. We also assume in this section:

Assumption 5.1. The set S is a basic compact semi-algebraic set with nonempty interior, included in
[−1, 1]n and Q(S) is archimedean.

Under Assumption 5.1, f is positive over S only if f ∈ QD(S) for some D ∈ 2N (see [36]). In this
case, there exists a Putinar’s representation f =

∑m
i=0 σjgj with σj ∈ Σ[X] for 0 ≤ j ≤ m. Let

wj := ddeg gj/2e, for all 1 ≤ j ≤ m.

One can certify that f ∈ QD(S) for D = 2k by solving the next SDP with k ≥ max{dd/2e, w1, . . . , wm}:

inf
G0,G1,...,Gm�0

Tr (G0B0) +

m∑
i=1

gj(0) Tr (Gj Cj0)

s.t. Tr (G0Bγ) +

m∑
j=1

Tr (Gj Cjγ) = fγ , ∀γ ∈ NnD ,
(4)

where Bγ is as for SDP (1) and Cjγ has rows (resp. columns) indexed by Nnk−wj with (α, β) entry equal
to
∑
α+β+δ=γ gjδ. SDP (4) is a reformulation of the problem sup{b : f − b ∈ QD(S)}, with optimal value

denoted by f?D. Next result follows from [26, Theorem 4.2].

Theorem 5.2. We use the notation and assumptions introduced above. For D ∈ 2N large enough, one
has 0 < f?D ≤ f?. In addition, SDP (4) has an optimal solution (G0, G1, . . . , Gm), yielding the following
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Putinar’s representation: f − f?D =
∑r
i=1 λi0q

2
i0 +

∑m
i=1 gj

∑rj
i=1 λijq

2
ij where the vectors of coefficients of

the polynomials qij are the eigenvectors of Gj with respective eigenvalues λij, for all j = 0, . . . ,m.

The complexity of Putinar’s Positivstellensätz was analyzed in [32]:

Theorem 5.3. With the notation and assumptions introduced above, there exists a real χS > 0 depending
on S such that

(i) for all even D ≥ χS exp
(
d2nd ‖f‖f?

)χS , f ∈ QD(S).

(ii) for all even D ≥ χS exp
(
2d2nd

)χS , 0 ≤ f? − f?D ≤
6d3n2d‖f‖
χS

√
log D

χS

.

In theory, one can certify that f belongs to QD(S) for D = 2k large enough, by solving SDP (4). Next,
we show how to ensure the existence of a strictly feasible solution for SDP (4) after replacing the initial
set of constraints S by S′, defined as follows:

S′ := {x ∈ S : 1− x2α ≥ 0 ,∀α ∈ Nnk} .

We first give a lower bound for f?.

Proposition 5.4. With the above notation and assumptions, one has:

f? ≥ 2−(τ+d+d log2 n+1)dn+1

d−(n+1)dn+1

= 2−τd
O (n)

.

Proof. Let Y = (Y1, . . . , Yn) and f̃ ∈ Z[Y ] be the polynomial obtained by replacing Yi by 2nYi − 1 in f .
Note that if x = (x1, . . . , xn) ∈ S ⊆ [−1, 1]n, then y =

((
xi+1
2n

))
1≤i≤n lies in the standard simplex ∆n,

so the polynomial f̃ takes only positive values over ∆n. Since xi = 2nyi − 1 and (2n− 1)d ≤ (2n)d, the
polynomial f̃ has coefficients of bit size at most τ +d+d log2 n. Then, the desired result follows from [24,
Theorem 1], stating that miny∈∆n

f̃(y) > 2−(τ(f̃)+1)dn+1

d−(n+1)dn+1

.

Theorem 5.5. We use the notation and assumptions introduced above. There exists D ∈ 2N such that:
(i) f ∈ QD(S) with the representation

f = f?D +

m∑
j=0

σjgj

for f?D > 0, σj ∈ Σ[X] with deg(σjgj) ≤ D for all j = 0, . . . ,m.
(ii) f ∈ QD(S′) with the representation

f =

m∑
j=0

σ̊jgj +
∑
|α|≤k

cα(1−X2α)

for σ̊j ∈ Σ̊[X] with deg(σ̊jgj) ≤ D, for all j = 0, . . . ,m, and some sequence of positive numbers (cα)|α|≤k.
(iii) There exists a real CS > 0 depending on S and ε = 1

2N
with positive N ∈ N such that

f − ε
∑
|α|≤kX

2α ∈ QD(S′) and N ≤ 2τd
nCS , where τ is the maximal bit size of the coefficients of

f, g1, . . . , gm.

Proof. Let χS be as in Theorem 5.3 and D = 2k be the smallest integer larger than D given by:

D := max{χS exp
(12d3n2d‖f‖

f?
)χS

, χS exp(2d2nd)χS} .

Theorem 5.3 implies f ∈ QD(S) and f? − f?D ≤
6d3n2d‖f‖
χS

√
log D

χS

≤ f?

2 .

(i) This yields the representation f − f?D =
∑m
j=0 σjgj , with f

?
D ≥

f?

2 > 0, σj ∈ Σ[X] and deg(σjgj) ≤ D
for all j = 0, . . . ,m.
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(ii) For 1 ≤ j ≤ m, let us define tj :=
∑
|α|≤k−wj X

2α, t0 :=
∑
|α|≤kX

2α and t :=
∑m
j=0 tjgj . For a

given ν > 0, we use the perturbation polynomial −νt = −ν
∑
|γ|≤D tγX

γ . For each term −tγXγ , one has
γ = α+β with α, β ∈ Nnk , thus −tγXγ = |tγ |(−1 + 1

2 (1−X2α) + 1
2 (1−X2β) + 1

2 (Xα− sgn (tγ)Xβ)2). As
in the proof of Proposition 3.4, let us note ∆(t) := {(α, β) : α+ β ∈ supp(t) , α, β ∈ Nnk , α 6= β}. Hence,
there exist dα ≥ 0 for all α ∈ Nnk such that

f = f−νt+νt = f?D−
∑
|γ|≤D

ν|tγ |+
m∑
j=0

σjgj+νt+
∑
|α|≤k

dα(1−X2α)+ν
∑

(α,β)∈∆(t)

|tα+β |
2

(Xα−sgn (tα+β)Xβ)2 .

Since one has not necessarily dα > 0 for all α ∈ Nnk , we now explain how to handle the case when dα = 0
for α ∈ Nnk . We write

−
∑
|γ|≤D

ν|tγ |+
∑
|α|≤k

dα(1−X2α) =−
∑
|γ|≤D

ν|tγ | −
∑

α:dα=0

ν +
∑

α:dα=0

ν(1−X2α) +
∑

α:dα=0

νX2α

+
∑

|α|:dα=0

dα(1−X2α) +
∑

|α|:dα>0

dα(1−X2α) .

For α ∈ Nnk , we define cα := ν if dα = 0 and cα := dα otherwise, a :=
∑
|γ|≤D |tγ | +

∑
α:dα=0 1,

σ̊j := σj + νtj , for each j = 1, . . . ,m and

σ̊0 := f?D − νa+ σ0 + νt0 + ν
∑

(α,β)∈∆(t)

|tα+β |
2

(Xα − sgn (tα+β)Xβ)2 +
∑

α:dα=0

νX2α .

So, there exists a sequence of positive numbers (cα)|α|≤k such that

f =

m∑
j=0

σ̊jgj +
∑
|α|≤k

cα(1−X2α) .

Now, let us select ν := 1
2M

withM being the smallest positive integer such that 0 < ν ≤ f?D
2a . This implies

the existence of a positive definite Gram matrix for σ̊0, thus by Theorem 2.3, σ̊0 ∈ Σ̊[X]. Similarly, for
1 ≤ j ≤ m, σ̊j belongs to Σ̊[X], which proves the second claim.

(iii) Let N := M + 1 and ε := 1
2N

= ν
2 . One has

f − ε
∑
|α|≤k

X2α = f − εt0 = σ̊0 − εt0 +

m∑
j=1

σ̊jgj +
∑
|α|≤k

cα(1−X2α) .

Thus, σ0 + (ν − ε)t0 ∈ Σ̊[X]. This implies that σ̊0 − εt0 ∈ Σ̊[X] and f − εt0 ∈ QD(S′). Next, we
derive a lower bound of f?D

a . Since t =
∑
|α|≤kX

2α +
∑m
j=1 gj

∑
|α|≤k−wj X

2α, one has
∑
|γ|≤D |tγ | ≤

2τ (m+ 1)
(
n+D
n

)
. This implies that

a ≤ 2τ (m+ 1)

(
n+D

n

)
+

(
n+ k

k

)
≤ 2τ (m+ 2)

(
n+D

n

)
.

Recall that f?

2 ≤ f
?
D, implying

f?D
a
≥ f?

2τ+1(m+ 2)
(
n+D
n

) ≥ 1

(m+ 2)2τdO (n)Dn
,

where the last inequality follows from Theorem 5.4. Let us now give an upper bound of log2D. First,
note that for all α ∈ Nn, |α|!

α1!···αn! ≥ 1, thus ‖f‖ ≤ 2τ . Since D is the smallest even integer larger than D,
one has

log2D ≤ 1 + log2D ≤ 1 + logχS + (12d3n2d2τ2τd
O (n)

)χS .

Next, since N is the smallest integer such that ε = 1
2N

= ν
2 ≤

f?D
2a , it is enough to take

N ≤ 1 + log2(m+ 2) + τdO (n) + n log2D ≤ 2τd
nCS

for some real CS > 0 depending on S, the desired result.
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Algorithm 4 Putinarsos.
Input: f ∈ Z[X], S := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} with g1, . . . , gm ∈ Z[X], positive ε ∈ Q,

precision parameters δ,R ∈ N for the SDP solver , precision δc ∈ N for the Cholesky’s decomposition
Output: lists c_list0, . . . , c_listm, c_alpha of numbers in Q and lists s_list0, . . . , s_listm of poly-

nomials in Q[X]
1: k := max{dd/2e, w1, . . . , wm}, D := 2k, g0 := 1
2: while f /∈ QD(S) do k := k + 1, D := D + 2
3: done
4: P := NnD, S′ := {x ∈ S : 1− x2α ≥ 0 ,∀α ∈ Nnk}
5: t :=

∑
α∈P/2X

2α, fε := f − εt
6: while fε /∈ QD(S′) do ε := ε

2 , fε := f − εt
7: done
8: ok := false
9: while not ok do

10: [G̃0, . . . , G̃m, λ̃0, . . . , λ̃m, (c̃α)|α|≤k], := sdp(fε, δ, R, S
′)

11: c_alpha := (c̃α)|α|≤k
12: for j ∈ {0, . . . ,m} do
13: (s1j , . . . , srjj) := cholesky(G̃j , λ̃j , δc), σ̃j :=

∑rj
i=1 s

2
ij

14: c_listj := [1, . . . , 1], s_listj := [s1j , . . . , srjj ]
15: done
16: u := fε −

∑m
j=0 σ̃j gj −

∑
|α|≤k c̃α(1−X2α)

17: for α ∈ P/2 do εα := ε
18: done
19: c_list, s_list, (εα) := absorb(u, P, (εα), c_list, s_list)
20: if minα∈P/2{εα} ≥ 0 then ok := true
21: else δ := 2δ, R := 2R, δc := 2δc
22: end
23: done
24: for α ∈ P/2 do
25: c_list0 := c_list0 ∪ {εα}, s_list0 := s_list0 ∪ {xα}
26: done
27: return c_list0, . . . , c_listm, c_alpha, s_list0, . . . , s_listm
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We can now present Algorithm Putinarsos. For f ∈ Z[X] positive over a basic compact semi-algebraic
set S satisfying Assumption 5.1, the first loop outputs the smallest positive integer D = 2k such that
f ∈ QD(S). Then the procedure is similar to intsos. As for the first loop of intsos, the loop from line 6
to line 7 allows to obtain a perturbed polynomial fε ∈ QD(S′), with S′ := {x ∈ S : 1−x2α ≥ 0 ,∀α ∈ Nnk}.
Then one solves SDP (4) with the sdp procedure and performs Cholesky’s decomposition to obtain an
approximate Putinar’s representation of fε = f − εt and a remainder u. Next, we apply the absorb
subroutine as in intsos. The rationale is that with large enough precision parameters for the procedures
sdp and cholesky, one finds an exact weighted SOS decomposition of u + εt, which yields in turn an
exact Putinar’s representation of f in QD(S′) with rational coefficients.

Example 3. Let us apply Putinarsos to f = −X2
1 − 2X1X2 − 2X2

2 + 6, S := {(x1, x2) ∈ R2 : 1− x2
1 ≥

0, 1−x2
2 ≥ 0} and the same precision parameters as in Example 1. The first and second loop yield D = 2

and ε = 1. After running absorb, we obtain the exact Putinar’s representation f = 23853407
292204836 + 23

49X
2
1 +

130657269
291009481X

2
2 + 1

24422 + (X1 −X2)2 + ( X2

2437 )2 + ( 11
7 )2(1−X2

1 ) + ( 13
7 )2(1−X2

2 ).

Theorem 5.6. We use the notation and assumptions introduced above. For some CS > 0 depending on S,
there exist ε, δ, R, δc and D = 2k of bit sizes less than O (2τd

nCS ) for which Putinarsos(f, S, ε, δ, R, δc)
terminates and outputs an exact Putinar’s representation with rational coefficients of f ∈ Q(S′), with
S′ := {x ∈ S : 1 − x2α ≥ 0 ,∀α ∈ Nnk}. The maximum bit size of these coefficients is bounded by

O (2τd
nCS ) and the procedure runs in boolean time O

(
22τd

nCS )
.

Proof. The loops going from line 2 to line 3 and from line 6 to line 7 always terminate as respective
consequences of Theorem 5.5 (i) and Theorem 5.5 (iii) with D ≤ 2τd

nCS , ε = 1
2N

, N ≤ 2τd
nCS , for some

real CS > 0 depending on S.

What remains to prove is similar to Proposition 3.4 and Theorem 3.5. Let ν, σ̊0, . . . , σ̊m, (cα)|α|≤k be as
in the proof of Theorem 5.5. Note that ν (resp. ε − ν) is a lower bound of the smallest eigenvalues of
any Gram matrix associated to σ̊j (resp. σ̊0) for 1 ≤ j ≤ m. In addition, cα ≥ ν for all α ∈ Nnk . When
the sdp procedure at line 10 succeeds, the matrix G̃j is an approximate Gram matrix of the polynomial

σ̊j with G̃j � 2δI,
√

Tr (G̃2
j ) ≤ R, we obtain a positive rational approximation λ̃j ≥ 2−δ of the smallest

eigenvalue of G̃j , c̃α is a rational approximation of cα with c̃α ≥ 2−δ, and c̃α ≤ R, for all j = 0, . . . ,m

and α ∈ Nnk . This happens when 2−δ ≤ ε and 2−δ ≤ ε − ν, thus for δ = O (2τd
nCS ). As in the proof

of Proposition 3.3, we derive a similar upper bound of R by a symmetric argument while considering a
Putinar representation of fD − f ∈ QD(S′), where fD := inf{b : b − f ∈ QD(S)}. As for the second
loop of Algorithm intsos, the third loop of Putinarsos terminates when the remainder polynomial
u = fε −

∑m
j=0 σ̃j gj −

∑
|α|≤k c̃α(1−X2α) satisfies |uγ | ≤ ε

r0
, where r0 =

(
n+k
n

)
is the size of P/2 = Nnk .

As in the proof of Proposition 3.4, one can show that this happens when δ and δc are large enough.

To bound the precision δc required for Cholesky’s decomposition, we do as in the proof of Proposition 3.4.
The difference now is that there are m +

(
n+k
k

)
= m + r0 additional terms in each equality constraint

of SDP (4), by comparison with SDP (1). Thus, we need to bound for all j = 1 . . . ,m, α ∈ Nnk and
γ ∈ supp(u) each term |Tr (G̃jCjγ)−(gj σ̃)γ | related to the constraint gj ≥ 0 as well as each term (omitted
for conciseness) involving c̃α related to the constraint 1−X2α ≥ 0. By using the fact that

Tr (G̃jCjγ) =
∑
δ

gjδ
∑

α+β+δ=γ

G̃jα,β ,

we obtain

|Tr (G̃jCjγ)− (gj σ̃)γ | ≤
∑
δ

|gjδ|
√
rj(rj + 1)2−δc R

1− (rj + 1)2−δc
,

where rj is the size of G̃j . Note that the size r0 of the matrix G̃0 satisfies r0 ≥ rj for all j = 1, . . . ,m. In
addition, deg gj ≤ D implies

∑
δ

|gjδ| ≤
(
n+ deg gj

n

)
2τ ≤

(
n+D

n

)
2τ ≤ Dn2τ+1 .
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This yields an upper bound of Dn2τ+1
√
r0(r0+1)2−δc R

1−(r0+1)2−δc
. We obtain a similar bound (omitted for concise-

ness) for each term involving c̃α.

Then, we take the smallest δ such that 2−δ ≤ ε
2r0

and the smallest δc such that

Dn2τ
√
r0(r0 + 1)2−δc R

1− (r0 + 1)2−δc
≤ ε

2r0((m+ 1) + r0)
,

which ensures that Putinarsos terminates. One proves that the procedure outputs an exact Putinar’s
representation of f ∈ Q(S′) with rational coefficients of maximum bit size bounded by O (2τd

nCS ).

As in the proof of Theorem 3.5, let nsdp be the sum of the sizes of the matrices involved in SDP (4) and
msdp be the number of entries. Note that

nsdp ≤ (m+ 1)r0 + r0 ≤ (m+ 2)

(
n+D

n

)
and msdp :=

(
n+D
n

)
. To bound the boolean running time, we consider the cost of solving SDP (4), which

is performed in O (n4
sdp log2(2τnsdpR 2δ)) iterations of the ellipsoid method, where each iteration requires

O (n2
sdp(msdp + nsdp)) arithmetic operations over log2(2τnsdpR 2δ)-bit numbers. Since msdp is bounded

by
(
n+D
n

)
≤ 2Dn and log2D = O (2τd

nCS ), one has msdp = O
(
22τd

nCS )
. We obtain the same bound for

nsdp, which ends the proof.

The complexity is polynomial in the degree D of the representation, often close in practice to the degrees
of the involved polynomials, as shown in Section 6.

6 Practical experiments

We provide practical performance results for Algorithms intsos, Polyasos and Putinarsos. These are
implemented in a library, called multivsos, written in Maple. More details about installation and bench-
mark execution are given on the two webpages dedicated to univariate1 and multivariate2 polynomials.
This tool is available within the RAGlib Maple package3. All results were obtained on an Intel Core
i7-5600U CPU (2.60 GHz) with 16Gb of RAM. We use the Maple Convex package4 to compute Newton
polytopes. Our subroutine sdp relies on the arbitrary-precision solver SDPA-GMP [30] and the cholesky
procedure is implemented with the function LUDecomposition available within Maple. Most of the time
is spent in the sdp procedure for all benchmarks.

In Table 1, we compare the performance of multivsos for nine univariate polynomials being positive over
compact intervals. More details about these benchmarks are given in [11, Section 6] and [28, Section 5]. In
this case, we use Putinarsos. The main difference is that we use SDP in multivsos instead of complex
root isolation in univsos2. The results emphasize that univsos2 performs better and provides more
concise SOS certificates, especially for high degrees (see e.g. # 5). For # 3, we were not able to obtain
a decomposition within a day of computation, as meant by the symbol − in the corresponding column
entries. Large values of d and τ require more precision. The values of ε, δ and δc are respectively between
2−80 and 2−240, 30 and 100, 200 and 2000.

Next, we compare the performance of multivsos with other tools in Table 2. The two first benchmarks
are built from the polynomial f = (X2

1 + 1)2 + (X2
2 + 1)2 + 2(X1 +X2 + 1)2 − 268849736/108 from [26,

Example 1], with f12 := f3 and f20 := f5. For these two benchmarks, we apply intsos. We use
Polyasos to handle M20 (resp. M100), obtained as in Example 2 by adding 2−20 (resp. 2−100) to the
positive coefficients of the Motzkin polynomial and ri, which is a randomly generated positive definite
quartic with i variables. We implemented in Maple the projection and rounding algorithm from [34] also

1https://github.com/magronv/univsos
2https://github.com/magronv/multivsos
3http://www-polsys.lip6.fr/~safey/RAGLib/
4http://www-home.math.uwo.ca/~mfranz/convex
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Table 1: multivsos vs univsos2 [28] for benchmarks from [11].

Id d τ (bits) multivsos univsos2
τ1 (bits) t1 (s) τ2 (bits) t2 (s)

# 1 13 22 682 387 178 0.84 51 992 0.83
# 3 32 269 958 − − 580 335 2.64
# 4 22 47 019 1 229 036 2.08 106 797 1.78
# 5 34 117 307 10 271 899 69.3 265 330 5.21
# 6 17 26 438 713 865 1.15 59 926 1.03
# 7 43 67 399 10 360 440 16.3 152 277 11.2
# 8 22 27 581 1 123 152 1.95 63 630 1.86
# 9 20 30 414 896 342 1.54 68 664 1.61
# 10 25 42 749 2 436 703 3.02 98 926 2.76

relying on SDP, denoted by RoundProject. For multivsos, the values of ε, δ and δc lie between 2−100

and 2−10, 60 and 200, 10 and 60. We compare with RAGLib based on critical points and the SamplePoints
procedure (abbreviated as CAD) based on CAD, both available in Maple. While these methods outperform
the two SDP-based algorithms for examples with n ≤ 3, they are less efficient for larger examples such
as r2

6 and suffer from a severe computational burden when n ≥ 8. An additional drawback is that they
do not provide non-negativity certificates. However, note that they can solve less restrictive problems,
involving positive semidefinite forms or non-negative polynomials.

As shown in [25], SDP-based methods may provide exact certificates even in such cases and can be
extended to rational functions. The algorithms we developed in this paper are unable to handle such cases.
In most cases, multivsos is more efficient than RoundProject and outputs more concise representations.
The reason is that multivsos performs approximate Cholesky’s decompositions while RoundProject
computes exact LDLT decompositions of Gram matrices obtained after the two steps of rounding and
projection. Note that we could not solve the examples of Table 2 with less precision.

Table 2: multivsos vs RoundProject [34] vs RAGLib vs CAD for n-variate polynomials of degree d (Polya).

Id n d
multivsos RoundProject RAGLib CAD

τ1 (bits) t1 (s) τ2 (bits) t2 (s) t3 (s) t4 (s)
f12 2 12 162 861 5.96 5 185 020 6.92 0.15 0.07
f20 2 20 745 419 110. 78 949 497 141. 0.16 0.03
M20 3 8 4 695 0.18 3 996 0.15 0.13 0.05
M100 3 8 17 232 0.35 18 831 0.29 0.15 0.03
r2 2 4 1 866 0.03 1 031 0.04 0.09 0.01
r4 4 4 14 571 0.15 47 133 0.25 0.32 −
r6 6 4 56 890 0.34 475 359 0.54 623. −
r8 8 4 157 583 0.96 2 251 511 1.41 − −
r10 10 4 344 347 2.45 8 374 082 4.59 − −
r2
6 6 8 1 283 982 13.8 146 103 466 106. 10.9 −

Finally, we compare the performance of multivsos (Putinarsos) on positive polynomials on basic com-
pact semi-algebraic sets in Table 3. The first benchmark is from [26, Problem 4.6]. Each benchmark fi
comes from an inequality of the Flyspeck project [21]. The three last benchmarks are from [29]. The
maximal degree of the polynomials involved in each system is denoted by d. We emphasize that the degree
D = 2k of each Putinar representation obtained in practice with Putinarsos is very close to d, which is
in contrast with the theoretical complexity estimates obtained in Section 5. The values of ε, δ and δc lie
between 2−30 and 2−10, 60 and 200, 10 and 30. As for Table 2, RAGLib performs better for problems with
d ≤ 3 and n ≤ 4. Larger problems (e.g. magnetism, f859) are handled more efficiently with multivsos
and CAD can only solve 3 benchmarks out of 10. We plan to extend the procedure RoundProject and the
algorithm from [25] to the case of such constrained problems.
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Table 3: multivsos vs RAGLib vs CAD for positive polynomials over basic compact semialgebraic sets
(Putinar).

Id n d
multivsos RAGLib CAD

k τ1 (bits) t1 (s) t2 (s) t3 (s)
p46 2 4 3 21 723 0.83 0.15 0.81
f260 6 3 2 114 642 2.72 0.12 −
f491 6 3 2 108 359 9.65 0.01 0.05
f752 6 2 2 10 204 0.26 0.07 −
f859 6 7 4 6 355 724 303. 5896. −
f863 4 2 1 5 492 0.14 0.01 0.01
f884 4 4 3 300 784 25.1 0.21 −
f890 4 4 2 60 787 0.59 0.08 −
butcher 6 3 2 247 623 1.32 47.2 −
heart 8 4 2 618 847 2.94 0.54 −
magnetism 7 2 1 9 622 0.29 434. −
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