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Abstract

Answering connectivity queries in real algebraic sets is a fundamental problem in effective real
algebraic geometry that finds many applications in e.g. robotics where motion planning issues are
topical. This computational problem is tackled through the computation of so-called roadmaps
which are real algebraic subsets of the set V under study, of dimension at most one, and which
have a connected intersection with all semi-algebraically connected components of V . Algorithms
for computing roadmaps rely on statements establishing connectivity properties of some well-chosen
subsets of V , assuming that V is bounded.

In this paper, we extend such connectivity statements by dropping the boundedness assumption
on V . This exploits properties of so-called generalized polar varieties, which are critical loci of V for
some well-chosen polynomial maps.

1 Introduction
Let Q be a real field of real closure R and let C be its algebraic closure (one can think about Q, R and
C instead, for the sake of understanding) and let n ≥ 0 be an integer. An algebraic set V ⊂ Cn defined
over Q is the solution set in Cn to a system of polynomial equations in n variables with coefficients in
Q. A real algebraic set defined over Q is the set of solutions in Rn to a system of polynomial equations
in n variables with coefficients in Q. It is also the real trace V ∩Rn of an algebraic set V ⊂ Cn. Real
algebraic sets have finitely many connected components [7, Theorem 2.4.4.]. Counting these connected
components [17, 27] or answering connectivity queries over V ∩Rn [25] finds many applications in e.g.
robotics [8, 12, 28, 21, 14].

Following [8, 10], such computational issues are tackled by computing a real algebraic subset of
V ∩Rn, defined over Q, which has dimension at most one and a connected intersection with all connected
components of V and contains the input query points. In [8], Canny called such a subset a roadmap of
V .

The effective construction of roadmaps, given a defining system for V , relies on connectivity state-
ments which allow one to define real algebraic subsets of V ∩ Rn, of smaller dimension than that of
V ∩Rn, and that have a connected intersection with the connected components of V ∩Rn. Such existing
statements in the literature make the assumption that V has finitely many singular points and V ∩Rn

is bounded. In this paper, we focus on the problem of obtaining similar statements by dropping the
boundedness assumption. We prove a new connectivity statement which generalizes the one of [24] to
the unbounded case and will be used in a separate paper to obtain asymptotically faster algorithms for
computing roadmaps. We start by recalling the state-of-the-art connectivity statement, which allows us
to introduce some material we need to state our main result.

State-of-the-art overview We start by introducing some terminology. Recall that an algebraic set
V ⊂ Cn is the set of solutions of a finite system of polynomials equations. It can be uniquely decomposed
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into finitely many irreducible components. When all these components have the same dimension d, we say
that V is d-equidimensional. Those points y ∈ V at which the Jacobian matrix of a finite set of generators
of its associated ideal has rank n − d are called regular points and the set of those points is denoted
by reg(V ). The others are called singular points; the set of singular points of V (its singular locus) is
denoted by sing(V ) and is an algebraic subset of V . We refer to [26] for definitions and propositions
about algebraic sets.

A semi-algebraic set S ⊂ Rn is the set of solutions of a finite system of polynomial equations and
inequalities. We say that S is semi-algebraically connected if for any y,y′ ∈ S, y and y′ can be connected
by a semi-algebraic path in S, that is a continuous semi-algebraic function γ : [0, 1]→ S such that γ(0) = y
and γ(1) = y′. A semi-algebraic set S can be decomposed into finitely many semi-algebraically connected
components which are semi-algebraically connected semi-algebraic sets that are both closed and open in
S. Finally, for a semi-algebraic set S ⊂ Rn, we denote by S its closure for the Euclidean topology on
Rn. We refer to [4] and [7] for definitions and propositions about semi-algebraic sets and functions.

Let 0 ≤ d ≤ n and V ⊂ Cn be a d-equidimensional algebraic set such that sing(V ) is finite. For
1 ≤ i ≤ n, let πi be the canonical projection:

πi : (y1, . . . ,yn) 7−→ (y1, . . . ,yi)

For a polynomial map ϕ : Cn → Cm a point y ∈ V is a critical point of ϕ if y ∈ reg(V ) and the
differential of the restriction of ϕ to V at y, denoted by dyϕ, is not surjective, that is

dyϕ(TyV ) ( Cm,

where TyV denoted the tangent space to V at y. We will denote by W ◦(ϕ, V ) the set of the critical
points of ϕ on V . A critical value is the image of a critical point. We put K(ϕ, V ) = W ◦(ϕ, V )∪sing(V ).
The points of K(ϕ, V ) are called the singular points of ϕ on V . Figure 1 show examples of such critical
loci.

x1 x2

Z

W ◦(π1, Z)
x1 x2

Z

W ◦(x2
1 + x2

2, Z)

Figure 1: Real trace of the critical locus on a sphere Z for: the projection on the first coordinate π1
(left); the polynomial map ϕ associated to x21 + x22 ∈ R[x1, x2, x3] (right). Let x = (x1,x2,x3) ∈ Z.
The differential of the restriction of π1 to Z at x is the restriction of π1 to TxZ. The image is not C if,
and only if, TxZ is orthogonal to the x1-axis, so that critical points of the restriction of π to Z occur at
(±1, 0, 0). Besides, the differential of the restriction of ϕ to Z at x is the restriction of −2x3 ·π3 to TxZ.
Hence, x is a critical point of the restriction of ϕ to Z if, and only if, either x3 = 0 or TxZ is orthogonal
the x3-axis.

For 1 ≤ i ≤ d we denote by W (πi, V ) the i-th polar variety defined as the Zariski closure of the
critical locus W ◦(πi, V ) of the restriction of πi to V . Further, we extend this definition by considering
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ϕ = (ϕ1, . . . , ϕn) ⊂ Q[x1, . . . , xn] and, for 1 ≤ i ≤ n, the map

ϕi : Cn −→ Ci

y 7→ (ϕ1(y), . . . , ϕi(y))
(1)

Following the ideas of [1, 2, 3] we denote similarly W (ϕi, V ) the i-th generalized polar variety defined
as the Zariski closure of the critical locus W ◦(ϕi, V ) of the restriction of ϕi to V . We recall below [23,
Theorem 14] (see also [6, Proposition 3.3] for a slight variant of it), making use of polar varieties to
establish connectivity statements.

For 2 ≤ i ≤ d, assume that the following holds:

• V ∩Rn is bounded;

• W (πi, V ) is either empty or (i− 1)-equidimensional and smooth outside sing(V );

• W (π1,W (πi, V )) is finite;

• for any y ∈ Ci−1, π−1i−1(y) ∩ V is either empty or (d− i+ 1)-equidimensional.

Let
Ki = W (π1,W (πi, V )) ∪ sing(V ) and Fi = π−1i−1(πi−1(Ki)) ∩ V.

Then, the real trace ofW (πi, V )∪Fi has a non-empty and semi-algebraically connected intersectionwith each semi-
algebraically connected component of V ∩Rn.

For the special case i = 2, this result was originally proved by Canny in [8, 9]. A variant of it, again
assuming i = 2, is given for general semi-algebraic sets in [10, 11]. By dropping the restriction i = 2, the
result in [23, Theorem 14] allows one more freedom in the choice of i, and then, in the design of roadmap
algorithms to obtain a better complexity. The rationale is as follows.

Restricting to i = 2, one expects (up to some linear change of variables or other technical manip-
ulations) a situation where W (π2, V ) has dimension at most 1 and F2 has dimension d − 1 (see e.g.
[23, Lemma 31]). To obtain a roadmap for V ∩ Rn one is led to call recursively roadmap algorithms
with input systems defining the fibers Fi’s. Hence, the depth of the recursion is n. Besides, letting
D be the maximum degree of input equations defining V , roughly speaking each recursive call requires
(nD)O(n) arithmetic operations in Q while the size of the input data grows by (nD)O(n) according to [23,
Proposition 33]. Consequently, one obtains roadmap algorithms using (nD)O(n2) arithmetic operations
in Q.

In [23], using a baby steps/giant steps strategy, it is showed that one can take i '
√
d and then have

a depth of the recursion '
√
d. It is also proved that each recursive step needed to compute systems

encoding Ki and Fi requires at most (nD)O(n) arithmetic operations in Q, while the size of the input
data grows by (nD)O(n). All in all, up to technical details that we skip, one obtains roadmap algorithms
using (nD)O(n

√
n) arithmetic operations in Q. Finally, in [24], it is shown how to apply [23, Theorem

14] with i ' d
2 so that the depth of the recursion becomes ' log2(d). Hence, proceeding as in [23], an

algorithm using (nD)6n log2(d) arithmetic operations in Q is obtained in [24].
Such connectivity results and the algorithms that derive from them are at the foundation of many

implementations for answering connectivity queries in real algebraic sets. As far as we know, the first
one was reported in [20], showing that, at that time, basic computer algebra tools were mature enough to
implement rather easily roadmap algorithms. More recently, practical results were reported applications
of roadmap algorithms to kinematic singularity analysis in [12, 13], showing the interest of developing
roadmap algorithms beyond applications to motion planning. In parallel, the interest in roadmap algo-
rithms keeps growing as they have also been adapted to the numerical side [19, 15]. This illustrates the
interest of improving roadmap algorithms and the connectivity results they rely on.

Dropping the boundedness assumption in this scheme was done in [5, 6] using infinitesimal deforma-
tion techniques. The algorithms proposed use respectively (nD)O(n

√
n) and (nD)O(n log2(n)) arithmetic

operations in Q. This induces a growth of intermediate data; the algorithm is not polynomial in its
output size, which is (nD)O(n log(n)).

In non-compact cases, one could also study the intersection of V with either [−c, c]n or a ball of radius
c, for c large enough, but we would then have to deal with semi-algebraic sets instead of real algebraic
sets, in which case [23, Theorem 14] is still not sufficient.
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In order to ultimately obtain an algorithm dealing with unbounded smooth real algebraic sets with
a complexity similar to that of [24], the goal of this paper is instead to provide a new connectivity
statement with no boundedness assumption and the same freedom brought by the one of [23].

Main result Let V ⊂ Cn be an algebraic set defined over Q and d > 0 be an integer. We say that V
satisfies assumption (A) when

(A) V is d-equidimensional and its singular locus sing(V ) is finite.

Recall that we say that a map ψ : Y ⊂ Rn → Z ⊂ Rm is a proper map if, for every closed (for
Euclidean topology) and bounded subset Z ′ ⊂ Z, ψ−1(Z ′) is a closed and bounded subset of Y . For
ϕ = (ϕ1, . . . , ϕn) ⊂ Q[x1, . . . , xn], and with ϕi the induced map defined in (1), for 1 ≤ i ≤ n, we say
that ϕ satisfies assumption (P) when

(P) the restriction of the map ϕ1 to V ∩Rn is proper and bounded from below.

We denote by Wi = W (ϕi, V ) the Zariski closure of the set of critical points of the restriction of ϕi
to V . For 2 ≤ i ≤ d and ϕ as above, we say that (ϕ, i) satisfies assumption (B) when

(B1) Wi is either empty or (i− 1)-equidimensional and smooth outside sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩ϕ−1i−1(y) is either empty or (d− i+ 1)-equidimensional.

Note that when B1 holds, sing(Wi) and critical loci of polynomial maps restricted to Wi are well-
defined. For Si a finite subset of V , we say that Si satisfies assumption (C) when

(C1) Si is finite;

(C2) Si has a non-empty intersection with every semi-algebraically connected component ofW (ϕ1,Wi)∩
Rn.

Finally, using a construction similar to the one used in [23, Theorem 14], we let

Ki = W (ϕ1, V ) ∪ Si ∪ sing(V ) and Fi = ϕ−1i−1(ϕi−1(Ki)) ∩ V.

Theorem 1.1. For V, d, i in {1, . . . , d}, ϕ and Si as above, and under assumptions (A), (B), (C) and
(P), the subset Wi ∪ Fi has a non-empty and semi-algebraically connected intersection with each semi-
algebraically connected component of V ∩Rn.

The proof structure of the above result follows a pattern similar to the one of [23]. Its foundations
rely on the following basic idea, sweeping the ambient space with level sets of ϕ1, having a look at the
connectivity of V ∩ ϕ1

−1(] −∞, a]) and (Wi ∪ Fi) ∩ ϕ1
−1(] −∞, a]). The bulk of the proof consists in

showing that these connectivities are the same. When one does not assume that i = 2 but does assume
boundedness, one can take for ϕ1 a linear projection, so that its level sets are hyperplanes. In this
context, the proof in [23] also introduces ingredients such as Thom’s isotopy lemma, which can be used
thanks to the boundedness assumption. Dropping the boundedness assumption makes these steps more
difficult and requires us to use a quadratic form for ϕ1 to ensure a properness property. This in turn
makes the geometric analysis more involved since now, the level sets of ϕ1 are not hyperplanes anymore.

Structure of the paper Section 2 provides the necessary background on algebraic sets and polar
varieties needed to follow the proof of Theorem 1.1. Section 3 proves two auxiliary results which analyze
the connectivity of fibers of some polynomial maps. These are used in the proof of Theorem 1.1, which is
given in Section 4. Finally, in Section 5, we sketch how Theorem 1.1 will be used to design new roadmap
algorithms in upcoming work.
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2 Preliminaries
Basic properties of algebraic sets Recall that given a finite set of polynomials g ⊂ C[x1, . . . , xn]
we denote by V (g) ⊂ Cn the algebraic set defined as the vanishing locus of g. For y ∈ Cn, we denote by
Jacy(g) the Jacobian matrix of g evaluated at y. Conversely, given an algebraic set V ⊂ Cn, we denote
by I(V ) the ideal of V , that is the ideal of C[x1, . . . , xn] of polynomials vanishing on V . Such an ideal
is finitely generated by the Hilbert basis theorem.

Let X ⊂ Cn and Y ⊂ Cm be algebraic sets and K ⊂ C be a subfield. A map α : X → Y is a regular
map defined over K if there exists (f1, . . . , fm) ⊂ K[x1, . . . , xn] such that α(y) = (f1(y), . . . , fm(y)) for
all y ∈ X. A regular map α : X → Y is an isomorphism defined over K if there exists a regular map
β : Y → X, defined over K, such that α ◦ β = idY and β ◦ α = idX , where idZ : Z → Z is the identity
map on Z. We refer to [26] for further details on these notions. The following result is straightforward.

Lemma 2.1. Let Y ⊂ Cn and Z ⊂ Cm be two algebraic sets. Let α : Y → Z be an isomorphism of
algebraic sets defined over R. Then the semi-algebraically connected subsets of Y ∩Rn and Z ∩Rm are
in correspondence through α.

Critical points of a polynomial map The following lemma from [24, Lemma A.2] provides an
algebraic characterization of critical points.

Lemma 2.2 (Rank characterization). Let Z ⊂ Cn be a d-equidimensional algebraic set and g =
(g1, . . . , gp) be generators of I(Z). Let ϕ : Z → Cm be a polynomial map, then the following holds.

W ◦(ϕ, Z) =

{
y ∈ Z | rank(Jacy(g)) = n− d

and rank(Jacy([g,ϕ])) < n− d+m

}
;

K(ϕ, Z) = {y ∈ Z | rank(Jacy([g,ϕ])) < n− d+m}.

Let us present a direct consequence of this result, which gives a more effective criterion for the singular
points of a polynomial map. Let ϕ = (ϕ1, . . . , ϕn) ⊂ C[x1, . . . , xn] and ϕi be the deduced map defined
as in (1) for 1 ≤ i ≤ n.

Lemma 2.3. Let Z ⊂ Cn be a d-equidimensional variety and g be a finite set of generators of I(Z).
Then for 1 ≤ i ≤ n, K(ϕi, Z) is the algebraic subset of Z defined by the vanishing of g and the

(p+ i)-minors of Jac([g,ϕi]), where p = n− d.

Proof. One directly deduces from Lemma 2.2 that K(ϕi, Z) is exactly the intersection of Z, the zero-set
of g, with the set of points y ∈ Cn where rank(Jacy([g,ϕi])) < p + i. The latter set is the zero-set of
the (p+ i)-minors of Jac([g,ϕi]).

Definition 2.4 (Polar variety). Let Z ⊂ Cn be a d-equidimensional algebraic set, and let 1 ≤ i ≤ n.
As above, let ϕ = (ϕ1, . . . , ϕn) ⊂ C[x1, . . . , xn] and ϕi be the induced map, defined by (ϕ1, . . . , ϕi).
We denote by W (ϕi, Z) the Zariski closure of W ◦(ϕi, Z). It is called a generalized polar variety of Z.
Remark that

W ◦(ϕi, Z) ⊂ W (ϕi, Z) ⊂ K(ϕi, Z) ⊂ Z

by minimality of the Zariski closure. Hence K(ϕi, Z) = W (ϕi, Z) ∪ sing(Z) but the union is not
necessarily disjoint.

3 Connectivity and critical values
In this section we consider for n ≥ 1 an equidimensional algebraic set Z ⊂ Cn of dimension d > 0.
We are going to prove two main connectivity results on the semi-algebraically connected components of
Z ∩Rn through some polynomial map. These results, along with ingredients of Morse theory such as
critical loci and critical values of polynomial maps, will be essential in the proof of Theorem 1.1. Most
of the results presented here are generalizations of those given in [23, Section 3] in the unbounded case,
replacing projections by suitable polynomial maps.
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3.1 Connectivity changes at critical values
The main result of this subsection is to prove the following proposition, which deals with the connec-
tivity changes of semi-algebraically connected components in the neighbourhood of singular values of a
polynomial map.

Let X be a subset of Cn, U ⊂ R and f ∈ R[x1, . . . , xn]. With a slight abuse of notation, we still
denote by f the polynomial map y ∈ Cn 7→ f(y) ∈ C, and we write X|f∈U = X ∩ f−1(U) ∩ Rn. In
particular if u ∈ R we note

X|f<u = X|f∈]−∞,u[, X|f≤u = X|f∈]−∞,u] and X|f=u = X|f∈{u}.

Proposition 3.1. Let ϕ : Cn → C be a regular map defined over R. Let A ⊂ Rk be a semi-algebraically
connected semi-algebraic set, and u ∈ R and

γ : A→ Z|ϕ≤u −
(
Z|ϕ=u ∩K(ϕ, Z)

)
be a continuous semi-algebraic map. Then there exists a unique semi-algebraically connected component
B of Z|ϕ<u such that γ(A) ⊂ B.

Let us start by recalling a definition from [4, Section 3.5]. Let U ⊂ Rk a semi-algebraic open set
and V ⊂ Rl a semi-algebraic set. The set of semi-algebraic functions from U to V which admit partial
derivatives up to order m ≥ 0 is denoted by Sm(U, V ). The set S∞(U, V ) is the intersection of all the
sets Sm(U, V ) for m ≥ 0. The ring S∞(U,R) is called the ring of Nash functions.

Notation. In this subsection we fix a regular (polynomial) map ϕ : Cn → C defined over R. With a
slight abuse of notation, the underlying polynomial in R[x1, . . . , xn] will be denoted in the same manner.

We start by proving an extended version of [23, Lemma 6]. This can be seen as the founding stone of
all the connectivity results presented in this paper. For any y ∈ Z∩Rn−K(ϕ, Z), it shows the existence
of a regular map α : Z → Cn+1 such that Z and α(Z) are isomorphic, with π1 ◦ α = ϕ on α(Z) and
that there is an open Euclidean neighborhood N of α(y) such that the implicit function theorem applies
to α(Z) ∩N . (Recall that an open Euclidean neighborhood of a point y ∈ Rn is any subset of Rn that
contains y and is open for the Euclidean topology on Rn.)

Lemma 3.2. Let y = (y1, . . . ,yn) be in Z ∩Rn −K(ϕ, Z). Then, there exists a regular map α : Z →
Cn+1 such that the following holds :

a) there exist open Euclidean neighborhoods N ′ ⊂ Rd of πd(α(y)) and N ⊂ Rn+1 of α(y), and a
continuous semi-algebraic map f : N ′ → Rn+1−d such that:

α(Z) ∩N =
{

(z′,f(z′)) | z′ ∈ N ′
}

;

b) α : Z → α(Z) is an isomorphism of algebraic sets defined over R;

c) ϕ ◦α−1 = π1 on α(Z).

Proof. Let Oy ⊂ Rn be an open Euclidean neighborhood of y and let g = (g1, . . . , gn−d) be an (n− d)-
tuple of polynomials in C[x1, . . . , xn], such that Z ∩Oy = V (g) ∩Oy and Jacy(g) has full rank n− d.
Such a Oy and g are given by [7, Proposition 3.3.10] since y is in reg(Z). Also, since y /∈W (ϕ, Z), there
exists a non-zero (n− d+ 1)-minor of Jacy([g,ϕ]) by Lemma 2.3. Therefore, there exists a permutation
σ of {1, . . . , n} such that the matrix [

∂g
∂xσ(i)

(y)
∂ϕ

∂xσ(i)
(y)

]
d≤j≤n

is invertible. Let x0 be a new variable and define h as the following finite subset of polynomials of
R[x0, x1, . . . , xn],

h = (g̃, ϕ̃) =
(
g(σ−1 · (x1, . . . , xn)),ϕ(σ−1 · (x1, . . . , xn))− x0

)
6



where τ · (x1, . . . , xn) = (xτ(1), . . . , xτ(n)) for any permutation τ of {1, . . . , n}. Hence,

V (h) ∩ (R×Oy) =
{

(ϕ(z), σ · z) | z ∈ Z ∩Oy

}
⊂ Rn+1.

By the chain rule, for any 1 ≤ j ≤ n and z ∈ Rn,

∂g̃

∂xj
(ϕ(z), z) =

∂g

∂xσ(j)
(σ−1 · z) and

∂ϕ̃

∂xj
(ϕ(z), z) =

∂ϕ

∂xσ(j)
(σ−1 · z).

Hence, for Jac(f , i) the Jacobian matrix of f with respect to (xi+1, . . . , xn), and ỹ = (ϕ(y), σ · y),

Jacỹ(h, d− 1) =

[
Jacỹ(g̃, d− 1)
Jacỹ(ϕ̃, d− 1)

]
=

[
∂g

∂xσ(i)
(y)

∂ϕ
∂xσ(i)

(y)

]
d≤j≤n

,

which is invertible by assumption on σ.
Therefore, applying the semi-algebraic implicit function theorem [4, Th 3.30] to h, there is an open

Euclidean neighborhoods N ′ ⊂ Rd of (ϕ(y),y′) where y′ = (yσ(`), 1 ≤ ` ≤ d − 1), an open Euclidean
neighborhood N ′′ ⊂ Rn−d+1 of y′′ = (yσ(`), d ≤ ` ≤ n) and a map f = (f1, . . . , fn−d+1) ∈ S∞(N ′, N ′′)
(since ϕ and the gi’s are polynomials) such that:

∀ z = (z′, z′′) ∈ N ′ ×N ′′,
[
h(z) = 0⇐⇒ z′′ = f(z′)

]
Then, let N = (N ′ ×N ′′) ∩ (R× σ ·Oy) ⊂ Rn+1, the previous assertion becomes:{

(ϕ(z), σ · z) | z ∈ Z
}
∩N =

{
(z′,f(z′)) | z′ ∈ N ′

}
(2)

Finally, we claim that taking α : z ∈ Z 7→ (ϕ(z), σ · z) ends the proof. Indeed, by equation (2),
assertion a) immediately holds since N ′ and N are Euclidean open neighborhood of πd(α(y)) and α(y)
respectively. Further, one checks that α is a Zariski isomorphism, of inverse σ−1 after projecting on the
last n coordinates, which proves b). Finally, one sees that π1 ◦α = ϕ so that c) holds as well.

Remark. The previous lemma shows in particular that Z ∩ Rn − K(ϕ, Z) is a Nash manifold (see [4,
Section 3.4]) of dimension d, i.e. locally S∞-diffeomorphic to Rd.

Lemma 3.3. Let y be in Z ∩ Rn − K(ϕ, Z) and u = ϕ(y). Then there exists an open Euclidean
neighborhood N(y) of y such that the following holds:

a) N(y) is semi-algebraically connected;

b) (Z ∩N(y))|ϕ<u is non-empty and semi-algebraically connected;

c) (Z ∩N(y))|ϕ=u is contained in (Z ∩N(y))|ϕ<u.

This result is illustrated by Figure 2.

Proof. Let α, N ′, N and f be obtained by applying Lemma 3.2. Let F : z′ ∈ N ′ 7→ (z′,f(z′)) ∈ N . Let
ε > 0 be such that

B = B (πd(α(y)), ε) ⊂ N ′ ⊂ Rd

where B (πd(α(y)), ε) is the open ball of Rd with radius ε and center πd(α(y)). We claim that taking
N(y) = α−1(F (B)) is enough to prove the result.

First, F (B) is open, semi-algebraic and semi-algebraically connected, since F is an open continuous
map on B. Then, by assumptions on α, together with Lemma 2.1, α−1(F (B)) is a semi-algebraically
connected open neighborhood of y. Hence N(y) satisfies statement a).

Besides, remark that F (B) ⊂ α(Z), so that

(α(Z) ∩ F (B))|π1<u = F (B)|π1<u = F (B|π1<u)
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x1

π−1
1 (y1)

Z ∩Rn

y

(Z ∩N(y))π1<y1

N(y)Zπ1<y1

x1

π−1
1 (y1)

Z ∩Rny(Z ∩N(y))π1<y1

N(y)

Zπ1<y1

Figure 2: Illustration of Lemma 3.3 where ϕ = π1, u = y1 and Z is isomorphic to V (x21 + x22 − 1) ×
V (x1 + x22). On the left, y is not critical and one sees that it satisfies all the statements. On the right
y is critical, and (Z ∩N(y))|π1<y1

is disconnected. Note that in both cases, y1 is a critical value.

as π1(F (z′)) = π1(z′) for z′ ∈ N ′. Since π1(α(y)) = ϕ(y) = u, the semi-algebraic set B|π1<u is non-
empty and semi-algebraically connected (since B is convex), and so is its image through F by [4, Section
3.2]. But remark that for all X ⊂ R,

(Z ∩N(y))|ϕ∈X = α−1
(
(α(Z) ∩ F (B))|π1∈X

)
= α−1 ◦ F (B|π1∈X), (3)

since ϕ ◦ α−1 = π1. Therefore, by Lemma 2.1, (Z ∩ N(y))|ϕ<u is non-empty and semi-algebraically
connected, as claimed in statement b).

To prove assertion c), remark that B|π1=u is contained in B|π1<u, so that α−1◦F (B|π1=u) is contained
in α−1 ◦ F (B|π1<u). Since F and α−1 are continuous,

α−1 ◦ F
(
B|π1<u

)
⊂ α−1 ◦ F

(
B|π1<u

)
.

Finally, by (3), we get
(Z ∩N(y))|ϕ=u ⊂ (Z ∩N(y)|ϕ<u.

Lemma 3.4. Let y be in Z ∩Rn −K(ϕ, Z), let u = ϕ(y) and let N(y) as in Lemma 3.3. Then, there
exists a unique semi-algebraically connected component By of Z|ϕ<u such that y ∈ By. Moreover,

(Z ∩N(y))|ϕ<u ⊂ By.

This lemma is illustrated in Figure 3.

Proof. By the second item of Lemma 3.3, (Z ∩ N(y))|ϕ<u is non-empty and semi-algebraically con-
nected. Thus, it is contained in a semi-algebraically connected component By of Z|ϕ<u. Since the
semi-algebraically connected components of Z|ϕ<u are pairwise disjoint, By is well defined and unique.
Moreover by Lemma 3.3,

y ∈ (Z ∩N(y))|ϕ<u ⊂ By.

Finally, suppose that there exists another connected component B′ of Z|ϕ<u such that y ∈ B′. Then y
belongs to the closure of B′, so that N(y)∩B′ 6= ∅, since N(y) is a neighborhood of y. Thus B′∩By is not
empty, and since they are both semi-algebraically connected components of the same set, B′ = By.
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x1

π−1
1 (y1)

Z ∩Rn

y

(Z ∩N(y))<y1

N(y)By

x1

π−1
1 (y1)

Z ∩Rny(Z ∩N(y))<y1

N(y)

By

B′y

Figure 3: Illustration of Lemma 3.4 where ϕ = π1, u = y1 and Z is isomorphic to V (x21 + x22 − 1) ×
V (x1 + x22). On the left y is not critical and one sees that y ∈ By and (Z ∩N(y))|π1<y1

⊂ By. However
on the right, y is critical, and one observes that y belongs to both By and B′y, and, in addition, that
(Z ∩N(y))|π1<y1

is not contained in any of these components. Note that in both cases, y1 is a critical
value.

Let us see a geometric consequence of this result. The following lemma shows that if u is the least
element of R such that the hypersurface ϕ−1({u}) intersects a semi-algebraically connected component
C of Z ∩ Rn, then this intersection consists entirely of singular points of ϕ on Z. It is illustrated by
Figure 4.

Lemma 3.5. Let y ∈ Z ∩Rn with u = ϕ(y) and let C be the semi-algebraically connected component
of Z|ϕ≤u containing y. If C|ϕ<u = ∅ then C = C|ϕ=u ⊂ K(ϕ, Z). In particular, y ∈ K(ϕ, Z).

Proof. If C|ϕ<u = ∅, since C ⊂ Z|ϕ≤u then C = C|ϕ=u holds. Let us prove the contrapositive of the rest
of the lemma. Suppose that C|ϕ=u 6⊂ K(ϕ, Z), and let

z ∈ C|ϕ=u −K(ϕ, Z).

Let Bz be the semi-algebraically connected component of Z|ϕ<u obtained by applying Lemma 3.4. Since
Bz contains z and is a semi-algebraically connected set of Z|ϕ≤u, Bz ⊂ C. Hence C|ϕ<u contains
(Bz)|ϕ<u = Bz, which is then not empty.

We prove now an important consequence of the previous lemma. It is a fundamental property of
generalized polar varieties and motivates their introduction among the ingredients of a roadmap.

Proposition 3.6. Let u ∈ R and let B be a bounded semi-algebraically connected component of Z|ϕ<u.
Then B ∩K(ϕ, Z) 6= ∅.

Proof. Since ϕ is a semi-algebraic continuous map and B is semi-algebraic, then ϕ(B) is a closed and
bounded semi-algebraic set by [4, Theorem 3.23]. In particular, ϕ reaches its minimum ϕ(z) on B and
since ∅ 6= B ⊂ Z|ϕ<u,then ϕ(z) < u. But B is a semi-algebraically connected component of Z|ϕ<u, so
in particular it is closed in Z|ϕ<u, so that

B −B ⊂ Z|ϕ=u.

Therefore z ∈ B and asB|ϕ<ϕ(z) is empty (z is a minimizer), B|ϕ=ϕ(z) and z is inK(ϕ, Z) by Lemma 3.5.
Finally z ∈ B ∩K(ϕ, Z), and the latter is non-empty.
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x1

x2
x3

TyZ

Z|π1≤u

π1(TyZ)

Z ∩ R3 TyZ = π−1
1 (−r)

ϕ−1(ϕ(y))

Z ∩ R3

C|ϕ=ϕ(y)

y = (−r, 0, 0)
0

dyϕ = −2rπ1

r

x1 x2

x3

Figure 4: Illustration of Lemma 3.5 in two cases. On the left, ϕ = π1 and Z ∩ R3 is a torus. The plane
{x1 = u} indicated satisfies C|ϕ<u = ∅. One sees that C|ϕ=u ⊂ K(ϕ, Z), and indeed C|ϕ=u = {y}.
On the right, ϕ is the square of the Euclidean norm, and Z is a cylinder of radius r. Remark first
that C|ϕ<r = ∅. Moreover, for x = (x1,x2, 0) ∈ Z, the differential at x of restriction of ϕ to Z is the
restriction of the projection on the (x1, x2)-plane to TxZ. Since these two latter planes are orthogonal,
x is indeed a critical point.

We are now able to prove a weaker version of Proposition 3.1, which is illustrated in Figure 5. It
deals with the particular case when the map has values in some fiber Z|ϕ=u, where u ∈ R.

Lemma 3.7. Let u ∈ R and A ⊂ Rk be a semi-algebraically connected set. Let

γ : A −→ Z|ϕ=u −K(ϕ, Z)

be a continuous semi-algebraic map. Then there exists a unique semi-algebraically connected component
B of Z|ϕ<u such that γ(A) ⊂ B.

Proof. Let a0 ∈ A and y = γ(a0), by assumption, y ∈ Z|ϕ=u −K(ϕ, Z). Then by Lemmas 3.3 and 3.4,
there exist an open neighborhood N(y) of y and a semi-algebraically connected component By of Z|ϕ<u
such that

(Z ∩N(y))|ϕ=u ⊂ (Z ∩N(y))|ϕ<u ⊂ By.

Hence for every z ∈ (Z ∩N(y))|ϕ=u −K(ϕ, Z), z ∈ By so that Bz = By by application of Lemma 3.4.
Since γ is a continuous semi-algebraic map, there exists an open semi-algebraic neighborhood N ′(a0) of
a0 such that

γ(N ′(a0)) ⊂ (Z ∩N(y))|ϕ=u −K(ϕ, Z).

Hence the map a 7→ Bγ(a) is constant on N(a0). Let

B : a ∈ A 7→ Bγ(a) ∈ P(Z|ϕ<u)

be the map given by Lemma 3.4, where P(Z|ϕ<u) denote the power set of Z|ϕ<u. We proved that B
is locally constant on A and then, equivalently, continuous for the discrete topology on P(Z|ϕ<u). But
since A is semi-algebraically connected, B(A) is connected for the discrete topology, that is B is constant
A.

Let then B be the constant value that B takes on A. By Lemma 3.4, for all a ∈ A, γ(a) ∈ Bγ(a) = B,
that is γ(A) ⊂ B. Besides, if B′ is another semi-algebraically connected component of Z|ϕ<u such that
γ(A) ⊂ B′, then for all a ∈ A,

γ(a) ∈ B ∩B′ ∩ Z|ϕ=u −K(ϕ, Z),
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x1

Z ∩ Rn

γ(A)

B

Z|π1=u

Z|π1=u ∩K(π1, Z)

x1

Z ∩ Rn

γ(A)

Z|π1=u ∩K(π1, Z)

B′B

Z|π1=u

Figure 5: Illustration of the proof of Proposition 3.1 where ϕ = π1 and Z is isomorphic to V (x21 + x22 −
1) × V (x1 + x22) in two cases. On the left the γ(A) ∩ (Z|π1=u ∩ K(π1, Z)) = ∅ and on the right, this
intersection is non-empty.

so that B = B′ by uniqueness in Lemma 3.4.

We can now prove the main proposition by sticking together all the pieces. The points of the map
that belong to the fiber Z|ϕ=u are managed by Lemma 3.7, while the remaining ones, in Z|ϕ<u, are more
convenient to deal with. This proof is illustrated by Figure 6.

Proof of Proposition 3.1. Since γ is semi-algebraic and continuous, γ(A) is semi-algebraically connected.
Hence, if γ(A) ⊂ Z|ϕ<u, it is contained in a unique semi-algebraically connected component B of Z|ϕ<u
and we are done.

We assume now that γ(A) 6⊂ Z|ϕ<u. Let G = γ−1(Z|ϕ=u). It is a closed subset of A since Z|ϕ=u is
closed in Z|ϕ≤u and γ is continuous. Then, let G1, . . . , GN be the semi-algebraically connected compo-
nents of G; they are closed in A since they are closed in G, which is closed in A. Besides, let H1, . . . ,HM

be the semi-algebraically connected components of A − G. They are open in A since they are open in
A−G , which is open in A.

We define a map B : A→ P(Z|ϕ<u), where P(Z|ϕ<u) is the power set of Z|ϕ<u. The family formed
by both G1, . . . , GN and H1, . . . HM is a partition of A; hence, we can define B by defining it on this
partition.

Hi : Since Hi ⊂ A − G, γ(Hi) ⊂ Z|ϕ<u and γ(Hi) is semi-algebraically connected as γ is continuous.
Then, there exists a unique semi-algebraically connected component Bi of Z|ϕ<u such that γ(Hi) ⊂
Bi ⊂ Bi.

Gi : Since Gi is semi-algebraically connected and γ(Gi) ⊂ Z|ϕ=u − K(ϕ, Z), Lemma 3.7 with A =
Gi states that there is a unique semi-algebraically connected component B′i of Z|ϕ<u such that
γ(Gi) ⊂ B′i.

Therefore, for all a ∈ A, let B such that

B(a) =

{
Bi if a ∈ Hi

B′i if a ∈ Gi
so that γ(a) ∈ B(a).

Let us show that B is locally constant, that is, for every a ∈ A, there exists an open Euclidean neigh-
borhood N(a) ⊂ A of a, such that for all a′ ∈ N(a), B(a′) = B(a). Then, we will conclude by
connectedness as above. Let a ∈ A and 1 ≤ i ≤ max(M,N).
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• If a ∈ Hi, since Hi is open in A, there exists an open Euclidean neighborhood N(a) of a contained
in Hi. By construction, for all a′ ∈ N(a), B(a′) = B(a). Moreover, since Hi is semi-algebraically
connected, this also proves that B is actually constant on Hi, and we let B(Hi) be the unique
value it assumes on Hi.

• Else a ∈ Gi, since the Gj ’s are closed in A, then a does not belong to the closure of any other Gj ,
j 6= i. However, the set

J =
{

1 ≤ j ≤M | a ∈ Hj

}
is not empty. By construction, γ(a) ∈ B(a) and by definition of J , for every j ∈ J , γ(a) ∈ B(Hj).
But, by Lemma 3.4 applied with y = γ(a), such a semi-algebraically connected component is
unique. Hence for all j ∈ J , B(Hj) = B(a). One can then take N(a) = B(a, r) with r > 0 such
that this open ball intersects either the Hj ’s for j ∈ J or Gi, and only them.

Finally, we proved that B is locally constant and then, equivalently, continuous for the discrete
topology on P(Z|ϕ<u). Since A is semi-algebraically connected, B(A) is connected for the discrete
topology and B is constant on A. Denoting by B ⊂ Z|ϕ<u the unique value it assumes, we have
γ(A) ⊂ B as claimed. Besides if B′ is another semi-algebraically connected component of Z|ϕ<u such
that γ(A) ⊂ B′, then in particular B ∩ B′ contains γ(G1) ⊂ Z|ϕ=u − K(ϕ, Z), so that B = B′ by
Lemma 3.7.

x1

Z ∩ Rn

G1

H1 H2

B

Z|π1=u

Z|π1=u ∩K(π1, Z)

x1

Z ∩ Rn

Z|π1=u ∩K(π1, Z)

G1

H1 H2

B′B

Z|π1=u

Figure 6: Illustration of the proof of Proposition 3.1 with ϕ = π1 and Z is isomorphic to V (x21 + x22 −
1)×V (x1 + x22) in two cases. The intersection γ(A)∩ (Z|π1=u ∩K(π1, Z)) is empty on the left while, on
the right, it is not.

We then deduce the following consequence on the semi-algebraically connected components of Z with
respect to ϕ. This result is illustrated in Figure 7.

Corollary 3.8. Let ϕ : Cn → C be a regular map defined over R and Z ⊂ Cn be an equidimensional
algebraic set of positive dimension. Let u ∈ R such that Z|ϕ=u ∩ K(ϕ, Z) = ∅ and let C be a semi-
algebraically connected component of Z|ϕ≤u. Then, C|ϕ<u is a semi-algebraically connected component
of Z|ϕ<u.

Proof. Let γ be the inclusion map γ : C ↪→ Z|ϕ≤u. Since Z|ϕ=u∩K(ϕ, Z) = ∅, γ satisfies the assumptions
of Proposition 3.1 with A = C. Then there exists a unique semi-algebraically connected component B
of Z|ϕ<u such that C ⊂ B, so that C|ϕ<u ⊂ B|ϕ<u = B.

First, since Z|ϕ=u ∩ K(ϕ, Z) = ∅ by assumption, then in particular C|ϕ=u 6⊂ K(ϕ, Z). By the
contrapositive of Lemma 3.5, C|ϕ<u is not empty. Hence, since B is a semi-algebraically connected set
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of Z|ϕ≤u, containing C|ϕ<u, B is contained in the semi-algebraically connected component C of Z|ϕ≤u.
Finally B ⊂ Z|ϕ<u ∩ C = C|ϕ<u and C|ϕ<u = B, which is a semi-algebraically connected component of
Z|ϕ<u.

x1

π−1
1 (u)

Z ∩ RnCπ1<u

C

x1

π−1
1 (u)

Z ∩ Rn

Cπ1<u

C

Figure 7: Illustration of Corollary 3.8 where ϕ = π1 and Z is isomorphic to V (x21 +x22−1)×V (x1 + x22).
On the left Z|π1=u ∩ K(π1, Z) = ∅ and one sees that C|π1<u is still a semi-algebraically connected
component of Z|π1<u. On the right Z|π1=u ∩K(π1, Z) 6= ∅ and one sees that C|π1<u is disconnected.

3.2 Fibration and critical values
As in [23, Section 3.2] we are going to use a Nash version of Thom’s isotopy lemma, stated in [16],
which, again, is an ingredient of Morse theory. We refer to [4, Section 3.5] for the definitions of Nash
diffeomorphisms, manifolds and submersions together with their properties.

Proposition 3.9. Let ϕ : Cn → C be a regular map defined over R and A ⊂ ϕ−1((−∞, w)) ∩Rn be
a semi-algebraically connected semi-algebraic set. Let v < w such that A|ϕ∈(v,w) is a non-empty Nash
manifold, bounded, closed in ϕ−1((v, w)) ∩Rn and such that ϕ is a submersion on A|ϕ∈(v,w). Then for
all u ∈ [v, w), A|ϕ≤u is non-empty and semi-algebraically connected.

Proof. We first prove that ϕ : A|ϕ∈(v,w) → (v, w) is a proper surjective submersion. Since A|ϕ∈(v,w) is
bounded and ϕ is semi-algebraic and continuous, ϕ : A|ϕ∈(v,w) → (v, w) is a proper map. Let us prove
that ϕ is also surjective on A|ϕ∈(v,w) that is

ϕ(A|ϕ∈(v,w)) = (v, w).

By assumption, ϕ is a submersion from A|ϕ∈(v,w) to (v, w). Then by the semi-algebraic inverse
function theorem [4, Proposition 3.29], ϕ is an open map. Besides, as A|ϕ∈(v,w) is closed and bounded,
there exists a closed and bounded semi-algebraic set X ⊂ Rn such that A|ϕ∈(v,w) = X ∩ ϕ−1((v, w)) =
X|ϕ∈(v,w). Then

ϕ(A|ϕ∈(v,w)) = ϕ(X|ϕ∈(v,w)) = ϕ(X) ∩ (v, w).

Since X is bounded and closed, ϕ(X) is closed and bounded by [4, Theorem 3.23]. Hence, ϕ(A|ϕ∈(v,w))
is both open and closed in (v, w). Since (v, w) is semi-algebraically connected, ϕ(A|ϕ∈(v,w)) = (v, w).

By the Nash version of Thom’s isotopy lemma [16, Theorem 2.4], since the map ϕ : A|ϕ∈(v,w) → (v, w)
is a proper surjective submersion, it is a globally trivial fibration. Hence, for ζ ∈ (v, w), there exists a
Nash diffeomorphism Ψ of the form

Ψ: A|ϕ∈(v,w) −→ (v, w)×A|ϕ=ζ

y 7−→ ( ϕ(y) , ψ(y) )
.
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We now proceed to prove the main statement of the proposition. There are, at first sight, two different
situations to consider: whether u > v or u = v (see Figure 8). Using Puiseux series, we actually prove
them simultaneously.

Take u ∈ [v, w); we prove that A|ϕ≤u is non-empty and semi-algebraically connected. To prove that
A|ϕ=u is non-empty, we consider z ∈ A|ϕ=ζ and the map

γ : [0, 1) → A|ϕ∈(v,w)

t 7→ Ψ−1(tu+ (1− t)ζ,z).

This map is well defined and continuous, since Ψ is a Nash diffeomorphism from A|ϕ∈(v,w) to (v, w) ×
A|ϕ=ζ , and satisfies ϕ(γ(t)) = tu+(1−t)ζ for every t ∈ [0, 1). Moreover γ is a bounded map as A|ϕ∈(v,w)

is bounded by assumption. Then, by [4, Proposition 3.21], γ can be continuously extended to [0, 1], with
ϕ(γ(t)) = tu + (1 − t)ζ continuous on [0, 1], and ϕ(γ(1)) = u. Finally γ(1) ∈ A|ϕ≤u and A|ϕ≤u is not
empty.

We prove now that A|ϕ≤u is semi-algebraically connected. Consider two points y and y′ in A|ϕ≤u.
Since A is semi-algebraically connected by assumption, there exists a continuous path γ : [0, 1]→ A such
that γ(0) = y and γ(1) = y′. Let us construct, from γ, another path that lies in A|ϕ≤u.

Let ε be an infinitesimal, and let R′ = R〈ε〉 be the field of algebraic Puiseux series in ε (see [4, Section
2.6]). We denote by A′, (v, w)′,Ψ′, ψ′,ϕ′ and γ′ the extensions of respectively A, (v, w),Ψ, ψ,ϕ and γ to
R′ in the sense of [4, Proposition 2.108]. According to [4, Exercise 2.110], Ψ′ : A′|ϕ∈(v,w)′ → (v, w)′×A′|ϕ=ζ

is a bijective map. Then let g′ : [0, 1]′ ⊂ R′ → A′ be such that

g′(t) = γ′(t) if ϕ′(γ′(t)) ≤ u+ ε,

g′(t) = Ψ′−1(u+ ε, ψ′(γ′(t))) if u+ ε ≤ ϕ′(γ′(t)) < w.

This map is well defined since u+ ε ∈ (v, w) and if ϕ′(γ′(t)) = u+ ε, then Ψ′−1(u+ ε, ψ′(γ′(t))) = γ′(t).
Moreover g′ is a continuous semi-algebraic map since by [4, Exercise 3.4], Ψ′−1, ψ′ and γ′ are continuous
semi-algebraic maps.

Finally one observes that g′ is bounded over R. Indeed if ϕ′(γ′(t)) ≤ u+ ε, then g′(t) = γ(t), which
is continuous on [0, 1]′ and then bounded over R. Else ϕ′(γ′(t)) ∈ (v, w) and g′(t) ∈ A′|ϕ∈(v,w)′ , which
is bounded over R by [4, Proposition 3.19] since A|ϕ∈(v,w) is. Hence, its image G′ = g′([0, 1]′) is a semi-
algebraically connected semi-algebraic set, bounded over R and contained in A′|ϕ≤u+ε.

Let G = limεG
′. By [4, Proposition 12.49], G is a closed and bounded semi-algebraic set. Then,

since ϕ is a continuous semi-algebraic map defined over G, by [4, Lemma 3.24] for all z′ ∈ G′,

ϕ(limε z
′) = limεϕ(z′) ≤ limε (u+ ε) = u

So that G is contained in A|ϕ≤u. In addition, since G′ is semi-algebraically connected and bounded
over R, then by [4, Proposition 12.49], G is semi-algebraically connected and contains y = limε g(0) and
y′ = limε g(1). We deduce that there exists, inside G, a semi-algebraic path connecting y to y′ in A|ϕ≤u,
which ends the proof.

The following result is a consequence of Proposition 3.9 as it deals with a particular case. An
illustration of this statement can be found in Figure 9.

Corollary 3.10. Let Z ⊂ Cn be an equidimensional algebraic set of positive dimension and let ϕ : Cn →
C be a regular map defined over R and proper on Z ∩ Rn. Let v < w be in R such that Z|ϕ∈(v,w] ∩
K(ϕ, Z) = ∅, and let C be a semi-algebraically connected component of Z|ϕ≤w. Then, C|ϕ≤v is a semi-
algebraically connected component of Z|ϕ≤v.

Proof. As C|ϕ<w = C ∩ϕ−1((−∞, w)) ∩Rn, we are going to use Proposition 3.1 with A = C|ϕ<w.
First we need to prove that C|ϕ<w is a non-empty semi-algebraically connected semi-algebraic set.

Since Z|ϕ=w ∩ K(ϕ, Z) = ∅, by Corollary 3.8 C|ϕ<w is a semi-algebraically connected component of
Z|ϕ<w. Hence it is non-empty and semi-algebraically connected.

Then, we need to prove that C|ϕ∈(v,w) is a non-empty Nash manifold, bounded and closed in
ϕ−1((v, w)) ∩Rn. Suppose first that C|ϕ∈(v,w) = ∅. Then

C|ϕ≤v ∪ C|ϕ=w = C and C|ϕ≤v ∩ C|ϕ=w = ∅.
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Figure 8: Illustration of the two cases covered by the proof of Proposition 3.9 where ϕ = π1 and
A = Z|π1<w, where Z is isomorphic to V (x21 + x22 − 1) × V (x1 + x22). The two cases are quite similar;
we consider here the one where v is a critical value. One sees that Ψ connects all the slices A|π1=u for
u ∈ (v, w)′. This diffeomorphism allows to transform the problematic parts (not in A|π1≤u) of the initial
path γ (in green), into another path g (in red), that lies in A|π1=u ⊂ A|π1≤u.

Since C is semi-algebraically connected, either C|ϕ≤v or C|ϕ=w is empty (as they are both closed in C).
In both cases our conclusion follows. It remains to tackle the case where C|ϕ∈(v,w) is not empty, which
we assume to hold from now on.

We prove that C|ϕ∈(v,w) is bounded. Observe that C|ϕ∈(v,w) ⊂ C|ϕ∈[v,w] = C ∩ Rn ∩ ϕ−1([v, w]).
Recall that ϕ is proper on Z ∩Rn by assumption, and thus on C ∩Rn. Hence, C|ϕ∈[v,w] is bounded.
Besides C|ϕ∈(v,w) is closed in ϕ−1((v, w)) ∩Rn as

C|ϕ∈(v,w) = C ∩ϕ−1((v, w)) ∩Rn,

and C is closed in Rn as it is closed in the closed set Z|ϕ≤w. Since C|ϕ∈(v,w) ∩K(ϕ, Z) = ∅ then by [7,
Proposition 3.3.11], C|ϕ∈(v,w) is a Nash manifold of dimension dim(Z).

To apply Proposition 3.1, it remains to prove that ϕ is a Nash submersion on C|ϕ∈(v,w). Let y ∈
C|ϕ∈(v,w). Since y /∈ sing(Z), then TyC|ϕ∈(v,w) = TyZ ∩Rn according to [7, Proposition 3.3.11]. Since
C|ϕ∈(v,w) ∩K(ϕ, Z) = ∅, dyϕ is onto on TyZ and since dimZ > 0, the image dyϕ(TyZ) is C. Hence

dyϕ(TyC|ϕ∈(v,w)) = R.

We just established that all the assumptions of Proposition 3.9 are satisfied. One can then apply it
to C|ϕ<w and conclude that C|ϕ≤v is non-empty and semi-algebraically connected. Finally, since C
is a semi-algebraically connected component of Z|ϕ≤w, any semi-algebraically connected component of
Z|ϕ≤v contained in C is contained in C|ϕ≤v. Thus C|ϕ≤v is a semi-algebraically connected component
of Z|ϕ≤v.

4 Proof of the main connectivity result
Recall that ϕ = (ϕ1, . . . , ϕn) ⊂ R[x1, . . . , xn] and for 1 ≤ i ≤ n,ϕi : y 7→ (ϕ1(y), . . . , ϕi(y)). We denote
by Wi = W (ϕi, V ) the Zariski closure of the set of critical points of the restriction of ϕi to V and recall
that

Ki = W (ϕ1, V ) ∪ Si ∪ sing(V ) and Fi = ϕ−1i−1(ϕi−1(Ki)) ∩ V,
where Si is a given subset of V . We suppose that the following assumptions hold:
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Figure 9: Illustration of Corollary 3.10 where ϕ = π1 and Z is isomorphic to V (x21+x22−1)×V (x1 + x22)
in two cases. On the left Z|π1∈(v,w) ∩K(π1, Z) = ∅ and we see that C|π1≤v is still a semi-algebraically
connected component of Z|π1≤v. On the right Z|π1∈(v,w) ∩ K(π1, Z) contains a point and we see that
C|π1≤v is semi-algebraically disconnected.

(A) V is d-equidimensional and its singular locus sing(V ) is finite;

(P) the restriction of the map ϕ1 to V ∩Rn is proper and bounded from below;

(B1) Wi is either empty or (i− 1)-equidimensional and smooth outside sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩ϕ−1i−1(y) is either empty or (d− i+ 1)-equidimensional;

(C1) Si is finite;

(C2) Si has a non-empty intersection with every semi-algebraically connected component ofW (ϕ1,Wi)∩
Rn.

Then the goal of this section is to prove that Wi ∪ Fi intersects each semi-algebraically connected
component of V ∩Rn and that their intersection is semi-algebraically connected.

Let R = Fi ∪Wi. We prove that the following so-called roadmap property holds:

RM: “For any semi-algebraically connected component C of V ∩Rn, the set C ∩R is non-empty and
semi-algebraically connected”,

by proving a truncated version of RM and show that it is enough. For u ∈ R let

RM(u): “For any semi-algebraically connected component C of V|ϕ1≤u, the set C ∩R is non-empty and
semi-algebraically connected”.

Lemma 4.1. If RM(u) holds for all u ∈ R, then RM holds.

Proof. Let C be a semi-algebraically connected component of V ∩Rn. Since C is non-empty and semi-
algebraically connected, there exist y and y′ in C, and a semi-algebraic path γ : [0, 1] → C connecting
them. Let

u = max{ϕ1(γ(t)), t ∈ [0, 1]} ∈ R.

Such a maximum u exists by continuity of γ and ϕ1, since [0, 1] is closed and bounded, and it follows
that γ([0, 1]) ⊂ V|ϕ1≤u. Since γ([0, 1]) is semi-algebraically connected, there exists a (unique) semi-
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algebraically connected component B of V|ϕ1≤u containing γ([0, 1]). In particular, B contains y and
y′. Since RM(u) holds by assumption, then B ∩ R is non-empty. But as y ∈ B ∩ C and B is semi-
algebraically connected, C contains B. Finally, C ∩R contains B ∩R and the former is non-empty.

We can suppose now, in addition, that y and y′ are in C∩R, and let B be defined as above. Then, y
and y′ are in B ∩R, which is semi-algebraically connected by RM(u). Therefore y and y′ are connected
by a semi-algebraic path in B ∩R. Since B ⊂ C, y and y′ are semi-algebraically connected in C ∩R.
In conclusion, C ∩R is semi-algebraically connected and RM holds.

Remark. The previous lemma trivially holds in the case of [23, Theorem 14], since V ∩Rn is assumed
to be bounded. Indeed, in this case, considering u = maxy∈V ∩Rn ϕ1(y), one has V|ϕ1≤u = V ∩Rn.

4.1 Restoring connectivity
Before proving RM(u) for all u ∈ R, we need to prove the following result, which constitutes the core
of the proof of Theorem 1.1. This proposition shows that the connectivity property of our roadmap
candidate is satisfied when u is increasing towards singular points of ϕ1 on V . This is ensured by the
addition of the fibers Fi.

Proposition 4.2. Let u ∈ R and C be a semi-algebraically connected component of V|ϕ1≤u such that
C|ϕ1<u

is non-empty. Let B be a semi-algebraically connected component of C|ϕ1<u
, then:

1. B ∩ (Fi ∪Wi) is non-empty;

2. Any point y ∈ B ∩ (Fi ∪Wi) can be connected to a point z ∈ B ∩ (Fi ∪Wi) by a semi-algebraic
path in B ∩ (Fi ∪Wi).

Let us begin with a technical lemma:

Lemma 4.3. Let K be a real closed field containing R and K be its algebraic closure. Let Z ⊂ K
n
be

a d-equidimensional algebraic set, where d > 0. Assume that for any z ∈ K
i−1

,

Z ∩ϕ−1i−1(z) is either empty or (d− i+ 1)-equidimensional.

Let B be a bounded semi-algebraically connected component of Z ∩ Kn and let y ∈ B. Let H be
the semi-algebraically connected component of B ∩ ϕ−1i−1(ϕi−1(y)) containing y. Then, the intersection
H ∩K(ϕi, Z) is not empty.

Proof. Let Y = Z ∩ϕ−1i−1(ϕi−1(y)). By assumption, Y is an equidimensional algebraic set of dimension
d − i + 1. Besides, H is a bounded semi-algebraically connected component of Y ∩ Kn, since B is a
bounded semi-algebraically connected component of Z ∩Kn.

Recall that ϕ = (ϕ1, . . . , ϕn). Then ϕi(H) ⊂ R is a closed and bounded semi-algebraic set by [4,
Theorem 3.23]. In particular, ϕi reaches its minimum on H. Let z ∈ H be such that ϕi(z) = minϕi(H),
so that H|ϕi<ϕi(z) is empty. Then, by Lemma 3.5,

z ∈ H ∩K(ϕi, Y ).

Let g ⊂ K[x1, . . . , xn] be a sequence of generators of I(Z), so that Y = V (g,ϕi−1 −ϕi−1(y)). Since Y
is (d− i+ 1)-equidimensional, Lemma 2.2 establishes that z is such that

rank

 Jacz(g)
Jacz(ϕi−1)

Jacz(ϕi)

 < n− (d− (i− 1)) + 1.

Since ϕi = (ϕi−1, ϕi), one deduces that

rank

[
Jacz(g)
Jacz(ϕi)

]
< n− d+ i,

which means that z ∈ H∩K(ϕi, Z). Finally, the latter set is non-empty and the statement is proved.

Notation. For the rest of the subsection let u, C and B as defined in Proposition 4.2.
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Let us deal with one particular case of the second item of Proposition 4.2.

Lemma 4.4. Let y be in B ∩Fi. Then, there exists a point z ∈ B ∩ (Fi ∪Wi) and a semi-algebraic path
in B ∩ (Fi ∪Wi) connecting y to z.

Proof. Let y be in ∈ B ∩ Fi. We assume that y /∈ B so that ϕ1(y) = u, otherwise taking z = y would
end the proof. Since y ∈ B, by the curve selection lemma [4, Th. 3.22], there exists a semi-algebraic path
γ : [0, 1] → Rn such that γ(0) = y and γ(t) ∈ B for all t ∈ (0, 1]. Let ε be an infinitesimal, R′ = R 〈ε〉
be the field of algebraic Puiseux series and ψ = (ψ1, . . . , ψn) be the semi-algebraic germ of γ at the right
of the origin (see [4, Section 3.3]). According to [4, Theorem 3.17], we can identify ψ with an element of
(R′)n (by a slight abuse of notation, we will denote them in the same manner). Hence by [4, Proposition
3.21], limε ψ = y. Let finally

H = ext(B,R′) ∩ϕ−1i−1(ϕi−1(ψ)) ⊂ (R′)n

where ext(B,R′) is the extension of B to R′ and ϕj for 1 ≤ j ≤ n, with some notation abuse, still
denote the extension of ϕj to R′.

Since γ((0, 1)) ⊂ B, by [4, Proposition 3.19], ψ is in ext(B,R′). Hence, ψ in H and H is non-empty.
Moreover B is bounded since ϕ1 : V ∩Rn → R is a proper map bounded below by assumption (P). Then
[4, Proposition 3.19] states that ext(B,R′) and then H are bounded over R. Hence the map limε is well
defined on H and

y ∈ limεH = {limε y
′, y′ ∈ H} ⊂ Rn.

Finally, as ϕi−1 is semi-algebraic and continuous, limεH is contained in B∩ϕ−1i−1(ϕi−1(y)) by [4, Lemma
3.24]. But y ∈ Fi, so that

ϕ−1i−1(ϕi−1(y)) ⊂ ϕ−1i−1(ϕi−1(Ki)),

and finally limεH is actually in B ∩ Fi.
Let H1 be the semi-algebraically connected component of H containing ψ. By [4, Proposition 5.24],

limεH1 is the semi-algebraically connected component of limεH containing y. Actually, we just proved
that every w in limεH1 can be semi-algebraically connected to y into B ∩ Fi. We find now some
w ∈ limεH1 that can be connected to a point z ∈ B ∩ (Fi ∪Wi) to end the proof. Such a w must be
the origin of a germ of semi-algebraic functions that lies in B ∩ (Wi ∪ Fi).

By assumption (A), V is d-equidimensional. By assumption (B2), for all z ∈ V , the algebraic set
V ∩ϕ−1i−1(ϕi−1(z)) is (d− i+ 1)-equidimensional. Then, if we denote by C′ the algebraic closure of R′,
it is an algebraic closed extension of C, so that the algebraic sets of (C′)n

Z =
{
z ∈ (C′)n | ∀h ∈ I(V ), h(z) = 0

}
and Z ∩ϕ−1i−1(ϕi−1(ψ)))

are equidimensional of dimension respectively d and (d − i + 1). Since B is a semi-algebraically con-
nected component of V|ϕ1<u

, then, by [4, Proposition 5.24], ext(B,R′) is a semi-algebraically connected
component of

ext(V|ϕ1<u
,R′) = ext(V ∩Rn,R′)|ϕ1<u

= Z|ϕ1<u
,

by [4, Transfer Principle, Th. 2.98]. Then, since H1 is a semi-algebraically connected component of
H = ext(B,R′) ∩ϕ−1i−1(ϕi−1(ψ)), one can apply Lemma 4.3 on Z with K = R′. Hence

H1 ∩K(ϕi, Z) 6= ∅.

By Lemma 2.3, K(ϕi, Z) is defined over R as V and ϕi are. Then, by [4, Transfer Principle, Th. 2.98],

K(ϕi, Z) ∩ (R′)n = ext(K(ϕi, V ) ∩Rn,R′),

so that
∅ ( H1 ∩ ext(K(ϕi, V ) ∩Rn,R′) ⊂ ext(B ∩K(ϕi, V ),R′).

Therefore let ζ ∈ ext(B ∩K(ϕi, V ),R′), let w = limε ζ and τ be a representative of ζ on (0, t0), where
t0 > 0. By [4, Proposition 3.21], we can continuously extend τ to 0 such that τ(0) = w. Besides for all
t ∈ (0, t0),

τ(t) ∈ B ∩K(ϕi, V ) ⊂ B ∩ (Wi ∪ Fi).
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Then τ([0, t0)) ⊂ B ∩ (Fi ∪Wi) so that

w ∈ B ∩ (Fi ∪Wi) and z = τ(t0/2) ∈ B ∩ (Fi ∪Wi).

Besides, since w ∈ limεH1 we have seen that it can be connected to y a semi-algebraic path in B∩ (Fi∪
Wi). In the end, there exist two consecutive paths into B ∩ (Fi ∪Wi), connecting y to w, and w to
z ∈ B ∩R (namely τ).

x

x1
Z ∩ Rn

B

Fi

Wi

limεH1

ψ

γ

y

g

ζ
z

w

H1

Figure 10: Illustration of proof of Lemma 4.4 with ϕ1 = π1 and V is isomorphic to V (x21 + x22 − 1) ×
V (x1 − x22). Elements of H1 can be seen as curves of infinitesimal lengths, starting from a point of
limεH1, and lying in B. Here, limεH1 is the set of points that share the same first coordinate than
y. Hence, the above proof consisted in choosing a ζ in H1, that lives “inside” Wi ∪ sing(V ) (actually in
ext(Wi ∪ sing(V ),R〈ε〉)).

We can now prove Proposition 4.2. This proof is illustrated by Figure 10.

Proof of Proposition 4.2. Let B be a semi-algebraically connected component of C|ϕ1<u
. Since ϕ1 is a

proper map bounded from below on V ∩Rn by assumption P, C|ϕ1<u
, and then B, are bounded. Then

applying Proposition 3.6 shows that:

∅ ( B ∩K(ϕ1, V ) ⊂ B ∩ Fi ⊂ B ∩ (Fi ∪Wi).

The first item is then proved. Let y ∈ B ∩ (Fi ∪Wi). To prove the second item, one only needs to
consider the case where y ∈ B ∩ (Wi − Fi) according to Lemma 4.4. Moreover one can assume that
y /∈ B and then ϕ1(y) = u, otherwise, taking z = y, would end the proof.

Let D be the semi-algebraically connected component of (Wi)|ϕ1≤u containing y. We consider two
disjoint cases.

1. If D 6⊂ B, there exists y′ ∈ D such that y′ /∈ B. Then let γ : [0, 1] → D such that γ(0) = y and
γ(1) = y′. Hence, if

t1 = max{t ∈ [0, 1) | γ(t) ∈ B},

then γ(t1) ∈ K(ϕ1, V ) by the contrapositive of statement c) of Lemma 3.3. Since K(ϕ1, V ) ⊂ Fi,
we can apply Lemma 4.4 to γ(t1) and find z ∈ B ∩ (Fi ∪Wi) that is connected to γ(t1) and then
to y by a semi-algebraic path in B ∩ (Fi ∪Wi).
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2. If D ⊂ B , we claim that there exists some z ∈ D ∩ Fi. Indeed since D is a semi-algebraically
connected component of (Wi)|ϕ1≤u and ϕ1 is a proper map, D is bounded. Then by Proposition 3.6
there exists y′ ∈ D ∩K(ϕ1,Wi). If y′ ∈ sing(Wi) then y′ ∈ sing(V ) by assumption B1 and taking
z = y′ ∈ Fi one concludes as in the first item.

Else y′ is inW (ϕ1,Wi), and we let E be the semi-algebraically connected component ofW (ϕ1,Wi)
containing y′. Since ϕ1(W (ϕ1,Wi)) is finite by Sard’s lemma, ϕ1(E) = {ϕ1(y′)}, so that E ⊂
(Wi)|ϕ1≤u. Hence, since E is semi-algebraically connected, E ⊂ D. By assumption C2, there exists
z ∈ E ∩ Si, so that z ∈ D ∩ Si ⊂ D ∩ Fi and we are done.

Then we can connect y to z inside D ⊂ B ∩ Wi and since z is in D ∩ Fi, which is contained
in B ∩ Fi, we can connect similarly z to some z′ ∈ B ∩ (Fi ∪Wi) inside B ∩ Fi by Lemma 4.4.
Putting things together, y is connected to some z′ ∈ B∩(Fi∪Wi) by a semi-algebraic path in B∩Fi.

Corollary 4.5. Let u ∈ R such that for all u′ < u, RM(u′) holds. Let C be a semi-algebraically
connected component of V|ϕ1≤u such that C|ϕ1<u

is non-empty. If B is a semi-algebraically connected
component of C|ϕ1<u

, then B ∩R is non-empty and semi-algebraically connected.

Proof. Let y and y′ be in B ∩R. According to Proposition 4.2, they can respectively be connected to
some z and z′ in B ∩R, by a semi-algebraic path in B ∩R. As B is semi-algebraically connected, there
exists a semi-algebraic path γ : [0, 1]→ B connecting z to z′. Let

u′ = max
{
ϕ1(γ(t)) | t ∈ [0, 1]

}
,

so that γ([0, 1]) ⊂ V|ϕ1≤u′ . Such a u′ exists by continuity of γ, and satisfies u′ < u, as [0, 1] is closed and
bounded.

Let B′ be the semi-algebraically connected component of B|ϕ1≤u′ that contains γ([0, 1]). Since B′ is
also a semi-algebraically connected component of V|ϕ1≤u′ , property RM(u′) states that B′ ∩R is non-
empty and semi-algebraically connected. Then, as z and z′ are in B′ ∩R, they can be connected by a
semi-algebraic path in B′ ∩R, and then, in B ∩R. Thus y and y′ are connected by a semi-algebraic
path in B ∩R and we are done.

4.2 Recursive proof of the truncated roadmap property
In order to prove that RM(u) holds for all u ∈ R, one can consider two disjoint cases: whether u is a real
singular value of ϕ1, that is u ∈ ϕ1(Ki), or not. The following lemma allows us to proceed by induction.

Lemma 4.6. The set ϕ1(Ki) is non-empty and finite.

Proof. By the algebraic version of Sard’s theorem [24, Proposition B.2], the set of critical values of ϕ1

on V is an algebraic set of C of dimension 0. Then, it is either empty or non-empty but finite. Hence,
ϕ1(Ki) is either empty or non-empty but finite, as Si and sing(V ) are, by assumption. Moreover since
ϕ1 is a proper map bounded from below on V ∩Rn by assumption (P), for any u ∈ R, Z|ϕ<u is bounded.
Then, since V is not empty, by Proposition 3.6 the sets K(ϕ1, V ) and then ϕ1(Ki) are not empty.

We denote by v1 < . . . < v` the points of ϕ1(Ki ∩Rn) and, in addition, let v`+1 = +∞. We proceed
by proving the two following steps.

Step 1: Let u ∈ R, if RM(u′) holds for all u′ < u, then RM(u) holds.

Step 2: Let j ∈ {1, . . . , `}, if RM(vj) holds, then for all u ∈ (vj , vj+1), RM(u) holds.

Remark that, by Lemma 3.5, v1 = minV ∩Rn ϕ1, since V ∩Rn is closed. Then for u′ < v1, V|ϕ≤u′ = ∅
and RM(u′) trivially holds. Hence, proving these two steps is enough to prove RM(u) for all u in R, by
an immediate induction.

Proposition 4.7 (Step 1). Let u ∈ R. Assume that for all u′ < u, RM(u′) holds. Then RM(u) holds.

The proof of this proposition is illustrated by Figure 11.
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Proof. Let u ∈ R be such that for all u′ < u, RM(u′) holds and let C be a semi-algebraically connected
component of V|ϕ1≤u. We have to prove that C ∩R is non-empty and semi-algebraically connected.

If C|ϕ1<u
is empty, then, by Lemma 3.5, C ⊂ K(ϕ1, V ). But the points of K(ϕ1, V ) are either in Wi

or in sing(V ) ⊂ Fi. Hence K(ϕ1, V ) ⊂ R and C ∩R = C, which is non-empty and semi-algebraically
connected by definition.

From now on, C|ϕ1<u
is supposed to be non-empty and let B1, . . . , Br be its semi-algebraically

connected components. According to Corollary 4.5, for all 1 ≤ j ≤ r, Bj ∩R is non-empty and semi-
algebraically connected. Then, as Bj ⊂ C,

Bj ∩R ⊂ C ∩R

for every 1 ≤ j ≤ r, and C ∩R is non-empty.
Let us now prove that C ∩ R is semi-algebraically connected. Let y and y′ in C ∩ R. As C is

semi-algebraically connected, there exists a semi-algebraically continuous map γ : [0, 1] → C such that
γ(0) = y and γ(1) = y′. Now let

G = γ−1(C|ϕ1=u
∩K(ϕ1, V )) and H = [0, 1]−G.

We denote by G1, . . . , GN the connected components of G and H1, . . . ,HM those of H. The sets Hj for
1 ≤ j ≤ M are open intervals of [0, 1], and we note `j = inf(Hj) and rj = sup(Hj). Since γ(G) already
lies in C ∩R, let us establish that for every 1 ≤ j ≤ M , γ(`j) and γ(rj) can be connected by another
semi-algebraic path τj in C ∩R.

Let 1 ≤ j ≤M , then γ(Hj) ∩ (C|ϕ1=u
∩K(ϕ1, V )) = ∅ by definition. Moreover, γ(Hj) ⊂ C so that

γ(Hj) ∩ (V|ϕ1=u
∩K(ϕ1, V )) = ∅.

Hence, since Hj is connected, there exists (by Proposition 3.1) a unique semi-algebraically connected
component B of V|ϕ1<u

such that γ(Hj) ⊂ B. But γ(Hj) ⊂ C, so that B and thus B are actually
contained in C. Therefore, B is actually a semi-algebraically connected component of C|ϕ1<u

and there
exists 1 ≤ k ≤ r such that B = Bk. At this step γ(Hj) ⊂ Bk, so that

γ([`j , rj ]) = γ(Hj) ⊂ γ(Hj) ⊂ Bk,

and both γ(`j) and γ(rj) are in Bk. Remark that both `j and rj are in G, so that both γ(`j) and γ(rj)
are in K(ϕ1, V ) ⊂ Fi ⊂ R. Thus, both γ(`j) and γ(rj) are in Bk ∩R. According to Corollary 4.5, they
can be connected by a semi-algebraic path τj : [0, 1]→ Bk ∩R ⊂ C ∩R.

In conclusion, we have proved that for 1 ≤ j ≤ M , γ(`j) and γ(rj) can be connected by a semi-
algebraic path τj in C ∩ R. Therefore the semi-algebraic sub-paths γ|Hj can be replaced by the τj ’s,
which lie in C ∩R. Moreover, for all 1 ≤ j ≤ N

γ(Gj) ⊂ C ∩R.

Since the Hj ’s and Gj ’s form a partition of [0, 1], by putting together alternatively the τj ’s and the γ|Gj ’s,
one obtains a semi-algebraic path in C ∩R connecting y = γ(0) to y′ = γ(1). And we are done.

Proposition 4.8 (Step 2). Let j ∈ {1, . . . , `}, if RM(vj) holds, then for all u ∈ (vj , vj+1), RM(u)
holds.

The proof of this proposition is illustrated by Figure 12.

Proof. Let j ∈ {0, . . . , `} and u ∈ (vj , vj+1). Let C be a semi-algebraically connected component of
V|ϕ1≤u; we have to prove that C ∩R is non-empty and semi-algebraically connected.

Let us first prove that C|ϕ1≤vj ∩R is non-empty and semi-algebraically connected. By assumption
(A), V is an equidimensional algebraic set of positive dimension, and by assumption (P), the restriction
of ϕ1 to V ∩Rn is a proper map bounded below. Moreover, as ϕ1 (K(ϕ1, V ) ∩Rn) ⊂ {v1, . . . , v`}, then

V|ϕ1∈(vj ,u] ∩K(ϕ1, V ) = ∅.
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Figure 11: Illustration of proof of Proposition 4.7 with ϕ1 = π1 and V is isomorphic to V (x21 +x22−1)×
V (x1 − x22). Here, only y′ belongs to C|π1=u ∩K(π1, V ). Then we replace the path γ = γ|H1

by a path
τ1 that lies in the intersection of the roadmap and the semi-algebraically connected component C.

Then using Corollary 3.10, one deduces that C|ϕ1≤vj is a semi-algebraically connected component of
V|ϕ1≤vj . Hence, by property RM(vj), the set C|ϕ1≤vj ∩R is non-empty and semi-algebraically connected.
In particular, C ∩R is non-empty.

Let us now prove that C ∩R is semi-algebraically connected. Let y be in C ∩R. According to the
previous paragraph, one just need to be able to connect y to a point z of C|ϕ1≤vj ∩R by a semi-algebraic
path in C ∩R and then apply RM(vj). First, if y ∈ C|ϕ1≤vj ∩R, there is nothing to do. Suppose now
that y ∈ C|ϕ1∈(vj ,u] ∩R. We claim that actually

y ∈ C ∩Wi.

Indeed, if y ∈ C ∩ Fi, then ϕi−1(y) ∈ ϕi−1(Ki) and ϕ1(y) would be one of the v1, . . . , v`.
Let D be the semi-algebraically connected component of (C∩Wi)|ϕ1≤u containing y. Remark that D

is a semi-algebraically connected component of (Wi)|ϕ1≤u, as it contains y and is contained in C. Since
ϕ1(W (ϕ1,Wi)) is finite by Sard’s lemma, we get that ϕ1(W (ϕ1,Wi)) ⊂ ϕ1(Si), by assumption (C2), so
that

(vj , u) ∩ϕ1(W (ϕ1,Wi)) = ∅.

Since Wi is equidimensional and smooth outside sing(V ), then by Corollary 3.10, D|ϕ1≤vj is a semi-
algebraically connected component of (Wi)|ϕ1≤vj . Therefore, let z ∈ D|ϕ1≤vj . Since D is semi-
algebraically connected, there exists a semi-algebraic path, connecting y ∈ D ⊂ C ∩R to

z ∈ D|ϕ1≤vj ⊂ C|ϕ1≤vj ∩R

in D ⊂ C ∩R. We are done.

5 Conclusions and perspectives
We illustrate below two ways of using Theorem 1.1 in order to generalize the algorithms of [24] to the
case of unbounded smooth real algebraic sets.

Let V ⊂ Cn be an equidimensional algebraic set of dimension d given as the solutions of some
polynomials f1, . . . , fp in Q[x1, . . . , xn]. Assume that sing(V ) is finite. Take

ϕ1 =

n∑
k=1

(xk − ak)2 and for 2 ≤ j ≤ n ϕj =

n∑
k=1

bj,kxk,
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Figure 12: Illustration of proof of Proposition 4.8 with ϕ1 = π1 and V is isomorphic to V (x21 + x22 −
1)× V (x1 − x22). We connect the points y and y′ in C ∩Wi to respectively z and z′ in C|π1≤vj . Then
we are reduced to the case of Step 1.

where a = (a1, . . . ,an) ∈ Qn and, for 2 ≤ j ≤ n, bj = (bj,1, . . . , bj,n) ∈ Qn. Then, assumption (P)
holds. Also, according to [2, 3], for a generic choice of a and b, the dimension properties of assumption
(B) do hold.

For some chosen 2 ≤ i ≤ d, let Wi and Fi be respectively the polar variety and set of fibers as defined
in the introduction. One can compute a set S ⊂ W (ϕ1,Wi) ⊂ V by using any algorithm such as [4,
Chap. 13] or [22], returning sample points in all connected components of real algebraic sets.

Hence, one can apply Theorem 1.1 to V , ϕ and i. We deduce that Wi ∪ Fi has a non-empty and
connected intersection with all connected components of V ∩Rn, but it is in general an object of dimension
greater than 1, so more work is needed.

Our first option is to recursively perform similar operations, using this time polynomials defining
respectively Wi and Fi, eventually building a roadmap for V itself (this is justified by [23, Prop. 2]).
This requires that both Wi and Fi are equidimensional with finitely many singular points.

The cost of the whole procedure will depend on the degrees of Wi and Fi. Denote by D the degrees
of the fi’s and by δ (resp. σ) the degree of V (resp. S); using [4, Chap. 13] gives σ ∈ DO(n). Assuming
that d = n − p and that the ideal generated by f1, . . . , fp is radical, one can apply Heintz’s version of
the Bézout theorem [18] as in [22] to deduce that δ ≤ Dp and that the degree of Wi is bounded by
δ(nD)n−p ∈ (nD)O(n). Similarly, one can expect that the degree δ′ of W (ϕ1,Wi) lies in (nD)O(n) by
applying similar arguments to those used in [24]. Since the degree of Fi is bounded by the product of δ
and δ′ + σ, we deduce that its degree also lies in (nD)O(n).

Hence, as explained in [23], the overall complexity of such recursive algorithms is (nD)O(nr), where r
is the depth of the recursion, provided that the involved geometric sets do satisfy the properties needed
by Theorem 1.1 and can be represented and computed with algebraic data within complexities which
are polynomial in their degrees.

To understand the possible depth of recursion one could expect, one also needs to have a look at
the dimensions of Wi and Fi. Observe that Wi is expected to have dimension i − 1. Similarly, Fi is
expected to have dimension d − (i − 1). Taking i ' bdim(V )

2 c will decrease the dimensions of Wi and
Fi to ' bdim(V )

2 c if they are not empty (this will require coordinates). Hence the depth r of this new
recursive roadmap algorithm will be bounded by log2(n).

A second approach to design our new algorithm takes i = 2. Then, W2 is expected to have dimension
1 (or be empty), so no further computation is needed. On the other hand, F2 still has dimension d− 1,
but a key observation is that F2 is now bounded. Then, one can directly apply a slight variant of the
algorithm in [24] taking F2 as input: that algorithm already keeps the depth of recursion bounded by
log2(n), but we should now handle the fact that we work in the hypersurface ϕ−11 (ϕ1(K1)). Again, all
of this is under the assumption that one can make F2 satisfy the assumptions of Theorem 1.1.
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We will investigate that approach in a forthcoming paper.
Thus, the next steps to obtain nearly optimal algorithms for computing roadmaps of smooth real

algebraic sets, without compactness assumptions, are:

• to study how the constructions of generalized Lagrange systems introduced in [24] for encoding
polar varieties associated to linear projections can be reused in our context;

• to prove that assumption (B) holds for some generic choice of a and b for our polar varieties, which
by contrast to those used in [24] are no more associated to linear projections;

• to prove that the variant of the algorithm designed in [24] discussed above still has a complexity
similar to the one obtained in [24].

The example below illustrates how this whole machinery might work and how Theorem 1.1 can
already be used.

Example 1. Let V = V (g) ⊂ C3 be the hypersurface defined by the vanishing set of the polynomial
g = x31 + x32 + x33 − x1 − x2 − x3 − 1 ∈ Q[x1, x2, x3]. As a hypersurface, V is 2-equidimensional and since
sing(V ) = ∅, V satisfies (A).

Let ϕ = ((x1 − 1)2 + x22 + x23, x1, x2) ⊂ Q[x1, x2, x3]. As the restriction of ϕ1 to Rn is the square of
the Euclidean distance to (1, 0, 0), (P) is satisfied. Since 2 ≤ i ≤ d, we must take i = 2. Then we see
that one can write

W2 = V (f, (3x1x3 + 1)(x1 − x3) + 3x23 − 1).

One checks that W2 is 1-equidimensional and has no singular point as well, so that (ϕ, 2) satisfies (B1).
Let K2 = W ◦(ϕ1,W2), which is a finite set of cardinality 45 (of which 5 are real). Besides, for any
α ∈ C,

V ∩ϕ−11 (α) = V (f, (x1 − 1)2 + x22 + x23 − α)

is either empty or an equidimensional algebraic set of dimension 1. Therefore, (ϕ, 2) satisfies (B).
Finally, since W ◦(ϕ1,W2)∩R3 is a finite set, assumption (C) holds vacuously. Recall that, by definition,
F2 = ϕ1

−1(ϕ1(K2)) ∩ V . In conclusion, by Theorem 1.1, W2 ∪ F2 is a 1-roadmap of (V, ∅). Figure 13
illustrates this example.

Figure 13: An illustration of Example 1. The real trace V ∩ R3 is plotted twice as a grid. On the left,
W2∩R3 is represented as red lines, and the crosses represent all the real points of K2. Then, on the right,
we replaced the points of K2 by the fibers of F2 ∩ R3 (black lines), to repair the connectivity failures of
W2 ∩ R3. In particular, F2 ∩ R3 connects the semi-algebraically connected components of W2 ∩ R3 that
lie in the same semi-algebraically connected component of V ∩ R3.
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We expect that algorithmic progress on the computation of roadmaps for real algebraic and semi-
algebraic sets will lead to implementations that will automate the analysis of kinematic singularities
for e.g. serial and parallel manipulators. In particular, there are many families of robots where these
algorithms could be used if they scale enough. This is the case for e.g. 6R manipulators (see e.g. the
results on the number of aspects in [28] which need to be extended) in the context of serial manipulators,
for the study of self-motion spaces of parallel platforms such as Gough-Stewart ones (the case of such
manipulators with 6 lengths still remains open, see e.g. [21]) and for the identification of cuspidality
manipulators (see [14] for a general approach, relying on roadmap algorithms). For some of these
applications, one needs to compute the number of connected components of semi-algebraic sets defined
as the complement of a real hypersurface defined by f = 0 where f is a multivariate polynomial. Note
that this can be done by computing a roadmap for the (non-bounded) real algebraic set defined by
tf − 1 = 0 where t is a new variable. This illustrates the potential interest of the algorithms that would
be derived from the connectivity theorem of this paper.
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