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Globally Optimal Solution to Inverse Kinematics of
7DOF Serial Manipulator

Pavel Trutman1,2, Mohab Safey El Din3, Didier Henrion4,1, Tomas Pajdla2

Abstract—The Inverse Kinematics (IK) problem is concerned
with finding robot control parameters to bring the robot into a
desired position under the kinematics and joint limit constraints.
We present a globally optimal solution to the IK problem for
a general serial 7DOF manipulator with revolute joints and a
polynomial objective function. We show that the kinematic con-
straints due to rotations can be all generated by the second-degree
polynomials. This is an important result since it significantly
simplifies the further step where we find the optimal solution
by Lasserre relaxations of nonconvex polynomial systems. We
demonstrate that the second relaxation is sufficient to solve a
general 7DOF IK problem. Our approach is certifiably globally
optimal. We demonstrate the method on the 7DOF KUKA LBR
IIWA manipulator and show that we are, in practice, able to
compute the optimal IK or certify infeasibility in 99.9 % tested
poses. We also demonstrate that by the same approach, we
are able to solve the IK problem for any generic (random)
manipulator with seven revolute joints.

Index Terms—Kinematics, redundant robots, mechanism de-
sign.

I. INTRODUCTION

THE Inverse Kinematics (IK) problem is one of the most
important problems in robotics [1]. The solution to the

IK problem finds robot control parameters to bring the robot
into the desired position under the kinematics and collision
constraints [2].

The IK problem has been extensively studied in robotics and
control [3], [4]. The classical formulation [3] of the problem
for 6 degrees of freedom (DOF) serial manipulators leads to
solving a system of polynomial equations [5], [6]. This is
a hard (“EXPSPACE complete” [7]) algebraic computational
problem, but practical solving methods have been developed
for 6DOF manipulators [3], [8], [9]. For more DOFs, the
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IK task is currently solvable only for nongeneric specially
designed manipulators, such as KUKA LBR IIWA [10].

An important generalization of the IK problem aims at find-
ing the optimal control parameters for a redundant mechanism,
i.e. when the number of controlled joints in a manipulator is
larger than six. Then, an algebraic computation problem turns
into an optimization problem over an algebraic variety [5] of
possible IK solutions. It is particularly convenient to choose
a polynomial objective function to arrive at a semialgebraic
optimization problem.

Semialgebraic optimization problems are, in general, non-
convex, but they can be solved with certified global optimality
[11] using the Lasserre hierarchy of convex optimization prob-
lems [12]. Computationally, however, semialgebraic optimiza-
tion problems are in general extremely hard and were often
considered too expensive to be used in practice. In this work,
we show that using “algebraic preprocessing” in semialgebraic
optimization methods becomes practical in solving the IK
problem of general 7DOF serial manipulators.

A. Our contributions

We prove that the variety of IK solutions of all generic
7DOF revolute serial manipulators can be generated by the
second-degree polynomials only (Theorem 1). This consider-
ably reduces the complexity of semialgebraic optimization and
makes it computationally feasible.

We provide a method for computing a globally optimal solu-
tion to the IK problem for a general 7DOF serial manipulator
with a polynomial objective function. The found solution is
globally optimal w.r.t. the given manipulator, requested end-
effector pose, and chosen objective function.

We employ techniques from algebraic geometry [5] and
polynomial optimization [11] to solve the 7DOF IK problem
exactly or certify the infeasibility when it happens.

We demonstrate that our approach works on a practical
7DOF KUKA LBR IIWA manipulator solving 99.9 % of config-
urations while the straightforward semi-algebraic optimization
fails in approx. 28 % of cases.

We show that we can solve the IK problem for any generic
(e.g., randomly generated) serial manipulator with seven rev-
olute joints by the same approach.

We do not expect our method to be an online method as it is
more time-consuming to find the global solution than to be sat-
isfied with a feasible one. The local methods are more suitable
for online usage as they are fast and sufficiently accurate. We
see the application of our method in the design and exploration
of the capabilities of manipulators. The offline method suits
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these tasks well as we are not limited by computation time.
Our method can be, e.g., used when designing new 7DOF
serial manipulators and optimizing their parameters, such as
the manipulability. We develop our method for 7DOF serial
manipulators as they are currently the most common redundant
manipulators in the industry.

II. PREVIOUS WORK

The first breakthrough in solving IK problems was the
global solution to IK for a general 6DOF serial manipulator,
which was given in [13], [8]. It leads to solving a polynomial
system with 16 solutions. Another important result was the so-
lution to the forward kinematics problem of the Stewart-Gough
parallel manipulator platform [14], leading to a polynomial
system with 40 solutions. See recent work [15] to review local
and other approximate techniques for solving IK problems. We
next review only the most relevant work.

The closest previous works are related to solving IK for
mechanisms, which are redundant only for fixed end-effector
positions. The standard approach is to employ additional
dynamics, time optimality, and collision constraints.

In [16], a technique for planning a dynamic whole-body
motion of a humanoid robot has been developed. It solves
IK as a part of motion planning by local optimization meth-
ods considering kinematics, dynamics, and collision models.
The method requires a good initialization to converge, and,
depending on its quality, it takes minutes to hours of running
time. Our approach provides a globally optimal solution for
kinematics subchains of more complex mechanisms and could
be used to initialize the kinematics of motion planning.

Work [10] presented an IK solution for 7DOF manip-
ulators with zero link offsets, e.g., the KUKA LBR IIWA
manipulators. The solution uses special kinematics of its class
of manipulators to decompose the general IK problem into
two simpler IK problems that can be solved in a closed-
form. The one-dimensional variety of self-motions becomes
circular, and hence the paper proposes to parameterize it by
the angle of a point of the circle. Our approach shows that it is
feasible to solve the IK problem for completely general 7DOF
manipulators and optimize over their self-motion varieties.

Paper [15] presents a global (but only approximate) solution
to the IK for 7DOF manipulators. It formulates the IK problem
as a mixed-integer convex optimization program. The key idea
of the paper is to approximate the nonconvex space of rotations
by piecewise linear functions on several intervals that partition
the original space. This turns the original nonconvex problem
into an approximate convex problem when a correct interval
is chosen. Selecting the actual interval of approximation leads
to the integer part of the optimization. This was the first
practical globally optimal approach, but it is only approximate
and delivers solutions with errors in units of centimeters and
degrees. It also fails to detect about 5 % of infeasible poses.
Our approach solves the original problem with sub-10−3 mm
and degree error and can solve/decide the feasibility in all but
0.1 % of the tested cases. The computation times of [15] and
our approach are roughly similar in units of seconds.

A global and precise solution to the IK problem for redun-
dant serial manipulators was presented in [17]. It models the

kinematic constraints as a distance geometry problem, which,
alongside a novel formulation of the joint limit constraints,
leads to quadratic constraints. The final configuration is found
as the nearest configuration to the given one while satisfying
the constraints. This quadratically constrained quadratic prob-
lem is solved by a semidefinite programming (SDP) relaxation
with a global optimality certificate and infeasibility detection.
Their implementation is fast (2.5 ms per pose) and accurate
(sub-10−2 mm position error) with a failure rate of less than
0.4 %. This formulation is restricted only to revolute joints
for planar manipulators and spherical joints for spacial ones,
not considering the full rotation of each link, which leads to
simplified situations. In contrast, our method is general and
applicable to any serial manipulator with revolute joints.

III. PROBLEM FORMULATION

Here we formulate the IK problem for 7DOF serial manip-
ulators as a semialgebraic optimization problem.

The task is to find the joint coordinates of the manipulator in
a way that the end-effector reaches the desired pose in space. If
the manipulators have more DOF than they require to execute
the given task, they are called redundant. This is our case, as
the 7DOF manipulator is to reach a pose in space, which has
6 DOFs. The consequence is that the variety of IK solutions is
one-dimensional for reachable generic end-effector poses for
such manipulators.

The self-motion property of such manipulators makes them
more versatile since it allows them to, e.g., avoid more
obstacles in the path and avoid singularities. On the other
hand, increasing the number of degrees of freedom increases
the difficulty of the IK problem computation dramatically. The
IK problem has no longer a finite number of solutions (while
for serial manipulators with fewer DOFs, it has, in general, a
finite number of solutions), and thus, it is natural to formulate
it as a constrained optimization problem.

We next model the IK problem for 7DOF serial manipula-
tors as a polynomial optimization problem (POP).

A. Inverse kinematics problem

We describe the manipulators by the Denavit-Hartenberg
(D-H) convention [18] to construct transformation matrices
Mi(θi) ∈ R4×4 from link i to i − 1 and parameterized by
joint angles θi. Their product for i from 1 to 7 gives us
the transformation matrix M representing the transformation
from the end-effector coordinate system to the base coordinate
system

7∏
i=1

Mi(θi) = M. (1)

The matrix M consists of the position vector t ∈ R3 and
the rotation matrix R ∈ SO(3), which together represent the
end-effector pose w.r.t. the base coordinate system.

Due to kinematic constraints, manipulators come with joint
limits restricting the joint angles θi. Typically, their maximal
θHigh
i and minimal θLow

i values are given satisfying θLow
i ≤

θi ≤ θHigh
i for i = 1, . . . , 7.
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To solve the IK problem, we set up the desired pose M and
then solve Eqn. (1) for the joint coordinates θi.

For redundant manipulators, the polynomial system has
an infinite number of solutions. By introducing an objective
function, we select just one. Our choice is to prefer the solu-
tions with minimal sum of distances of the joint angles θ =
[θ1, . . . , θ7]

⊤ from their preferred values θ̂ = [θ̂1, . . . , θ̂7]
⊤

min
θ∈⟨−π,π)7

7∑
i=1

wi

∣∣∣angdiff(θi, θ̂i)∣∣∣ , (2)

where wi ≥ 0,
∑7

i=1 wi = 1 and the function angdiff(α, β)
calculates the difference α − β and wraps it on the interval
⟨−π, π). Depending on how the preferred values θ̂ are set,
this objective function can be used to keep some links of
the manipulator close to a required pose [19], minimize the
distance from joints midrange [20], or minimize the total
movement of the manipulator to reach the next pose.

In addition to joint limits, we get the following problem:

min
θ∈⟨−π,π)7

7∑
i=1

wi

∣∣∣angdiff(θi, θ̂i)∣∣∣
s.t.

∏7
i=1 Mi(θi) = M

θLow
i ≤ θi ≤ θHigh

i (i = 1, . . . , 7)

(3)

To use the technique of polynomial optimization, we need
to remove the trigonometric functions that appear in Eqn. (1).
We do that by introducing new variables c = [c1, . . . , c7]

⊤ and
s = [s1, . . . , s7]

⊤, which represent the cosines and sines of
the joint angles θ, respectively. Then, we rewrite Problem (3)
in the new variables, and to preserve the structure, we need to
add the trigonometric identities

qi(c, s) = c2i + s2i − 1 = 0, i = 1, . . . , 7. (4)

Matrix Eqn. (1) contains 12 trigonometric equations, which
rewritten in the newly introduced variables leads to 12 poly-
nomial equations of degrees up to 7. To lower the maximal
degree of the equations, we use fact that the inverse of a
rotation matrix is its transpose, i.e., it is a linear function of
the original rotation matrix, and rewrite Eqn. (1) as

5∏
i=3

Mi(θi)−
1∏

i=2

M−1
i (θi)M

6∏
i=7

M−1
i (θi) = 0. (5)

It reduces the maximal degree of the polynomials in c and s
to four. We denote these polynomials in Eqn. (5) as

pj(c, s) = 0, j = 1, . . . , 12. (6)

Observe that the coefficients of the polynomials pj depend
on the entries of the transformation matrices Mi which define
the 7DOF manipulators we consider. We further investigate
genericity properties of polynomials pj w.r.t. the entries of
matrices Mi. Precisely, considering the entries of matrices Mi

as parameters, we say that a property on the polynomials pj
holds generically if it does not fail for a larger set than an
algebraic variety of the dimension strictly smaller than the
dimension of the space. This is a way to encode in a rigid
way that some property holds for randomly chosen values.

The next step is to change the objective function (2) to a
polynomial in the variables c and s. Instead of evaluating the
distance between the joint angles and their preferred values,
we can do the same in the space of their cosines and sines to
reach the same goal, i.e., to get θ as close as possible to θ̂.
Choosing the proper ℓp norm for the problem at hand may lead
to a more straightforward solution to the problem (e.g., the ℓ∞
norm is often used in multiple view geometry problems [21]
to obtain a convex relaxation of the original problem). We use
the squared ℓ2 norm on the cosines and sines since it leads to
a linear objective function:

min
c∈⟨−1,1⟩7

s∈⟨−1,1⟩7

7∑
i=1

wi

(
(ci − cos θ̂i)

2 + (si − sin θ̂i)
2
)

(7)

= min
c∈⟨−1,1⟩7

s∈⟨−1,1⟩7

7∑
i=1

2wi(1− ci cos θ̂i − si sin θ̂i). (8)

After rewriting the joint limit inequalities into a polynomial
form, we obtain the following final POP

min
c∈⟨−1,1⟩7, s∈⟨−1,1⟩7

7∑
i=1

2wi(1− ci cos θ̂i − si sin θ̂i)

s.t. pj(c, s) = 0 (j = 1, . . . , 12)
qi(c, s) = 0 (i = 1, . . . , 7)

−(ci + 1) tan
θLow
i

2 + si ≥ 0 (i = 1, . . . , 7)

(ci + 1) tan
θHigh
i

2 − si ≥ 0 (i = 1, . . . , 7)

ci −min{cos θLow
i , cos θHigh

i } ≥ 0 (i = 1, . . . , 7)

(9)

We next show how to solve this POP in a general way such
that any objective function can be chosen as long as it can
be expressed as a low degree polynomial in sines and cosines
of the joint angles. Although different objective functions will
be chosen for different tasks, we demonstrate the presented
approach with a classical objective function (8).

After solving Problem (9), we recover θ from c and s by
function atan2, which considers the signs of the arguments.

IV. POLYNOMIAL OPTIMIZATION

Here we describe the polynomial optimization methods we
use to solve Problem (9).

In general, POPs are nonconvex, but they can be solved with
global optimality certificates by convex optimization [11]. The
idea consists of building a hierarchy of convex optimization
problems of increasing size whose values converge to the value
of the POP. The convergence proof is based on the results of
real algebraic geometry, namely, on the representation of posi-
tive polynomials or Positivstellensatz. One of the most popular
Positivstellensatz is due to Putinar [22], and it expresses a
polynomial positive on a compact basic semialgebraic set as
a sum of squares (SOS).

Finding this SOS representation amounts to solving an SDP
problem, a particular convex optimization problem that can be
solved efficiently numerically with interior point algorithms.
By increasing the degree of the SOS representation, we
increase the size of the SDP problem, thereby constructing a
hierarchy of SDP problems. Dual to this polynomial positivity
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problem is the problem of characterizing the moments of
measures supported on a compact basic semialgebraic set.
This admits an SDP formulation, called moment relaxations,
yielding a dual hierarchy indexed by the so-called relaxation
order.

The primal-dual hierarchy is called the moment-SOS hierar-
chy or the Lasserre hierarchy since it was first proposed in [12]
in the context of POP with convergence and duality proofs. As
the relaxation order increases, the Lasserre hierarchy generates
a monotone sequence of superoptimal bounds on the global
optimum of a given POP. Eventually, the result on the moment
problem can be used to certify the exactness of the bound for
the current relaxation order. This solves the original nonconvex
POP at the price of solving a relaxed convex SDP problem of
typically (quite) bigger size than was the original problem.
A Matlab package GloptiPoly [23] has been designed to
construct the SDP problems in the hierarchy and solve them
with a general-purpose SDP solver.

In the moment-SOS hierarchy, we can certify global opti-
mality by using flat truncation of the moment matrix. The rank
of the moment matrix is then equal to the number of global
optima. The global optima can be extracted by numerical linear
algebra, as described in [24].

In many applications, the main limitation of the Lasserre
hierarchy is its poor scalability w.r.t. the number of variables
and the degree of the POP. This is balanced by the practical
observation that, very often, global optimality is certified
by the second or third-order relaxation. As our experiments
reveal, for the degree 4 POP (9), the third-order relaxation is
out of reach for off-the-shelf SDP solvers. It is hence critical
to investigate reformulation techniques to reduce the degree.

V. SYMBOLIC REDUCTION OF THE POP

Here we provide the description of the algebraic geometry
technique we use to reduce the degree of our POP problem
to obtain a practical solving method. See [5] for algebraic-
geometric notation and concepts.

Let us assume that our POP is constrained by the polynomial
equations f1 = · · · = fs = 0 of degree 4 in Q[x1, . . . , xn].
One can replace these polynomial equations with any other
set of polynomial equations g1 = · · · = gt = 0 as long as
both systems have the same solution set. Natural candidates
for gi’s are polynomials in the ideal generated by f1, . . . , fs,
i.e., in the set of algebraic combinations I = {

∑
i qifi | qi ∈

Q[x1, . . . , xn]}. It is clear that if all fi’s vanish simultaneously
at a point, any polynomial g in this set I will vanish at that
point.

The difficulty is how to understand the structure of this
set and find a nice finite representation of it that would
allow many algebraic operations (such as deciding whether a
given polynomial lies in this set). Solutions have been brought
by symbolic computation, aka computer algebra, through the
development of an algorithm computing Gröbner bases (GB),
which were introduced by Buchberger [5]. These are finite
sets, depending on a monomial ordering [5], which generate
I as input equations do, but from which the whole structure
of I can be read off.

Modern algorithms for computing Gröbner bases (F4 and
F5 algorithms), which significantly improved by several or-
ders of magnitude the state-of-the-art, were introduced by
J. C. Faugère [25], [26]. These latter algorithms bring a linear
algebra approach to GB computations. In particular, noticing
that the intersection of I with the subset of polynomials
in Q[x1, . . . , xn] of degree ≤ d is a vector space of finite
dimension is the key to reducing GB computations to exact
linear algebra operations.

Hence, Gröbner bases provide bases of such vector spaces
when one uses monomial orderings, which filter monomials
w.r.t. degree first. Finally, going back to our problem, a GB
computation allows us to discover if I contains degree 2
polynomials (and is generated by such quadrics).

While this is never the case when starting with a generic
POP of degree 4, observe that there are many relations between
the coefficients of the degree 4 equations of our POP. Hence,
we are not facing a generic situation here, and we will see
further that a GB computation provides a set of quadrics that
can replace our initial set of constraints. Note also that since
GB algorithms rely on exact linear algebra, such a property
holds for every generic instance of our POP if it holds for a
randomly chosen one (the trace of the computation will always
be the same, giving rise to polynomials of degree ≤ 2).

VI. SOLVING THE IK PROBLEM

To solve the IK problem, we need to solve the optimization
problem (9). First, we directly apply the implementation
GloptiPoly [23] of the method described in Section IV.

A. Direct application of polynomial solver

Since the original Problem (9) contains polynomials of
degree 4, we start with the smallest possible relaxation of order
2. The POP is in 14 variables, which leads to solving an SDP
program with 3060 variables.

Solving this relaxation typically does not yield the solution,
and therefore it is required to go higher in the hierarchy. Unfor-
tunately, the relaxation order three for a polynomial problem in
14 variables leads to an SDP problem in 38 760 variables. Such
a large problem is still solvable on contemporary computers,
but it takes hours to finish.

B. Symbolic reduction

In view of the previous paragraph, we aim at simplifying
the original POP to be able to obtain solutions even for the
relaxation of order two, which takes seconds to solve.

Here is our main result. We claim that the polynomials pj
and qi of degrees up to four in Problem (9) can be reduced to
polynomials of degree two.

Theorem 1. The ideal generated by the kinematics constraints
(6) for a generic serial manipulator with seven revolute joints
and for generic pose M with the addition of the trigonometric
identities (4) can be generated by a set of degree two polyno-
mials.

Proof. The proof is based on specialization properties of
Gröbner bases in [27] and is similar to the one in [28, App.
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C]. As sketched above, we start by considering the coeffi-
cients of the transformation matrices as parameters (whose
specializations define a given serial manipulator). This yields
polynomials pj depending symbolically on these parameters.
Since Gröbner bases algorithms use only arithmetic operations
+,−,×, /, one can consider the generic Gröbner basis of a
generic 7DOF serial manipulator, leaving the parameters as
they are. We obtain a basis whose coefficients are rational
fractions in these parameters. Specialization properties state
that specializing these parameters actually yields a Gröbner
basis of the considered 7DOF. Computing a Gröbner basis with
randomly chosen values of the parameters (hence avoiding the
vanishing of the denominators in the generic Gröbner basis)
reveals the structure of this generic Gröbner basis. Doing so,
one sees that the Gröbner basis contains polynomials of degree
two and that these polynomials generate the whole Gröbner
basis.

C. Solving the reduced polynomial optimization problem

We exploit Theorem 1 to solve the IK problem follow-
ingly. First, we compute a Gröbner basis of the kinematics
constraints (6) and (4). From the basis, we select only the
degree two polynomials. Then, we construct Problem (9) with
the degree two polynomial constraints instead of the original
ones. We solve it by using the hierarchy of SDPs.

Reducing the degree of polynomials from four to two allows
us to start with SDP relaxation of order one. The size of this
SDP problem, in terms of the number of variables, is now
120. Practical experiments have shown that the first relaxation
is not tight enough to yield the solution. On the other hand,
the second relaxation gives a solution for almost all poses, see
Tab. II.

D. Overcoming numerical issues

It may happen that the POP solver is not able to certify the
global optimality. The certification is based on the evaluation
of the rank of a matrix of floats returned by the SDP solver,
and it may fail because of two reasons.

First, it may happen that the relaxation order was not high
enough, and we have to go higher in the hierarchy. Secondly,
the relaxation is actually tight, but the numerical rank of the
matrix returned by the SDP is hard to compute correctly. This
is because of the numerical issues of the SDP solver caused
by the significant number of variables and constraints that
typically have SDPs originated from the Lasserre hierarchies.
We can not distinguish these two cases, and whenever we are
unable to certify the optimum, we say that the method has
failed for the given end-effector pose.

Naturally, we want to minimize the number of end-effector
poses that our method fails to compute. For a given relaxation
order, we can thus only reduce the number of failing poses by
addressing the numerical issues of the SDP solver used.

From our experience and as we show in Section VII, SDPs
with sharper objective function at the global minimum have
a lower failure rate. To sharpen a function, we mean that we
take its n-th power as long as we ensure that it is greater or

equal to one. The new function has the same argument of the
global minimum and a greater or equal absolute value of its
second derivative at that minimum than the original one.

Our new objective function replacing Eqn. (8) is

min
c∈⟨−1,1⟩7, s∈⟨−1,1⟩7

7∑
i=1

2wi(2− ci cos θ̂i − si sin θ̂i)
n (10)

for any n ∈ N. Obviously, Eqn. (10) has a different argument
of the minimum than Eqn. (8) (for n = 1, they are the
same), but still Eqn. (10) keeps the idea of the original non-
polynomial objective function (2).

Since we use the second relaxation order in the Lasserre
hierarchies, we can use an objective function of up to degree
four without the need for enlargement of the relaxation order.
Thus, we can use n up to four.

We show that taking higher power of the objective function
improves the failure rate of our method in Section VII.

E. Rational approximation

The end-effector pose M consists of translation vector t ∈
R3 and rotation matrix R ∈ SO(3), which are, as well as
the D-H parameters of the manipulator, in practice given in
their floating-point representation. This is a common approach
as these values are typically an outcome of some planning
algorithm (the end-effector pose) or measured and calibrated
(the parameters of the manipulator).

When a numerical method is used to solve the IK task,
everything works smoothly as long as the problem is well-
conditioned. This is the case when we directly apply the POP
solver, as described in Section VI-A.

On the other hand, symbolic methods require to compute
exactly. Therefore, if we want to use a symbolic method,
e.g., as in Section VI-C, we need to pass from floating-
point numbers to exact rational numbers and ensure that all
identities, following from sines, cosines, and rotations that
have to hold, are valid.

The input for the symbolic reduction method (Section VI-C)
is the D-H parameters of the manipulator and the end-
effector pose M , which are floating points and need to be
approximated by rational numbers. The D-H parameters are
a) the lengths ai and di, which we approximate by rounding
them to 2κ digits to the right of the decimal point, where
κ ∈ N, and b) the angles αi. In Eqn. (5), we only need
rational values of sinαi and cosαi such that the trigonometric
identities sin2 αi + cos2 αi = 1 hold. How to obtain such a
rational representation in an optimal way w.r.t. bit size has
been proposed, e.g., by [29]. For simplicity, we have used a
nonoptimal approach. To provide the rational representation,
we round tan α

2 to κ digits to the right of the decimal point,
which we denote as τi. Then, the sines and cosines are replaced
by their approximations as cosαi =

1−τ2
i

1+τ2
i

and sinαi =
2τ

1+τ2
i

,
which are rational functions of τi, and therefore also rational.

We approximate the rotational part R, and the translational
part t of the end-effector pose M independently. We approx-
imate t element-wise by rounding it to 2κ digits to the right
of the decimal point. For the rotation matrix R, we need to
approximate it as a rational orthonormal matrix to ensure that
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Fig. 1: Generated poses (their positional parts shown only) for the KUKA LBR IIWA manipulator. Green dots are poses marked
as feasible, blue as infeasible, and for the red ones, the computation failed. (a) Naïve approach (Section VII-A2). (b) Our
method with the symbolic reduction step (Section VII-A3). (c) Histogram of translation and rotation error for the same method
as (b). Showed results are for the relaxation order r = 2 and the power of the objective function n = 4.

TABLE I: Overview of the execution times and accuracy of the presented methods. Results are for the relaxation order r = 2
and the power of the objective function (10) n = 4 and evaluated on the KUKA LBR IIWA manipulator.

Method Average execution time [s] Mean error [mm, deg] Failure
Reduction step GloptiPoly Translation Rotation rate [%]

Naïve (Section VII-A2) — 14.1 3.77 · 10−4 6.48 · 10−5 27.6
With symbolic reduction (Section VII-A3) 2.6 4.4 1.51 · 10−4 5.45 · 10−3 0.02

TABLE II: Comparison of failure rates, average end-to-end execution time, and mean translation and rotation error of our
proposed methods for different relaxation orders and powers of the objective function for the KUKA LBR IIWA manipulator.

Method Relaxation Power of the objective function (10)
order n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

Mean translation error [10−3 mm] Mean rotation error [10−3 deg]

Naïve (Section VII-A2) r = 2 1.68 0.94 0.60 0.38 0.28 0.17 0.12 0.06
With symbolic reduction (Section VII-A3) r = 1 7.80 1.82 — — 6.43 5.65 — —
With symbolic reduction (Section VII-A3) r = 2 2.52 0.83 0.24 0.15 5.64 5.51 5.46 5.45

Average execution time [s] Failure rate [%]

Naïve (Section VII-A2) r = 2 17.5 17.0 16.8 16.0 32.8 29.7 28.3 27.6
With symbolic reduction (Section VII-A3) r = 1 5.3 5.2 — — 31.9 28.1 — —
With symbolic reduction (Section VII-A3) r = 2 9.5 9.3 9.2 8.8 0.4 0.2 0.09 0.02

R⊤ = R−1 and detR = 1. In work [30], several algorithms
for optimal approximation of a rotation matrix w.r.t. elements
bit size have been introduced. We use an easier-to-implement
method. To find a rational approximation of R, we convert it
to a quaternion q, which we round element-wise to κ digits to
the right of the decimal point and denote it as q̄. The rounding
violates the condition ∥q̄∥ = 1, and we can not divide q̄ by
non-rational ∥q̄∥ to get a rational quaternion. We overcome the
issue by constructing a rotation matrix from non-unit rational
q̄, which we then divide by ∥q̄∥2, obtaining a rational rotation
matrix.

The output of the symbolic reduction method is the de-
gree two polynomials. They have rational coefficients, so we
evaluate them using floating-point arithmetic to convert them
to floating-point numbers. Then, we can use them in the
numerical method (GloptiPoly) to solve the IK task.

VII. EXPERIMENTS

We demonstrate our method on the IK problem for the
KUKA LBR IIWA arm, which is simple to solve. Then, we

randomly generate a completely generic serial manipulator
with seven revolute joints and solve the IK problem for it.

A. The KUKA LBR IIWA manipulator

The manipulator structure is designed in a special way such
that the IK problem is simple to compute. There are three
sequences of three consecutive revolute joints whose axes of
motion intersect in a single point. Namely, they are the joints
(1, 2, 3), (3, 4, 5), and (5, 6, 7). Each of these triplets can be
substituted by a single spherical joint. Moreover, the joint
angle θ4 is constant within the self-motion for a fixed end-
effector pose. Such properties make the manipulator a very
nongeneric serial manipulator.

1) POP for KUKA LBR IIWA: We parameterize Prob-
lem (9) by the D-H parameters of the KUKA manipulator.
We set the weights equally to wi =

1
7 , and the preferred joint

angles θ̂i to zero. This leads to POP in 14 variables and with
polynomials pj of degrees up to 4.

2) Direct application of the POP solver: First, we solve
Problem (9) with objective function (10) with powers n from
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Fig. 2: Histogram of the execution time of (left) the online
phase of GloptiPoly, (right) the symbolic reduction and elim-
ination in Maple. Showed results are evaluated on the KUKA
LBR IIWA manipulator by the method with the symbolic
reduction step (Section VII-A3) for the relaxation order r = 2
and the power of the objective function n = 4.

1 to 4 by toolbox GloptiPoly [23] for relaxation order 2 with
the use of MOSEK [31] as the SDP solver.

Our dataset consists of 10 000 randomly chosen poses
within and outside of the working space of the manipulator,
see Fig. 1a. For poses marked by red color, GloptiPoly failed
to find the solution or report infeasibility. That is mainly due
to the small relaxation order of the semidefinite relaxation.
For the best choice of the power of the objective function
n = 4 (see Tab. II), there is 27.6 % of such poses, which
makes this approach quite impractical. Computations for the
next relaxation of order three are still often feasible on
contemporary computers but take hours to finish.

3) POP with symbolic reduction: Since the performance
of GloptiPoly highly depends on the number of variables of
the POP and the relaxation degree, which grows with the
degree of the polynomials in the POP, we first symbolically
reduce the polynomials pj and qi and then solve the new POP.
Before we start, we approximate the inputs, which are given
in the floating-point representation, by rational numbers with
precision κ = 4 according to Section VI-E.

Firstly, we use the advantage of the simple structure of the
KUKA LBR IIWA manipulator, i.e., that the joint angle θ4 is
constant within the self-motion. Therefore, it plays no role
in the objective function (2). That allows us to eliminate the
variables c4 and s4 from the equations. Secondly, we reduce
the polynomials pj and qj with the use of Theorem 1.

In this way, we have reduced the number of variables from
14 to 12 and the degrees of the polynomials to 2, which
significantly speeds up the SDP solver. Practical experiments
showed that GloptiPoly is now able to compute the IK task
for more poses with the same relaxation order than by the
naïve approach used before, see Fig. 1b. Again, this approach
performs best for the highest possible power of the objective
function, i.e., n = 4 (see Tab. II). Now only 0.02 % of poses
failed to be solved on the same dataset as in Section VII-A2.

4) Results: We have computed the translation and rotation
error of the desired poses w.r.t. the poses computed by the
forward kinematics task for the joint angles found by the
proposed method. Their comparison between the proposed
approaches for various values of the relaxation order r and
the power of the objective function n can be found in Tab. II.

TABLE III: Overview of the execution times and accuracy of
the presented methods evaluated on the randomly generated
generic manipulator.

Method Avg. execution time [s] Mean error [mm, deg] Failure
Red. step GloptiPoly Translation Rotation rate [%]

Naïve — 16.7 5.41 · 10−4 4.68 · 10−4 51.0
Sym. red. step 8127 12.6 5.07 · 10−5 1.81 · 10−5 0

The drop of precision between the naïve approach and the
approach with the symbolic reduction step is mainly due to
the approximation of the end-effector pose and the parameters
of the manipulator. The histograms of the error using the best
value r = 2 and n = 4 can be seen in Fig. 1c.

In Tab. II, we can see that it is worth taking higher powers
of the objective function as explained in Section VI-D. We
have shown that with its increasing power, both the failure
rate and the execution time improve. Both methods perform
best for the values r = 2 and n = 4. The overall comparison
of the methods for these values can be seen in Tab. I.

For practical applications, the value of the execution time is
essential. In Fig. 2, we show the histograms of the execution
time of the online phase of GloptiPoly as well as of the
symbolic reduction to degree 2 polynomials. We observe that
our execution times are comparable to [15] when using off-
the-shelf POP and GB computation tools. We plan to develop
optimized solvers leading to considerable speedup, as it was
done in computer vision [32].

B. A generic 7DOF serial manipulator

Here we show that we are able to solve the IK task of a
randomly generated fully generic 7DOF serial manipulator.

We have randomly generated the D-H parameters of the
manipulator. The values of di and ai were generated as
integers from 10 to 100 mm. We have set the allowance
interval for the joint angles to ⟨−3, 3⟩ rad. From the same
interval, we have generated the angles αi, for which we have
found rational representations of their sines and cosines by the
same approach as in Section VI-E with κ = 1.

The dataset of poses consists of 100 randomly generated
poses, which were rounded to the rational representation as
described in Section VI-E with κ = 1.

In this experiment, we have rounded the D-H parameters of
the manipulator, and the end-effector poses to rational numbers
in advance. The rounding with higher values of κ would lead
to very long coefficients in the GB computation, which would
significantly increase the execution time. However, doing the
rounding in the symbolic method directly with κ = 1 would
mean that we would be computing the IK problem for very
different (rounded rational representation) kinematic parame-
ters and end-effector poses than we are evaluating the errors
for (the original floating-point representation). Therefore, we
have decided to use a dataset with rational representations of
the end-effector poses.

We again compare two approaches: direct solving of the IK
task by the POP solver and symbolically reducing the degree
of the polynomials and then solving it by the POP solver.
Again, we set the weights to wi = 1

7 , the preferred values
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of the joint angles θ̂i to zero, relaxation order to r = 2, and
the power of the objective function to n = 4. The average
execution time, failure rate, and translation and rotation error
for both approaches can be found in Tab. III.

The naïve approach is unable to solve 51.0 % of the end-
effector poses. The approach with the symbolic reduction step
is able to solve all poses from the dataset, but it takes more
than 2 hours to symbolically preprocess the equations. In this
case, the best way would be to try the naïve approach first,
which takes seconds but has a high failure rate. And if it
fails, then one would need to preprocess the equations by
symbolic computation. This approach significantly reduces the
computation time but still keeps the failure rate near zero.

VIII. CONCLUSIONS

We presented the first practical method for globally solving
the 7DOF IK problem with a polynomial objective function.
Our solution is accurate and can solve/decide infeasibility
in 99.9 % of 10 000 cases tested on the KUKA LBR IIWA
manipulator. We have shown that the method is general and,
therefore, can be used to solve the IK problem for a generic
7DOF serial revolute manipulator. The code is open-sourced
at https://github.com/PavelTrutman/Global-7DOF-IKT.

For future work, we consider two interesting directions.
First, when the POP solver detects infeasibility, it would be
desirable to return its certificate. It can be either numerical
(obtained by solving the moment-SOS hierarchy with an SDP
solver) or symbolic (obtained by the GB method). It can be
obtained, e.g., by computing an SOS representation for the
polynomial −1 on the quadratic module corresponding to the
feasible set. See, e.g., [33] in the specific case of certifying
emptiness of spectrahedra (SDP feasibility set).

Secondly, it would be interesting to exploit the specific
structure of the POP studied in this paper to prove the
exactness of the first or the second SDP relaxation in the
moment-SOS hierarchy, i.e., that solving this relaxation always
solves the original POP. For Euclidean distance POP arising
in computer vision, this was achieved in [34] by arguing
on the curvature properties of the Lagrangian and its SOS
representation in the quadratic module.
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