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Abstract

Solving multihomogeneous systems, as a wide range of structured algebraic systems oc-
curring frequently in practical problems, is of first importance. Experimentally, solving
these systems with Gröbner bases algorithms seems to be easier than solving homoge-
neous systems of the same degree. Nevertheless, the reasons of this behaviour are not
clear. In this paper, we focus on bilinear systems (i.e. bihomogeneous systems where all
equations have bidegree (1, 1)). Our goal is to provide a theoretical explanation of the
aforementioned experimental behaviour and to propose new techniques to speed up the
Gröbner basis computations by using the multihomogeneous structure of those systems.
The contributions are theoretical and practical. First, we adapt the classical F5 criterion
to avoid reductions to zero which occur when the input is a set of bilinear polynomials.
We also prove an explicit form of the Hilbert series of bihomogeneous ideals generated by
generic bilinear polynomials and give a new upper bound on the degree of regularity of
generic affine bilinear systems. We propose also a variant of the F5 Algorithm dedicated
to multihomogeneous systems which exploits a structural property of the Macaulay ma-
trix which occurs on such inputs. Experimental results show that this variant requires
less time and memory than the classical homogeneous F5 Algorithm. Lastly, we investi-
gate the complexity of computing a Gröbner basis for the grevlex ordering of a generic
0-dimensional affine bilinear system over k[x1, . . . , xnx

, y1, . . . , yny
]. In particular, we

show that this complexity is upper bounded by O
(

(nx+ny+min(nx+1,ny+1)
min(nx+1,ny+1)

)ω
)

, which is

polynomial in nx + ny (i.e. the number of unknowns) when min(nx, ny) is constant.
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1. Introduction

The problem of multivariate polynomial system solving is an important topic in com-
puter algebra since algebraic systems can arise from many practical applications (cryp-
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tology, robotics, real algebraic geometry, coding theory, signal processing, etc...). One
method to solve them is based on the Gröbner basis theory. Due to their practical impor-
tance, efficient algorithms to compute Gröbner bases of algebraic systems are required:
for instance Buchberger’s Algorithm (Buchberger (2006)), Faugère F4 (Faugère (1999))
or F5 (Faugère (2002)).

In this article, we focus on the F5 Algorithm. In particular, the F5 criterion is a tool
which removes the so-called reductions to zero (which are useless) during the Gröbner
basis computation when the input system is a regular sequence. For instance, consider
a sequence of polynomials (f1, . . . , fm). The reductions to zero come from the leading
monomials in the colon ideals 〈f1, . . . , fi−1〉 : fi. Given a term order, let LM(I) denote
the ideal generated by the leading monomials of the elements of an ideal I. Then the
reductions to zero detected by the F5 criterion are those related to LM(〈f1, . . . , fi−1〉). For
regular systems, LM(〈f1, . . . , fi−1〉) = LM(〈f1, . . . , fi−1〉 : fi). Therefore, the F5 criterion
removes all useless reductions. In practice, if a homogeneous polynomial system is chosen
“at random”, then it is regular.

In this paper, we consider multihomogeneous systems, which are not regular sequences
in the polynomial ring. Such systems can appear in cryptography (Faugère et al. (2008)),
in coding theory (Ourivski and Johansson (2002)) or in effective geometry (see Safey El
Din and Schost (2003); Safey El Din and Trébuchet (2006)).

A multihomogeneous polynomial is defined with respect to a partition of the un-
knowns, and is homogeneous with respect to each subset of variables. The finite sequence
of degrees is called the multi-degree of the polynomial. For instance, a bihomogeneous
polynomial f of bidegree (d1, d2) over k[x0, . . . , xnx

, y0, . . . , yny
] is a polynomial such that

∀λ, µ, f(λx0, . . . , λxnx
, µy0, . . . , µyny

) = λd1µd2f(x0, . . . , xnx
, y0, . . . , yny

).

In general, multihomogeneous systems are not regular. Consequently, the F5 criterion
does not remove all reductions to zero. Our goal is to understand the underlying structure
of these multihomogeneous algebraic systems, and then use it to speed up the computa-
tion of a Gröbner basis in the context of F5. In this paper, we focus on bihomogeneous
ideals generated by polynomials of bidegree (1, 1).

1.1. Main results

Let k be a field, f1, . . . fm ∈ k[x0, . . . , xnx
, y0, . . . , yny

] be bilinear polynomials. We
denote by Fi the polynomial family (f1, . . . , fi) and by Ii the ideal 〈Fi〉. We start by
describing the algorithmic results of the paper, obtained by exploiting the algebraic
structure of bilinear systems.

In order to understand this structure, we study properties of the jacobian matrices
with respect to the two subsets of variables x0, . . . , xnx

and y0, . . . , yny
:

jacx(Fi) =









∂f1
∂x0

· · · ∂f1
∂xnx

...
...

...
∂fi
∂x0

· · · ∂fi
∂xnx









jacy(Fi) =









∂f1
∂y0

· · · ∂f1
∂yny

...
...

...
∂fi
∂y0

· · · ∂fi
∂yny









We show that the kernels of those matrices (whose entries are linear forms) correspond
to the reductions to zero not detected by the classical F5 criterion. In general, all elements
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in these kernels are vectors of maximal minors of the jacobian matrices (Lemma 2). For
instance, if nx = ny = 2 and m = 4, consider

v = (minor(jacx(F4), 1),−minor(jacx(F4), 2),minor(jacx(F4), 3),−minor(jacx(F4), 4))

and

w = (minor(jacy(F4), 1),−minor(jacy(F4), 2),minor(jacy(F4), 3),−minor(jacy(F4), 4)),

where minor(jacx(F4), k) (resp. minor(jacy(F4), k)) denotes the determinant of the matrix
obtained from jacx(F4) (resp. jacy(F4)) by removing the k-th row. The generic syzygies
corresponding to reductions to zero which are not detected by the classical F5 criterion
are

v ∈ KerL(jacx(F4)) and w ∈ KerL(jacy(F4)).

We show (Corollary 2) that, in general, the ideal Ii−1 : fi is spanned by Ii−1 and
by the maximal minors of jacx(Fi−1) (if i > ny + 1) and jacy(Fi−1) (if i > nx + 1).
The leading monomial ideal of Ii−1 : fi describes the reductions to zero associated to
fi. Thus we need results about ideals generated by maximal minors of matrices whose
entries are linear forms in order to get a description of the syzygy module. In particular,
we prove that, in general, grevlex Gröbner bases of those ideals are linear combinations of
the generators (Theorem 3). Based on this result, one can compute efficiently a Gröbner
basis of Ii−1 : fi once a Gröbner basis of Ii−1 is known.

This allows us to design an Algorithm (Algorithm 4) dedicated to bilinear systems,
which yields an extension of the classical F5 criterion. This subroutine, when merged
within a matricial version of the F5 Algorithm (Algorithm 2), eliminates all reductions
to zero during the computation of a Gröbner basis of a generic bilinear system. For
instance, during the computation of a grevlex Gröbner basis of a system of 12 generic
bilinear equations over k[x0, . . . , x6, y0, . . . , y6], the new criterion detects 990 reductions
to zero which are not found by the usual F5 criterion. Even if this new criterion seems
to be more complicated than the usual F5 criterion (some precomputations have to
be performed), we prove that the cost induced by those precomputations is negligible
compared to the cost of the whole computation.

Next, we introduce a notion of bi-regularity which describes the structure of generic
bilinear systems. When the input of Algorithm 4 is a bi-regular system, then it returns
all reductions to zero. We also give a complete description of the syzygy module of
such systems, up to a conjecture (Conjecture 1) on a linear algebra problem over rings.
This conjecture is supported by practical experiments. We also prove that there are no
reductions to zero with the classical F5 criterion for affine bilinear systems (Proposition
5) which is important for practical applications.

We describe now the main complexity results of the paper. We need some results
on the so-called Hilbert bi-series of ideals generated by bilinear systems. For bi-regular
bilinear system, we give an explicit form of these series (Theorem 5):

HSIm(t1, t2) =
Nm

(1− t1)nx+1(1− t2)ny+1
,

Nm(t1, t2) = (1− t1t2)m+
∑m−(ny+1)

ℓ=1 (1− t1t2)m−(ny+1)−ℓt1t2(1− t2)ny+1
[

1− (1− t1)ℓ
∑ny+1

k=1 t
ny+1−k
1

(ℓ+ny−k
ny+1−k

)]

+
∑m−(nx+1)

ℓ=1 (1− t1t2)m−(nx+1)−ℓt1t2(1− t1)nx+1
[

1− (1− t2)ℓ
∑nx+1

k=1 t
nx+1−k
2

(ℓ+nx−k
nx+1−k

)]

.
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After this analysis, we propose a variant of the Matrix F5 Algorithm dedicated to
multihomogeneous systems. The key idea is to decompose the Macaulay matrices into
a set of smaller matrices whose row echelon forms can be computed independently. We
provide some experimental results of an implementation of this algorithm in Magma2.15.
This multihomogeneous variant can be more than 20 times faster for bihomogeneous sys-
tems than our Magma implementation of the classical Matrix F5 Algorithm. We perform a
theoretical complexity analysis based on the Hilbert series in the case of bilinear systems,
which provides an explanation of this gap.

Finally, we establish a sharp upper bound on the degree of regularity of 0-dimensional
affine bilinear systems (Theorem 6). Let f1, . . . , fnx+ny

be an affine bilinear system of
k[x0, . . . , xnx−1, y0, . . . , yny−1], then the maximal degree reached during the computation
of a Gröbner basis with respect to the grevlex ordering is upper bounded by:

dreg ≤ min (nx + 1, ny + 1) .

This bound is exact in practice for generic bilinear systems and permits to derive com-
plexity estimates for solving bilinear systems (Corollary 3) which can be applied to prac-
tical problems (see for instance Faugère et al. (2010) for an application to the MinRank
problem).

1.2. State of the art

The complexity analysis that we perform by proving properties on the Hilbert bi-
series of bilinear ideals follows a path which is similar to the one used to analyze the
complexity of the F5 algorithm in the case of homogeneous regular sequences (see Bardet
et al. (2005)). In Kreuzer et al. (2002), the properties of Buchberger’s Algorithm are
investigated in the context of multi-graded rings. Cox et al. (2007a) gives an analysis of
the structure of the syzygy module in the case of three bihomogeneous equations with
no common solution in the biprojective space.

The algorithmic use of multihomogeneous structures has been investigated mostly in
the framework of multivariate resultants (see Dickenstein and Emiris (2003); Emiris and
Mantzaflaris (2009) and references therein for the most recent results) following the line
of work initiated by McCoy (1933). In the context of solving polynomial systems by
using straight-line programs as data-structures, Jeronimo and Sabia (2007) provides an
alternative way to compute resultant formula for multihomogeneous systems.

As we have seen in the description of the main results, the knowledge of Gröbner
bases of ideals generated by maximal minors of linear matrices play a crucial role. The-
orem 3 which states that such Gröbner bases are obtained by a single row echelon form
computation is a variant of the main results in Sturmfels and Zelevinsky (1993) and
Bernstein and Zelevinsky (1993) (see also the survey by Bruns and Conca (2003)).

More generally, the theory of multihomogeneous elimination is investigated in Rémond
(2001) providing tools to generalize some well-known notions (e.g. Chow forms, resultant
formula, heights) in the homogeneous case to multihomogeneous situations. Such works
are initiated in Van der Waerden (1929) where the Hilbert bi-series of bihomogeneous
ideals is introduced.

1.3. Structure of the paper

This paper is articulated as follows. Some tools from commutative algebra are intro-
duced. Next, we investigate the case of bilinear systems and propose an algorithm to
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remove all reductions to zero during the Gröbner basis computation. Then we prove its
correctness and explain why it is efficient for generic bilinear systems. To continue our
study of the structure of bilinear ideals, we give the explicit form of the Hilbert bi-series
of generic bilinear ideals. Finally, we prove a new bound on the degree of regularity of
generic affine bilinear systems and we use it to derive new complexity bounds. Technical
results and their proofs are postponed in Appendix.

Acknowledgments.

We are grateful to Ludovic Perret, Ioannis Z. Emiris and anonymous referees for their
helpful comments and suggestions.

2. Gröbner bases: the Matrix F5 Algorithm

2.1. Gröbner bases: notations
In this section, R denotes the polynomial ring k[x1, . . . , xn] (where k is a field) and

for all β = (β1, . . . , βn) ∈ Nn, xβ denotes xβ1

1 , · · · , xβn
n . Gröbner bases are defined

with respect to a monomial ordering (see Cox et al. (2007b), page 55, Definition 1).
In this paper, we focus in particular on the so-called grevlex ordering (degree reverse
lexicographical ordering).

Definition 1. The grevlex ordering is defined by:

xα ≺ xβ ⇔











∑

αi <
∑

βi or
∑

αi =
∑

βi and the first coordinates

from the right which are different satisfy αi > βi.

If ≺ is a monomial ordering and f ∈ R is a polynomial, then its greatest monomial
with respect to ≺ is called leading monomial and denoted by LM≺(f) (or simply LM(f)
when there is no ambiguity on the considered ordering).

If I ⊂ R is a polynomial ideal, its leading monomial ideal (i.e. 〈{LM≺(f) : f ∈ I}〉)
is denoted by LM≺(I) (or simply LM(I) when there is no ambiguity on the ordering) .

Definition 2. let I ⊂ R be an ideal, and ≺ be a monomial ordering. A Gröbner basis
of I (relatively to ≺) is a finite subset G ⊂ I such that: 〈LM≺(G)〉 = LM≺(I).

Definition 3. Let I ⊂ R be an ideal, ≺ be a monomial ordering and f ∈ R be a
polynomial. Then there exist unique polynomials f̃ ∈ R and g ∈ I such that f = f̃ + g
and none of the monomials appearing in f̃ are in LM≺(I). The polynomial f̃ is called
the normal form of f (with respect to I and ≺), and is denoted NFI,≺(f).

It is well known that NFI,≺(f) = 0 if and only if f ∈ I (see e.g. Cox et al. (2007b)).

Definition 4. Let I ⊂ R be a homogeneous ideal, ≺ be a monomial ordering and D be
an integer. We call D-Gröbner basis a finite set of polynomials G such that 〈G〉 = I and

∀f ∈ I with deg(f) ≤ D, there exists g ∈ G such that LM≺(g) divides LM≺(f).

The following Lemma is a straightforward consequence of Dickson’s Lemma (Cox
et al., 2007b, page 71, Theorem 5).

Lemma 1. Let I ⊂ R be an ideal and let ≺ be a monomial ordering. There exists D ∈ N
such that every D-Gröbner basis with respect to ≺ is a Gröbner basis of I with respect
to ≺.
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2.2. The Matrix F5 Algorithm

We use a variant of the F5 Algorithm, called Matrix F5 Algorithm, which is suitable
to perform complexity analyses (see Bardet (2004); Bardet et al. (2005); Faugère and
Rahmany (2009)).

Given a set of generators (f1, . . . , fm) of a homogeneous polynomial ideal I ⊂ R,
an integer D and a monomial ordering ≺, the Matrix F5 Algorithm computes a D-
Gröbner basis of I with respect to ≺. It performs incrementally by considering the ideals
Ii = 〈f1, . . . , fi〉 for 1 ≤ i ≤ m.

Let d ∈ N, denote by Rd the k-vector space of polynomials in R of degree d. As in
Faugère (2002) and Bardet (2004), we use a definition of the row echelon form of a matrix
which is slightly different from the usual definition: we call row echelon form the matrix
obtained by applying the Gaussian elimination Algorithm without permuting the rows.
The idea of the Matrix F5 Algorithm (see Algorithm 2 below) is to calculate triangular
bases of the vector spaces Ii∩Rd for 1 ≤ d ≤ D and 1 ≤ i ≤ m and to deduce from them
a d-basis of Ii+1. These triangular bases are obtained by computing row echelon forms
of the Macaulay matrices.

Definition 5. Let Fi = (f1, . . . , fi) ∈ Ri be a sequence of homogeneous polynomials of
degrees (d1, . . . , di) and ≺ be a monomial ordering. The Macaulay matrix in degree d
Macaulay≺(Fi, d) is the matrix whose rows contain the coefficients of the polynomials
{tfj} where 1 ≤ j ≤ i and t ∈ R is a monomial of degree d−dj. The columns correspond
to the monomials in R of degree d and are sorted by ≺ in descending order. Each row
has a signature (t, fj) and they are sorted as follows: a row with signature (t1, fj) is
preceding a row with signature (t2, fk) if j < k or (j = k and t1 ≺ t2). The element at
the intersection of the row (t, fj) and the column corresponding to the monomial m is
the coefficient of m in the polynomial tfj.

When the row echelon form of a Macaulay matrix is computed, the rows which are
linear combinations of preceding rows are reduced to zero. Such computations are useless:
removing these rows before computing the row echelon form will not modify the result
but lead to significant practical improvements. The so-called F5 criterion (see Faugère
(2002)) is used to detect these reductions to zero and is given below. In Algorithm 2,
the matrices Md,i are similar to Macaulay matrices: their rows and their columns are
sorted with the same orderings and their rows span the same vector spaces. Moreover,

if (f1, . . . , fm) is a regular sequence, then the rows of their row echelon form M̃d,i are
bases of Ii ∩Rd.

Algorithm 1. F5 criterion - returns a boolean

Require:

{

(t, fi) the signature of a row

A matrixM in row echelon form

1: If t is the leading monomial of a row ofM, then return true,
2: else return false.

Now, we give a description of the Matrix F5 Algorithm.
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Algorithm 2. Matrix F5 (see Faugère and Rahmany (2009); Bardet (2004); Faugère
(2002))

Require:











(f1, . . . , fm) homogeneous polynomials of degree d1 ≤ d2 ≤ . . . ≤ dm
D an integer

a monomial ordering ≺
Ensure: G is a D-Gröbner basis of 〈f1, . . . , fm〉 for ≺
1: G← {f1, . . . , fm}
2: for d from d1 to D do

3: M̃d,0 ← matrix with 0 rows
4: for i from 1 to m do

5: ConstructMd,i by adding to M̃d,i−1 the following rows:
6: if di = d then

7: add the row fi with signature (1, fi)
8: end if

9: if d > di then

10: for all f from M̃d−1,i with signature (e, fi), such that xλ is the
11: greatest variable of e, add the n−λ+1 rows xλf, xλ+1f, . . . , xnf with the
12: signatures (xλe, fi), (xλ+1e, fi), . . . , (xne, fi) except those which satisfy:

13: F5criterion ((xλ+ke, fi), ˜Md−di,i−1)=true
14: end if

15: Compute M̃d,i the row echelon form ofMd,i

16: Add to G the polynomials corresponding to rows of M̃d,i such that their
17: leading monomial is different from the leading monomial of
18: the row with same signature inMd,i

19: end for

20: end for

21: return G

We recall now some results mostly given by Faugère (2002) which justify the F5

criterion by relating reductions to zero appearing in an incremental computation of a
Gröbner basis of a homogeneous ideal with the syzygy module of the polynomial system
under consideration.

Definition 6. Let (f1, . . . , fm) be polynomials in R. A syzygy is an element s =
(s1, . . . , sm) ∈ Rm such that

∑m
j=1 fjsj = 0. The degree of the syzygy is defined by

maxj(deg(fj) + deg(sj)). The set of all syzygies is a submodule of Rm called the syzygy
module of (f1, . . . , fm).

The next theorem explains how reductions to zero and syzygies are related:

Theorem 1 (F5 criterion, Faugère (2002)).

1. If t ∈ LM(Ii−1) then there exists a syzygy (s1, . . . , si) of (f1, . . . , fi) such that
LM(si) = t.

2. Let (t, fi) be the signature of a row of Md,m. Then the following assertions are
equivalent:

(a) the row (t, fi) is zero in the row echelon form M̃d,m.
7



(b) t /∈ LM(Ii−1) and there exists a syzygy s = (s1, . . . , si) of (f1, . . . , fi) such that
t = LM(si).

The rows eliminated by the F5 criterion correspond to the trivial syzygies, i.e. the
syzygies (s1, . . . , sm) such that ∀1 ≤ i ≤ m, si ∈ 〈f1, . . . , fi−1, fi+1, . . . , fm〉. These
particular syzygies come from the commutativity of R (for all 1 ≤ i, j ≤ m, fifj−fjfi =
0). It is well known that in the generic case, the syzygy module of a polynomial system
is generated by the trivial syzygies.

Definition 7. (Eisenbud, 1995, page 419) Let (f1, . . . , fm) be a sequence of homoge-
neous polynomials and let Ii ⊂ R be the ideal 〈f1, . . . , fi〉. The following assertions are
equivalent:

1. the syzygy module of (f1, . . . , fm) is generated by the trivial syzygies.
2. for 2 ≤ i ≤ m, fi is not a divisor of 0 in R/Ii−1.

A sequence of polynomials which satisfies these conditions is called a regular sequence.

This notion of regularity is essential since the regular sequences correspond exactly to
the systems such that there is no reduction to zero during the computation of a Gröbner
basis with F5 (see Faugère (2002)). Moreover, generic polynomial systems with less
equations than unknowns are regular.

3. Gröbner bases computation for bilinear systems

3.1. Overview

Let F = (f1, . . . , f4) be four bilinear polynomials in Q[x0, x1, x2, y0, y1, y2], I be the
ideal generated by F and V ⊂ C6 be its associated algebraic variety. As above, Ii
denotes the ideal 〈f1, . . . , fi〉, and we consider the grevlex ordering with x0 ≻ . . . ≻
xnx
≻ y0 ≻ . . . ≻ yny

. Since f1, . . . , f4 are bilinear, for all (a0, a1, a2) ∈ C3 and 1 ≤
i ≤ 4, fi(a0, a1, a2, 0, 0, 0) = 0. Hence, V contains the linear affine subspace defined by
y0 = y1 = y2 = 0 which has dimension 3. We conclude that V has dimension at least 3.

Consequently, the sequence (f1, f2, f3, f4) is not regular (since the codimension of an
ideal generated by a regular sequence is equal to the length of the sequence). Hence, there
are reductions to zero during the computation of a Gröbner basis with the F5 Algorithm
(see Faugère (2002)).

When the four polynomials are chosen randomly, one remarks experimentally that
these reductions correspond to the rows with signatures (x30, f4) and (y30 , f4). This ex-
perimental observation can be explained as follows.

Consider the jacobian matrices

jacx(F ) =







∂f1
∂x0

∂f1
∂x1

∂f1
∂x2

...
...

...
∂f4
∂x0

∂f4
∂x1

∂f4
∂x2






and jacy(F ) =









∂f1
∂y0

∂f1
∂y1

∂f1
∂y2

...
...

...
∂f4
∂y0

∂f4
∂y1

∂f4
∂y2









and the vectors of variables X and Y. By Euler’s formula, it is immediate that for any
sequence of polynomials (q1, q2, q3, q4),

(q1, . . . , q4).jacx(F ).X =

4
∑

i=1

qifi and (q1, . . . , q4).jacy(F ).Y =

4
∑

i=1

qifi (1)
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Denote by KerL(jacx(F )) (resp. KerL(jacy(F ))) the left kernel of jacx(F ) (resp. jacy(F )).
Therefore, if (q1, . . . , q4) belongs to KerL(jacx(F )) (resp. KerL(jacy(F ))), then the

relation (1) implies that (q1, . . . , q4) belongs to the syzygy module of I.
Given a (k + 1, k)-matrix M, denote by minor(M, j) the minor obtained by removing

the j-th row from M. Consider

v = (minor(jacx(F ), 1),−minor(jacx(F ), 2),minor(jacx(F ), 3),−minor(jacx(F ), 4)).

By Cramer’s rule, v ∈ KerL(jacx(F )). A symmetric statement can be made for jacy(F ).
From this observation, one deduces that minor(jacx(F ), 4)f4 (resp. minor(jacy(F ), 4)f4)
belongs to I3 = 〈f1, f2, f3〉.

We conclude that the rows with signature

(LM(minor(jacx(F ), 4)), f4) and (LM(minor(jacy(F ), 4)), f4)

are reduced to zero when performing the Matrix F5 Algorithm described in the previous
section. A straightforward computation shows that if F contains polynomials which are
chosen randomly, LM(minor(jacx(F ), 4)) = y30 and LM(minor(jacy(F ), 4)) = x30.

In this section, we generalize this approach to sequences of bilinear polynomials of
arbitrary length. Hence, the jacobian matrices have a number of rows which is is not the
number of columns incremented by 1. But, even in this more general setting, we exhibit
a relationship between the left kernels of the jacobian matrices and the syzygy module
of the ideal spanned by the sequence under consideration. This allows us to prove a
new F5-criterion dedicated to bilinear systems. On the one hand, when plugged into the
Matrix F5 Algorithm, this criterion detects reductions to zero which are not detected
by the classical criterion. On the other hand, we prove that a D-Gröbner basis is still
computed by the Matrix F5 Algorithm when it uses the new criterion.

3.2. Jacobian matrices of bilinear systems and syzygies

From now on, we use the following notations:

• R = k[x0, . . . , xnx
, y0, . . . , yny

];

• F = (f1, . . . , fm) ⊂ Rm is a sequence of bilinear polynomials and Fi = (f1, . . . , fi)
for 1 ≤ i ≤ m;

• I is the ideal generated by F and Ii is the ideal generated by Fi;

• Let M be a ℓ×c matrix, with ℓ > c. We call maximal minors of M the determinants
of the c× c sub-matrices of M;

• jacx(Fi) and jacy(Fi) are respectively the jacobian matrices









∂f1
∂x0

· · · ∂f1
∂xnx

...
...

...
∂fi
∂x0

· · · ∂fi
∂xnx









and









∂f1
∂y0

· · · ∂f1
∂yny

...
...

...
∂fi
∂y0

· · · ∂fi
∂yny









;

• Given a matrix M, KerL(M) denotes the left kernel of M;
9



• X is the vector [x0, . . . , xnx
]t and Y is the vector [y0, . . . , yny

]t;

• (f1, . . . , fm) ∈ k[x0, . . . , xnx−1, y0, . . . , yny−1]
m is an affine bilinear system if there

exists a homogeneous bilinear system (fh1 , . . . , f
h
m) ∈ k[x0, . . . , xnx

, y0, . . . , yny
]m

such that

fi(x0, . . . , xnx−1, y0, . . . , yny−1) = fhi (x0, . . . , xnx−1, 1, y0, . . . , yny−1, 1).

Lemma 2. Let i > nx+1 (resp. i > ny+1), and let s be a maximal minor of jacx(Fi−1)
(resp. jacy(Fi−1)). Then there exists a vector (s1, . . . , si−1, s) in KerL(jacx(Fi)) (resp.
KerL(jacy(Fi))).

Proof. The proof is done when considering s as a maximal minor of jacx(Fi−1) with
i > nx +1. The case where s is a maximal minor of jacy(Fi−1) with i > ny +1 is proved
similarly.

Notice that jacx(Fi−1) is a matrix with i−1 rows and nx+1 columns and i−1 ≥ nx+1.
Denote by (j1, . . . , ji−nx−2) the rows deleted from jacx(Fi−1) to construct its submatrix
J whose determinant is s.

Consider now the i× (i− nx − 2)-matrix T such that its (ℓ, k) entry is 1 if and only
if ℓ = jk, else it is 0. N denotes the following i× (i− 1) matrix:

N =
[

jacx(Fi) T
]

.

A straightforward use of Cramer’s rule shows that

(minor(N, 1),−minor(N, 2), . . . , (−1)i+1minor(N, i)) ∈ KerL(N).

Remark that this implies

(minor(N, 1),−minor(N, 2), . . . , (−1)i+1minor(N, i)) ∈ KerL(jacx(Fi)).

Computing minor(N, i) by going across the last columns of N shows that minor(N, i) =
±s.

Theorem 2. Let i > nx + 1 (resp. i > ny + 1) and let s be a linear combination of
maximal minors of jacx(Fi−1) (resp. jacy(Fi−1)). Then s ∈ Ii−1 : fi.

Proof. By assumption, s =
∑

ℓ aℓ sℓ where each sℓ is a maximal minor of jacx(Fi−1).

According to Lemma 2, for each minor sℓ there exists (s
(ℓ)
1 , . . . , s

(ℓ)
i−1) such that

(s
(ℓ)
1 , . . . , s

(ℓ)
i−1, sℓ) ∈ KerL(jacx(Fi))

Thus, by summation over ℓ, one obtains

(
∑

ℓ

aℓs
(ℓ)
1 , . . . ,

∑

ℓ

aℓs
(ℓ)
i−1, s) ∈ KerL(jacx(Fi)). (2)

Moreover, by Euler’s formula

(
∑

ℓ

aℓs
(ℓ)
1 , . . . ,

∑

ℓ

aℓs
(ℓ)
i−1, s)jacx(Fi)X = s fi +

i−1
∑

j=1

(

∑

ℓ

aℓs
(ℓ)
j

)

fj .

By the relation (2), s fi +
∑i−1

j=1

(

∑

ℓ aℓs
(ℓ)
j

)

fj = 0, which implies that s ∈ Ii−1 : fi.

10



Corollary 1. Let i > nx+1 (resp. i > ny +1), M
(i)
x (resp. M

(i)
y ) be the ideal generated

by the maximal minors of jacx(Fi) (resp. jacy(Fi)). Then M
(i−1)
x ⊂ Ii−1 : fi (resp.

M
(i−1)
y ⊂ Ii−1 : fi).

Proof. By Theorem 2, all minors of jacx(Fi−1) (resp. jacy(Fi−1)) are elements of Ii−1 : fi.

Thus, Ii−1 : fi contains a set of generators of M
(i−1)
x (resp. M

(i−1)
y ). Since Ii−1 : fi is

an ideal, our assertion follows.

Example 1. Consider the following bilinear system in GF(7)[x0, x1, x2, y0, y1, y2, y3]:

f1 = x0y0 + 5x1y0 + 4x2y0 + 5x0y1 + 3x1y1 + x0y2 + 4x1y2 + 5x2y2 + 5x0y3 + x1y3 + 2x2y3,

f2 = 2x0y0 + 4x1y0 + 6x2y0 + 2x0y1 + 5x1y1 + 6x0y2 + 4x2y2 + 3x0y3 + 2x1y3 + 4x2y3,

f3 = 5x0y0 + 5x1y0 + 2x2y0 + 4x0y1 + 6x1y1 + 4x2y1 + 6x1y2 + 4x2y2 + x0y3 + x1y3 + 5x2y3,

f4 = 6x0y0 + 5x2y0 + 4x0y1 + 5x1y1 + x2y1 + x0y2 + x1y2 + 6x2y2 + 2x0y3 + 4x1y3 + 5x2y3,

f5 = 6x0y0 + 3x1y0 + 6x2y0 + 3x0y1 + 5x2y1 + 2x0y2 + 4x1y2 + 5x2y2 + 2x0y3 + 4x1y3 + 5x2y3.

Its jacobian matrices jacx(F4) and jacy(F4) are:

jac
x
(F4) =









y0 + 5y1 + y2 + 5y3 5y0 + 3y1 + 4y2 + y3 4y0 + 5y2 + 2y3
2y0 + 2y1 + 6y2 + 3y3 4y0 + 5y1 + 2y3 6y0 + 4y2 + 4y3

5y0 + 4y1 + y3 5y0 + 6y1 + 6y2 + y3 2y0 + 4y1 + 4y2 + 5y3
6y0 + 4y1 + y2 + 2y3 5y1 + y2 + 4y3 5y0 + y1 + 6y2 + 5y3









.

jac
y
(F4) =









x0 + 5x1 + 4x2 5x0 + 3x1 x0 + 4x1 + 5x2 5x0 + x1 + 2x2

2x0 + 4x1 + 6x2 2x0 + 5x1 6x0 + 4x2 3x0 + 2x1 + 4x2

5x0 + 5x1 + 2x2 4x0 + 6x1 + 4x2 6x1 + 4x2 x0 + x1 + 5x2

6x0 + 5x2 4x0 + 5x1 + x2 x0 + x1 + 6x2 2x0 + 4x1 + 5x2









.

An straightforward computation shows that the maximal minors of the matrix jacx(F4)
and jacy(F4) are in 〈f1, f2, f3, f4〉 : f5, in accordance with Corollary 1. An example of a
corresponding syzygy is obtained by the vanishing of the determinant

det [jac
x
(F5)|T |F5]=det











y0 + 5y1 + y2 + 5y3 5y0 + 3y1 + 4y2 + y3 4y0 + 5y2 + 2y3 1 f1
2y0 + 2y1 + 6y2 + 3y3 4y0 + 5y1 + 2y3 6y0 + 4y2 + 4y3 0 f2

5y0 + 4y1 + y3 5y0 + 6y1 + 6y2 + y3 2y0 + 4y1 + 4y2 + 5y3 0 f3
6y0 + 4y1 + y2 + 2y3 5y1 + y2 + 4y3 5y0 + y1 + 6y2 + 5y3 0 f4
6y0 + 3y1 + 2y2 + 2y3 3y0 + 4y2 + 4y3 6y0 + 5y1 + 5y2 + 5y3 0 f5











= 0.

The above results imply that for all g ∈ M
(i−1)
x (resp. g ∈ M

(i−1)
y ), the rows of

signature (LM(g), fi) are reduced to zero during the Matrix F5 Algorithm. In order to

remove these rows, it is crucial to compute a Gröbner basis of the ideals M
(i−1)
x and

M
(i−1)
y . These ideals are generated by the maximal minors of matrices whose entries are

linear forms. The goal of the following section is to understand the structure of such
ideals and how Gröbner bases can be efficiently computed in that case.

3.3. Gröbner bases and maximal minors of matrices with linear entries

Let L be the set of homogeneous linear forms in the ring RX = k[x0, . . . , xnx
], ≺ be

the grevlex ordering on RX (with x0 ≻ · · · ≻ xnx
) and MatL (p, q) be the set of p × q

matrices with entries in L with p ≥ q and nx ≥ p−q. Note that MatL (p, q) is a k-vector
space of finite dimension.

Given M ∈ MatL (p, q), we denote by MaxMinors(M) the set of maximal minors of M.
We denote byMacaulay≺(MaxMinors(M), q) the Macaulay matrix in degree q associated to

11



MaxMinors(M) and to the ordering ≺ (each row represents a polynomial of MaxMinors(M)
and the columns represent the monomials of degree q in k[x0, . . . , xnx

] sorted by ≺, see
Definition 5).

The main result of this paragraph lies in the following theorem: it states that, in
general, a Gröbner basis of 〈MaxMinors(M)〉 is a linear combination of the generators.

Theorem 3. There exists a nonempty Zariski-open set O in MatL (p, q) such that for
all M ∈ O, a grevlex Gröbner basis of 〈MaxMinors(M)〉 with respect to ≺ is obtained by
computing the row echelon form of Macaulay≺(MaxMinors(M), q).

This theorem is related with a result from Sturmfels, Bernstein and Zelevinsky (1993),
which states that the ideal generated by the maximal minors of a matrix whose entries
are variables is a universal Gröbner Basis. We tried without success to use this result in
order to prove Theorem 3. Therefore, we propose an ad-hoc proof, which is based on the
following Lemmas whose proofs are postponed to the end of the paragraph.

Lemma 3. Let Monomialsp−q(q) be the set of monomials of degree q in k[x0, . . . , xp−q].
There exists a Zariski-open subset O′ of MatL (p, q) such that for all M ∈ O′

〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(M)〉)

Lemma 4. Let Monomialsp−q(q) be the set of monomials of degree q in k[x0, . . . , xp−q].
There exists a Zariski-open subset O′′ of MatL (p, q) such that for all M ∈ O′′

LM(〈MaxMinors(M)〉) ⊂ 〈Monomialsp−q(q)〉

Lemma 5. The Zariski-open set O′ ∩O′′ ⊂ MatL (p, q) is nonempty.

Proof of Theorem 3. From Lemmas 3, 4 and 5, O = O′ ∩O′′ is a nonempty Zariski open
set. Now let M be a matrix in O ⊂ MatL (p, q).

〈Monomialsp−q(q)〉 = LM(〈MaxMinors(M)〉).

Thus all polynomials in a minimal Gröbner basis of 〈MaxMinors(M)〉 have degree q and
then can be obtained by computing the row echelon form ofMacaulay≺(MaxMinors(M), q).

We prove now Lemmas 3, 4 and 5.

Proof of Lemma 3. Let M be the (p, q)-matrix whose (i, j)-entry is a generic homoge-

neous linear form
∑nx

k=0 a
(i,j)
k xk ∈ k(a(i,j)0 , . . . , a

(i,j)
k )[x0, . . . , xnx

]. Denote by a the set

a = {a(i,j)k , 0 ≤ k ≤ nx, 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

Given a set
a = {a(i,j)k ∈ k, 0 ≤ k ≤ nx, 1 ≤ i ≤ p, 1 ≤ j ≤ q}

consider the specialization map ϕa : M 7→ Ma ∈ MatL (p, q) such that the (i, j)-entry

of Ma is
∑nx

k=0 a
(i,j)
k xk ∈ k[x0, . . . , xnx

]. We prove below that there exists a polynomial
g ∈ k[a] such that, if g(a) 6= 0 then

〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(ϕa(M))〉).
12



Consider the Macaulay matrix Macaulay≺(MaxMinors(M), q).
Remark that the number of monomials inMonomialsp−q(q) equals the number of max-

imal minors of M. Moreover, by construction of Macaulay≺(MaxMinors(M), q) and by
definition of ≺ (see Definition 1), the first

(

p
q

)

columns of Macaulay≺(MaxMinors(M), q)

contain the coefficients of the monomials in Monomialsp−q(q) of the polynomials in
MaxMinors(M).

Saying that 〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(M)〉) is equivalent to saying that
the determinant of the square submatrix of Macaulay≺(MaxMinors(M), q) containing its
first

(

p
q

)

columns is non-zero. Let g ∈ k[a] be this determinant.

The inequality g 6= 0 defines a Zariski-open set O′ such that for all a ∈ O′

〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(ϕa(M))〉).

In the following ψ denotes the canonical inclusion morphism from k[x0, . . . , xnx
] to

k′[x0, . . . , xp−q], where k
′ is the field of fractions k(xp−q+1, . . . , xnx

).
For (v1, . . . , vnx−p+q), ψv denotes the specialization morphism:

ψv : k[x0, . . . , xnx
] −→ k[x0, . . . , xp−q]

f(x0, . . . , xnx
) 7−→ f(x0, . . . , xp−q, v1, . . . , vnx−p+q)

Lemma 6. There exists a Zariski open set O′′′, such that if a ∈ O′′′, then the ideal
〈MaxMinors(ψ ◦ ϕa(M))〉 is radical and its degree is

(

p
q−1

)

.

Proof. There exists an affine bilinear system f1, . . . , fp ∈ k′(a)[x0, . . . , xp−q, y0, . . . , yq−2],
such that:

ψ(M) ·











y0
...

yq−2

1











=







f1
...
fp






.

Let I denote the ideal 〈f1, . . . , fp〉. According to Lemma 17 (in Appendix), there exists

a polynomial h1 ∈ k[a], such that if h1(a) 6= 0, then
√

〈MaxMinors(ψ ◦ ϕa(M))〉 =
〈ϕa(f1), . . . , ϕa(fp)〉 ∩ k′[x0, . . . , xp−q].

One remarks that there also exists a polynomial h2 ∈ k[a] such that if h2(a) 6= 0,
then ϕa(I) is 0-dimensional (since f1, . . . , fp is a generic affine bilinear system with p
equations and p variables, see Proposition 8). From Lemma 16 (in Appendix), there
exists a polynomial h3 such that if h3(a) 6= 0, then ϕa(I) is radical. From now on, we
suppose that h1(a)h2(a)h3(a) 6= 0. If (w0, . . . , wp−q) ∈ V ar(〈MaxMinors(ψ ◦ ϕa(M))〉)
(where V ar denotes the variety), then the set of points in V ar(ϕa(I)) whose projection
is (w0, . . . , wp−q) can be obtained by solving an affine linear system. The set of solutions
of this system is nonempty and finite (since ϕa(I) is 0-dimensional), thus it contains a
unique element. So there is a bijection between V ar(ϕa(I)) and V ar(〈MaxMinors(ψ ◦
ϕa(M))〉). As ϕa(I) is radical,

deg(ϕa(I)) = deg(
√

〈MaxMinors(ψ ◦ ϕa(M))〉).
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By Corollary 4, this degree is
(

p
q−1

)

. According to Lemma 3,

deg(
√

〈MaxMinors(ψ ◦ ϕa(M))〉) ≤ deg(〈MaxMinors(ψ ◦ ϕa(M))〉)
≤ deg(〈Monomialsp−q(q)〉) =

(

p
q−1

)

.

Therefore,

deg(
√

〈MaxMinors(ψ ◦ ϕa(M))〉) = deg(〈MaxMinors(ψ ◦ ϕa(M))〉)

and thus
√

〈MaxMinors(ψ ◦ ϕa(M))〉 = 〈MaxMinors(ψ ◦ ϕa(M))〉.
Furthermore, the inequality h1(a)h2(a)h3(a) 6= 0 defines the wanted Zariski open set.

Proof of Lemma 4. Consider the Zariski open set O′′ = O′ ∩O′′′ (where O′ is defined in
Lemma 3 and O′′′ is defined in Lemma 6) and let a be taken in O′′. According to Lemma
3,

Monomialsp−q(q) ⊂ LM(〈MaxMinors(ψ ◦ ϕa(M))〉).
A basis of k′[x0, . . . , xp−q]/〈Monomialsp−q(q)〉 is given by the set of all monomials of
degree less than q. Therefore, the dimension of k′[x0, . . . , xp−q]/〈Monomialsp−q(q)〉 (as a
k′-vector space) is

(

p
q−1

)

. Thus, from Lemma 6,

deg(〈MaxMinors(ψ ◦ ϕa(M))〉) =
(

p

q − 1

)

= deg(〈Monomialsp−q(q)〉).

Therefore, all polynomials in 〈MaxMinors(ψ ◦ ϕa(M))〉 have degree at least q.
Now let g 6= 0 be a polynomial in 〈MaxMinors(ϕa(M))〉. Then there exists v =

(v1, . . . , vnx−p+q) such that the specialized polynomial verifies ψv(g) 6= 0 and such that
deg(〈MaxMinors(ψv ◦ϕa(M))〉) =

(

p
q−1

)

. Thus ψv(g) is a polynomial of degree at least q

in k[x0, . . . , xp−q]. Now suppose by contradiction that LM(g) /∈ 〈Monomialsp−q(q)〉. Since
deg(ψv(g)) ≥ q, there exists a monomial m in g such that m ∈ 〈Monomialsp−q(q)〉. Thus
consider g1 = g − λm+ λNF(m) (where λ is the coefficient of m in g). One remarks that
LM(g) = LM(g1) /∈ 〈Monomialsp−q(q)〉. Since g1 ∈ 〈MaxMinors(ϕa(M))〉, by a similar
argument there also exists a monomial m1 ∈ 〈Monomialsp−q(q)〉 in g1. By induction
construct the sequence gi = gi−1 − λi−1mi−1 + λi−1NF(mi−1). This sequence is infinite
and strictly decreasing (for the induced partial ordering on polynomials: h1 ≺ h2 if
LM(h1) ≺ LM(h2) or if LM(h1) = LM(h2) and h1 − LM(h1) ≺ h2 − LM(h2)). But, when
≺ is the grevlex ordering, there does not exist such an infinite and strictly decreasing
sequence.

Therefore LM(g) ∈ 〈Monomialsp−q(q)〉, which concludes the proof.

Proof of Lemma 5. In order to prove that the Zariski open set O′ ∩O′′ is nonempty, we
exhibit an explicit element. Consider the matrix M of MatL (p, q) whose (i, j)-entry is
xi+j−2 if 0 ≤ i+ j − 2 ≤ p− q and i ≥ j, else it is 0.
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M =

























x0 0 . . . 0

x1 x0
. . . 0

... x1
. . .

...

xp−q
. . .

. . .
...

...
. . .

. . . xp−q−1

0 0 . . . xp−q

























.

Remark that MaxMinors(M) ⊂ k[x0, . . . , xp−q]. Since 〈Monomialsp−q(q)〉 is a zero-
dimensional ideal in k[x0, . . . , xp−q], the fact that LM(MaxMinors(M)) = Monomialsp−q(q)
implies that LM(〈MaxMinors(M)〉) = 〈Monomialsp−q(q)〉. Thus, we prove in the sequel
that LM(MaxMinors(M)) = Monomialsp−q(q).

A first observation is that the cardinality of MaxMinors(M) equals the cardinality of
Monomialsp−q(q). Let m be a maximal minor of M. Thus m is the determinant of a q× q
submatrix M′ obtained by removing p − q rows from M. Let i1, . . . , ip−q be the indices
of these rows (with i1 < . . . < ip−q). Denote by ⋆ the product coefficient by coefficient
of two matrices (i.e. the Hadamard product) and let Sq be the set of q × q permutation
matrices. Thus m =

∑

σ∈Sq
(−1)sgn(σ) det(σ ⋆M′).

Since for all σ ∈ Sq, det(σ ⋆ M′) is a monomial, there exists σ0 ∈ Sq such that
LM(m) = ± det(σ0 ⋆M′)

We prove now that σ0 = id. Suppose by contradiction that σ0 6= id. In the sequel,
we denote by

• M′[i, j] the (i, j)-entry of M′.

• ei the q× 1 unit vector whose i-th coordinate is 1 and all its other coordinates are
0;

• σ0
j is the integer i such that σ0ej = ei.

Since, by assumption, σ0 6= id, there exists 1 ≤ i < j ≤ q such that σ0
j > σ0

i . Because of
the structure of M, we know that for the grevlex ordering x0 ≻ · · · ≻ xnx

,

M′[i, σ0
j ]M

′[j, σ0
i ] ≻ M′[i, σ0

i ]M
′[j, σ0

j ].

Let σ′ be defined by

σ′
k =











σ0
k if k 6= i and k 6= j

σ0
j if k = i

σ0
i if k = j

Then det(σ′ ⋆M′) ≻ det(σ0 ⋆M′) and by induction det(id ⋆M′) ≻ det(σ0 ⋆M′). This also
proves that the coefficient of det(id ⋆M′) in MaxMinors(M) is 1 and contradicts the fact
that LM(m) = ± det(σ0 ⋆M′).

This proved that LM(m) = | det(id ⋆M′)|. Now one can remark that

det(id ⋆M′) = xi1−1
0 xi2−i1−1

1 xi3−i2−1
2 . . . x

p−ip−q−1
p−q .
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Thus ifm1,m2 are distinct elements inMaxMinors(M), then LM(m1) 6= LM(m2). Since for
allm in MaxMinors(M), LM(m) ∈ Monomialsp−q(q), and MaxMinors(M) has the same car-
dinality as Monomialsp−q(q), we can deduce that LM(MaxMinors(M)) = Monomialsp−q(q).

3.4. An extension of the F5 criterion for bilinear systems

We can now present the main algorithm of this section. Given a sequence of ho-
mogeneous bilinear forms F = (f1, . . . , fm) ⊂ R generating an ideal I ⊂ R and ≺
a monomial ordering, it returns a set of pairs (g, fi) such that g ∈ Ii−1 : fi and
g /∈ Ii−1 (for i > min(nx + 1, ny + 1)). Following Theorem 2 and 3, this is done by
considering the matrices jacx(Fi) (resp. jacy(Fi)) for i > nx + 1 (resp. i > ny + 1)
and performing a row echelon form on Macaulay≺(MaxMinors(jacx(Fi)), nx + 1) (resp.
Macaulay≺(MaxMinors(jacy(Fi)), ny + 1)).

First we describe the subroutine Reduce (Algorithm 3) which reduces a set of ho-
mogeneous polynomials of the same degree:

Algorithm 3. Reduce

Require: ≺ a monomial ordering and (S, q) where S is a set of homogeneous polynomials
of degree q.

Ensure: T is a reduced set of homogeneous polynomials of degree q.
1: M← Macaulay≺(S, q).
2: M← RowEchelonForm(M).
3: Return T the set of polynomials corresponding to the rows of M.

The main algorithm uses this subroutine in order to compute a row echelon form of
Macaulay≺(MaxMinors(jacx(Fi)), nx+1) (resp. Macaulay≺(MaxMinors(jacy(Fi)), ny+1)):

Algorithm 4. BLcriterion

Require:

{

m bilinear polynomials f1, . . . , fm such that m ≤ nx + ny.

≺ a monomial ordering over k[x0, . . . , xnx
, y0, . . . , yny

]

Ensure: V a set of pairs (h, fi) such that h ∈ Ii−1 : fi and h /∈ Ii−1.
1: V ← ∅
2: for i from 2 to m do

3: if i > ny + 1 then

4: T ← Reduce(MaxMinors(jacy(Fi−1)), ny + 1).
5: for h in T do

6: V ← V ∪ {(h, fi)}
7: end for

8: end if

9: if i > nx + 1 then

10: T ′ ← Reduce(MaxMinors(jacx(Fi−1)), nx + 1).
11: for h in T ′ do

12: V ← V ∪ {(h, fi)}
13: end for

14: end if

15: end for

16: Return V
16



The following proposition explains how the output of Algorithm 4 is related to re-
ductions to zero occurring during the Matrix F5 Algorithm.

Proposition 1 (Extended F5 criterion for bilinear systems). Let f1, . . . , fm be bilinear
polynomials and ≺ be a monomial ordering. Let (t, fi) be the signature of a row during
the Matrix F5 Algorithm and let V be the output of Algorithm BLcriterion. Then if
there exists (h, fi) in V such that LM(h) = t, then the row with signature (t, fi) will be
reduced to zero.

Proof. According to Theorem 2, hfi ∈ Ii−1. Therefore

tfi = (h− t)fi +
i−1
∑

j=1

gjfj .

This implies that the row with signature (t, fi) is a linear combination of preceding rows
in Macaulay(Fi, deg(tfi)). Hence this row will be reduced to zero.

Now we can merge this extended criterion with the Matrix F5 Algorithm. To do so,
we denote by V the output of BLcriterion (V has to be computed at the beginning of
Matrix F5 Algorithm), and we replace in Algorithm 2 the F5criterion by the following
BilinF5criterion:

Algorithm 5. BilinF5criterion - returns a boolean

Require:

{

(t, fi) the signature of a row

A matrixM in row echelon form

1: Return true if

{

t is the leading monomial of a row ofM or

∃(h, fi) ∈ V such that LM(h) = t

4. F5 without reduction to zero for generic bilinear systems

4.1. Main results

The goal of this part of the paper is to show that Algorithm 4 finds all reductions to
zero for generic bilinear systems. In order to describe the structure of ideals generated
by generic bilinear systems, we define a notion of bi-regularity (Definition 8). For bi-
regular systems, we give a complete description of the syzygy module (Proposition 3 and
Corollary 2). Finally, we show that, for such systems, Algorithm 4 finds all reductions to
zero and that generic bilinear systems are bi-regular (Theorem 4), assuming a conjecture
about the kernel of generic matrices whose entries are linear forms (Conjecture 1).

4.2. Kernel of matrices whose entries are linear forms

Consider a monomial ordering ≺ such that its restriction to k[x0, . . . , xnx
] (resp.

k[y0, . . . , yny
]) is the grevlex ordering (for instance the usual grevlex ordering with x0 ≻

x1 ≻ . . . ≻ y0 ≻ . . . ≻ yny
).

Let ℓ, c, nx be integers such that c < ℓ ≤ nx+c−1. LetM be the set of matrices ℓ×c
whose coefficients are linear forms in k[x0, . . . , xnx

]. Let T be the set of ℓ × (ℓ − c − 1)
matrices T such that:
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• each column of T has exactly one 1 and the rest of the coefficients are 0.

• each row of T has at most one 1 and all the other coefficients are 0.

• (T[i1, j1] = T[i2, j2] = 1 and i1 < i2)⇒ j1 < j2

If T ∈ T and M ∈M, we denote by MT the ℓ× (ℓ− 1) matrix obtained by adding to M

the columns of T. According to the proof of Lemma 2, some elements of the left kernel
of a matrix M can be expressed as vectors of maximal minors:

∀T ∈ T ,











minor(MT, 1)
−minor(MT, 2)

...
(−1)m+1minor(MT,m)











∈ KerL(M).

Actually, we observed experimentally that kernels of random matrices M ∈ M are
generated by those vectors of minors. This leads to the formulation of the following
conjecture:

Conjecture 1. The set of matrices M ∈M such that

KerL(M) =

〈





























minor(MT, 1)
−minor(MT, 2)

...
(−1)m+1minor(MT,m)





























T∈T

〉

contains a nonempty Zariski open subset ofM.

4.3. Structure of generic bilinear systems

With the following definition, we try to give an analog of regular sequences for bilinear
systems. This definition is closely related to the generic behaviour of Algorithm 4.

Remark 1. In the following, Monomialsxn(d) (resp. Monomialsyn(d)) denotes the set
of monomials of degree d in k[x0, . . . , xn] (resp. k[y0, . . . , yn]). If n < 0, we use the
convention Monomialsxn(d) = Monomialsyn(d) = ∅.

Definition 8. Let ≺ be a monomial ordering such that its restriction to k[x0, . . . , xnx
]

(resp. k[y0, . . . , yny
]) is the grevlex ordering. Let m ≤ nx+ny and f1, . . . , fm be bilinear

polynomials of R. We say that the polynomial sequence (f1, . . . , fm) is a bi-regular
sequence if m = 1 or if (f1, . . . , fm−1) is a bi-regular sequence and

LM(Im−1 : fm) = 〈Monomialsxm−ny−2(ny + 1)〉
+〈Monomials

y
m−nx−2(nx + 1)〉

+LM(Im−1)

In the following, we use the notations:

• BL(nx, ny) the k-vector space of bilinear polynomials in K[x0, . . . , xnx
, y0, . . . , yny

];
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• X (resp. Y ) is the ideal 〈x0, . . . , xnx
〉 (resp. 〈y0, . . . , yny

〉);

• An ideal is called bihomogeneous if it admits a set of bihomogeneous generators.

• Ji denotes the saturated ideal Ii : (X ∩ Y )∞;

• Given a polynomial sequence (f1, . . . , fm), we denote by Syztriv the module of
trivial syzygies, i.e. the set of all syzygies (s1, . . . , sm) such that

∀i, si ∈ 〈f1, . . . , fi−1, fi+1, . . . , fm〉;

• A primary ideal P ⊂ R is called admissible if X 6⊂
√
P and Y 6⊂

√
P ;

• Let E be a k-vector space such that dim(E) < ∞. We say that a property P is
generic if it is satisfied on a nonempty open subset of E (for the Zariski topology),
i.e. ∃h ∈ k[a1, . . . , adim(E)], h 6= 0, such that

P does not hold on (a1, . . . , adim(E))⇒ h(a1, . . . , adim(E)) = 0.

Without loss of generality, we suppose in the sequel that nx ≤ ny.

Lemma 7. Let Im be an ideal spanned by m generic bilinear equations f1, . . . , fm and
Im = ∩P∈PP be a minimal primary decomposition.

• If m < nx + 1, then all components of Im are admissible.

• If nx + 1 ≤ m < ny + 1 and P0 ∈ P is a primary non-admissible component, then
Y 6⊂ √P0.

Proof. We prove that ifm < nx+1 (resp. m < ny+1) and P0 is a primary non-admissible
component, then X 6⊂ √P0 (resp. Y 6⊂ √P0). Lemma 7 is a consequence of this fact.

Consider the field k′ = k(y0, . . . , yny
) and the canonical inclusion

ψ : R→ k′[x0, . . . , xnx
].

ψ(Im) is an ideal of k′[x0, . . . , xnx
] spanned by m polynomials in k′[x0, . . . , xnx

]. Gener-
ically, (ψ(f1), . . . , ψ(fm)) is a regular sequence of k′[x0, . . . , xnx

]. Thus there exists an
polynomial f ∈ X (homogeneous in the xis) such that ψ(f) is not a divisor of 0 in
k′[x0, . . . , xnx

]/ψ(Im). This means that ψ(Im) : ψ(f) = ψ(Im). Suppose the assertion
of Lemma 7 is false. Then X ⊂ √P0 and hence, f ∈ √P0. Therefore there exists
g ∈ k[y0, . . . , yny

] such that, in R, gf ∈ √Im (take g in (∩P∈P\{P0}

√
P ) \ {√P0} which

is nonempty). Thus ψ(f) ∈
√

ψ(Im) (since ψ(g) is invertible in k′), which is impossible
since ψ(Im) : ψ(f) = ψ(Im).

Lemma 8. • Ifm ≤ nx there exists a nonempty Zariski-open set O ⊂ BLK(nx, ny)
m

such that (f1, . . . , fm) ⊂ O implies that Im has codimension m and all the compo-
nents of a minimal primary decomposition of Im are admissible;

• if nx + 1 ≤ m, then there exists a nonempty Zariski-open set O ⊂ BLK(nx, ny)
m

such that (f1, . . . , fm) ⊂ O implies that X is a prime associated to
√
Im;
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• if ny + 1 ≤ m, then there exists a nonempty Zariski-open set O ⊂ BLK(nx, ny)
m

such that (f1, . . . , fm) ⊂ O implies that Y is a prime associated to
√
Im.

Proof. • Ifm ≤ nx, then by Lemma 7, Jm = Im. Then according to Theorem 7, there
exists a nonempty Zariski-open set O ⊂ BLK(nx, ny)

m such that (f1, . . . , fm) ⊂ O
implies that (f1, . . . , fm) is a regular sequence. Therefore, Im has codimension m
and all the components of a minimal primary decomposition of Im are admissible.

• If nx+1 ≤ m, then according to Proposition 8, Jm = (Im : Y∞) : X∞ is equidimen-
sional of codimension m. Let Vx be the set {(0, . . . , 0, a0, . . . , any

)|ai ∈ k}. Since
Vx ⊂ V ar(Im : Y∞) and codim(Vx) = nx+1, it can be deduced that Vx 6⊂ V ar(Jm)
and V ar(Im : Y∞) = V ar(Jm) ∪ Vx. This means that

√
Im : Y∞ =

√
Jm ∩X and√

Jm 6⊂ X. Thus X is a prime associated to
√
Im : Y∞. Since Y is not a subset of

X, X is also a prime ideal associated to
√
Im.

• Similar proof in the case ny + 1 ≤ m.

Lemma 9. Suppose that the local ring RX/IX (resp. RY /IY ) is regular and that X
(resp. Y ) is a prime ideal associated to

√
I and let Q be an isolated primary component

of a minimal primary decomposition of I containing X (resp. Y ). Then Q = X (resp.
Q = Y ).

Proof. By assumption, X is a prime ideal associated to
√
I. Then, there exists an isolated

primary component of a minimal primary decomposition of I which contains a power of
X and does not meet R \X. This proves that IX does not contain a unit in RX .

By assumption RX/IX is regular and local, then RX/IX is an integral ring (see e.g.
(Eisenbud, 1995, Corollary 10.14)) which implies that IX is prime and does not contain
a unit in RX .

Let I = Q1 ∩ · · · ∩Qs be a minimal primary decomposition of I. In the sequel, QiX

denotes the localization of Qi by X. Suppose first that there exists 1 ≤ i ≤ s such that
IX = QiX with Qi non-admissible which does not meet the multiplicatively closed part
R \X . Then QiX is obviously prime which implies that Qi itself is prime (Atiyah and
MacDonald, 1969, Proposition 3.11 (iv)). Our claim follows.

It remains to prove that IX = QiX for some 1 ≤ i ≤ s. Suppose that the Qi’s are
numbered such that Qj meets the multiplicatively closed set R \ X for r + 1 ≤ j ≤ s
but not Q1, . . . , Qr. IX = Q1X ∩ · · · ∩ QrX and it is a minimal primary decomposition
(Atiyah and MacDonald, 1969, Proposition 4.9). Hence, since IX is prime, r = 1 and Q1

is the isolated minimal primary component containing X.

Proposition 2. Let k be a field of characteristic 0. There exists a nonempty Zariski-open
set O ⊂ BL(nx, ny)m such that for all (f1, . . . , fm) ⊂ O the non-admissible components
of a minimal primary decomposition of 〈f1, . . . , fm〉 are either X or Y .

Proof. Suppose that nx + 1 ≤ m. Then, by Lemma 8, there exists a nonempty Zariski-
open set O1 such that X is an associated prime to

√
I. Note also that this implies that

IX has codimension nx +1. Thus, by Lemma 9, it is sufficient to prove that there exists
a nonempty Zariski-open set O2 such that for all (f1, . . . , fm) ∈ O1 ∩ O2, RX/IX is a
regular local ring.
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From the Jacobian Criterion (see e.g. Eisenbud (1995), Theorem 16.19), the local
ring RX/IX is regular if and only if jac(f1, . . . , fm) taken modulo X has codimension
nx +1. Since the generators of I are bilinear, the latter condition is equivalent to saying
that the matrix

JX =









∂f1
∂x0

· · · ∂f1
∂xnx

... · · ·
...

∂fm
∂x0

· · · ∂fm
∂xnx









has rank nx + 1. We prove below that there exists a nonempty Zariski-open set O3 such
that for all (f1, . . . , fm) ∈ O3, JX has rank nx + 1.

Let c1, . . . , cm be vectors of coordinates of BL(nx, ny)m, M be the vector of all bilinear
monomials in R and K be the field of rational fractions k(c1, . . . , cm). Consider the
polynomials gi = M.cTi for 1 ≤ i ≤ m and the Zariski-open set O3 in BL(nx, ny)m
defined by the non-vanishing of all the coefficients of the maximal minors of the generic
matrix

JX =









∂g1

∂x0
· · · ∂g1

∂xnx

... · · ·
...

∂gm

∂x0
· · · ∂gm

∂xnx









.

It is obvious that (f1, . . . , fm) ∈ O3 implies that JX has rank nx + 1; our claim follows.

In the case where ny ≤ m, the proof follows the same pattern using Lemmas 8 and 9
and the Jacobian criterion. The only difference is that one has to prove that there exists
a nonempty Zariski-open set O4 such that for all (f1, . . . , fm) ∈ O4 the matrix

JY =









∂f1
∂y0

· · · ∂f1
∂ynx

... · · ·
...

∂fm
∂y0

· · · ∂fm
∂yny









has rank ny + 1, which is done as above.

Remark 2. The proof of Proposition 2 relies on the use of the Jacobian Criterion.
From (Eisenbud, 1995, Theorem 16.19), it remains valid if the characteristic of k is
large enough so that the residue class field of X (resp. Y ) is separable.

The two following propositions explain why the rows reduced to zero in the generic
case during the F5 Algorithm have a signature (t, fi) such that t ∈ k[x0, . . . , xnx

] or
t ∈ k[y0, . . . , yny

].

Proposition 3. Let m be an integer such that m ≤ nx +ny. Let L be the set of bilinear
systems with m polynomials (L ⊂ Rm). Then the set of bilinear systems f1, . . . , fm
such that Syz = 〈(Syz ∩ k[x0, . . . , xnx

]m)∪ (Syz ∩ k[y0, . . . , yny
]m)∪ Syztriv〉 contains a

nonempty Zariski-open subset of L.

Proof. Let s = (s1, . . . , sm) be a syzygy. Thus, sm is in Im−1 : fm. We can suppose
without loss of generality that the si are bihomogeneous of same bidegree (Proposition 6).
According to Theorem 7, there exists a nonempty Zariski open set O1 ⊂ BL(nx, ny)m,
such that if (f1, . . . , fm) ∈ O1, then fm is not a divisor of 0 in R/Jm−1. We can
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deduce from this observation that sm ∈ Jm−1. So sm ∈ Im−1 or there exists P a non-
admissible primary component of Im−1 such that sm /∈ P . Assume that sm /∈ Im−1.
From Proposition 2, there exists a nonempty Zariski open set O2 ⊂ BL(nx, ny)m, such
that if (f1, . . . , fm) ∈ O2, then 〈x0, . . . , xnx

〉 = P (or 〈y0, . . . , yny
〉 = P ), which implies

that sm ∈ k[y0, . . . , yny
] (or sm ∈ k[x0, . . . , xnx

]).
Finally, we see that, if (f1, . . . , fm) ∈ O1 ∩ O2, then sm ∈ Im−1 ∪ k[y0, . . . , yny

] ∪
k[x0, . . . , xnx

]. Since the syzygy module of a bihomogeneous system is generated by
bihomogeneous syzygies, it can be deduced that Syz = 〈(Syz∩k[x0, . . . , xnx

]m)∪ (Syz∩
k[y0, . . . , yny

]m) ∪ Syztriv〉.

Proposition 4. Let V be the output of Algorithm BLcriterion and let (h, fi) be an
element of V . Then

• if h ∈ k[x0, . . . , xnx
], then ∀j, yjh ∈ Ii−1.

• if h ∈ k[y0, . . . , yny
], then ∀j, xjh ∈ Ii−1.

Proof. Suppose that h ∈ k[x0, . . . , xnx
] is a maximal minor of jacy(Fi−1) (the proof is

similar if h ∈ k[y0, . . . , yny
]). Consider the matrix jacy(Fi−1) as defined in Algorithm 4.

Then there exists an (i− 1)× (i− 1) extension MT of jacy(Fi−1) such that det(MT ) = h
(similarly to the proof of Lemma 2). Let 0 ≤ j ≤ ny be an integer. Consider the
polynomials h1, . . . , hi−1, where hk is the determinant of the (i − 2) × (i − 2) matrix
obtained by removing the (j + 1)th column and the kth row from MT .

Then we can remark that

(

h1 −h2 . . . (−1)ihi−1

)

·MT =
(

0 . . . 0 (−1)j det(MT ) 0 . . . 0
)

where the only non-zero component is in the (j + 1)th column. Keeping only the ny + 1
first columns of MT , we obtain

(

h1 −h2 . . . (−1)ihi−1

)

· jacy(Fi−1) =
(

0 . . . 0 (−1)j det(MT ) 0 . . . 0
)

Since jacy(Fi−1) ·







y0
...
yny






=







f1
...

fi−1






, the following equality holds

(

h1 −h2 . . . (−1)i−1hi−2 (−1)ihi−1

)

·







f1
...

fi−1






= yj det(MT ) = yjh.

This implies that yjh ∈ Ii−1.

Corollary 2. Let m be an integer such that m ≤ nx + ny and let f1, . . . , fm be bilinear
polynomials. Let V be the output of Algorithm BLcriterion. Assume that

(Im−1 : fm) ∩ k[x0, . . . , xnx
] = 〈{h ∈ k[x0, . . . , xnx

] : (h, fm) ∈ V }〉.

(Im−1 : fm) ∩ k[y0, . . . , yny
] = 〈{h ∈ k[y0, . . . , yny

] : (h, fm) ∈ V }〉.
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Let Gx (resp Gy) be a Gröbner basis of (Im−1 : fm) ∩ k[x0, . . . , xnx
] (resp. (Im−1 :

fm) ∩ k[y0, . . . , yny
]) and let Gm−1 be a Gröbner basis of Im−1. If Syz = 〈(Syz ∩

k[x0, . . . , xnx
]m)∪ (Syz ∩ k[y0, . . . , yny

]m)∪Syztriv〉, then Gx ∪Gy ∪Gm−1 is a Gröbner
basis of Im−1 : fm.

Proof. Let f ∈ Im−1 : fm be a polynomial. Thus there exist s1, . . . , sm−1 such that
(s1, . . . , sm−1, f) ∈ Syz. Since Im−1 and fm are bihomogeneous, we can suppose with-
out loss of generality that f is bihomogeneous (Proposition 6). Let (d1, d2) denote its
bidegree.

• If d2 = 0 (resp. d1 = 0), then f ∈ 〈Gx〉 (resp. f ∈ 〈Gy〉).

• Let Gx = {g(x)i }1≤i≤card(Gx) and Gy = {g(y)i }1≤i≤card(Gy). If d1 6= 0 and d2 6= 0
then, since Syz = 〈(Syz ∩ k[x0, . . . , xnx

]m) ∪ (Syz ∩ k[y0, . . . , yny
]m) ∪ Syztriv〉,

f =
∑

1≤i≤card(Gx)

qig
(x)
i +

∑

1≤i≤card(Gy)

q′ig
(y)
i + t

where t ∈ Im−1 is a bihomogeneous polynomial and the qi and q
′
i are also bihomoge-

neous. Since d2 6= 0 and g
(x)
i ∈ k[x0, . . . , xnx

], qi must be in 〈y0, . . . , yny
〉. Accord-

ing to Proposition 4, ∀i, qig(x)i ∈ Im−1. By a similar argument, ∀i, q′ig
(y)
i ∈ Im−1.

Finally, f ∈ Im−1.

We just proved that Im−1 : fm ⊂ Im−1 ∪ 〈Gx〉 ∪ 〈Gy〉. By construction, we also have the
other inclusion Im−1 ∪ 〈Gx〉 ∪ 〈Gy〉 ⊂ Im−1 : fm. Thus, Gx ∪ Gy ∪ Gm−1 is a Gröbner
basis of Im−1 : fm.

Corollary 2 shows that, when a bilinear system is bi-regular, it is possible to find
a Gröbner basis of Im−1 : fm (which yields the monomials t such that the row (t, fm)
reduces to zero) as soon as we know the three Gröbner bases Gx, Gy, and Gm−1. In
fact, we only need Gx and Gy since the reductions to zero corresponding to Gm−1 are
eliminated by the usual F5 criterion. Fortunately, we can obtain Gx and Gy just by
performing linear algebra over the maximal minors of a matrix (Theorem 3).

We now present the main result of this section. If we suppose that Conjecture 1 is
true, then the following Theorem shows that generic bilinear systems are bi-regular.

Theorem 4. Let m,nx, ny ∈ N such that m < nx+ny. If Conjecture 1 is true, then the
set of bi-regular sequences (f1, . . . , fm) contains a nonempty Zariski-open set. Moreover,
if (f1, . . . , fm) is a bi-regular sequence, then there are no reductions to zero with the
extended F5 criterion.

Proof. Let Gm be a minimal Gröbner basis of Im−1 : fm. The reductions to zero (t, fm)
which are not detected by the usual F5 criterion are exactly those such that t ∈ LM(Gm)
and t /∈ LM(Im−1). We showed that there exists a nonempty Zariski-open subset O1

of BL(nx, ny) such that if fm ∈ O1, then t ∈ LM(Im−1 : fm ∩ k[x0, . . . , xnx
]) or t ∈

LM(Im−1 : fm ∩ k[y0, . . . , yny
]) (Proposition 3). If we suppose that Conjecture 1 is

true, then there exists a nonempty Zariski-open subset O2 of BL(nx, ny) such that if
fm ∈ O2, Im−1 : fm ∩ k[x0, . . . , xnx

] (resp. Im−1 : fm ∩ k[y0, . . . , yny
]) is spanned

by the maximal minors of jacx(Fm−1) (resp. jacy(Fm−1)). Thus, by Theorem 3, there
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exists a nonempty Zariski-open subset O3 of BL(nx, ny) such that if fm ∈ O3, LM(Im−1 :
fm∩k[x0, . . . , xnx

]) = Monomialsxm−ny−2(ny+1)〉 (resp. LM(Im−1 : fm∩k[y0, . . . , yny
]) =

Monomials
y
m−nx−2(nx + 1)〉). Suppose that fm ∈ O1 ∩ O2 ∩ O3 (which is a nonempty

Zariski-open subset) and that (t, fm) is a reduction to zero such that t /∈ LM(Im−1).
Then

t ∈ 〈Monomialsxm−ny−2(ny + 1)〉
or

t ∈ 〈Monomials
y
m−nx−2(nx + 1)〉.

By Lemma 3, t is a leading monomial of a linear combination of the maximal minors of
jacx(Fm−1) (or jacy(Fm−1)). Consequently, the reduction to zero (t, fm) is detected by
the extended F5 criterion.

Remark 3. Thanks to the analysis of Algorithm 4, we know exactly which reductions
to zero can be avoided during the computation of a Gröbner basis of a bilinear system.
If a bilinear system is bi-regular, then Algorithm 4 finds all reductions to zero. Indeed,
this algorithm detects reductions to zero coming from linear combinations of maximal
minors of the matrices jacx(Fi) and jacy(Fi). According to Theorem 4, there are no
other reductions to zero for bi-regular systems.

Example 1 (continued). The system f1, . . . , f5 given in Example 1 is bi-regular and
there are no reduction to zero during the computation of a Gröbner basis with the extended
F5 criterion.

5. Hilbert bi-series of bilinear systems

An important tool to describe ideals spanned by bilinear equations is the so-called
Hilbert series. In the homogeneous case, complexity results for F5 were obtained with
this tool (see e.g. Bardet et al. (2005)). In this section, we provide an explicit form of
the Hilbert bi-series – a bihomogeneous analog of the Hilbert series – for ideals spanned
by generic bilinear systems. To find this bi-series, we use the combinatorics of the syzygy
module of bi-regular systems. With this tool, we will be able to do a complexity analysis
of a special version of the F5 which will be presented in the next section.

The following notation will be used throughout this paper: the vector space of bihomo-
geneous polynomials of bidegree (α, β) will be denoted by Rα,β . If I is a bihomogeneous
ideal, then Iα,β will denote the vector space I ∩Rα,β .

Definition 9 (Van der Waerden (1929); Safey El Din and Trébuchet (2006)). Let I be
a bihomogeneous ideal of R. The Hilbert bi-series is defined by

HSI(t1, t2) =
∑

(α,β)∈N2

dim(Rα,β/Iα,β)t
α
1 t

β
2 .

Remark 4. The usual univariate Hilbert series for homogeneous ideals can easily be
deduced from the Hilbert bi-series by putting t1 = t2 (see Safey El Din and Trébuchet
(2006)).
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We can now present the main result of this section: an explicit form of the bi-series
for bi-regular bilinear systems.

Theorem 5. Let f1, . . . , fm ∈ R be a bi-regular bilinear sequence, with m ≤ nx + ny.
Then

HSIm(t1, t2) =
Nm(t1, t2)

(1− t1)nx+1(1− t2)ny+1
,

where
Nm(t1, t2) = (1− t1t2)m+

∑m−(ny+1)

ℓ=1 (1− t1t2)m−(ny+1)−ℓt1t2(1− t2)ny+1
[

1− (1− t1)ℓ
∑ny+1

k=1 t
ny+1−k
1

(ℓ+ny−k
ny+1−k

)]

+
∑m−(nx+1)

ℓ=1 (1− t1t2)m−(nx+1)−ℓt1t2(1− t1)nx+1
[

1− (1− t2)ℓ
∑nx+1

k=1 t
nx+1−k
2

(ℓ+nx−k
nx+1−k

)]

.

We decompose the proof of this theorem into a sequence of lemmas.

If I is an ideal of R and f is a polynomial, we denote by f̄ the equivalence class of f
in R/I and

annR/I(f) = {v ∈ R/I : vf̄ = 0},
annR/I(f)α,β = {v ∈ R/I of bidegree (α, β) : vf̄ = 0}.

If I is a bihomogeneous ideal and f is a bihomogeneous polynomial, we use the following
notation:

GI,f (t1, t2) =
∑

(α,β)∈N2

dim(annR/I(f)α,β)t
α
1 t

β
2 .

Lemma 10. Let f1, . . . , fm ∈ R be bihomogeneous polynomials, with 1 < m ≤ nx + ny.
Let (d1, d2) be the bidegree of fm. Then

HSIm(t1, t2) = (1− td1

1 t
d2

2 )HSIm−1
+ td1

1 t
d2

2 GIm−1,f (t1, t2).

Proof. We have the following exact sequence:

0→ annR/Im−1
(f)

ϕ1−→ R/Im−1
ϕ2−→ R/Im−1

ϕ3−→ R/Im → 0.

where ϕ1 and ϕ3 are the canonical inclusion and projection, and ϕ2 is the multiplication
by fm.

From this exact sequence of ideals, we can deduce an exact sequence of vector spaces:

0 → (annR/Im−1
(f))α,β

ϕ1−−→

(

R

Im−1

)

α,β

ϕ2−−→

(

R

Im−1

)

α+d1,β+d2

ϕ3−−→

(

R

Im

)

α+d1,β+d2

→ 0.

Thus the alternate sum of the dimensions of vector spaces of an exact sequence is 0:

dim((annR/Im−1
(f))α,β)− dim

(

(

R
Im−1

)

α,β

)

+

dim

(

(

R
Im−1

)

α+d1,β+d2

)

− dim

(

(

R
Im

)

α+d1,β+d2

)

= 0.

By multiplying this relation by tα1 t
β
2 and by summing over (α, β), we obtain the claimed

recurrence:

HSIm(t1, t2) = (1− td1

1 t
d2

2 )HSIm−1
+ td1

1 t
d2

2 GIm−1,f (t1, t2).
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Lemma 11. Let f1, . . . , fm ∈ R be a bi-regular bilinear sequence, with m ≤ nx + ny.
Then, for all 2 ≤ i ≤ m,

GIi−1,fi(t1, t2) = g(i−1)
x (t1) + g(i−1)

y (t2),

where

g(i−1)
x (t) =







0 if i ≤ ny + 1

1
(1−t)nx+1 −

∑

1≤j≤ny+1

( i−1−j

ny+1−j)t
ny+1−j

(1−t)nx+ny−i+2

.

g(i−1)
y (t) =







0 if i ≤ nx + 1

1
(1−t)ny+1 −

∑

1≤j≤nx+1

( i−1−j

nx+1−j)t
nx+1−j

(1−t)nx+ny−i+2

.

Proof. Saying that v ∈ annR/Ii−1
(fi) is equivalent to saying that the row with signature

(LM(v), fi) is not detected by the classical F5 criterion. According to Theorem 4, if
the system is bi-regular, the reductions to zero corresponding to non-trivial syzygies are
exactly:

m
⋃

i=nx+2

{(t, fi) : t ∈ Monomials
y

i−nx−2(nx + 1)}
m
⋃

i=ny+2

{(t, fi) : t ∈ Monomialsxi−ny−2(ny + 1)}.

By Proposition 4, we know that if P ∈ k[x0, . . . , xnx
] ∩ (Ii−1 : fi) (resp. k[y0, . . . , yny

] ∩
(Ii−1 : fi)), then ∀j, yjP ∈ Ii−1 (resp. xjP ∈ Ii−1). Thus GIi−1,fi(t1, t2) is the generating
bi-series of the monomials in k[x0, . . . , xnx

] which are a multiple of a monomial of degree
ny + 1 in x0, . . . , xi−ny−2 and of the monomials in k[y0, . . . , yny

] which are a multiple

of a monomial of degree nx + 1 in y0, . . . , yi−nx−2. Denote by g
(i−1)
x (t) (resp. g

(i−1)
y (t))

the generating series of the monomials in k[x0, . . . , xnx
] (resp. k[y0, . . . , yny

]) which are
a multiple of a monomial of degree ny + 1 (resp. nx + 1) in x0, . . . , xi−ny−2 (resp.
y0, . . . , yi−nx−2). Then we have

GIi−1,fi(t1, t2) = g(i−1)
x (t1) + g(i−1)

y (t2).

Next we use combinatorial techniques to give an explicit form of g
(i−1)
x (t) and g

(i−1)
y (t).

Let c(t) denote the generating series of the monomials in k[xi−ny−1, . . . , xnx
]:

c(t) =

∞
∑

j=0

(

nx + ny − i+ j + 1

j

)

tj =
1

(1− t)nx+ny−i+2
.

Let Bj denote the number of monomials in k[x0, . . . , xi−ny−2] of degree j. Then

1

(1− t)nx+ny+2
= c(t) +B1c(t)t+ · · ·+Bny

c(t)tny + g(i−1)
x (t).

Since Bj =
(

i−ny−1+j
j

)

, we can conclude:

g(i−1)
x (t) =







0 if i ≤ ny + 1

1
(1−t)nx+1 −

∑

1≤j≤ny+1

( i−1−j

ny+1−j)t
ny+1−j

(1−t)nx+ny−i+2

.
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Proof of Theorem 5. Since the polynomials are bilinear, by Lemma 10, we have

HSIi(t1, t2) = (1− t1t2)HSIi−1
+ t1t2GIi−1,fi(t1, t2).

Lemma 11 gives the value of GIi−1,fi(t1, t2). To initiate the recurrence, we need

HSI0(t1, t2) = HS〈0〉(t1, t2) =
1

(1− t1)nx+1(1− t2)ny+1
.

Then we can obtain the claimed form of the bi-series by solving the recurrence:

HSIi(t1, t2) =
Ni(t1, t2)

(1− t1)nx+1(1− t2)ny+1

Ni(t1, t2) = (1− t1t2)i +
m−1
∑

j=0

t1t2(1− t1t2)jGIj ,fj+1
(t1, t2).

Example 1 (continued). The Hilbert bi-series of the ideal generated by the five poly-
nomials of Example 1 is

HS(t1, t2) = 1
(1−t1)

3(1−t2)
4 (t1

5t2
5 − 4t15t24 + 6t15t23 − 4t15t22 + t1

5t2 − 6t13t25+

15t13t24 − 10t13t23 + 8t12t25 − 15t12t24 + 10t12t22 − 3t1t25 + 5t1t24 − 5t1t2 + 1),

and is in accordance with the formula given in Theorem 5. Also, notice that the inter-
mediate series gx(t) and gy(t) match the theoretical values. For instance:

g(3)y =
t3

(1− t)4 .

6. Towards complexity results

6.1. A multihomogeneous F5 Algorithm

We now describe how it is possible to use the multihomogeneous structure of the
matrices arising in the Matrix F5 Algorithm to speed-up the computation of a Gröbner
basis. In order to have simple notations, the description is made in the context of biho-
mogeneous systems, but it can be easily transposed in the context of multihomogeneous
systems.

Let f1, . . . , fm be a sequence of bihomogeneous polynomials. Consider the matrices
Md in degree d appearing during the Matrix F5 Algorithm. One can remark that each row
represents a bihomogeneous polynomial. Let (d1, d2) be the bidegree of one row of this
matrix. Then the only non-zero coefficients on this row are in columns which represent
a monomial of bidegree (d1, d2). Therefore a possible strategy to use the bihomogeneous
structure is the following:

• For each couple (d1, d2) such that d1 + d2 = d, construct the matrix Md1,d2
. The

rows of this matrix represent the polynomials of Md of bidegree (d1, d2) and the
columns represent the monomials of Rd1,d2

.

• Compute the row echelon form of the matrices Md1,d2
. This gives bases of Id1,d2

.
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Multihomogeneous Homogeneous
nx ny m bidegree D time memory time memory speed-up

3 4 7 (1, 1) 6 16.9s 30MB 265.7s 280MB 16

3 4 7 (1, 1) 7 105s 92MB 2018s 1317MB 19

4 4 8 (1, 1) 7 582s 275MB 13670s 4210MB 23

5 4 9 (1, 1) 7 3343s 957MB 66371s 12008MB 20

5 5 10 (1, 1) 6 645s 435MB 10735s 4330MB 17

2 2 4 (1, 2) 10 11.4s 19MB 397s 299MB 35

2 2 4 (1, 2) 8 1.7s 10MB 16s 52MB 9

3 3 6 (1, 2) 8 67s 80MB 1146s 983MB 17

4 4 8 (1, 2) 8 2222s 1031MB 40830s 12319MB 63

2 2 4 (2, 2) 11 29s 27MB 899s 553MB 31

3 3 6 (2, 2) 8 27s 47MB 277s 452MB 10

3 3 6 (2, 2) 9 152s 154MB 2380s 1939MB 16

3 4 7 (2, 2) 9 1034s 505MB 18540s 7658MB 18

4 4 8 (2, 2) 8 690s 385MB 7260s 4811MB 11

4 4 8 (2, 2) 9 6355s 2216MB — >20000MB —

Table 1: Execution time and memory usage of the multihomogeneous variant of F5

• The union of the bases gives a basis of Id since Id =
⊕

d1+d2=d Id1,d2
.

This way, instead of computing the row echelon form of a big matrix, we can decom-
pose the problem and compute independently the row echelon form of smaller matrices.
This strategy can be extended to multihomogeneous systems.

In Table 1, the execution time and the memory usage of this multihomogeneous vari-
ant of F5 are compared to the classical homogeneous Matrix F5 Algorithm for computing
a D-Gröbner basis for random bihomogeneous systems (for the grevlex ordering). Both
implementations are made in Magma2.15-7. The experimental results have been obtained
with a Xeon processor 2.50GHz cores and 20 GB of RAM. We are aware that we should
compare efficient implementations of these two algorithms to have a more precise evalua-
tion of the speed-up we can expect for practical applications. However, these experiments
give a first estimation of that speed-up. Furthermore, we can also expect to save a lot of
memory by decomposing the Macaulay matrix into smaller matrices. This is crucial for
practical applications, since untractability is often due to the lack of memory.

6.2. A theoretical complexity analysis in the bilinear case

In this section, we provide a theoretical explanation of the speed-up observed when
using the bihomogeneous structure of bilinear systems. To estimate the complexity of
the Matrix F5 Algorithm, we consider that the cost is dominated by the cost of the
reductions of the matrices with the highest degree. By using the new criterion described
in Section 3.4, all the matrices appearing during the computations have full rank for
generic inputs (these ranks are the dimensions of the k-vector spaces Id1,d2

). We consider
that the complexity of reducing a r × c matrix with Gauss elimination is O(r2c). Thus
the complexity of computing a D-Gröbner basis with the usual Matrix F5 Algorithm and
the extended criterion for a bilinear system ofm equations over k[x0, . . . , xnx

, y0, . . . , yny
]
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nx ny m D experimental
speed−up F (nx, ny,m,D)

3 4 7 6 16 29
3 4 7 7 19 34
4 4 8 7 23 34
5 4 9 7 20 32
5 5 10 6 17 27

Table 2: Decomposing the matrices: experimental speed-up

is

Thom = C1

(

((

D + nx + ny + 1

D

)

− [tD]HS(t, t)

)2(
D + nx + ny + 1

D

)

)

.

When using the multihomogeneous structure, the complexity becomes:

Tmultihom = C2









∑

d1+d2=D
1≤d1,d2≤D−1

(

dim(Rd1,d2
)− [td1

1 t
d2

2 ]HS(t1, t2)
)2

dim(Rd1,d2
)









,

where dim(Rd1,d2
) =

(

d1+nx

d1

)(

d2+ny

d2

)

. Thus the theoretical speed-up that we expect is:

speedupth = C3F (nx, ny,m,D)

where C3 = C1

C2
is a constant and

F (nx, ny,m,D) =

















(

(

D+nx+ny+1
D

)

− [tD]HS(t, t)
)2
(

D+nx+ny+1
D

)

∑

d1+d2=D
1≤d1,d2≤D−1

(

dim(Rd1,d2
)− [td1

1 t
d2

2 ]HS(t1, t2)
)2

dim(Rd1,d2
)

















.

Now let us compare this theoretical speed-up with the one observed in practice. We can
see in Table 2 that experimental results match the theoretical complexity:

speedup ≈ 0.6F (nx, ny,m,D).

6.3. Number of reductions to zero removed by the extended F5 criterion

Table 3 shows the number of reductions to zero during the execution of the Buch-
berger, F4 and F5 algorithm. The input systems are random bilinear systems of nx +ny
equations over GF(65521)[x0, . . . , xnx

, y0, . . . , yny
]. Experimentally, there is no reduction

to zero when using the extended criterion (Algorithm 4). Notice that the number of re-
ductions to zero which are not detected by the classical F5 criterion matches the theorical
value for a bi-regular system (Definition 8):

nx+ny−1
∑

i=ny+1

(

i

ny + 1

)

+

nx+ny−1
∑

i=nx+1

(

i

nx + 1

)

.
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(nx, ny)
Nb. useful red.
(Buch./F4)

Nb red. to 0
(Buch./F4)

Nb red. to 0
(F5)

(5, 5) 752 5772 240
(5, 6) 1484 13063 495
(6, 6) 3009 29298 990
(6, 7) 5866 64093 2002
(4, 8) 1912 19055 990
(4, 9) 2869 31737 1794
(3, 10) 1212 13156 1300
(3, 11) 1665 19780 2016
(3, 12) 2123 27295 3018

Table 3: Experimental number of reductions to zero

Although the number of reductions to zero removed by the extended criterion is not small
compared to the number of useful reductions, they arise in low degree (nx+1 and ny+1).
Hence, it is not clear what speed-up could be expected with an efficient implementation.

6.4. Structure of generic affine bilinear systems

In this section, we show that generic affine bilinear systems have a particular struc-
ture: they are regular (Definition 7). Consequently, the usual F5 criterion removes all
reductions to zero.

Proposition 5. Let S be the set of affine bilinear systems over k[x1, . . . , xnx
, y1, . . . , yny

]
with m ≤ nx + ny equations. Then the subset

{(f1, . . . , fm) ∈ S : (f1, . . . , fm) is a regular sequence}

contains a Zariski nonempty open subset of S.

Proof. Let (f1, . . . , fm) be a generic affine bilinear system. Assume that it is not reg-
ular. Then for some i, there exists g ∈ R such that g /∈ Ii−1 and gfi ∈ Ii−1. Denote
by gh the bi-homogenization of g. Then gh ∈ 〈fh1 , . . . , fhi−1〉 : fhi . (fh1 , . . . , f

h
m) is a

generic bilinear system, hence it is bi-regular (Theorem 4). Thus gh ∈ k[x0, . . . , xnx
]

or gh ∈ k[y0, . . . , yny
]. Let us suppose that gh ∈ k[x0, . . . , xnx

] (the proof is similar
if gh ∈ k[y0, . . . , yny

]). Therefore yny
gh ∈ 〈fh1 , . . . , fhi−1〉 when the system is bi-regular

(Proposition 4). By putting xnx
= 1 and yny

= 1, we see that in this case, g ∈ Ii−1, which
yields a contradiction. This shows that generic affine bilinear systems are regular.

6.5. Degree of regularity of affine bilinear systems

In this part, m, nx and ny are three integers such that m = nx + ny. We consider a
system of bilinear polynomials F = (f1, . . . , fm) ∈ k[x0, . . . , xnx

, y0, . . . , yny
]m. ϑ denotes

the dehomogenization morphism:

k[x0, . . . , xnx
, y0, . . . , yny

] −→ k[x0, . . . , xnx−1, y0, . . . , yny−1]
f(x0, . . . , xnx

, y0, . . . , yny
) 7−→ f(x0, . . . , xnx−1, 1, y0, . . . , yny−1, 1)

.
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Also, I stands for the ideal 〈f1, . . . , fm〉 and ϑ(I) denotes the ideal 〈ϑ(f1), . . . , ϑ(fm)〉.
In the following, we suppose without loss of generality that nx ≤ ny. We also assume in
this part of the paper that the characteristic of k is 0 (although the results remain true
when the characteristic is large enough).

The goal of this section is to give an upper bound on the so-called degree of regularity
of an ideal I generated by a generic affine bilinear system with m equations and m
variables. The degree of regularity is a crucial indicator of the complexity of Gröbner
basis algorithms: for 0-dimensional ideals, it is the lowest integer dreg such that all
monomials of degree dreg are in LM(I) (see Bardet et al. (2005)). As a consequence, the
degrees of all polynomials occurring in the F5 algorithm are lower than dreg + 1. In the
following, ≺ still denotes the grevlex ordering.

Lemma 12. If the system F is generic, then there exists polynomials g0, . . . , gnx−1 ∈
k[y0, . . . , yny−1] such that

∀j ∈ {0, . . . , nx − 1}, xj − gj(y0, . . . , yny−1) ∈ ϑ(I).

Proof. We consider the m× nx matrix A = jacx(ϑ(F )) and the vector

B =
(

ϑ(f1)(0, . . . , 0, y0, . . . , yny−1) . . . ϑ(fm)(0, . . . , 0, y0, . . . , yny−1)
)

.

Thus A ·







x0
...

xnx−1






+B =







ϑ(f1)
...

ϑ(fm)






.

We denote by {A(i)} all the nx × nx sub-matrices of A.
Let (α0, . . . , αny−1) ∈ V ar(〈MaxMinors(ϑ(jacx(F )))〉) be an element of the variety. Let
Aα (resp. Bα) denote the matrix A (resp. B) where yi has been substituted by αi for
all i. Since ϑ(I) is 0-dimensional, the affine linear system

Aα ·





x0
. . .

xnx−1



+Bα = 0

has a unique solution. Therefore, the matrix Aα is of full rank. Consequently, there
exists an invertible nx × nx sub-matrix of Aα.

Since k is infinite, we can suppose without loss of generality that, if the system is

generic, then for all α in the variety, the matrix A
(1)
α obtained by considering the nx first

rows of Aα is invertible (if A
(1)
α is not invertible, just replace the original bilinear system

by an equivalent system where each new equation is a generic linear combination of the

original equations). Thus det(A
(1)
α ) 6= 0.

According to Lemma 6 and 17, 〈MaxMinors(ϑ(jacx(F )))〉 = 〈ϑ(f1), . . . , ϑ(fm)〉 ∩
k[y0, . . . , yny−1]. Thus det(A(1)) (i.e. the matrix of the nx first rows of A) does not
vanish on any element of the variety of ϑ(I). Therefore, the Nullstellensatz says that
det(A(1)) is invertible in k[y0, . . . , yny−1]/(ϑ(I) ∩ k[y0, . . . , yny−1]). Let h denote its in-
verse. We know from Cramer’s rule that there exists polynomials gj ∈ k[y0, . . . , yny−1]
such that

xj det(A
(1))− gj(y0, . . . , yny−1) ∈ ϑ(I).
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Multiplying this relation by h, we obtain:

xj − hgj(y0, . . . , yny−1) ∈ ϑ(I).

Theorem 6. If the system F is generic, then the degree of regularity of ϑ(I) is upper
bounded by

dreg ≤ min(nx + 1, ny + 1).

Proof. We supposed that nx ≤ ny, so we want to prove that dreg ≤ nx + 1. Let t =
∏nx−1

j=0 x
αj

j

∏ny−1
k=0 yβk

k be a monomial of degree nx + 1. According to Lemma 12,

t−
nx−1
∏

j=0

gj(y0, . . . , yny−1)
αj

ny−1
∏

k=0

yβk

k ∈ ϑ(I).

Now consider the normal form with respect to the ideal J = 〈MaxMinors(ϑ(jacx(F )))〉.
Then

t− NFJ,≺(

nx−1
∏

j=0

gj(y0, . . . , yny−1)
αj

ny−1
∏

k=0

yβk

k ) ∈ ϑ(I).

Since all monomials of degree nx + 1 are in LM(〈MaxMinors(ϑ(jacx(F )))〉) (Lemma 3),

deg(NFJ,≺(

nx−1
∏

j=0

gj(y0, . . . , yny−1)
αj

ny−1
∏

k=0

yβk

k )) < nx + 1.

This implies that

LM(t− NFJ,≺(

nx−1
∏

j=0

gj(y0, . . . , yny−1)
αj

ny−1
∏

k=0

yβk

k )) = t.

Therefore, for each monomial t of degree nx + 1, t ∈ LM(ϑ(I)). This means that dreg ≤
nx + 1.

Example 1 (continued). The degree of regularity of the affine system (ϑ(f1), . . . , ϑ(f5))
is 3 in accordance with Theorem 6 and the classical F5 criterion removes all reductions
to zero during the computation of a Gröbner basis for the grevlex ordering.

The following corollary is a consequence of Theorem 6.

Corollary 3. The arithmetic complexity of computing a Gröbner basis of a generic
bilinear system f1, . . . , fnx+ny

∈ k[x0, . . . , xnx−1, y0, . . . , yny−1] with the F5 Algorithm is
upper bounded by

O

((

nx + ny +min(nx + 1, ny + 1)

min(nx + 1, ny + 1)

)ω)

,

where 2 ≤ ω ≤ 3 is the linear algebra constant.
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nx ny nb. eq. dreg nb. reductions to 0

2 3 5 3 0
2 4 6 3 0
3 10 13 4 0
5 8 13 6 0
6 6 12 7 0

Table 4: Experimental results: degree of regularity and reductions to zero for random affine bilinear
systems

Proof. According to Bardet et al. (2005), the complexity of the computation of the
Gröbner basis of a 0-dimensional ideal is upper bounded by

O

((

n+ dreg
dreg

)ω)

,

where n is the number of variables and dreg denotes the degree of regularity. In the case
of a generic affine bilinear system in k[x0, . . . , xnx−1, y0, . . . , yny−1], n = nx + ny and
dreg ≤ min(nx + 1, ny + 1) (Theorem 6).

Remark 5. This bound on the degree of regularity should be compared with the de-
gree of regularity of a generic quadratic system with n equations and n variables. The
Macaulay bound (see Lazard (1983)) says that the degree of regularity of such systems
is m + 1. The complexity of computing a Gröbner basis of a generic quadratic system

of n equations in k[x1, . . . , xn] is upper bounded by O
(

(

2n
n+1

)ω
)

, which is larger than

O
(

(nx+ny+min(nx+1,ny+1)
min(nx+1,ny+1)

)ω
)

when n = nx + ny. Notice also that if min(nx, ny) is con-

stant, then the complexity of computing a Gröbner basis of a 0-dimensional generic affine
bilinear system is polynomial in the number of unknowns n = nx + ny. Moreover, the
inequality dreg ≤ min(nx+1, ny+1) is experimentally sharp, it is an equality for random
bilinear systems (see Table 4).

7. Perspectives and conclusion

In this paper, we analyzed the structure of ideals generated by generic bilinear equa-
tions. We proposed an explicit description of their syzygy module. With this analysis,
we were able to propose an extension of the F5 criterion dedicated to bilinear systems.
Furthermore, an explicit formula for the Hilbert bi-series is deduced from the combi-
natorics of the syzygy module. With this tool, we made a complexity analysis of a
multihomogeneous variant of the F5 Algorithm.

We also analyzed the complexity of computing Gröbner bases of affine bilinear sys-
tems. We showed that generic affine bilinear systems are regular, and we proposed an
upper bound for the degree of regularity of those systems.

Interestingly, properties of the ideals generated by the maximal minors of the jaco-
bian matrices are especially important. In particular, a Gröbner basis (for the grevlex
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ordering) of such an ideal is a linear combination of the generators. In the affine case,
this ideal permits to eliminate variables.

The next step of this work would be to generalize the results to more general multiho-
mogeneous systems. For the time being, it is not clear how the results can be extended.
In particular, it would be interesting to understand the structure of the syzygy module
of general multihomogeneous systems, and to have an explicit formula of their Hilbert
series. Also, having sharp upper bounds on the degree of regularity of multihomogeneous
systems would be important for practical applications.
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Faugère, J.-C., 1999. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and
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Appendix A. Bihomogeneous ideals

In this part, we use notations similar to those used in Section 4:

• BH(nx, ny) the k-vector space of bilinear polynomials in k[x0, . . . , xnx
, y0, . . . , yny

];

• X (resp. Y ) is the ideal 〈x0, . . . , xnx
〉 (resp. 〈y0, . . . , yny

〉);

• An ideal is called bihomogeneous if it admits a set of bihomogeneous generators.

• Ji denotes the saturated ideal Ii : (X ∩ Y )∞;

• Given a polynomial sequence (f1, . . . , fm), we denote by Syztriv the module of
trivial syzygies, i.e. the set of all syzygies (s1, . . . , sm) such that ∀1 ≤ i ≤ m,
si ∈ 〈f1, . . . , fi−1, fi+1, . . . , fm〉;

• A primary ideal P ⊂ R is called admissible if X 6⊂
√
P and Y 6⊂

√
P ;
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• Let E be a k-vector space such that dim(E) < ∞. We say that a property P is
generic if it is satisfied on a nonempty open subset of E (for the Zariski topology),
i.e. ∃h ∈ k[a1, . . . , adim(E)], h 6= 0, such that

P does not hold on (a1, . . . , adim(E))⇒ h(a1, . . . , adim(E)) = 0.

Proposition 6 (Safey El Din and Trébuchet (2006)). Let I be an ideal of R. The two
following assertions are equivalent:

• I is bihomogeneous.

• For all h ∈ I, every bihomogeneous component of h is in I.

Lemma 13 (Safey El Din and Trébuchet (2006)). Let f1, . . . , fm ∈ R be polynomials,
and Im = ∩Pl be a minimal primary decomposition of Im and let Adm be the set of the
admissible ideals of the decomposition. Then Jm = ∩P∈AdmP .

Proposition 7. let f1, . . . , fm ∈ R be polynomials with m ≤ nx + ny, and Ass(Ii−1) be
the set of prime ideals associated to Ii−1. The following assertions are equivalent:

1. for all i such that 2 ≤ i ≤ m, fi is not a divisor of 0 in R/Ji−1.

2. for all i such that 2 ≤ i ≤ m, (fi ∈ P, P ∈ Ass(Ii−1))⇒ P is non-admissible.

Proof. It is a straightforward consequence of Lemma 13.

Remark 6. All results in this section can be generalized to multihomogeneous systems.
Since we focus on bilinear systems in this paper, we describe them in this more restrictive
context.

Lemma 14. Let P be an admissible prime ideal of R. The set of bilinear polynomials
f ∈ R such that f /∈ P contains a Zariski nonempty open set.

Proof. Let f be the generic bilinear polynomial

f =
∑

j,k

aj,kxjyk

in k({aj,k}0≤j≤nx,0≤k≤ny
)[x0, . . . , xnx

, y0, . . . , yny
]. Since P is admissible, there exists

xj0yk0
such that xj0yk0

/∈ P (this shows the non-emptiness). Let ≺ be an admissible
order. Then consider the normal form for this order

NFP (f) =
∑

t monomial

ht(a0,0 . . . , anx,ny
)t.

By multiplying by the least common multiple of the denominators, we can assume without
loss of generality that for each t, ht is a polynomial. Thus, if a bilinear polynomial is in P ,
then its coefficients are in the variety of the polynomial system ∀t, ht(a0,0, . . . , anx,ny

) =
0.

Theorem 7. Let m,nx, ny ∈ N such that m ≤ nx+ny. Then the set of bilinear systems
f1, . . . , fm such that for all i, fi does not divide 0 in R/Ji−1 contains a Zariski nonempty
open subset.
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Proof. We prove the Theorem by recurrence on m. Suppose that for all i such that
2 ≤ i ≤ m − 1, fi is not a divisor of 0 in R/Ji−1. We prove that the set of bilinear
polynomials f such that f is not a divisor of 0 in R/Jm−1 contains a nonempty Zariski
open subset. According to Lemma 14, for each admissible prime ideal P ∈ Ass(Im−1),
the set OP = {f /∈ P} contains a nonempty Zariski open subset. Thus

⋂

P OP contains
a nonempty Zariski subset. Therefore, the set of bilinear polynomials f which are not
divisor of 0 in R/Jm−1 (this set is exactly

⋂

P OP ) contains a Zariski nonempty open
subset.

Proposition 8. Let m ≤ nx + ny and f1, . . . , fm be bilinear polynomials such that for
all i such that 2 ≤ i ≤ m, fi is not a divisor of 0 in R/Ji−1. Then for all i such that
1 ≤ i ≤ m, the ideal Ji is equidimensional and its codimension is i.

Proof. We prove the Proposition by recurrence on m.

• J1 = I1 is equidimensional and codim(I1) = 1;

• Suppose that Ji−1 is equidimensional of codimension i − 1. Then Ji = (Ji−1 +
fi) : (X ∩ Y )∞. fi does not divide 0 in R/Ji−1 (Theorem 7), thus Ji−1 + fi is
equidimensional of codimension i. The saturation does not decrease the dimension
of any primary component of Ji−1 + fi. Therefore, Ji is equidimensional and its
codimension is i.

Appendix B. Ideals generated by generic affine bilinear systems

Let k be a field of characteristic 0, m = nx + ny, and a be the set

a = {a(i)j,k : 1 ≤ i ≤ m, 0 ≤ j ≤ nx, 0 ≤ k ≤ ny}.

We consider generic polynomials f1, . . . , fm in k(a)[x0, . . . , xnx
, y0, . . . , yny

]:

fi =
∑

a
(i)
j,kxjyk

and we denote by I ⊂ k(a)[x0, . . . , xnx
, y0, . . . , yny

] the ideal they generate. In the sequel,
ϑ denotes the dehomogenization morphism:

k[x0, . . . , xnx
, y0, . . . , yny

] −→ k[x0, . . . , xnx−1, y0, . . . , yny−1]
f(x0, . . . , xnx

, y0, . . . , yny
) 7−→ f(x0, . . . , xnx−1, 1, y0, . . . , yny−1, 1)

.

For a ∈ km(nx+ny+2), ϕa stands for the specialization:

ϕa : k(a)[x0, . . . , xnx
, y0, . . . , yny

] → k[x0, . . . , xnx
, y0, . . . , yny

]
f(a)(x0, . . . , xnx

, y0, . . . , yny
) 7→ f(a)(x0, . . . , xnx

, y0, . . . , yny
)

Also V ar(ϕa(I)) ⊂ Pnx × Pny (resp. V ar(ϑ ◦ ϕa(I)) ⊂ k̄nx+ny ) denotes the variety
of ϕa(I) (resp. ϑ ◦ ϕa(I)).
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Lemma 15. There exists a nonempty Zariski open set O1 such that if a ∈ O1, then for
all (α0, . . . , αnx

, β0, . . . , βny
) ∈ V ar(ϕa(I)), αnx

6= 0 and βny
6= 0. This implies that the

application

V ar(ϑ ◦ ϕa(I)) −→ V ar(ϕa(I))
(α0, . . . , αnx−1, β0, . . . , βny−1) 7−→ (α0, . . . , αnx−1, 1, β0, . . . , βny−1, 1)

is a bijection.

Proof. See (Van der Waerden, 1929, page 751).

Lemma 16. There exists a nonempty Zariski open set O2, such that if a ∈ O2, then the
ideal ϑ ◦ ϕa(I) is radical.

Proof. Denote by F the polynomial family (f1, . . . , fm) ∈ k[a, X, Y ]m. Let J ⊂ k[a] be
the ideal

(

I + 〈det(jacX,Y (F ))〉
)

∩ k[a] and J be its associated algebraic variety. By
the Jacobian Criterion (see e.g. (Eisenbud, 1995, Theorem 16.19)), if a does not belong
to J , then ϑ ◦ ϕa(I) is radical. Thus, it is sufficient to prove that km(nx+ny+2) \J is
non-empty.

To do that, we prove that for all a ∈ km(nx+ny+2), there exists (ε1, . . . , εm) such that
the ideal 〈ϑ ◦ ϕa(f1) + ε1, . . . , ϑ ◦ ϕa(fm) + εm〉 is radical. Denote by gi = ϑ ◦ ϕa(fi) for
1 ≤ i ≤ m and consider the mapping Ψ

x ∈ km → (g1(x), . . . , gm(x)) ∈ km.

Suppose first that Ψ(km) is not dense in km. Since Ψ(km) is a constructible set, it is
contained in a Zariski-closed subset of km and there exists (ε1, . . . , εm) such that the
algebraic variety defined by g1 − ε1 = · · · = gm − εm = 0 is empty. Since there exists
a′ such that gi − εi = ϑ ◦ ϕa′(fi), we conclude that ϑ ◦ ϕa′(I) = 〈1〉. This implies that
a′ /∈J .

Suppose now that Ψ(km) is dense in km. By Sard’s theorem (Shafarevich, 1977, Chap.
2, Section 6.2, Theorem 2), there exists (ε1, . . . , εm) ∈ km which does not lie in the set
of critical values of Ψ. This implies that at any point of the algebraic variety defined by
g1 − ε1 = · · · = gm − εm = 0, ϑ ◦ ϕa(det(jacX,Y (F ))) does not vanish. Remark now that

there exists a′ such that gi − εi = ϑ ◦ ϕa′(fi). We conclude that a′ ∈ km(nx+ny+2) \J ,
which ends the proof.

Lemma 17. There exists a nonempty Zariski open set O3, such that if a ∈ O3,

√

〈MaxMinors(ϑ ◦ ϕa(jacy(F )))〉 = 〈ϑ ◦ ϕa(f1), . . . , ϑ ◦ ϕa(fm)〉 ∩ k[x0, . . . , xnx−1].

Proof. Let a be an element in O2 (as defined in Lemma 16). Thus ϑ ◦ ϕa(I) is radical.
Now let (v0, . . . , vnx−1, w0, . . . , wny−1) ∈ V ar(ϑ ◦ ϕa(I)) be an element of the variety.
Then

(

ϑ ◦ ϕa(jacy(F ))xi=vi

)

·











w0

...
wny−1

1











=







0
...
0






.
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This implies that rank(ϑ ◦ ϕa(jacy(F ))xi=vi
) < ny + 1, and therefore

(v0, . . . , vnx−1) ∈ V ar(〈MaxMinors(ϑ ◦ ϕa(jacy(F )))〉).

Conversely, let (v0, . . . , vnx−1) ∈ V ar(〈MaxMinors(ϑ ◦ ϕa(jacy(F )))〉). Thus there
exists a non trivial vector (w0, . . . , wny

) in the right kernel Ker(ϑ ◦ ϕa(jacy(F ))xi=vi
).

This means that (v0, . . . , vnx−1, 1, w0, . . . , wny
) is in the variety of ϕa(I):

(v0, . . . , vnx−1, 1, w0, . . . , wny
) ∈ V ar(ϕa

(

jacy(F )
)

·







y0
...
yny






)

From Lemma 15, wny
6= 0 if the system is generic. Hence

(v0, . . . , vnx−1,
w0

wny

, . . . ,
wny−1

wny

) ∈ V ar(ϑ ◦ ϕa(I)).

Finally, we have

V ar(〈MaxMinors(ϑ◦ϕa(jacy(F )))〉) = V ar(〈ϑ◦ϕa(f1), . . . , ϑ◦ϕa(fm)〉∩k[x0, . . . , xnx−1])

and ϑ ◦ ϕa(I) is radical (Lemma 16). The Nullstellensatz concludes the proof.

Corollary 4. There exists a nonempty Zariski open set O4, such that if a ∈ O4,

card(V ar(ϑ ◦ ϕa(I))) = deg(ϑ ◦ ϕa(I)) =

(

nx + ny
nx

)

Proof. According to Lemma 16 and Lemma 15, if a ∈ O1 ∩ O2, then deg(ϑ ◦ ϕa(I)) =
card(V ar(ϑ ◦ ϕa(I)) = card(V ar(ϕa(I))). This value is the so-called multihomogeneous
Bézout number of ϕa(I), i.e. the coefficient of znx

1 z
ny

2 in (z1+ z2)
nx+ny (see e.g. Morgan

and Sommese (1987)), namely
(

nx+ny

nx

)

.

Remark 7. Actually, by studying ideals spanned by maximal minors of matrices whose
entries are linear forms, it can be shown that, for a generic affine bilinear system,
〈MaxMinors(ϑ ◦ ϕa(jacy(F )))〉 is radical (see Lemma 6). Hence Lemma 17 shows that,
for generic affine bilinear systems,

〈MaxMinors(ϑ ◦ ϕa(jacy(F )))〉 = 〈ϑ ◦ ϕa(f1), . . . , ϑ ◦ ϕa(fm)〉 ∩ k[x0, . . . , xnx−1],

〈MaxMinors(ϑ ◦ ϕa(jacx(F )))〉 = 〈ϑ ◦ ϕa(f1), . . . , ϑ ◦ ϕa(fm)〉 ∩ k[y0, . . . , yny−1].
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