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ABSTRACT
Let X̄ = [X1, . . . , Xn] and f ∈ R[X̄]. We consider the prob-
lem of computing the global infimum of f when f is bounded
below. For A ∈ GLn(C), we denote by fA the polynomial
f(A X̄). Fix a number M ∈ R greater than infx∈Rn f(x).
We prove that there exists a Zariski-closed subset A (
GLn(C) such that for all A ∈ GLn(Q) \A , we have fA ≥ 0
on Rn if and only if for all ε > 0, there exist sums of squares
of polynomials s and t in R[X̄] and polynomials φi ∈ R[X̄]

such that fA + ε = s + t
(
M − fA

)
+

∑
1≤i≤n−1 φi

∂fA

∂Xi
.

Hence we can formulate the original optimization problems
as semidefinite programs which can be solved efficiently in
Matlab. Some numerical experiments are given. We also
discuss how to exploit the sparsity of SDP problems to over-
come the ill-conditionedness of SDP problems when the in-
fimum is not attained.
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1. INTRODUCTION
We consider the global optimization problem

f∗ := inf{f(x) | x ∈ Rn} ∈ R ∪ {−∞} (1)

where f ∈ R[X̄] := R[X1, . . . , Xn]. The problem is equiva-
lent to compute

f∗ = sup{a ∈ R | f − a ≥ 0 on Rn} ∈ R ∪ {−∞}.

It is well known that this optimization problem is NP-hard
even when deg(f) ≥ 4 and is even [13]. There are many
approaches to approximate f∗. For example, we can get a
lower bound by solving the sum of squares (SOS) problem:

f sos = sup{a ∈ R | f − a is a sum of squares in R[X̄]}
∈ R ∪ {−∞}.

The SOS problem can be solved efficiently by algorithms in
GloptiPoly [4], SOSTOOLS [15], YALMIP [12], SeDuMi [22]
and SparsePOP [24]. An overview about SOS and nonneg-
ative polynomials is given in [17]. However, it is pointed
out in [1] that for fixed degree d ≥ 4, the volume of the
set of sums of squares of polynomials in the set of nonneg-
ative polynomials tends to 0 when the number of variable
increases.
In recent years, a lot of work has been done in proving

existence of SOS certificates which can be exploited for op-
timization, e.g., the “Big ball”method proposed by Lasserre
[10] and “Gradient perturbation” method proposed by Ji-
betean and Laurent [6]. These two methods solve the prob-
lem by perturbing the coefficients of the input polynomials.
However, small perturbations of coefficients might generate
numerical instability and lead to SDPs which are hard to
solve. The “Gradient variety” method by Nie, Demmel and
Sturmfels [14] is an approach without perturbation. For a
polynomial f ∈ R[X̄], its gradient variety is defined as

V (∇f) := {x ∈ Cn | ∇f(x) = 0}

and its gradient ideal is the ideal generated by all partial
derivatives of f :

〈∇f〉 :=
〈 ∂f

∂X1
,
∂f

∂X2
, · · · , ∂f

∂Xn

〉
⊆ R[X̄].



It is shown in [14] that if the polynomial f ∈ R[X̄] is nonneg-
ative on V (∇f) and 〈∇f〉 is radical then f is an SOS mod-
ulo its gradient ideal. If the gradient ideal is not necessarily
radical, the conclusion still holds for polynomials positive
on their gradient variety. However, if f does not attain the
infimum, the method outlined in [14] may provide a wrong
answer. For example, consider f := (1− xy)2 + y2. The in-
fimum of f is f∗ = 0, but V (∇f) = {(0, 0)} and f(0, 0) = 1.
This is due to the fact that any sequence (xn, yn) such that
f(xn, yn) → 0 when n → ∞ satisfies ||(xn, yn)|| → ∞ (here
and throughout the paper we use the l2-norm). Roughly
speaking the infimum is not reached at finite distance but
“at infinity”. Such phenomena are related to the presence
of asymptotic critical values, which is a notion introduced in
[9].

Recently, there are some progress in dealing with these
hard problems for which polynomials do not attain a min-
imum on Rn. Let us outline Schweighofer’s approach [21].
We recall some notations firstly.

Definition 1.1. For any polynomial f ∈ R[X̄] and sub-
set S ∈ Rn, the set R∞(f, S) of asymptotic values of f on
S consists of all y ∈ R for which there exists a sequence
(xk)k∈N of points xk ∈ S such that limk→∞ ||xk|| = ∞ and
limk→∞ f(xk) = y.

Definition 1.2. The preordering generated by polynomi-
als g1, g2, . . . , gm ∈ R[X̄] is denoted by T (g1, g2, . . . , gm):

T (g1, g2, . . . , gm) :=

{ ∑
δ∈{0,1}m sδg

δ1
1 gδ22 . . . gδmm | sδ

is a sum of squares in R[X̄]

}
.

Theorem 1.3. ([21, Theorem 9]). Let f, g1, g2, . . . , gm ∈
R[X̄] and set

S := {x ∈ Rn| g1(x) ≥ 0, g2(x) ≥ 0, . . . , gm(x) ≥ 0}. (2)

Suppose that

(i) f is bounded on S;

(ii) R∞(f, S) is a finite subset of ]0,+∞[;

(iii) f > 0 on S;

Then f ∈ T (g1, g2, . . . , gm).

The idea in [21] is to replace the real part V (∇f)
⋂

Rn of
the gradient variety by several larger semialgebraic sets on
which the partial derivatives do not necessarily vanish but
get very small far away from the origin. For these sets two
things must hold at the same time:

• There exist suitable SOS certificates for nonnegative
polynomials on the set.

• The infimum of f on Rn and on the set coincide.

Definition 1.4. For a polynomial f ∈ R[X̄], we call

S(∇f) := {x ∈ Rn|1− ‖∇f(x)‖2‖x‖2 ≥ 0}

the principal gradient tentacle of f .

Theorem 1.5. ([21, Theorem 25]) Let f ∈ R[X̄] be boun-
ded below. Furthermore, suppose that f has only isolated
singularities at infinity (which is always true in the case n =
2) or the principal gradient tentacle S(∇f) is compact, then
the following conditions are equivalent:

(i) f ≥ 0 on Rn;

(ii) f ≥ 0 on S(∇f);

(iii) For every ε > 0, there are sums of squares of polyno-
mials s and t in R[X̄], such that

f + ε = s+ t
(
1− ‖∇f(X̄)‖2‖X̄‖2

)
.

For fixed k ∈ N, let us define

f∗
k := sup

{
a ∈ R | f − a = s+ t

(
1− ‖∇f(x)‖2‖x‖2

)}
.

where s, t are sums of squares of polynomials and the degree
of t is at most 2k. If the assumptions in the above theorem
are satisfied, then {f∗

k}k∈N converges monotonically to f∗

(see [21, Theorem 30]). The shortage of this method is that
it is not clear that these technical assumptions are necessary
or not. To avoid it, the author proposed a collection of
higher gradient tentacles ([21, Definition 41]) defined by the
polynomial inequalities

1− ‖∇f(x)‖2N (1 + ‖x‖)N+1 ≥ 0, N ∈ N.

Then for sufficiently largeN , for all f ∈ R[X̄] bounded below
we have an SOS representation theorem ([21, Theorem 46]).
However, the corresponding SDP relaxations get very large
for large N and one has to deal for each N with a sequence of
SDPs. To avoid this disadvantage, another approach using
truncated tangency variety is proposed in [3]. Their results
are mainly based on Theorem 1.3. For nonconstant polyno-
mial function f ∈ R[X̄], they define

gij(X̄) := Xj
∂f

∂Xi
−Xi

∂f

∂Xj
, 1 ≤ i < j ≤ n.

For a fixed real number M ∈ f(Rn), the truncated tangency
variety of f is defined to be

ΓM (f) := {x ∈ Rn| M−f(x) ≥ 0, gi,j(x) = 0, 1 ≤ i, j ≤ n}.

Then based on Theorem 1.3, the following result is proved.

Theorem 1.6. [3, Theorem 3.1] Let f ∈ R[X̄] and M
be a fixed real number. Then the following conditions are
equivalent:

(i) f ≥ 0 on Rn;

(ii) f ≥ 0 on ΓM (f);

(iii) For every ε > 0, there are sums of squares of polyno-
mials s and t in R[X̄] and polynomials φij ∈ R[X̄], 1 ≤
i < j ≤ n, such that

f + ε = s+ t (M − f) +
∑

1≤i<j≤n

φijgij .

Fix k ∈ N and let

f∗
k := sup

a ∈ R|f − a = s+ t (M − f) +
∑

1≤i<j≤n

φijgij

 .

where s, t, φij are polynomials of degree at most 2k and s, t
are sums of squares of polynomials in R[X̄], then the se-
quence {f∗

k}k∈N converges monotonically increasing to f∗

([3, Theorem 3.2]). This approach does not require the as-
sumptions of [21, Theorem 25]. However, the number of



equality constraints in ΓM (f) is n(n−1)
2

which is very large
as n increases.

In this paper, based on Theorem 1.3 and the computation
of generalized critical values of a polynomial mapping in [18,
19], we present a method to solve optimization problem (1)
without requiring f attains the infimum on Rn. Our method
does not require assumptions as in [21] and use the simpler
variety which only contains n− 1 equality constraints.

Although approaches in [21] and [3] can handle polyno-
mials which do not attain a minimum on Rn, numerical
problems occur when one solves the SDPs obtained from
SOS relaxations, see [3, 6, 21]. The numerical problems are
mainly caused by the unboundness of the moments. It hap-
pens often when one deals with this kind of polynomial opti-
mization problem using SOS relaxations without exploiting
the sparsity structure. We propose some strategies to avoid
ill-conditionedness of moment matrices.

The paper is organized as follows. In section 2 we present
some notations and preliminaries used in our method. The
main result and its proof are given in section 3. In section 4,
some numerical experiments are given. In section 5, we focus
on two polynomials which do not attain the infimum and try
to solve the numerical problems. We draw some conclusions
in section 6.

2. PRELIMINARIES AND NOTATIONS
Definition 2.1. [9] A complex (resp. real) number c ∈ C

(resp. c ∈ R) is a critical value of the mapping f̃C : x ∈
Cn → f(x) (resp. f̃R : x ∈ Rn → f(x)) if and only if
there exists z ∈ Cn (resp. z ∈ Rn) such that f(z) = c and
∂f
∂X1

= · · · = ∂f
∂Xn

= 0.

A complex (resp. real) number c ∈ C (resp. c ∈ R) is

an asymptotic critical value of the mapping f̃C (resp. f̃R) if
there exists a sequence of points (zl)l∈N ⊂ Cn (resp. (zl)l∈N
⊂ Rn) such that:

(i) f(zl) tends to c when l tends to ∞.

(ii) ||zl|| tends to +∞ when l tends to ∞.

(iii) ||Xi(zl)|| · || ∂f
∂Xj

(zl)|| tends to 0 when l tends to ∞ for

all (i, j) ∈ {1, . . . , n}2.
We denote by K0(f) the set of critical values of f , by K∞(f)
the set of asymptotic critical values of f , and by K(f) the
set of generalized critical values which is the union of K0(f)
and K∞(f).

Definition 2.2. A map φ : V → W of topological spaces
is said to be proper at w ∈ W if there exists a neighborhood
B of w such that φ−1(B) is compact (where B denotes the
closure of B).

Recall that for A ∈ GLn(C) and f ∈ R[X̄], fA the poly-
nomial f(A X̄).

Lemma 2.3. ([18], Lemma 1) For all A ∈ GLn(Q), we
have K0(f) = K0(f

A) and K∞(f) = K∞(fA).

Theorem 2.4. ([18, Theorem 3.6]) There exists a Zaris-
ki-closed subset A ( GLn(C) such that for all A ∈ GLn(Q)\
A , the set of real asymptotic critical values of x → f(x) is
contained in the set of non-properness of the projection on
T restricted to the Zariski-closure of the semi-algebraic set

defined by fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn
6= 0.

In [18], the above theorem is stated in the complex case and
proved for this case. It relies on properness properties of
some critical loci. Since these properness properties can be
transfered to the real part of these critical loci, its proof can
be transposed mutatis mutandis to the real case.

Remark 2.5. ([19], Remark 1) Note also that the curve
defined as the Zariski-closure of the complex solution set of

fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn
6= 0 has a degree

bounded by (d − 1)(n−1), where d is the total degree of f .
Thus the set of the non-properness of the projection on T
restricted to this curve has a degree bounded by (d− 1)(n−1).

Remark 2.6. In [18], a criterion for choosing A is given.
It is sufficient that the restriction of the projection
(x1, . . . , xn, t) → (xn−i+2, . . . , xn, t) to the Zariski-closure

of the constructible set fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−i
=

0, ∂fA

∂Xn−i+1
6= 0 is proper. An algorithm, based on Gröbner

bases or triangular sets computations, that computes sets of
non-properness is given in [20].

Theorem 2.7. ([19, Theorem 5]) Let f ∈ R[X1, . . . , Xn]
and ε = {e1, . . . , el} (with e1 < · · · < el ) be the set of real
generalized critical values of the mapping x ∈ Rn → f(x).
Then infx∈Rn f(x) > −∞ if and only if there exists 1 ≤ i0 ≤
l such that infx∈Rn f(x) = ei0 .

Remark 2.8. Combined with Lemma 2.3, the above the-
orem leads to f∗ = infx∈Rn fA(x).

3. MAIN RESULTS
For A ∈ GLn(Q), we denote by WA

1 the constructible set
defined by{

∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0,

∂fA

∂Xn
6= 0

}
,

and by WA
0 the algebraic variety defined by{

∂fA

∂X1
= · · · = ∂fA

∂Xn−1
=

∂fA

∂Xn
= 0

}
.

We set WA := WA
1 ∪ WA

0 , which is the algebraic variety
defined by {

∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0

}
.

Lemma 3.1. If infx∈R f(x) > −∞, then there exists a
Zariski-closed subset A ( GLn(C) such that for all A ∈
GLn(Q) \ A ,

f∗ = inf{f(x) |x ∈ Rn} = inf{fA(x) |x ∈ WA ∩ Rn}.

Moreover R∞(fA,WA) is a finite set.

Proof. We start by proving that f∗ = inf{fA(x) | x ∈
WA}. Remark first that f∗ ≤ inf{fA(x) | x ∈ WA ∩ Rn}.

• Suppose first that the infimum f∗ is reached over Rn.
Then, it is reached at a critical point x ∈ WA

0 . Since
WA

0 ⊂ WA, f∗ = inf{fA(x) | x ∈ WA ∩ Rn}.

• Suppose now that the infimum f∗ is not reached over
Rn. Then, by Theorems 2.4 and 2.7, f∗ belongs to the



set of non-properness of the restriction of the projec-
tion (x, t) → t to the Zariski-closure of the set defined
by

fA − T =
∂f

∂X1
= · · · = ∂f

∂Xn−1
= 0,

∂f

∂Xn
6= 0.

This implies that for all ε > 0, there exists (x, t) ∈
Rn × R such that x ∈ WA

1 ∩ Rn and f∗ ≤ t ≤ f∗ + ε.
This implies that f∗ ≥ inf{fA(x) | x ∈ WA∩Rn}. We
conclude that f∗ = inf{fA(x) | x ∈ WA∩Rn} since we
previously proved that f∗ ≤ inf{fA(x) | x ∈ WA∩Rn}

We prove now that R∞(fA,WA) is finite. Remark that
R∞(fA,WA) = R∞(fA,WA

0 ) ∪R∞(fA,WA
1 ). The set

R∞(fA,WA
0 ) ⊂ {fA |x ∈ WA

0 } = K0(f
A)

is finite. Moreover, by Definition 1.1 and 2.2, R∞(fA,WA
1 )

is a subset of the non-properness set of the mapping f̃ re-
stricted to WA

1 , which by Remark 2.5 is a finite set. Hence
R∞(fA,WA) is a finite set.

�
Fix a real number M ∈ f(Rn) and for all A ∈ GLn(Q),

consider the following semi-algebraic set

WA
M =

{
x ∈ Rn|M − fA(x) ≥ 0,

∂fA

∂Xi
= 0, 1 ≤ i ≤ n− 1

}
.

Lemma 3.2. There exists a Zariski-closed subset
A ( GLn(C) such that for all A ∈ GLn(Q) \ A , if

inf{fA(x) | x ∈ WA
M} > 0,

then fA can be written as a sum

fA = s+ t
(
M − fA

)
+

∑
1≤i≤n−1

φi
∂fA

∂Xi
, (3)

where φi ∈ R[X̄] for 1 ≤ i ≤ n − 1, and s, t are sums of
squares in R[X̄].

Proof. By Lemma 3.1, fA is bounded, positive on WA
M .

By Lemma 3.1, R∞(fA,WA
M ) is a finite set. Then, Theorem

1.3 implies that fA can be written as a sum (3). �

Theorem 3.3. Let f ∈ R[X̄] be bounded below, and M ∈
f(Rn). There exists a Zariski-closed subset A ( GLn(C)
such that for all A ∈ GLn(Q) \ A , the following conditions
are equivalent:

(i) fA ≥ 0 on Rn;

(ii) fA ≥ 0 on WA
M ;

(iii) For every ε > 0, there are sums of squares of polyno-
mials s and t in R[X̄] and polynomials φi ∈ R[X̄], 1 ≤
i ≤ n− 1, such that

fA + ε = s+ t
(
M − fA

)
+

∑
1≤i≤n−1

φi
∂fA

∂Xi
.

Proof. By Lemma 3.2 and Theorem 1.3. �

Definition 3.4. For all polynomials f ∈ R[X̄], denote
by d the total degree of f . Then for all k ∈ N, we define

f∗
k ∈ R ∪ {±∞} as the supremum over all a ∈ R such that
fA − a can be written as a sum

fA − a = s+ t
(
M − fA

)
+

∑
1≤i≤n−1

φi
∂fA

∂Xi
(4)

where t, φi, 1 ≤ i ≤ n − 1 are polynomials of degree at most
2k, for k ∈ N and s, t are sums of squares of polynomials in
R[X̄].

Theorem 3.5. Let f ∈ R[X̄] be bounded below. Then
there exists a Zariski-closed subset A ( GLn(C) such that
for all A ∈ GLn(Q) \A , the sequence {f∗

k}, k ∈ N converges
monotonically increasing to the infimum (fA)∗ which equals
to f∗ by Lemma 2.8.

4. NUMERICAL RESULTS
Examples below are cited from [3, 6, 10, 14, 21]. We use

Matlab package SOSTOOLS [15] to compute optimal values
f∗
k by relaxations of order k over

WA
M =

{
x ∈ Rn|M − fA(x) ≥ 0,

∂fA

∂Xi
= 0, 1 ≤ i ≤ n− 1

}
.

In the following test, we setA := In×n be an identity matrix,
and without loss of generality, we let M := fA(0) = f(0).
The set WA

M is very simple and the results we get are very
similar to or better than the given results in literatures [3,
6, 10, 14, 21].

Example 4.1. Let us consider the polynomial

f(x, y) := (xy − 1)2 + (x− 1)2.

Obviously, f∗ = f sos = 0 which can be reached at (1, 1).
The computed optimal values are f∗

0 ≈ 0.34839 · 10−8, f∗
1 ≈

0.21183 · 10−8 and f∗
2 ≈ 0.69594 · 10−8.

Example 4.2. Let us consider the Motzkin polynomial

f(x, y) := x2y4 + x4y2 − 3x2y2 + 1.

It is well known that f∗ = 0 but f sos = −∞. The computed
optimal values are f∗

0 ≈ −6138.2, f∗
1 ≈ −0.52508, f∗

2 ≈
−0.19588 and f∗

3 ≈ 0.37327 · 10−8.

Example 4.3. Let us consider the Berg polynomial

f(x, y) := x2y2(x2 + y2 − 1).

We know that f∗ = −1/27 ≈ −0.037037037. But f sos =
−∞. Our computed optimal values are f∗

0 ≈ −563.01, f∗
1 ≈

−0.056591, f∗
2 ≈ −0.047805 and f∗

3 ≈ −0.037037.

Example 4.4. Let

f(x, y) := (x2 + 1)2 + (y2 + 1)2 − 2(x+ y + 1)2.

Since f is a bivariate polynomial of degree 4, f − f∗ must be
a sum of squares. By computation, we obtain f∗

0 , f
∗
1 , f

∗
2 all

approximately equal to −11.458.

Example 4.5. Consider the polynomial of three variables:

f(x, y, z) := (x+ x2y + x4yz)2.

As mentioned in [21], this polynomial has non-isolated singu-
larities at infinity. It is clear that f∗ = 0. Our computed op-
timal values are: f∗

0 ≈ −0.36282·10−8, f∗
1 ≈ −0.12725·10−7,

f∗
2 ≈ −0.1346 · 10−7 and f∗

3 ≈ −0.62199 · 10−8.



Example 4.6. Let us consider the homogenous Motzkin
polynomial of three real variables:

f(x, y, z) := x2y2(x2 + y2 − 3z2) + z6.

It is known that f∗ = 0 but f sos = −∞. By computation,
we get optimal values: f∗

0 ≈ −0.27651, f∗
1 ≈ −.15039 · 10−2,

f∗
2 ≈ −0.31073 ·10−3, f∗

3 ≈ −0.10552 ·10−3, f∗
4 ≈ −0.66181 ·

10−4, f∗
5 ≈ −0.3114 · 10−4 and f∗

6 ≈ −0.29321 · 10−4.

Example 4.7. Consider the polynomial from [11]

f :=
5∑

i=1

∏
j 6=i

(Xi −Xj) ∈ R[X1, X2, X3, X4, X5].

It is shown in [11] that f∗ = 0 but f sos = −∞. In [21], the
results computed using gradient tentacles are f∗

0 ≈ −0.2367,
f∗
1 ≈ −0.0999 and f∗

2 ≈ −0.0224. Using truncated tangency
variety in [3], we get f∗

0 ≈ −1.9213, f∗
1 ≈ −0.060899 and

f∗
2 ≈ −0.012281. The optimal values we computed are better:
f∗
0 ≈ −4.4532, f∗

1 ≈ −0.59884 · 10−8, f∗
2 ≈ −0.7685 · 10−7.

The number of equality constraints in [3] is 10 while we only
add 4 equality constrains.

Example 4.8. Let us consider the following example of
Robinson [17].

R(x, y, 1) := x6+y6+1−(x4y2+x2y4+x4+x2+y4+y2)+3x2y2.

It is proved that f∗ = 0 but f sos = −∞. Our computed
lower bounds are: f∗

0 ≈ −0.9334, f∗
1 ≈ −0.23419, f∗

2 ≈
−0.70394× 10−2 and f∗

3 ≈ 0.65325× 10−9.

5. UNATTAINABLE INFIMUM VALUE

Example 5.1. Consider the polynomial

f(x, y) := (1− xy)2 + y2.

The polynomial f does not attain its infimum f∗ = 0 on
R2. Since f is a sum of squares, we have f sos = 0 and
therefore f∗

k = 0 for all k ∈ N. However, as shown in [3, 6,
21], there are always numerical problems. For example, the
results given in [3] are f sos ≈ 1.5142 ·10−12, f∗

0 ≈ −0.12641 ·
10−3, f∗

1 ≈ 0.12732 · 10−1, f∗
2 ≈ 0.49626 · 10−1.

For polynomials which do not attain their infimum values,
we investigate the numerical problem involved in solving the
SOS relaxation:

sup
{
a | f − a = md(X̄)T ·W ·md(X̄), W � 0,WT = W

}
,

(5)
where md(X̄) is a vector of monomials of degree less than or
equal to d, W is also called the Gram matrix.

SDPTools is a package for solving SDPs in Maple [2]. It in-
cludes an SDP solver which implements the classical primal-
dual potential reduction algorithm [23]. This algorithm re-
quires initial strictly feasible primal and dual points. Usu-
ally, it is difficult to find a strictly feasible point for (5).
According to the Big-M method, after introducing two big
positive numbers M1 and M2, we convert (5) to the following

# iter. prec. gap lower bound r M1 M2

50 75 .74021e-17 .46519e-1 103 103

50 75 .12299e-11 .47335e-2 103 105

50 75 .68693e-12 .47335e-2 105 105

50 75 .38601e-10 .47424e-3 103 107

70 75 .76145e-18 .47424e-3 107 107

50 75 .43114e-10 .47433e-4 103 109

70 75 .33233e-12 .47433e-4 109 109

75 90 .86189e-10 .47426e-5 103 1011

Table 1: Lower bounds with md(X̄) = [1, x, y, x2, xy, y2]T

form:

sup
r̂∈R,Ŵ

r̂ −M2z

s.t. f(X̄)− r̂ + z(md(X̄)T ·md(X̄))

= md(X̄)T · Ŵ ·md(X̄),

Ŵ � 0, ŴT = Ŵ , z ≥ 0,

Tr(Ŵ ) ≤ M1.


(6)

The dual form of (6) is

inf
yα,t∈R

∑
α

fαyα +M1t

s.t. Momentd(y) + tI � 0, t ≥ 0

Tr(Momentd(y)) ≤ M2.

 (7)

Assuming the primal and dual problems are both bounded,
suppose M1 andM2 are chosen larger than the upper bounds
on the traces of the Gram matrix and the moment matrix re-
spectively, then this entails no loss of generality. In practice,
these upper bounds are not known, and we can only guess
some appropriate values for M1,M2 from the given polyno-
mials. If we can not get the right results, we will increase
M1,M2 and solve the SDPs again.
In Table 1, we choose md(X̄) := [1, x, y, x2, xy, y2]T and

solve (6) and (7) for different M1 and M2.
The first column is the number of iterations and the sec-

ond column is the number of digits we used in Maple. The
third column is the gap of the primal and dual SDPs at the
solutions. It is clear that the corresponding SDPs can be
solved quite accurately with enough number of iterations.
However, the lower bounds we get are not so good. If we
choose larger M2, the lower bound becomes better. As men-
tioned earlier, the number M2 is chosen as the upper bound
on the trace of the moment matrix at the optimizers. So it
implies that the trace of the corresponding moment matrix
may be unbounded. Let us consider the primal and dual
SDPs obtained from SOS relaxation of (1):

P 7→

 inf
yα∈R

∑
α

fαyα

s.t. Momentd(y) � 0.

(8)

P∗ 7→


sup
r∈R

r

s.t. f(X̄)− r = md(X̄)T ·W ·md(X̄),

W � 0, WT = W.

(9)

For Example 5.1, f is a sum of squares, so P∗ has a feasible
solution. By proposition 3.1 in [10], P∗ is solvable and inf P =



maxP∗ = 0. We show that for md(X̄) = [1, x, y, x2, xy, y2]T ,
P does not attain the minimum. To the contrast, if y∗ is a
minimizer of the SDP problem P, then we have

1− 2y1,1 + y2,2 + y0,2 = 0, (10)

and

Moment2(y) =


1 y1,0 y0,1 y2,0 y1,1 y0,2

y1,0 y2,0 y1,1 y3,0 y2,1 y1,2
y0,1 y1,1 y0,2 y2,1 y1,2 y0,3
y2,0 y3,0 y2,1 y4,0 y3,1 y2,2
y1,1 y2,1 y1,2 y3,1 y2,2 y1,3
y0,2 y1,2 y0,3 y2,2 y1,3 y0,4

 � 0.

Since Moment2(y) is a positive semidefinite matrix, we have
y0,2 ≥ 0 and |2y1,1| ≤ (1 + y2,2). Combining with (10), we
must have y0,2 = 0 and

2y1,1 = 1 + y2,2. (11)

Because Moment2(y) is positive semidefinite, from y0,2 = 0,
we can derive y1,1 = 0. Therefore, by (11), we have y2,2 =
−1. It is a contradiction.

Let us show that the dual problem of (9) is not bounded
if we choose md(X̄) = [1, x, y, x2, xy, y2]T . The infimum of
f(x, y) can only be reached at “infinity”: p∗ = (x∗, y∗) ∈
{R ∪ ±∞}2. The vector

[x∗, y∗, x∗2, x∗y∗, y∗2, x∗3, x∗2y∗, x∗y∗2,

y∗3, x∗4, x∗3y∗, x∗2y∗2, x∗y∗3, y∗4]

is a minimizer of (8) at “infinity”. Since x∗y∗ → 1 and
y∗ → 0, when ‖(x∗, y∗)‖ goes to ∞, any moment yi,j with
i > j tends to ∞. So the trace of the moment matrix tends
to ∞.

If we increase the bound M2, we can get better results as
shown in Table 1. For example, by setting M1 = 103,M2 =
1011, we get f∗ = 0.4743306 × 10−5. However this method
converges very slowly at the beginning and needs large amou-
nt of computations.

Theorem 5.2. [16] For a polynomial p(x) =
∑

α pαx
α,

we define C(p) as the convex hull of sup(p) = {α| pα 6= 0},
then we have C(p2) = 2C(p); for any positive semidefinite
polynomials f and g, C(f) ⊆ C(f + g); if f =

∑
j g

2
j then

C(gj) ⊆ 1
2
C(f).

For the polynomial f in Example 5.1, C(f) is the con-
vex hull of the points (0, 0), (1, 1), (0, 2), (2, 2); see Figure 1.
According to Theorem 5.2, the SOS decomposition of f con-
tains only monomials whose supports are (0, 0), (0, 1), (1, 1).
Hence, if we choose a sparse monomial vector md(X̄) =
[1, y, xy]T , for M1 = 1000 and M2 = 1000, from Table 2,
we can see a very accurate optimal value is obtained. This
is due to the fact that the trace of the moment matrix at the
optimizer (x∗, y∗) now is 1+y∗2+x∗2y∗2, which is bounded
when x∗y∗ goes to 1 and y∗ goes to 0. That is the main
reason that we get very different results in Table 1 and 2.
We can also verify the above results by using solvesos in
YALMIP[12]; see Table 3.

In the following, in order to remove the monomials which
cause the ill-conditionedness of the moment matrix, we also
try to exploit the sparsity structure when we compute opti-
mal values f∗

k by SOS relaxations of order k over WA
M .

Figure 1: Newton polytope for the polynomial f
(left), and the possible monomials in its SOS de-
composition (right).

# iter. prec. gap lower bound r M1 M2

50 75 .97565e-27 -.38456e-28 103 103

Table 2: The lower bounds using md(X̄) = [1, y, xy]T

Let A = I2×2, md1(X̄) = md2(X̄) := [1, x, y, x2, xy, y2],
and symmetric semidefinite positive matrices W,V satisfying

f + ε = md1(X̄)T ·W ·md1(X̄)

+md2(X̄)T · V ·md2(X̄) · (M − f) + φ
∂f

∂x
.

Hence

f + ε ≡ md1(X̄)T ·W ·md1(X̄) (12)

+md2(X̄)T · V ·md2(X̄) · (M − f) mod J,

where J = 〈 ∂f
∂x

〉.
If we do not exploit the sparsity structure, the associated

moment matrix is a diagonal matrix

[
P 0
0 Q

]
, where

P =


y0,0 y1,0 y0,1 y2,0 y1,1 y0,2
y1,0 y2,0 y1,1 y3,0 y2,1 y1,2
y0,1 y1,1 y0,2 y2,1 y1,2 y0,3
y2,0 y3,0 y2,1 y4,0 y3,1 y2,2
y1,1 y2,1 y1,2 y3,1 y2,2 y1,3
y0,2 y1,2 y0,3 y2,2 y1,3 y0,4


and Q =

4y0,2 − y2,4 + 2y1,3 − y0,4 4y1,1 − y3,3 − y1,3 + 2y2,2
−y0,5 + 4y0,3 + 2y1,4 − y2,5 4y1,2 − y3,4 − y1,4 + 2y2,3
4y1,2 − y3,4 − y1,4 + 2y2,3 4y2,1 + 2y3,2 − y2,3 − y4,3
−y0,6 + 4y0,4 + 2y1,5 − y2,6 2y2,4 + 4y1,3 − y3,5 − y1,5
2y2,4 + 4y1,3 − y3,5 − y1,5 −y4,4 − y2,4 + 2y3,3 + 4y2,2
−y4,4 − y2,4 + 2y3,3 + 4y2,2 4y3,1 + 2y4,2 − y3,3 − y5,3

2y3,1 + 4y2,0 − y4,2 − y2,2 2y1,1 + 4y0,0 − y0,2 − y2,2
4y2,1 + 2y3,2 − y2,3 − y4,3 2y1,2 + 4y0,1 − y0,3 − y2,3
4y3,0 − y3,2 − y5,2 + 2y4,1 2y2,1 − y1,2 + 4y1,0 − y3,2
−y4,4 − y2,4 + 2y3,3 + 4y2,2 4y0,2 − y2,4 + 2y1,3 − y0,4
4y3,1 + 2y4,2 − y3,3 − y5,3 4y1,1 − y3,3 − y1,3 + 2y2,2
4y4,0 − y4,2 + 2y5,1 − y6,2 2y3,1 + 4y2,0 − y4,2 − y2,2

md(X̄) lower bounds r

[1, y, xy]T .14853e-11

[1, x, y, xy]T .414452e-4

[1, x, y, x2, xy, y2]T .15952e-2

Table 3: The lower bounds using solvesos in Matlab



2y1,2 + 4y0,1 − y0,3 − y2,3 2y2,1 − y1,2 + 4y1,0 − y3,2
4y0,2 − y2,4 + 2y1,3 − y0,4 4y1,1 − y3,3 − y1,3 + 2y2,2
4y1,1 − y3,3 − y1,3 + 2y2,2 2y3,1 + 4y2,0 − y4,2 − y2,2
−y0,5 + 4y0,3 + 2y1,4 − y2,5 4y1,2 − y3,4 − y1,4 + 2y2,3
4y1,2 − y3,4 − y1,4 + 2y2,3 4y2,1 + 2y3,2 − y2,3 − y4,3
4y2,1 + 2y3,2 − y2,3 − y4,3 4y3,0 − y3,2 − y5,2 + 2y4,1


We can see that the moment matrix has lots of terms yi,j
for i > j which tend to infinity when we get close to the
optimizer.

In the following we will try to remove these terms. At
first, we compute the normal form of (12) modulo the ideal
J , and then compare the coefficients of xiyj of both sides
to obtain the monomial vectors md1(X̄) and md2(X̄) which
exploit the sparsity structure.

• The normal form of two sides of (12) modulo the ideal J
−xy + 1 + y2 + ε = w1,1 − v1,1 + v1,1M
+ (w2,1 + w1,2 − v2,1 + v2,1M − v1,2 + v1,2M)x
+ (w3,5 + w5,3 − v3,4 − v2,1 + v2,6M + w6,2

− v1,2 + v3,5M + w2,6 − v2,5 + v1,3M − v4,3
− v5,2 + w3,1 + w1,3 + v3,1M + v5,3M + v6,2M)y
+ (w1,4 + w4,1 − v4,1 + v4,1M − v2,2 + v2,2M − v1,4
+ w2,2 + v1,4M)x2 + (v3,2M + v6,4M + w5,5 + w4,6

+ v2,3M + v5,5M + w2,3 − v2,2 + w1,5 + w3,2

+ v4,6M − v1,4 + w6,4 + v5,1M − v5,4 + v1,1
+ w5,1 + v1,5M − v4,5 − v4,1)xy + (v3,3M + v6,1M
− v2,3 + w6,5 − v5,5 − v4,6 + w6,1 + w1,6 − v1,1
+ w3,3 − v3,2 − v1,5 + v1,6M − v5,1 − v6,4 + v6,5M
+ v5,6M + w5,6)y2 + (w4,2 − v2,4 + v4,2M − v4,2
+ v2,4M + w2,4)x3 + (−v2,4 + w4,3 + v5,2M + v1,2
+ v3,4M + w3,4 + v2,1 + v4,3M + w2,5 − v4,2 + v2,5M
+ w5,2)x2y + (w3,6 + w6,3 − v3,5 − v2,6 − v3,1
+ v6,3M − v6,2 − v5,3 − v1,3 + v3,6M)y3

+ (−v4,4 + v4,4M + w4,4)x4

+ (w5,4 + v2,2 + v1,4 + v4,1 + v4,5M + v5,4M
+ w4,5 − v4,4)x3y + (−v6,5 − v6,1 − v5,6 − v3,3
+ v6,6M − v1,6 + w6,6)y4 + (v4,2 + v2,4)x4y
+ (−v6,3 − v3,6)y5 − v6,6y6 + v4,4x5y.

• The coefficients of y6 and x5y are−v6,6 and v4,4 respec-
tively. Therefore v4,4 = v6,6 = 0. The matrix V is pos-
itive semidefinite, we have v4,i = vi,4 = v6,i = vi,6 = 0
for 1 ≤ i ≤ 6.

• The coefficient of x4 is −v4,4 + v4,4M + w4,4, we have
w4,4 = 0. SinceW is also positive semidefinite, we have
wi,4 = w4,i = 0 for 1 ≤ i ≤ 6. From the coefficients
of x3y and x2, we can obtain that v2,2 = w2,2 = 0 and
v2,i = vi,2 = w2,i = wi,2 = 0 for 1 ≤ i ≤ 6.

• After eliminating all zero terms obtained above, we
have
−xy + 1 + y2 + ε = w1,1 − v1,1 + v1,1M
+ (w3,5 + w5,3 + v3,5M + v1,3M + w3,1

+ w1,3 + v3,1M + v5,3M)y + (w5,5 + v5,5M
+ w1,5 + v5,1M + v1,1 + w5,1 + v1,5M)xy
+ (v3,3M + w6,5 − v5,5 + w6,1 + w1,6 − v1,1
+ w3,3 − v1,5 − v5,1 + w5,6)y2

+ (w3,6 + w6,3 − v3,5 − v3,1 − v5,3
− v1,3)y3 + (−v3,3 + w6,6)y4.

• Deleting all zero rows and columns, one gets the sim-
plified Gram matrices

W =


w1,1 w1,3 w1,5 w1,6

w3,1 w3,3 w3,5 w3,6

w5,1 w5,3 w5,5 w5,6

w6,1 w6,3 w6,5 w6,6

 ,

V =

 v1,1 v1,3 v1,5
v3,1 v3,3 v3,5
v5,1 v5,3 v5,5



corresponding tomd1(X̄) = [1, y, xy, y2] andmd2(X̄) =
[1, y, xy] respectively.

• The moment matrices corresponding to md1(X̄) and
md2(X̄) are 

y0,0 y0,1 y1,1 y0,2
y0,1 y0,2 y1,2 y0,3
y1,1 y1,2 y2,2 y1,3
y0,2 y0,3 y1,3 y0,4

 ,

 4y0,0 + y1,1 − y0,2 5y0,1 − y0,3 5y1,1 − y0,2
5y0,1 − y0,3 5y0,2 − y0,4 5y0,1 − y0,3
5y1,1 − y0,2 5y0,1 − y0,3 5y1,1 − y0,2

 .

We can see that these moment matrices only consist
of terms yi,j for i ≤ j which will go to 1 (i = j) or 0
(i < j) when xy goes to 1 and y goes to 0. Therefore
the elements of the moment matrices which may cause
the ill-conditionedness are removed.

For k = 2,M = 5, A = I2×2,M1 = 1000,M2 = 1000, the
matrices W and V computed by our SDP solver in Maple
for Digits = 60 are

W =


0.50804 0.0 0.0 −0.50804

0.0 0.33126 0.0 0.0

0.0 0.0 0.13374 0.0

−0.50804 0 0.0 0.50804

 ,

V =


0.12298 0.0 −0.12298

0.0 0.13374 0.0

−0.12298 0.0 0.12298

 .

The associated moment matrices are

1 0.0 0.0 1.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

1.0 0.0 0.0 1.0

 ,

 5.0 0.0 5.0
0.0 0.0 0.0
5.0 0.0 5.0

 .

The lower bound we get is f∗
2 ≈ 4.029500408×10−24. More-

over, by SDPTools in Maple [2], we can obtain the certified
lower bound

f∗∗
2 = −4.029341206383157355520229568612510632× 10−24

by writing f − f∗∗
2 as an exact rational SOS over WA

M [7, 8].

Example 5.3. Consider the following polynomial

f(x, y) = 2y4(x+ y)4 + y2(x+ y)2 + 2y(x+ y) + y2.

As mentioned in [3], we have f∗ = − 5
8
and f does not attain

its infimum. It is also observed in [3] that there are obviously
numerical problems since the output of their algorithm are
f∗
0 = −0.614, f∗

1 = −0.57314, f∗
2 = −0.57259, and f∗

3 =
−0.54373.
In fact, we have f∗ = f sos = − 5

8
since

f +
5

8
=

(2y2 + 2xy + 1)
2
(2y2 + 2xy − 1)

2

8

+
(2y2 + 2xy + 1)

2

2
+ y2.



If we take xn = −( 1
n
+ n

2
), yn = 1

n
− 1

n3 , it can be verified

that − 5
8
is a generalized critical value of f . For k = 4, if we

do not exploit the sparsity structure, and choose

md1(X̄) = md2(X̄) := [1, x, y, x2, xy, y2, x3, x2y, xy2,

y3, x4, x3y, x2y2, xy3, x4]T ,

then numerical problems will appear.
By exploiting the sparsity structure of the SOS problem,

we get

md1(X̄) = md2(X̄) := [1, y, y2, xy, y3, xy2, y4, xy3, x2y2]T ,

the terms which cause ill-conditionedness of the moment ma-
trix are removed. The lower bound computed by our SDP
solver in Maple is f∗

4 = −0.625000000000073993. It is very
close to the true infimum −0.625.

6. CONCLUSIONS
We use important properties in the computation of gen-

eralized critical values of a polynomial mapping [18, 19] and
Theorem 1.3 to given a method to solve optimization (1).
We do not require that f attains the infimum in Rn and
use a much simpler variety in the SOS representation. We
try to investigate and fix the numerical problems involved in
computing the infimum of polynomials in Example 5.1 and
5.3. The strategies we propose here are just a first try. We
hope to present a more general method to overcome these
numerical problems in future.
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