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Abstract

It is known that point searching in basic semialgebraic sets and the search for
globally minimal points in polynomial optimization tasks can be carried out using
(s d)O(n) arithmetic operations, where n and s are the numbers of variables and
constraints and d is the maximal degree of the polynomials involved.

Subject to certain conditions, we associate to each of these problems an intrinsic
system degree which becomes in worst case of order (nd)O(n) and which measures
the intrinsic complexity of the task under consideration.

We design non-uniform deterministic or uniform probabilistic algorithms of in-
trinsic, quasi-polynomial complexity which solve these problems.
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1 Introduction

We develop uniform bounded error probabilistic and non–uniform deterministic algo-
rithms of intrinsic, quasi-polynomial complexity for the point searching problem in
basic semialgebraic sets and for the search of isolated local and global minimal points
in polynomial optimization. The semialgebraic sets and optimization problems have
to satisfy certain well motivated geometric restrictions which allow to associate with
them an intrinsic system degree (see Section 3.2) that controls the complexity of our
algorithms and constitutes the core of their intrinsic character. The algorithms we are
going to design will become then polynomial in the length of the extrinsic description
of the problem under consideration and its system degree (we take only arithmetic op-
erations and comparisons in Q into account at unit costs). The idea is that the system
degree constitutes a geometric invariant which measures the intrinsic “complexity” of
the concrete problem under consideration (not of all problems like a worst case com-
plexity). In worst case the sequential time complexity will be of order

(
s
p

)
(n d)O(n)

(respectively (n d)O(n) ), where n is the number of variables and d the maximal degree
of the polynomials occurring in the problem description, s their number and 1 ≤ p ≤ n
the maximal codimension of the real varieties given by the active constraints. We shall
suppose that these polynomials are represented as outputs of an essentially division–free
arithmetic circuit in Q[X1, . . . , Xn] of size L (here, we mean by essentially division-
free that only divisions by rational numbers are allowed). The (sequential) complexity
of our algorithms is then of order L

(
s
p

)
nO(p)dO(1)δ3 (respectively L(n d)O(1)δ3 ), where

δ is the intrinsic system degree which in worst case becomes of order (n d)O(n) . We
call this type of complexity bounds intrinsic and quasi-polynomial.

For the problem of deciding the consistency of a given set of inequality constraints
and of finding, in case the answer is positive, a real algebraic sample point for each
connected component of the corresponding semialgebraic set, sequential time bounds
of simply exponential order, e.g. (sd)O(n) , are exhibited in Grigor’ev and Vorobjov
[27], Canny [13], Renegar [41, 42], Heintz, Roy and Solernó [31], Basu, Pollack and
Roy [7] and the book [8]. Such bounds can also be derived from efficient quantifier
elimination algorithms over the reals ([31, 42, 7, 8]). Since two alternating blocks of
quantifiers become involved, one would expect at first glance that only a (sd)O(n2)

time complexity bound could be deduced from efficient real quantifier elimination for
polynomial optimization problems. But, at least for global optimization, one can do
much better with an s2n+1dO(n) sequential time bound (see [8], Algorithm 14.46).
For particular global polynomial optimization problems the constant hidden in this
bound can be made precise and the algorithms become implementable (see Greuet and
Safey El Din [24, 25], Safey el Din [46, 45], Greuet [23] and Jeronimo and Perucci
[33]). Accurate estimations for the minima are contained in [32]. The main difference
with our approach is that these papers contain extrinsic worst case complexity bounds
whereas our bounds are intrinsic.

Nevertheless, this article does not focus on the improvement of known worst case
complexity bounds in optimization theory. Our aim is to exhibit classes of point
searching problems in semialgebraic sets and polynomial optimization problems where
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it makes sense to speak about intrinsic complexity of solution algorithms. This is the
reason why we put the accent on geometrical aspects of these problems. The algorithms
become then borrowed from [22] (see also [20, 21, 30, 18, 12]) and, in particular, from
[2, 3] (or alternatively from [44]).

1.1 Notions and Notations

We shall freely use standard notions, results and notations from algebraic and semial-
gebraic geometry, commutative algebra and algebraic complexity theory which can be
found e.g. in the books [37, 47, 38, 11].

Let Q , R and C be the fields of the rational, real and complex numbers, respectively,
let X1, . . . , Xn be indeterminates over C and let F1, . . . , Fp, 1 ≤ p ≤ n , be polynomials
of R[X1, . . . , Xn] defining a closed, R–definable subvariety S of the n–dimensional
complex affine space Cn .

We denote by SR := S ∩Rn the real trace of the complex variety S . We shall use also
the following notations:

{F1 = 0, . . . , Fp = 0} := S and {F1 = 0, . . . , Fp = 0}R := SR.

For a given polynomial Q ∈ R[X1, . . . , Xn] we denote by SQ and (SR)Q the sets of
points of S and SR at which Q does not vanish and call SQ the localization of S at
{Q = 0} .

We call a regular sequence F1, . . . , Fp reduced if for any index 1 ≤ k ≤ p the ideal
(F1, . . . , Fk) is radical. A point x of Cn is called (F1, . . . , Fp) –regular if the Jacobian

J(F1, . . . , Fp) :=
[
∂Fj

∂Xk

]
1≤j≤p
1≤k≤n

has maximal rank p at x . Observe, that for each reduced

regular sequence F1, . . . , Fp defining the variety S , the locus of (F1, . . . , Fp) –regular
points of S is the same. In this case we call an (F1, . . . , Fp) –regular point of S simply
regular (or smooth) or we say that S is regular (or smooth) at x . The variety S is
called (F1, . . . , Fp) –regular or smooth if S is (F1, . . . , Fp) –regular at any of its points.

Notice that the polynomials F1, . . . , Fp form locally a reduced regular sequence at any
(F1, . . . , Fp) –regular point of S .

Suppose for the moment that V is a closed subvariety of Cn . For V irreducible we
define its degree deg V as the maximal number of points we can obtain by cutting V
with finitely many affine hyperplanes of Cn such that the intersection is finite. Observe
that this maximum is reached when we intersect V with dimension of V many generic
affine hyperplanes of Cn . In case that V is not irreducible let V = C1 ∪ · · · ∪ Cs be
the decomposition of V into irreducible components. We define the degree of V as
deg V :=

∑
1≤j≤s degCj .

With this definition we can state the so-called Bézout Inequality:

Let V and W be closed subvarieties of Cn . Then we have

deg(V ∩W ) ≤ deg V · degW.

If V is a hypersurface of Cn then its degree equals the degree of its minimal equation.
The degree of a point of Cn is just one. For more details we refer to [29, 19, 48].

3



Let 1 ≤ i ≤ n− p and let a := [ak,l] 1≤k≤n−p−i+1
0≤l≤n

be a real ((n− p− i + 1)× (n + 1)–

matrix with (a1,0, . . . , an−p−i+1,0) 6= 0 and suppose that [ak,l] 1≤k≤n−p−i+1
1≤l≤n

has maximal

rank n− p− i+ 1.

The i th dual polar variety of S associated with the matrix a is defined as closure of
the locus of the (F1, . . . , Fp) –regular points of S where all (n− i + 1)–minors of the
polynomial ((n− i+ 1)× n) –matrix

∂F1

∂X1
· · ·

∂F1

∂Xn
...

...
...

∂Fp

∂X1
· · ·

∂Fp

∂Xn
a1,1 − a1,0X1 · · · a1,n − a1,0Xn

...
...

...
an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn


vanish.

Strictly speaking this notion of dual polar variety depends rather on the scheme given
by the ideal generated by the polynomials F1, . . . , Fp than on the variety S itself.
We shall not stick on the distinction between schemes and varieties, because it will be
irrelevant in the sequel.

Observe that this definition of dual polar varieties may be extended to the case that
there is given a Zariski open subset O of Cn and that S is now the locally closed
subvariety of Cn given by

S := {F1 = 0, . . . , Fp = 0} ∩O.

In [2] and [3] we have introduced the notion of dual polar variety of S and motivated
by geometric arguments the calculatory definition above of these objects. Moreover,
we have shown that, for a real ((n− p− i+ 1)× (n+ 1))–matrix a = [ak,l] 1≤k≤n−p−i+1

0≤l≤n

with [ak,l] 1≤k≤n−p−i+1
1≤l≤n

generic, the i th dual polar variety is either empty or of pure

codimension i in S . Further, we have shown that this polar variety is normal and
Cohen–Macaulay (but not necessarily smooth) at any of their (F1, . . . , Fp) –regular
points (see [4], Corollary 2 and Section 3.1). This motivates the consideration of the
so–called generic dual polar varieties associated with real ((n− p− i+ 1)× (n+ 1))–
matrices a which are generic in the above sense, as invariants of the variety S .

For our use of the word “generic” we refer to [4], Definition 1.

In case that S is closed and that any point of SR is (F1, . . . , Fp) –regular, the i th
dual polar variety associated with a contains at least one point of each connected
component of SR and is therefore not empty (see [2] and [3], Proposition 2).

If S is only locally closed and a is generic, then any (F1, . . . , Fp) –regular point of
SR , which is a local minimizer of the distances of (a1,1

a1,0
, . . . , a1,n

a1,0
) to the points of SR ,

belongs to the i th dual polar variety of S associated with a (this fact is an immediate
consequence of the proof [2] and [3], Proposition 2).

When speaking about generic dual polar varieties we shall always suppose that there
is given a generic real or rational (n− p)× (n+ 1) matrix and that for 1 ≤ i ≤ n− p
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the i th dual polar variety is associated with the first n− p− i+ 1 rows of this matrix.
Hence our generic dual polar varieties will be arranged in descending chains.

1.2 Algorithmic tools

In the sequel we shall make use of the Kronecker algorithm in the form of [22], Theorem
1 and 2 and of the following result which constitutes a reformulation and a slight
sharpening of [2], Theorem 11 and [3], Theorem 13. This sharpening is obtained by
applying [6], Lemma 10 in the spirit of [6], Section 5.1 to the original proofs.

Let Q,F1, . . . , Fp ∈ Q[X1, . . . , Xn], 1 ≤ p ≤ n , be polynomials with Q 6= 0 and
degFj ≤ d, 1 ≤ j ≤ p . Assume that the polynomials Q,F1, . . . , Fp are given as
outputs of an essentially division–free circuit β in Q[X1, . . . , Xn] of size L .

Theorem 1
Let δ be the maximal degree of the Zariski closure of the (F1, . . . , Fp)–regular locus
of {F1 = 0, . . . , Fj = 0}Q, 1 ≤ j ≤ p, and of all generic dual polar varieties of
SQ = {F1 = 0, . . . , Fp = 0}Q .

There exists a uniform bounded error probabilistic algorithm over Q which computes
from the input β in time L(n d)O(1)δ2 ≤ (n d)O(n) a representation by univariate
polynomials of degree at most δ of a suitable, over Q–defined, (n− p) th generic dual
polar variety of SR .

For any n, d, p, L, δ ∈ N with 1 ≤ p ≤ n this algorithm may be realized by an
algebraic computation tree over Q of depth L (n d)O(1) δ2 ≤ (n d)O(n) that depends on
certain parameters which are chosen randomly.

In view of the comments made at the end of Subsection 1.1, we may apply the algorithm
of Theorem 1 in two ways to the problem of finding real algebraic sample points of SR .

The first way is to suppose Q = 1 and that any real point of the closed variety
S = {F1 = 0, . . . , Fp = 0} is (F1, . . . , Fp) –regular. Then the algorithm returns a real
algebraic sample for each connected component of SR . In Section 2 we shall proceed
in this manner.

The second way works for locally closed varieties as well (i.e., in case Q /∈ Q ) and
consists in the search for (F1, . . . , Fp) –regular real points of SQ which are local min-
imizers of the distances of a suitable chosen point of Rn to the elements of the real
trace of SQ . In Subsection 3.2.2 below we shall proceed in this manner in order to
prove Theorem 12.

2 Inequalities

Let F1, . . . , Fs ∈ R[X1, . . . , Xn] and 1 ≤ p ≤ min{s, n} .

Condition A

Let 1 ≤ j1 < · · · < jk ≤ s, 1 ≤ k ≤ p . Then any point of the semialgebraic set
{Fj1 = 0, . . . , Fjk = 0}R is (Fj1 , . . . , Fjk) –regular. Moreover, any p+ 1 polynomials of
F1, . . . , Fs have no common real zero.
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Until the end of this section we shall tacitly assume that the polynomials F1, . . . , Fs
satisfy Condition A.

For ε1, . . . , εs ∈ {−1, 1} let

{signF1 = ε1, . . . , signFs = εs} := {x ∈ Rn | signF1(x) = ε1, . . . , signFs(x) = εs}.

From now on we shall suppose without loss of generality ε1 = · · · = εs = 1 and write

{F1 > 0, . . . , Fs > 0} instead of {signF1(x) = 1, . . . , signFs(x) = 1}.

For the next two statements, let us fix a maximal index set 1 ≤ j1 < · · · < jk ≤ s, 1 ≤
k ≤ p with

{Fj1 = 0, . . . , Fjk = 0}R ∩ {F1 > 0, . . . , Fs > 0} 6= ∅.

Lemma 2
{Fj1 = 0, . . . , Fjk = 0}R ∩ {F1 > 0, . . . , Fs > 0} =

= {Fj1 = 0, . . . , Fjk = 0}R ∩ {Fj > 0, 1 ≤ j ≤ s, j 6= j1, . . . , j 6= jk}.

Proof. We show first the inclusion of the left hand side of the set equation in the
right hand side. For this purpose, let x be an arbitrary point of {Fj1 = 0, . . . , Fjk =

0}R ∩ {F1 > 0, . . . , Fs > 0} . Suppose that there exists an index 1 ≤ j ≤ s, j 6=
j1, . . . , j 6= jk with Fj(x) = 0 . Then x belongs to {Fj1 = 0, . . . , Fjk = 0, Fj =

0}R ∩ {F1 > 0, . . . , Fs > 0} which by the maximal choice of 1 ≤ j1 < · · · < jk ≤ s is
empty. Therefore, we have Fj(x) 6= 0 for any index 1 ≤ j ≤ s, j 6= j1, . . . , j 6= jk .

Since x belongs to {F1 > 0, . . . , Fs > 0} , we have Fj(x) > 0 .

We are now going to show the inverse inclusion. Consider an arbitrary point x ∈
{Fj1 = 0, . . . , Fjk = 0}R ∩ {Fj > 0, 1 ≤ j ≤ s, j 6= j1, . . . , j 6= jk} and let U be an
arbitrary neighborhood of x in Rn . Without loss of generality we may assume that
U is contained in {Fj > 0, 1 ≤ j ≤ s, j 6= j1, . . . , j 6= jk} . Since by Condition A
the point x is contained in the (Fj1 , . . . , Fjk) –regular set {Fj1 = 0, . . . , Fjk = 0}R ,
the polynomial map from Rn to Rk given by (Fj1 , . . . , Fjk) is a submersion at x and
therefore there exists a point y ∈ U with Fj1(y) > 0, . . . , Fjk(y) > 0 . Because U was
an arbitrary neighborhood of x , we conclude that x belongs to {Fj1 = 0, . . . , Fjk =

0}R ∩ {F1 > 0, . . . , Fs > 0} . 2

Corollary 3
Let C be a connected component of {Fj1 = 0, . . . , Fjk = 0}R with C∩{F1 > 0, . . . , Fs
> 0} 6= ∅ . Then

C ⊂ {Fj > 0, 1 ≤ j ≤ s, j 6= j1, . . . , j 6= jk}.

Proof. Lemma 2 implies that the set

{Fj1 = 0, . . . , Fjk = 0}R ∩ {F1 > 0, . . . , Fs > 0}

is open and closed in {Fj1 = 0, . . . , Fjk = 0}R . Therefore this set is the union of all the
connected components of {Fj1 = 0, . . . , Fjk = 0}R which have a nonempty intersection

with {F1 > 0, . . . , Fs > 0} . This implies Corollary 3. 2
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2.1 Converting non-strict inequalities into strict ones

Let 1 ≤ k ≤ p, 1 ≤ j1 < · · · < jk ≤ s and let x = (x1, . . . , xn) be a point of
{Fj1 = 0, . . . , Fjk = 0}R ∩ {F1 > 0, . . . , Fs > 0} . Thus x satisfies the system of
non-strict inequalities

Fj1(x) ≥ 0, . . . , Fjk(x) ≥ 0, Fj(x) > 0, 1 ≤ j ≤ s, j 6= j1, . . . , j 6= jk

Starting from x we wish to construct a point y ∈ Rn which satisfies the strict inequal-
ities

Fj(y) > 0, 1 ≤ j ≤ s.

From Condition A we conclude that the Jacobian J(Fj1 , . . . , Fjk) has full rank k at x .
Therefore we may efficiently find a vector µ = (µ1, . . . , µn) ∈ Rn such that the entries
of J(Fj1 , . . . , Fjk)(x)µT are all positive (here, µT denotes the transposed vector of µ ).

Let Y be a new indeterminate and for 1 ≤ j ≤ s let Gj := Fj(µ1Y + x1, . . . , µnY +

xn) . Observe, that the univariate polynomial Gj satisfies the equation
dGj

dY
(0) =∑

1≤i≤n
∂Fj

∂Xi
(x)µi . In particular, the entries of

(
dGj1

dY
(0), . . . ,

dGjk

dY
(0)) = J(Fj1 , . . . , Fjk)(x)µT

are all positive. Let c > 0 be the smallest positive zero of
∏

1≤j≤sGj (if there exists
none, c may be any positive real number). Then one verifies immediately that z :=
x+ c

2
µ satisfies for any index 1 ≤ j ≤ s the condition Fj(z) = Gj(

c
2
) > 0 .

2.2 Finding sample points for all consistent sign conditions

Let (ε1, . . . , εs) ∈ {−1, 0, 1}s . The polynomial inequality system signF1 = ε1, . . . , sign
Fs = εs is called a sign condition on F1, . . . , Fs which we say to be consistent if there
exists a point x ∈ Rn satisfying it. In case (ε1, . . . , εs) ∈ {−1, 1}s we call the sign
condition strict, otherwise nonstrict . A real algebraic point of Rn which is supposed
to be encoded “à la Thom” [14] and to satisfy the sign condition is called a sample
point of it .

Let F1, . . . , Fs be given as outputs of an essentially division–free arithmetic circuit β
in Q[X1, . . . , Xn] (hence, F1, . . . , Fs belong to Q[X1, . . . , Xn] ). Let d ≥ 2 be an upper
bound of degF1, . . . , degFs . For 1 ≤ k ≤ p and 1 ≤ j1 < · · · < jk ≤ s let δj1,...,jk be
the maximal degree of {Fj1 = 0, . . . , Fjk = 0} and all generic dual polar varieties of
this variety. Let finally

δ := max{δj1,...,jk | 1 ≤ j1 < · · · < jk ≤ s, 1 ≤ k ≤ p}.

We call δ the degree of the sample point finding problem for all consistent sign con-
ditions of F1, . . . , Fs . From the Bézout Inequality we deduce δ ≤ (nd)O(n) . Using
Theorem 1 we construct for each 1 ≤ k ≤ p and 1 ≤ j1 < · · · < jk ≤ s real algebraic
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sample points for each connected component of {Fj1 = 0, . . . , Fjk = 0}R . Then we
evaluate the signs of all Fj, 1 ≤ j ≤ s j 6= j1, . . . , j 6= jk on these sample points,
which we think encoded “à la Thom” by univariate polynomials over Q of degree at
most δ . For this purpose we apply [43], Proposition 4.9 (compare also [15] and [40])
at a computational cost of O(δ3) .
By Corollary 3 we obtain in this way sample points for all non-strict consistent sign
conditions on F1, . . . , Fs . As far as only sample points for the strict sign conditions
on F1, . . . , Fs are required, we limit our attention to sample points of the connected
component of {Fj1 = 0, . . . , Fjk = 0}R where the signs of all Fj, 1 ≤ j ≤ s j 6=
j1, . . . , j 6= jk are all strict. Let x be such a sample point with signFj(x) = εj , and
εj ∈ {−1, 1} for 1 ≤ j ≤ s with j 6= j1, . . . , j 6= jk .

Then, following Subsection 2.1, for any εj1 , . . . , εjk ∈ {−1, 1} we may convert x into
a real algebraic sample point of the strict sign conditions signF1 = ε1, . . . , signFs =
εs . The whole procedure can be realized in time L

(
s
p

)
nO(p) dO(1) δ3 (here arithmetic

operations and comparisons in Q are taken into account at unit costs). We have
therefore shown the following statement which constitutes a simplified variant of [36],
Theorem 5.

Theorem 4
Let n, d, p, s, L, δ ∈ N with 1 ≤ p ≤ n be arbitrary and let F1, . . . , Fs ∈ Q[X1, . . . , Xn]
be polynomials of degree at most d satisfying Condition A and having sample point
finding degree at most δ . Suppose that F1, . . . , Fs are given as outputs of an essentially
division-free circuit β in Q[X1, . . . , Xn] of size L .

There exists a uniform bounded error probabilistic algorithm A over Q which com-
putes from the input β in time L

(
s
p

)
nO(p) dO(1) δ3 ≤

(
s
p

)
(nd)O(n) real algebraic sample

points for each consistent sign condition on F1, . . . , Fs .

For any n, d, p, s, L, δ ∈ N with 1 ≤ p ≤ n the probabilistic algorithm A may
be realized by an algebraic computation tree over Q of depth L

(
s
p

)
nO(p) dO(1) δ3 ≤(

s
p

)
(n d)O(n) that depends on certain parameters which are chosen randomly.

Condition A requires that for every 1 ≤ k ≤ p and 1 ≤ j1 < · · · < jk ≤ s any
point of the semialgebraic set {Fj1 = 0, . . . , Fjk = 0}R is (Fj1 , . . . , Fjk) –regular. This
requirement may be relaxed using the algorithmic tools developed in [6]. More restric-
tive is the requirement that any p + 1 polynomials of F1, . . . , Fs have no common
real zero. If we drop this requirement, we have to modify the notion of the degree δ
of the sample point finding problem for all consistent sign conditions of F1, . . . , Fs .
We obtain then a complexity bound of order L

(
s
n

)
nO(n) dO(1) δ3 ≤

(
s
n

)
(nd)O(n) . The

exponential behavior of the “combinatorial” complexity
(
s
n

)
nO(n) cannot be avoided,

since for F1, . . . , Fs being generic polynomials of degree one at least
(
s
n

)
2n distinct

sign conditions become satisfied.
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3 Optimization

We associate with a polynomial optimization problem with smooth equality constraints
certain natural geometric conditions and an intrinsic invariant that controls the com-
plexity of the algorithm which we are going to develop in order to solve this problem.
Our approach has some features in common with that of [26].

3.1 Geometric considerations

Let be given polynomials G,F1, . . . , Fp ∈ R[X1, . . . , Xn], 1 ≤ p ≤ n , and let V :=
{F1 = 0, . . . , Fp = 0} . We suppose for the rest of this paper that VR is not empty and
that any point of VR is (F1, . . . , Fp) –regular.

From now on, let J denote an ordered sequence of indices j1, . . . , jp with 1 ≤ j1 <
· · · < jp ≤ n .

For such an index sequence J denote by ∆J the p–minor of the Jacobian J(F1, . . . , Fp)
given by the columns numbered by the elements of J and by

MJ
1 , . . . ,M

J
n−p

the (p+ 1)–minors of ((p+ 1)× n) –matrix[
J(F1, . . . , Fp)
∂G
∂X1
· · · ∂G

∂Xn

]
given by the columns numbered by the elements of J to which we add, one by one,
the columns numbered by the indices belonging to the set {1, . . . , n} \ J .

Let x be a local minimal point of G on VR . Then the Karush-Kuhn-Tucker condi-

tions imply that rk

[
J(F1, . . . , Fp)
∂G
∂X1
· · · ∂G

∂Xn

]
(x) ≤ p holds. We consider the subset W of V

satisfying this rank condition, i.e.,

W := {x ∈ V | rk
[
J(F1, . . . , Fp)
∂G
∂X1
· · · ∂G

∂Xn

]
(x) ≤ p}.

Let J be fixed and let us consider the localization W∆J of W outside of the hyper-
surface {∆J = 0} . In [1] we developed a succinct local description of determinantal
varieties. The main tool for this description was a general Exchange Lemma which
depicts an exchange relation between certain minors of a given matrix . Applying this
Exchange Lemma we conclude

W∆J = V∆J ∩ {MJ
1 = 0, . . . ,MJ

n−p = 0}.

For the rest of this paper we shall assume that the polynomials G and F1, . . . , Fp
satisfy the following condition.

Let Dk denote the union of all irreducible components of W of dimension strictly
larger than n− p− k . Observe that Dn−p+1 is also well defined.
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Condition B

Let J be an arbitrary index sequence, 1 ≤ k ≤ n− p and denote by CJ1 , . . . , C
J
sJ

the

irreducible components of (V∆J ∩ {MJ
1 = 0, . . . ,MJ

k = 0}) \Dk . Then any point of(
(VR)∆J ∩ {MJ

1 = 0, . . . ,MJ
k = 0}R

)
\ (Dk)R

is (F1, . . . , Fp,M
J
1 , . . . ,M

J
k ) –regular. Moreover for any 1 ≤ j ≤ sJ the semialgebraic

set (CJj )R is non-empty and each irreducible component of W is of dimension strictly
smaller than n− p and contains a real point.

In particular, Condition B implies that the real trace of V∆J ∩ {MJ
1 = 0, . . . ,MJ

k =
0} \ Dk is smooth at any of its points . This entails that for 1 ≤ i < j ≤ sJ the
semialgebraic sets (CJi )R and (CJj )R have an empty intersection.

Condition B allows to establish a bridge between semialgebraic and algebraic geometry
(see below the proofs of Lemma 5 and 6).

Lemma 5
Let notations be as in Condition B, which we suppose to be satisfied, and let J be an

arbitrary index sequence. Then for any 1 ≤ j ≤ sJ , we have dimCJj = n− p− k .

Proof. From Condition B we infer that there exists an open semialgebraic subset U
of Rn , disjoint from (Dk∪CJ1 ∪ · · · ∪CJj−1∪CJj+1∪ · · · ∪CJsJ })R , with U ∩(CJj )R 6= ∅ .
This implies

U ∩ (VR)∆J ∩ {MJ
1 = 0, . . . ,MJ

k = 0}R = U ∩ (CJj )R.

From U ∩ (Dk)R = ∅ and Condition B we deduce now that any point of the non–
empty semialgebraic set U ∩ (CJj )R is (F1, . . . , Fp,M

J
1 , . . . ,M

J
k ) –regular. In partic-

ular, CJj is included in {F1 = 0, . . . , Fp = 0,MJ
1 = 0, . . . ,MJ

k = 0} and contains a

(F1, . . . , Fp,M
J
1 , . . . ,M

J
k ) –regular point. This implies dimCJj ≤ n− p− k . From the

definition of CJj we infer dimCJj ≥ n−p−k . Therefore we have dimCJj = n−p−k .
2

Lemma 6
Suppose that Condition B is satisfied and let C be an irreducible component of W .
Then G takes a constant real value on C .

Proof. Since by assumption VR = {F1 = 0, . . . , Fp = 0}R is smooth and since CR
is nonempty by Condition B, there exists an index sequence J with (CR)∆J 6= ∅ .
Furthermore, there exists an index 1 ≤ k ≤ n− p with dimC = n− p− k .

By Lemma 5, we may assume without loss of generality that C∆J \Dk = CJ1 holds.
Let x be an arbitrary point of (CJ1 )R . As we have seen in the proof of Lemma 5, there
exists an open semialgebraic neighborhood U of x in Rn with

U ∩ (VR)∆J ∩ {MJ
1 = 0, . . . ,MJ

k = 0}R = U ∩ (CJ1 )R

and U∩(Dk)R = ∅ . Condition B implies now that U∩(CJ1 )R is a smooth semialgebraic
manifold which we may suppose to be connected by continuously differentiable paths.

10



Let y be an arbitrary point of U ∩ (CJ1 )R and let τ be a continuously differentiable
path in U ∩ (CJ1 )R that connects x with y . We may suppose that τ can be extended
to a suitable open neighborhood of [0, 1] in R and that τ(0) = x and τ(1) = y
holds. Observe that τ([0, 1]) is contained in VR . The path τ depends on a param-
eter T defined in the given neighborhood of [0, 1] . Let τ(T ) := (τ1(T ), . . . , τn(T )) .
Since τ([0, 1]) is contained in VR the vector (dτ1

dT
(t), . . . , dτn

dT
(t)) belongs to the ker-

nel of J((F1, . . . , Fp))(τ(t)) for any t ∈ [0, 1] . On the other hand, CJ1 ⊂ C ⊂ W
implies that ( ∂G

∂X1
(τ(t)), . . . , ∂G

∂Xn
(τ(t)) is linearly dependent on the full rank matrix

J(F1, . . . , Fp)(τ(t)) . Therefore we have d(G◦τ)
dT

(t) =
∑n

i=1
∂G
∂Xi

(τ(t))dτi
dT

(t) = 0 for any
t ∈ [0, 1] . Hence, G◦τ is constant on [0, 1] . Consequently, we have G(x) = G(τ(0)) =
G(τ(1)) = G(y) . From the arbitrary choice of x and y in U ∩ (CJ1 )R we infer that G
takes on U ∩ (CJ1 )R a constant value. Thus the restriction of G to the semialgebraic
set (CJ1 )R is locally constant and takes therefore only finitely many values in R .

By Condition B there exists an (F1, . . . , Fp,M
J
1 , . . . ,M

J
k ) –regular point x = (x1, . . . , xn)

of (CJ1 )R . Hence, there exists an open semialgebraic neighborhood U ′ of x in Rn and
n− p− k parameters ξ1, . . . , ξn−p−k of U ′∩CJ1 such that the restriction of G to U ′∩
(CJ1 )R can be developed into a convergent power series P (ξ1−x1, . . . , ξn−p−k−xn−p−k)
around (x1, . . . , xn−p−k) . Since G is locally constant on U ′ ∩ (CJ1 )R we conclude that
P (ξ1 − x1, . . . , ξn−p−k − xn−p−k) equals its constant term, say b ∈ R .

On the other hand, there exists an open neighborhood O of x in Cn such that the
restriction of G to O ∩ CJ1 can be developed into a convergent power series in ξ1 −
x1, . . . , ξn−p−k−xn−p−k . This power series must necessarily be P (ξ1−x1, . . . , ξn−p−k−
xn−p−k) . Thus G takes on O ∩ CJ1 only the real value b . Suppose that G takes on
CJ1 a value different from b . Then (CJ1 )G−b is nonempty and therefore (by [37], Ch.
I, Section 10, Corollary 1) dense in the Euclidean topology of CJ1 . In particular, there
exists a point y ∈ O ∩ CJ1 with G(y) 6= b . This contradiction implies that G takes
on CJ1 the constant value b . Lemma 6 follows now from the fact that CJ1 is dense in
C . 2

A formally different result of the same spirit as Lemma 6 is [17], Lemma 3.3. Its proof
can be transformed into an alternative argument for Lemma 6.

Let 1 ≤ k ≤ n − p . By Lemma 6 the polynomial G takes on Dk only finitely many
values which are all real algebraic. We denote Bk := G(Dk) the set of these values.

To any index sequence J we may associate a Hessian matrix HJ of G on V∆J

whose entries belong to R[X1, . . . , Xn]∆J . The following condition reflects the intuitive
meaning of the Hessian.

Condition C

Let J be an arbitrary index sequence. Then the rational function detHJ does not
vanish at any (F1, . . . , Fp,M

J
1 , . . . ,M

J
n−p) –regular real point of W∆J .

Lemma 7
Suppose that Conditions B and C are satisfied and let J be an arbitrary index se-
quence. Then the set of isolated local minimal points of G on (VR)∆J is exactly the
set of (F1, . . . , Fp,M

J
1 , . . . ,M

J
n−p)–regular points of (WR)∆J where HJ is positive

definite.

11



Proof. Let J be an arbitrary index sequence. From the Morse Lemma (see [16]) one
deduces easily that the points of (WR)∆J where HJ is positive definite, are isolated
local minimizers of G on (VR)∆J . So, we have only to show that the isolated local
minimal points of G in (VR)∆J belong to (WR)∆J , are (F1, . . . , Fp,M

J
1 , . . . ,M

J
n−p) –

regular and that their Hessians are positive definite.

Let x ∈ (VR)∆J be an isolated minimal point of G in (VR)∆J . Then, as we have
seen, x belongs to (WR)∆J . Let C be an arbitrary irreducible component of W∆J

which contains x . Let n − p − k with 1 ≤ k ≤ n − p be the dimension of C .
Suppose that 1 ≤ k < n− p holds. Condition B implies now that there exists an open
subset of (F1, . . . , Fp,M

J
1 , . . . ,M

J
k ) –regular points of CR which is dense in CR . This

implies that any neighborhood of x in CR contains a point y different from x . Since
G(y) = G(x) holds by Lemma 6, the local minimal point x of G in (VR)∆J cannot be
isolated. Therefore, we have k = n − p . From Condition B we deduce now that x is
(F1, . . . , Fp,M

J
1 , . . . ,M

J
n−p) –regular. Hence, by Condition C, we have detHJ (x) 6= 0.

The Morse Lemma implies now that HJ (x) must be positive definite for x being an
isolated local minimal point of G in (VR)∆J . 2

Finally let us comment the regularity requirement contained in Condition B by two
classes of examples.

Let (a1, . . . , an) ∈ Rn be a generic vector and let G := a1X1 + · · · + anXn or G :=
(a1 − X1)2 + · · · + (an − Xn)2 . Furthermore, let F1, . . . , Fp be as at the beginning
of this subsection. Mimicking the argumentation of [4], Section 3 we see that for
any index sequence J and any index 1 ≤ k ≤ n − p every point of the real trace
of V∆J ∩ {MJ

1 = 0, . . . ,MJ
k = 0} is (F1, . . . , Fp,M

J
1 , . . . ,M

J
k ) –regular. Hence the

regularity requirement contained in Condition B becomes satisfied for this kind of
examples.

3.1.1 Unconstrained optimization

We illustrate our argumentation in the case of unconstrained optimization. In this case
we have p := 0 and V is the complex affine space Cn . There is given a polynomial
G ∈ R[X1, . . . , Xn] and the task is to characterize the isolated local and global minimal
points of G in Rn . Such a local minimal point belongs to W := { ∂G

∂X1
= 0, . . . , ∂G

∂Xn
=

0} . For the unconstrained optimization problem we consider the following condition.

Let Dk be the union of all irreducible components of W of dimension strictly larger
than n− k .

Condition D

Let 1 ≤ k ≤ n and let C1, . . . , Cs be the irreducible components of { ∂G
∂X1

= 0, . . . , ∂G
∂Xk

=

0} \Dk . Any point of { ∂G
∂X1

= 0, . . . , ∂G
∂Xk

= 0}R \ (Dk)R is ( ∂G
∂X1

, . . . , ∂G
∂Xk

) –regular.

For any 1 ≤ j ≤ s the semialgebraic set (Cj)R is non empty. Moreover, any irreducible
component of W contains a real point.

If Condition D is satisfied by G we can prove in the same way as in case of Lemma 5,
6 and 7 the following corresponding statements.
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Lemma 8
Let notations be as in Condition D, which we suppose to be satisfied. Then for any
1 ≤ j ≤ s , we have dimCj = n− k .

Lemma 9
Suppose that Condition D is satisfied and let C be an irreducible component of W .
Then G takes a constant real value on C .

Let 1 ≤ k ≤ n . By Lemma 9 the polynomial G takes on Dk only finitely many values
which are all real algebraic. We denote by Bk := G(Dk) the set of these values.

Lemma 10
Suppose that Condition D is satisfied. Then the set of isolated local minimal points of
G in Rn is exactly the set of points of WR where the Hessian of G is positive definite.

Let G ∈ R[X1, . . . , Xn] be a generic polynomial of degree two. The linear subspaces
defined by ∂G

∂X1
, . . . , ∂G

∂Xk
intersect transversally. Hence Condition D is satisfied.

3.2 Algorithms

Let notations and assumptions be as in the previous subsection. We associate with
G and F1, . . . , Fp intrinsic invariants that control the complexity of the algorithms
we are going to develop in order to solve the computational problems of minimizing
locally and globally G on the set of points in Rn defined by the equality constraints
F1 = 0, . . . , Fp = 0.

Let G and F1, . . . , Fp ∈ Q[X1, . . . , Xn] be given as outputs of an essentially division–
free arithmetic circuit β in Q having size L . Let d ≥ 2 be an upper bound for
degG, degF1, . . . , degFp .

3.2.1 The isolated local minimal point searching problem

In this subsection we shall assume that the polynomials G and F1, . . . , Fp satisfy
Condition B and C.

We consider the task of finding all isolated local minimal points of G in VR = {F1 =
0, . . . , Fp = 0}R . For this purpose we search for every index sequence J the isolated
local minimal points of G in the corresponding chart (VR)∆J . Let RJ be the determi-
nant of the Jacobian of F1, . . . , Fp,M

J
1 , . . . ,M

J
n−p and let δJ be the maximal degree

of the Zariski closures in Cn of all locally closed sets

{F1 = 0, . . . , Fj = 0}∆J ·RJ , 1 ≤ j ≤ p, and

{F1 = 0, . . . , Fp = 0, MJ
1 = 0, . . . ,MJ

k = 0}∆J ·RJ , 1 ≤ k ≤ n− p.

Let finally
δ := max{δJ | J index sequence}.

We call δ the degree of the isolated minimum searching problem for G on VR = {F1 =
0, . . . , Fp = 0}R . From the Bézout Inequality we deduce

δ ≤ (n d)O(n).
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Fix for the moment an index sequence J and observe that the polynomials
F1, . . . , Fp,M

J
1 , . . . ,M

J
n−p generate the trivial ideal or form a reduced regular sequence

in Q[X1, . . . , Xn]∆J ·RJ . Therefore we may apply the Kronecker algorithm [22], Theo-
rem 1 and 2, to the input system

F1 = 0, . . . , Fp = 0, MJ
1 = 0, . . . ,MJ

n−p = 0, ∆J ·RJ 6= 0

in order to obtain for the complex points of

{F1 = 0, . . . , Fp = 0, MJ
1 = 0, . . . ,MJ

n−p = 0}∆J ·RJ

an algebraic description by univariate polynomials over Q . There are at most δJ such
points. For the real points among them we obtain even a description à la Thom. We
now discard the points with non-zero imaginary part and evaluate the signature of the
Hessian matrix HJ at each of the real points and discard the real points where the
Hessian is not positive definite. The remaining real points are by Lemma 7 exactly
the isolated local minimal points of G in (VR)∆J . Repeating this procedure for each
index sequence we obtain all isolated local minimal points of G in VR .

The complexity analysis of [22], Theorem 1 and 2, yields a time bound of L
(
n
p

)
(n d)O(1) δ2

for the first, algebraic part of the procedure. The sign evaluations necessary to han-
dle real algebraic points make increase the overall complexity to L

(
n
p

)
(n d)O(1) δ3 ≤

(n d)O(n) . Applying [6], Lemma 10 in the spirit of [6], Section 5.1, one can show that
one may find probabilistically regular matrices A1, . . . , An−p+1 ∈ Zn×n of logarithmic
heights O(n log dn) and p–minors ∆1, . . . ,∆n−p+1 of J(F1, . . . , Fp)·A1, . . . , J(F1, . . . , Fp)·
An−p+1 such that V∆1 ∪ · · ·∪V∆n−p+1 is the regular locus of V . Thus we may improve
the sequential bound above to L (n d)O(1) δ3 .

Theorem 11
Let n, d, p, L, δ ∈ N with 1 ≤ p ≤ n be arbitrary and let G,F1, . . . , Fp ∈ Q[X1, . . . , Xn]
be polynomials of degree at most d satisfying Condition B and C and having isolated
local minimum searching degree at most δ . Suppose that G,F1, . . . , Fp are given as
outputs of an essentially division-free circuit β in Q[X1, . . . , Xn] of size L .

There exists a uniform bounded error probabilistic algorithm B over Q which com-
putes from the input β in time L (nd)O(1)δ3 ≤ (nd)O(n) all isolated local minimal
points of G in VR = {F1 = 0, . . . , Fp = 0}R .

For any n, d, p, L, δ ∈ N with 1 ≤ p ≤ n the probabilistic algorithm B may be
realized by an algebraic computation tree over Q of depth L (n d)O(1) δ3 ≤ (n d)O(n)

that depends on certain parameters which are chosen randomly.

3.2.1.1 The unrestricted case. Let us now consider the problem of searching for
the isolated local minimal points in the case of unconstrained optimization. For this
purpose we assume that the polynomial G satisfies the Condition D. Let H be the
Hessian matrix of G . Observe that the polynomials ∂G

∂X1
, . . . , ∂G

∂Xn
generate the trivial

ideal or form a reduced regular sequence in Q[X1, . . . , Xn]detH . Let δ be the maximal
degree of the Zariski closure in Cn of the locally closed sets { ∂G

∂X1
= 0, . . . , ∂G

∂Xk
=
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0}detH , 1 ≤ k ≤ n . We call δ the degree of the isolated minimum searching problem
for G on Rn . The Bézout inequality implies δ ≤ (d − 1)n ≤ dn . Applying the
Kronecker algorithm to the input system

∂G

∂X1

= 0, . . . ,
∂G

∂Xn

= 0, detH 6= 0

we obtain an analogous statement to Theorem 11 for the isolated minimum searching
problem in the unconstrained case with Condition B and C replaced by Condition D.

3.2.2 The global minimal point searching problem

In this subsection we shall assume that the polynomials G and F1, . . . , Fp satisfy
Condition B. The aim of the next algorithm is to compute a real algebraic point which
is a global minimizer of G in VR = {F1 = 0, . . . , Fp = 0}R if there exists one.

Let x be a minimal point of G in VR and let b := G(x) . Then x belongs to W and
therefore there exists by Lemma 6 an irreducible component of W where G takes only
the value b . This fact will guarantee that we are able to find a minimizer of G on VR .
For an index sequence J and an index 1 ≤ k ≤ n− p let δJ ,k be the maximal degree
of the Zariski closures in Cn of all locally closed sets

{F1 = 0, . . . , Fj = 0}∆J , 1 ≤ j ≤ p, and

{F1 = 0, . . . , Fp = 0, MJ
1 = 0, . . . ,MJ

k′ = 0}∆J , 1 ≤ k′ ≤ k

and all generic dual polar varieties of

{F1 = 0, . . . , Fp = 0, MJ
1 = 0, . . . ,MJ

k = 0}∆J .

Let finally
δ := max{δJ ,k | J index sequence, 1 ≤ k ≤ n− p}.

We call δ the degree of the global minimum searching problem for G on VR . From
the Bézout inequality we deduce

δ ≤ (n d)O(n).

We construct now recursively in 1 ≤ k ≤ n − p an ascending chain of finite sets Yk
of real algebraic points of VR such that G(Yk) contains the set Bk+1 := G(Dk+1) (see
Subsection 3.1 for the definition of Bk+1 ).

In order to construct Y1 we apply for any index sequence J the algorithm of Theorem
1 to the system F1 = 0, . . . , Fp = 0, ∆J 6= 0. The algorithm returns a finite set Y1 of
algebraic points of VR .

Let now 2 ≤ k ≤ n − p and suppose that we have already constructed Yk−1 subject
to the condition Bk ⊂ G(Yk−1) .

We apply now for any index sequence J the same algorithm to the system

F1 = 0, . . . , Fp = 0, MJ
1 = 0, . . . ,MJ

k = 0,∆J 6= 0.
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In this way we obtain finitely many algebraic points of VR which together with Yk−1

form Yk .

Let us consider an arbitrary irreducible component C of W of dimension n − p − k
on which, by virtue of Lemma 6, the constant value of G does not belong to G(Yk−1) .
Then Bk ⊂ G(Yk−1) implies C ∩Dk = ∅ .

Let us fix a generic vector a := (a0, a1, . . . , an) of Qn+1 . Since CR is closed, there
exists a point x of CR which realizes the distance of (a1

a0
, . . . , an

a0
) to CR . The point

x belongs to VR and therefore there exists an index sequence J with ∆J (x) 6= 0.
From C ∩Dk = ∅ we deduce x /∈ Dk and from ∆J (x) 6= 0 and x ∈ W we conclude
x ∈ V∆J ∩ {MJ

1 = 0, . . . ,MJ
k = 0} . Hence x belongs to

(VR)∆J ∩ {MJ
1 = 0, . . . ,MJ

k = 0}R \ (Dk)R

and Condition B implies now that x is (F1, . . . , Fp,M
J
1 , . . . ,M

J
k ) –regular. Therefore

there exists just one irreducible component of {F1 = 0, . . . , Fp = 0,MJ
1 = 0, . . . ,MJ

k =
0} which passes through x . This component is necessarily of dimension n−p−k and
contains C . It is therefore identical with C . Putting all this information together, we
conclude that x is a local minimizer of the distances of (a1

a0
, . . . , an

a0
) to the points of

the real trace of {F1 = 0, . . . , Fp = 0,MJ
1 = 0, . . . ,MJ

k = 0} . The point x belongs
therefore to the (n−p−k) th generic dual polar variety of {F1 = 0, . . . , Fp = 0,MJ

1 =
0, . . . ,MJ

k = 0} associated with a . Hence x becomes computed by our algorithm.
This implies x ∈ Yk . Since C was an arbitrary irreducible component of W of
dimension n − p − k on which the constant value of G does not belong to G(Yk−1) ,
we conclude that G(Yk) contains the set Bk+1 .

Applying this argument inductively we see that G(W ) ⊂ G(Yn−p) holds. We suppose
now that G reaches a global minimum on {F1 = 0, . . . , Fp = 0}R . Then Yn−p must
contain a global minimal point of G in VR = {F1 = 0, . . . , Fp = 0}R which is an
element, say y , of Yn−p with G(y) = minx∈Yn−p G(x) .

The complexity analysis of the algorithm of Theorem 1 yields a time bound of
L
(
n
p

)
(n d)O(1)δ2 for the first algebraic part of the procedure. The sign evaluations

necessary to handle real algebraic points make increase the overall complexity to
L
(
n
p

)
(n d)O(1) δ3 ≤ (n d)O(n) . We may use the same argumentation as in Theorem

11 in order to improve this bound to L (n d)O(1) δ3 . We obtain now the following
complexity result.

Theorem 12
Let n, d, p, L, δ ∈ N with 1 ≤ p ≤ n be arbitrary and let G,F1, . . . , Fp ∈ Q[X1, . . . , Xn]
be polynomials of degree at most d satisfying Condition B and having global mini-
mum searching degree at most δ . Suppose that G,F1, . . . , Fp are given as outputs of
an essentially division-free circuit β in Q[X1, . . . , Xn] of size L .

There exists a uniform bounded error probabilistic algorithm C over Q which computes
from the input β in time L (nd)O(1) δ3 ≤ (nd)O(n) a global minimal point of G in
VR = {F1 = 0, . . . , Fp = 0}R if there exists one.
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For any n, d, p, L, δ ∈ N with 1 ≤ p ≤ n the probabilistic algorithm C may be
realized by an algebraic computation tree over Q of depth L (nd)O(1)δ3 ≤ (nd)O(n)

that depends on certain parameters which are chosen randomly.

Mutatis mutandis, with Condition D replacing Condition B, the same statement holds
true for the unconstrained optimization problem. The degree of the minimum searching
problem in this case is the maximal degree the closed sets { ∂G

∂X1
= 0, . . . , ∂G

∂Xk
= 0} 1 ≤

k ≤ n and all generic dual polar varieties of them.

The reader should observe that Theorem 12 does not answer the question whether G
reaches a global minimum on {F1 = 0, . . . , Fp = 0}R and can only be applied when
this existence problem is already solved. For this problem we refer to [25].

4 Conclusion

Together with [36] this paper represents only a first attempt to introduce the viewpoint
of intrinsic quasi–polynomial complexity to the field of polynomial optimization. For
this purpose we used some restrictive conditions which allow us to apply our algorithmic
tools. In the future we shall relax these restrictions and extend the algorithmic tools
and the list of real problems which can be treated in this way.

Here we want to point to another modern approach to global polynomial optimiza-
tion based on the so called relaxation which reduces the task under consideration to
semi-definite programming. As in our situation this method requires that certain con-
ditions, which involve the Karush–Kuhn–Tucker ideal, become satisfied. Moreover, no
complexity bounds are available at this moment for this method. On the other hand
we rely on tools of real polynomial equation solving which restricts the generality of
our complexity results. For details about the relaxation approach we refer to [34], [17],
[39], [28] and [10].
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