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Abstract

We give a new structure theorem for subresultants precising their gap structure and
derive from it a new algorithm for computing them. If d is a bound on the degrees and τ
a bound on the bitsize of the minors extracted from Sylvester matrix, our algorithm has
O(d2) arithmetic operations and size of intermediate computations 2τ . The key idea is to
precise the relations between the successive Sylvester matrix of A and B in one hand and
of A and XB on the other hand, using the notion of G-remainder we introduce. We also
compare our new algorithm with another algorithm with the same characteristics already
appeared in [4].

Introduction

Let A and B be two univariate polynomials with degree ≤ d. Subresultants are polynomials
having as coefficients minors extracted from the Sylvester matrix of A and B. So it is possible
to compute them using Jordan-Bareiss method, with O(d3) arithmetic operations. If τ is the
maximal bitsize of the coefficients of the subresultants of A and B (in the case of integer
coefficients), Jordan-Bareiss’s method produces intermediate results of bitsize 2τ .

On the other hand, the classical subresultant algorithm, which uses more fully the special
structure of Sylvester matrix and the connections between subresultants and polynomials in the
remainder sequence of A and B, computes the subresultants in O(d2) arithmetic operations,
which is optimal since the size of the output is O(d2). Unfortunately, when there are gaps in
degrees in the remainder sequence, the size of the integers in the intermediate computations of
the classical subresultant algorithm are not in O(τ). Even when there are no gaps of degrees,
the size of the integers in the intermediate computations of the classical subresultant algorithm
is bounded by 3τ rather than 2τ .

In this paper we describe an algorithm which, neglecting linear factors, performs 2d2 arith-
metic operations with size of intermediate computations at most 2τ + 1. The key idea is to
precise the relations between the successive Sylvester matrix of A and B in one hand and of
A and XB on the other hand, using the notion of G-remainder (see Section 1). We establish
a new structure theorem describing these relations, a new gap structure, and deduce from it
a new algorithm. We also compare our new algorithm with another algorithm with the same
characteristics already appeared in [4].

∗second and third author supported in part by the project ESPRIT-LTR 21.024 FRISCO.
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1 Some linear algebra on polynomials

Let D be a domain and K its fraction field. Consider the K-vector space F of polynomials
of degree < n equipped with the basis E = [Xn−1, . . . , X, 1]. A sequence of polynomials
A = [A1, . . . , Am], with m ≤ n can be seen as a matrix whose rows are the coordinates of the
Ai’s on the basis E . The polynomial Ai is identified with the row vector of its coefficients in
the basis E . So we shall speak of the degree of a row and the leading coefficient of a row using
this identification. We suppose that the coefficients of the Ai belong to D ⊂ K.

Elementary row replacements and r-reduced forms
An elementary row replacement of A is the replacement of a row Ai by a row Ai + Σj<iαi,jAj

(αi,j ∈ K). We denote A ∼r A
′ to indicate that A′ is obtained from A by a finite sequence of

elementary row replacements and say that A is r-equivalent to A′. Note that ∼r is indeed an
equivalence relation.

A reverse sequence of elementary row replacements has the following form: first, an ele-
mentary row replacement transforming the last row; second, an elementary row replacement
transforming the (m − 1)-th row, . . .. Any sequence of elementary row replacements can be
easily replaced by a reverse sequence of elementary row replacements.

A matrix is r-reduced is all its non zero rows have distinct degrees. An r-reduced form of
A is a matrix r-equivalent to A which is r-reduced. An elementary row replacement does not
change the rank of the matrix. So the number of non zero polynomials in an r-reduced form of
A is equal to the rank of A.

Proposition 1.1 Let A′ and A′′ be two r-reduced forms of A = [A1, . . . , Am]. Call A′
i, A

′′
i the

row of index i in A′,A′′.
a) The rows of A′ and the rows of A′′ have same degrees and same leading coefficients. The
leading coefficients of the non zero rows of A′ and A′′ are called the r-pivots of A. The corre-
sponding degree is called the degree of the r-pivot.
b) The rows of smallest degree of A′ and A′′ are equal.
c) More generally, two non zero rows A′

i and A′′
i have equal coefficients from the leading one (of

degree di) down to the one of degree k + 1 where k is the biggest degree of r-pivots with degree
< di in the previous rows.
d) These coefficients are – up to signs – quotients of minors extracted from A.

Proof: Elementary row replacements do not change the following property: the i-th row is a
linear combination of the previous ones. On the other hand, in an r-reduced matrix, the i-th
row is zero if and only if it is a linear combination of the previous ones. So, A′

i = 0⇐⇒ A′′
i = 0.

Now, without loss of generality, consider a reverse sequence of elementary row replacements
transforming A′ in A′′. When transforming A′

i (of degree di) in A′′
i we can only modify coef-

ficients of degrees ≤ k, where k is the biggest degree of pivots with degree < deg(A′
i) in the

previous rows. So deg(A′′
i ) = deg(A′

i), di is well defined and a), b) and c) are clear.

d) First remark that rows that are r-reduced to 0 are not needed in elementary row replacements:
replace, in an elementary row replacement involving one of these rows, the row by a suitable
linear combination of preceeding rows. So we assume w.l.o.g. that A has full rank m. Remark
also that elementary row replacements do not change (s× s)-minors involving the first s rows
and any choice for the s columns. So we can consider minors of A′. Call pℓ the pivot on the
row A′

ℓ. Then the product
∏i−1

k=1 pk is equal, up to sign, to the suitable minor involving the
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columns of degrees d1, . . . , di−1. Let j a degree ∈ {i, . . . , k + 1} with i and k as in d). Let α be
the corresponding coefficient of A′

i. Then the product α ×
∏i−1

k=1 pk is equal, up to sign, to the
suitable minor involving the columns of degrees d1, . . . , di−1, j. So the result is clear. 2

Note that this proof doesn’t use commutativity (except for d)): it works when replac-
ing K by a division ring. It gives a constructive theory of dimension for finitely generated
sub(left)modules of a free (left) module over a division ring.

Definition 1.2 The least degree polynomial generated by A = [A1, . . . , Am], denoted by
ldPol(A) is the polynomial of smallest degree in an r-reduced form of A, i.e. the zero poly-
nomial if one row is zero, the polynomial corresponding to the least degree row otherwise.
The deviation of A, denoted by δ(A) is the difference between m and the index of the row of
ldPol(A) in any r-reduced form of A (if ldPol(A) is zero, the difference between m and the
smallest index of a zero vector in an r-reduced form of A).
The minor extracted on the first m− 1 columns of A and the m− 1 rows obtained by removing
the row of index m− δ(A) is denoted by µ(A).
The matrix A is said to be non defective if ldPol(A) has degree n−m, i.e., if the m×m-minor
extracted on the first columns is non zero.

Note that ldPol(A) is always of degree ≤ n−m since when ldPol(A) 6= 0 an r-reduced form
of A has no two rows of same degrees.

Remark that if m < n claiming A to be non defective is stronger than “A has full rank m”.
In case of a square matrix (m = n) we get the usual notion of a regular square matrix.

As proved in Proposition 1.1, if A ∼r A
′ then ldPol(A) = ldPol(A′), δ(A) = δ(A′) and

µ(A) = µ(A′)
IfA = [A1, . . . , Am] and B = [B1, . . . , Bk], the notationA,B means [A1, . . . , Am, B1, . . . , Bk].

The following lemma is clear,

Lemma 1.3 Let A = [A1, . . . , Am] be a non-defective matrix, and consider B = [B1, . . . , Bk]
such that m + k ≤ n and deg(Bi) ≤ n−m, then

ldPol(A,B) = ldPol(ldPol(A),B).

Moreover if deg(Bi) < n−m,
ldPol(A,B) = ldPol(B).

Polynomial determinants

Definition 1.4 Let A = [A1, . . . , Am] be polynomials in the basis Xn−1, . . . , 1 with m ≤ n.
Denote by µj the m ×m minor extracted on the columns 1, . . . , m− 1, n− j. The polynomial
determinant of A denoted by DetPol(A) is the polynomial defined by:

DetPol(A) :=
∑

j≤n−m

µjX
j

Note that elementary row replacements do not change the polynomial determinant.

The following holds:

Lemma 1.5 Let A = [A1, . . . , Am]. LetM be the m×m matrix whose m−1 first columns are
the m−1 first columns of A and the elements of the last column are the polynomials A1, . . . , Am.
Then

DetPol(A) = Det(M).
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Proof: It is clear that Det(M) :=
∑

j≤n µjX
j where µj is the m ×m minor obtained taking

the columns of index 1, . . . , m− 1, n− j of A for j = 1, . . . , n. For j > n−m, µj = 0 since it
is the determinant of a matrix with two equal columns. 2

Lemma 1.5 shows that DetPol(A) is a linear combination of the Ai with coefficients equal
(up to sign) to minors (m− 1)× (m− 1) extracted on the m− 1 first columns of A. It is thus
a polynomial of the D-module generated by the Ai’s.

Note that if A ∼r A
′, DetPol(A) = DetPol(A′). So considering an r-reduced form A′ of A,

we get:

Lemma 1.6 Let A = [A1, . . . , Am].

a) We have the following identity

DetPol(A) = (−1)δ(A)µ(A) ldPol(A).

b) The polynomial DetPol(A) is zero in the two following cases: either ldPol(A) = 0 or
µ(A) = 0.

c) The matrix A is non defective if and only if any r-reduced form contains a polynomial in
each degree m− n, ..., n. This is also equivalent to deg(ldPol(A)) = n−m.

d) If B = [A1, . . . , Am−1] is non defective, then the deviation of A equals 0,

DetPol(A) = µ(A) ldPol(A)

and µ(A) equals the coefficient of degree m− n + 1 of DetPol(B).

e) The matrix A has full rank m if and only if ldPol(A) 6= 0.

G-remainder of two polynomials.
Let A and B be two polynomials of degree p and q (q ≤ p) with leading coefficients a and b and
Rem(A, B) their remainder. If B is the matrix [B, XB, . . . , Xp−qB, A] then it is clear that the
matrix [B, XB, . . . , Xp−qB, Rem(A, B)] is an r-reduced form of B, so ldPol(B) = Rem(A, B).
In a similar way we give the following definition.

Definition 1.7 Let A and B be two polynomials of degree p and q (q ≤ p). Let A =
[A, B, XB, . . . , Xp−qB]. The G-remainder of A divided by B, denoted by GRem(A, B), is
the least degree polynomial generated by A, ldPol(A).

It is clear that G = GRem(A, B) is characterized by the equality cA = QB − G with Q
monic, c ∈ K and deg(G) < q. Thus

aGRem(A, B) = −bRem(A, B).

Note that Rem(αA, βB) = αRem(A, B) and GRem(αA, βB) = βGRem(A, B).
Denote by PRem(A, B) = Rem(bp−q+1A, B) the pseudo-remainder of A and B. The poly-

nomial determinant of A = [A, B, XB, . . . , Xp−qB] is εp−q+1PRem(A, B) and the polynomial
determinant of B = [B, XB, . . . , Xp−qB, A] is εp−qPRem(A, B), where εm = (−1)m(m+1)/2.
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Example 1.8 Suppose

A = a5X
5 + a4X

4 + · · · . . . + a0

B = b3X
3 + b2X

2 + · · · . . . + b0

An r-reduced form of

A =




a5 a4 · · · a0

0 0 b3 b2 · b0

0 b3 b2 · b0 0
b3 b2 · b0 0 0




A
B
XB
X2B

is




a5 a4 · · · a0

0 0 b3 b2 · b0

0 b3 b2 · b0 0
0 0 0 c2 c1 c0




A
B
XB
C

with C = GRem(A, B).

Note that in G-remainder, G comes from “Gauss pivoting”, which is in fact an old chinese
technique. But to call it “chinese remainder” would be in conflict with the tradition (Chinese
Remainder Theorem).

2 First structure theorem

Let A and B be two polynomials of degrees p and q. Denote by a the leading coefficient of A
and b the leading coefficient of B. We define the Sylvester-Habicht matrices associated to A
and B, the signed subresultants of A and B and some related notions.

Notation 2.1 Let A and B be two polynomials of degrees p and q. Let 0 ≤ j ≤ inf(p, q)− 1.
The j-th Sylvester-Habicht matrix of A and B, denoted by Hj(A, B) or Hj is the matrix
associated to [Xq−j−1A, . . . , A, B, . . . , Xp−j−1B]. It has p + q− 2j rows and p + q− j columns,
The least degree polynomial generated by Hj is denoted by Gj , and gj is its leading coefficient.
The minor µ(Hj) is denoted by µj and the deviation of Hj is denoted by δj .
The j-th signed subresultant of A and B, denoted by Hj(A, B) or Hj is the polynomial deter-
minant of Hj. The polynomial Hj is of degree ≤ j.
The j-th signed subresultant coefficient of A and B, denoted by hj(A, B) or hj is the coefficient
of degree j of Hj , coefj(Hj). If Hj is defective, hj = 0.
The leading coefficient of Hj 6= 0, lc(Hj) is denoted by hj . If Hj is non defective, hj = hj .

In order to make things more visible see the following picture (to be compared with the
picture corresponding to the definition of usual non signed subresultants)

A = apX
p + ap−1X

p−1 + ap−2X
p−2 + · · ·+ a0,

B = bqX
q + bq−1X

q−1 + · · ·+ b0
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then if p = q + 1 the matrix Hj has the shape

Hj =




ap · · · · · · · · · · · · a0

. . .
. . .

. . .
. . .

. . .
. . .

ap · · · · · · · · · · · · a0

bq · · · · · · · · · b0

bq · · · · · · · · · b0

. . . . . . . . . . . . . . .
bq · · · · · · · · · b0




︸ ︷︷ ︸
p+q−j





q − j





p− j

and is a submatrix of the full Sylvester-Habicht matrix H0.
The matrix Hj is non defective if and only if hj 6= 0. In this case, Gj is of degree j.
We complete these “usual” definitions by a useful convention for index inf(p, q).

Convention 2.2 Let εm = (−1)m(m+1)/2.
If p > q we let Hq = [B, . . . , Xp−1−qB], so Gq = B, Hq = εp−1−qb

p−1−qB (note that Hq is non
defective and hq = εp−1−qb

p−q).
If p = q we let Gq = B, Hq = b−1B and we let “Hq is non defective, hq = 1”.
If p < q we let Hp = [Xq−1−pA, . . . , A], so Gp = A, Hp = aq−1−pA (note that Hp is non defective
and hp = aq−p).

We have the following Bezout identity for Gj.

Lemma 2.3 Let 0 ≤ j ≤ inf(p, q)− 1. Let δj be the deviation of Hj. There is an identity

Gj = UjA + VjB

with Uj of degree equal to q − j − 1− δj and Vj monic of degree equal to p− j − 1− δj .

Proof If the deviation of Hj is δj, Gj is on the row of index p + q − j − δj corresponding
to the polynomial Xp−j−1−δjB = Xk0B. So we may delete the rows that follow, but also the
first rows XmA corresponding to lines of too high degree (> q + k0). So there are βk ∈ K, for
k < p− j − 1− δj and αk ∈ K, k ≤ q − j − 1− δj with

Gj = Xp−j−1−δ−jB +
∑

k<p−j−1−δj

βkX
kB +

∑

k≤q−j−1−δj

αkX
kA

We take Uj =
∑

k≤q−j−1−δj
βjX

j, Vj = Xp−j−1−δj +
∑

k<p−j−1−δj
αkX

k. We see that Uj has
exactly degree d = q − j − 1− δj : αd = −b/a. 2

The results in the following proposition 2.5 relate the least degree polynomial generated by
Sylvester matrices and the G-remainders.

In order to best understand what happens, we show first an example.

Example 2.4 (see notations 2.1). Suppose that A is of degree 8 and of leading coefficient a,
B of degree 7 and of leading coefficient b. We have H7 = [B], H7 = G7 = B, h7 = b.

The polynomial GRem(A, B) is of expected degree 6, suppose that in fact GRem(A, B) is
of degree 4. The matrix H6 associated to [A, B, XB] has as r-reduced form

G6 =




a · · · · · · · ·
0 b · · · · · · ·
0 0 0 0 g6 · · · ·




A
B
GRem(A, B)
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with G6 = GRem(A, B) = g6X
4 + · · ·. Also µ6 = ab, δ6 = 0 and H6 = abG6, h6 = abg6.

Since the matrix H5 associated to [XA, A, B, XB, X2B] contains the matrices H6 and XH6

it gives by elementary row replacements the following r-reduced matrix

G5 =




a · · · · · · · · 0
0 a · · · · · · · ·
0 0 b · · · · · · ·
0 0 0 0 0 g6 · · · ·
0 0 0 0 g6 · · · · 0




XA
A
B
G6

XG6

and G5 = G6. We have µ5 = 0, H5 = 0.
Since the matrix H4 associated to [X2A, XA, A, B, XB, X2B, X3B] contains the matrices

H6, XH6 and X2H6 it gives by elementary row replacements the following r-reduced matrix

G4 =




a · · · · · · · · 0 0
0 a · · · · · · · · 0
0 0 a · · · · · · · ·
0 0 0 b · · · · · · ·
0 0 0 0 0 0 g6 · · · ·
0 0 0 0 0 g6 · · · · 0
0 0 0 0 g6 · · · · 0 0




X2A
XA
A
B
G6

XG6

X2G6

and G4 = G6. We have µ4 = −a3bg2
6. Note that h4 = −a3bg3

6, δ4 = 2, H4 = −a2g2
6H6 and the

matrix H4 is non defective.
Since the matrixH3 associated to [X3A, . . . , A, B, . . . , X4B] contains the matricesH6, XH6,

X2H6 and X3H6, it gives by elementary row replacements the following matrix




a · · · · · · · · 0 0 0
0 a · · · · · · · · 0 0
0 0 a · · · · · · · · 0
0 0 0 a · · · · · · · ·
0 0 0 0 b · · · · · · ·
0 0 0 0 0 0 0 g6 · · · ·
0 0 0 0 0 0 g6 · · · · 0
0 0 0 0 0 g6 · · · · 0 0
0 0 0 0 g6 · · · · 0 0 0




X3A
X2A
XA
A
B
G6

XG6

X2G6

X3G6

So it has as r-reduced form

G3 =




a · · · · · · · · 0 0 0
0 a · · · · · · · · 0 0
0 0 a · · · · · · · · 0
0 0 0 a · · · · · · · ·
0 0 0 0 b · · · · · · ·
0 0 0 0 0 0 0 g6 · · · ·
0 0 0 0 0 0 g6 · · · · 0
0 0 0 0 0 g6 · · · · 0 0
0 0 0 0 0 0 0 0 g3 · · ·




X3A
X2A
XA
A
B
G6

XG6

X2G6

GRem(B, G6)

with GRem(B, G6) = g3X
3 + · · · = G3. Observe that H3 = ah4G3.
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We denote by [P,L, Q] the sequence obtained from the sequence L and elements P and Q
adding P at the head and Q at the tail.

Proposition 2.5 (Notations 2.1 and convention 2.2) Let 0 ≤ j ≤ inf(p, q). Supppose that Hj

is non defective (in particular this works for j = inf(p, q)).

a) Hj−1 = ahjGj−1, hj−1 = ahjgj−1, µj−1 = ahj , δj−1 = 0

b) If Gj−1 is zero then Gj is a GCD of A and B.

c) If Gj−1 6= 0 is of degree k then Hk is non defective and

i) Gk−1 = GRem(Gj , Gj−1)

Moreover if k < j − 1,

ii) Gj−1 = Gj−2 = . . . = Gk+1 = Gk

iii) µj−2 = . . . = µk+1 = 0, µk = εj−k−2a
j−khjg

j−1−k
j−1

iv) δj−2 = 1, δj−3 = 2, . . . , δk = j − 1− k

d) If p ≥ q then Gq−1 = GRem(A, B). If p ≤ q then Gp−1 = Rem(B, A).

Proof:
a) If j = q = p, by convention hq = 1. In the other cases, since Hj is non defective and
Hj−1 = [Xq−j−1A,Hj, X

p−j−1B], the deviation of Hj−1 is 0, µj−1 = ahj and Hj−1 = ahjGj−1

(see lemma 1.6 d) and example 2.4).

b) Since hj is non zero, Gj is non zero (see lemma 1.6 a)). From lemma 2.3 we see that
GCD(A, B) divides Gj and deg(GCD(A, B)) ≥ j. The polynomial Gj−1 is zero or of degree
≤ j − 1. If Gj−1 is zero, lemma 2.3 says that Uj−1A = −Vj−1B with Uj−1 of degree equal to
q−j and Vj−1 monic of degree equal to p−j. The LCM of A and B is thus of degree ≤ p+q−j.
So the GCD of A and B is of degree j and equal to Gj .

c) Suppose now that Gj−1 is non zero of degree k ≤ j − 1.
The matrix Hk−1 is r-equivalent to

[Xq−kA, . . . , Xq−jA,Hj, Gj−1, . . . , X
j−kGj−1],

thus

Gk−1 = ldPol(Hk−1) =

ldPol(Xq−kA, . . . , Xq−jA,Hj, Gj−1, . . . , X
j−kGj−1).

According to Lemma 1.3,

ldPol(Xq−kA, . . . , Xq−jA,Hj, Gj−1, . . . , X
j−kGj−1) =

ldPol(ldPol(Xq−kA, . . . , Xq−jA,Hj), Gj−1, . . . , X
j−kGj−1)

= GRem(Gj, Gj−1)

So
Gk−1 = GRem(Gj , Gj−1).

A simple computation shows that µk = εj−k−2a
j−khjg

j−k−1
j .
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If k < j − 1, for δ = 0, . . . , j − k − 1, the matrix Hj−1−δ associated to

[Xq−j−δA, . . . , Xq−jA,Hj , Gj−1, . . . , X
δGj−1]

is r-equivalent toHj−1−δ. So it is clear that the G-polynomial Gj−1−δ is Gj−1 and that the
deviation of Gj−1−δ is δ.
For every δ = 1, . . . , j−k−2, the row of index p+q−2j+1+δ in the matrix whose determinant
is µj−1−δ is zero, hence µj−2 = . . . = µk+1 = 0.

d) This is clear. 2

Algorithmic comment 2.6 In the preceeding proposition, since Hk is non defective as is Hj

in the hypothesis we see that b), c) and d) allow to compute all the Gj’s (inf(p, q) ≥ j ≥ 0)
from inputs A and B by using only the successive G-remainders.

Corollary 2.7 (size of Euclid’s remainders [9]) Assume p ≥ q. When running the successive
G-remainders algorithm, one gets polynomials A = G̃1, B = G̃2, G̃3, . . ., G̃s = GCD(A, B),
whose coefficients are equal to quotients of minors extracted form the Sylvester Matrix. Let
dj = deg(G̃j). In case of integer polynomials, let λj = 2(p + q − 2dj) and τ be a bound for the
size of ‖ A ‖2 and ‖ B ‖2. Then the size of each coefficient of G̃j is bounded by λjτ which is
an O((p− dj)τ),
Let us denote g̃j the leading coefficient of G̃j. When running Euclidean algorithm (successive
remainders algorithm), one gets polynomials A, B, R̃3, . . ., R̃s. We have for k ≥ 1

R̃2k+1 =
g̃1 · · · g̃2k−1

g̃2 · · · g̃2k

G̃2k+1

and

R̃2k+2 =
g̃2 · · · g̃2k

g̃3 · · · g̃2k+1
G̃2k+2

In case of integer polynomials, the size of each coefficient of R̃j is bounded by 2(j(p+q)−2(d1+
· · ·+ dj))τ which is an O((p− dj)

2τ).

Proof Easy consequence of propositions 1.1 and 2.5 and of the relation between a remainder
and a G-remainder. 2

The first structure theorem of subresultants [9], which is a refinement of the famous Subre-
sultant Theorem (cf. [1, 2, 3, 4, 5, 7, 8, 10, 11]), is the following one.

Theorem 2.1 (First structure theorem) We use notations 2.1 and convention 2.2. Let
0 ≤ j ≤ inf(p, q). Supppose that Hj is non defective (in particular this works for j = inf(p, q)).

a) If Hj−1 is zero then Hj is a GCD of A and B.

b) If Hj−1 6= 0 is of degree k then Hk is non defective and

i) h2
jHk−1 = −Rem(hj−1hkHj , Hj−1).

More precisely,
h2

jHk−1 = −hj−1hkHj − CjHj−1,

with Cj ∈ D[X].

Moreover if k < j − 1,

ii) Hj−2 = . . . = Hk+1 = 0

iii) hk = εj−k−1
h

j−k

j−1

hj−k−1

j

, hj−1Hk = hkHj−1, i.e. Hk = εj−k−1

(
hj−1

hj

)j−k−1

Hj−1

9



c) If p ≥ q then hq = εp−q−1b
p−q and Hq−1 = ahqGq−1 = GRem(A, ahqB) = DetPol(Hq−1).

If p < q then hp = aq−p and Hp−1 = ahpGp−1 = Rem(ahpB, A) = DetPol(Hp−1).

Remark 2.8 The proportionality between Hj−1 and Hk and the identity

h2
jHk−1 = −Rem(hj−1hkHj , Hj−1),

is the only ingredient necessary to establish the connection between the Hj and the Cauchy
index which is the basis of all the results needed for real root counting by using Sturm-Habicht
sequences (see [6]).

Proof
c) If p ≥ q, since Gq−1 = GRem(A, B) and Hq−1 = ahqGq−1 we get Hq−1 = GRem(A, ahqB).
Similar computation in the other case.

a) follows from proposition 2.5 a) and b).

b) i) According to proposition 2.5

Gk−1 = GRem(Gj, Gj−1)

and Hk is of degree k. Multiplying both sides by ah2
jhk which is non zero, noting that

Hj−1 = ahjGj−1, Hk−1 = ahkGk−1,

and using the relationship between remainder and G-remainder we get

h2
jHk−1 = GRem(Hj, hkhjHj−1) = −Rem(hj−1hkHj , Hj−1).

The fact that the quotient of the division of hj−1hkHj by Hj−1 belongs to D[X] is proved in
[9], see also [6].

ii) For δ = 1, . . . , j − k − 2 we have Hj−1−δ = 0 since µj−1−δ = 0 .

iii) This is a consequence of the preceeding results since ahjgj−1 = µj−1gj−1 = hj−1.
2

The signed subresultants present the famous gap structure, graphically displayed by the
following diagram of Habicht lines: Hj−1 and Hk are proportional, of degree k, Hj−2, . . . , Hk+1

are zero.

...

Hj

Hj−1

Hk

Hk−1

...

Remark 2.9 In the non defective case, theorem 2.1 is the classical subresultant theorem (ex-
cept for the signs). In the defective case the improvement with respect to the classical sub-
resultant theorem comes from the fact that the quotient of the division of hj−1hkHj by Hj−1

belongs to D[X] ([9], see also [6]).
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The following proposition due to Lazard [8] will give when k < j − 1 an improved way of
computing Hk starting from Hj−1.

Proposition 2.10 Let Hj be non defective. Let k be the degree of Hj−1 and assume k < j−1.
Define

Hj−2 = −
hj−1 ·Hj−1

hj

,

Hj−δ−1 = (−1)δ hj−1 ·Hj−δ

hj
, for δ = 2, . . . , j − k − 1,

then all these polynomials are in D[X] and Hk = Hk

Proof : Remark that hj−1/hj = agj−1. Replace the δ last rows of Hj−1−δ by Gj−1, XGj−1,
. . . , Xδ−1Gj−1 and add j−k−1− δ rows Xk+δ+1, . . . , Xj to obtain a matrix Hj−1−δ. It is easy
to see that the polynomial determinant of Hj−1−δ is Hj−1−δ. 2

Example 2.11 Following example 2.4 the matrix H5 has as r-reduced form of the matrix

G5 =




a · · · · · · · · 0
0 a · · · · · · · ·
0 0 b · · · · · · ·
0 0 0 0 0 g6 · · · ·
0 0 0 0 g6 · · · · 0




XA
A
B
G6

XG6

The matrix H5 is 


a · · · · · · · · 0
0 a · · · · · · · ·
0 0 b · · · · · · ·
0 0 0 0 0 g6 · · · ·
0 0 0 0 g6 · · · · 0
0 0 0 1 0 0 0 0 0 0




XA
A
B
G6

XG6

X7

H5 = −(h6/b)H6 = −(ag6)H6 = −(ag6)(abG6) = DetPol(H5)

¿From Theorem 2.1, Remark 2.9 and Proposition 2.10, it is easy to produce an algorithm [9]
computing the signed subresultants with O(d2) arithmetic operations and size of intermediate
computations (in the case of polynomials with integer coefficients) bounded by 3τ , where τ is
the maximal bit size of a minor extracted from Sylvester matrix, which is an improvement of
the classical subresultant algorithm in the defective case.

Improved Subresultant Algorithm

Input A and B two polynomials of degrees p and q

Output Subresultants Hj (notations 2.1, and convention 2.2).

Initialization

• If p > q let j ← q, hq ← εp−q−1b
p−q, Hq ← εp−q−1b

p−q−1B, Hq−1 ← −Rem(bhqA, B).

• If p = q let j ← q, hq ← 1, Hq−1 ← −Rem(bA, B).

• If p < q let j ← p, hp ← aq−p, Hp ← aq−p−1A, Hp−1 ← Rem(ahpB, A).

11



• If Hj−1 = 0 the computation is over, else let k ← deg(Hj−1)

Main loop

• Input : hj 6= 0, Hj of degree j, Hj−1 of degree k ≤ j

• Output : hk 6= 0, Hk, of degree k, Hk−1 of degree ≤ k − 1.

• If k = j − 1 let Hk−1 ← −Rem(h2
j−1Hj , Hj−1)/h2

j(
if p = q = j Hq−2 ← −Rem(h2

q−1B, Hq−1)/b
)

{Hk is known since k = j − 1 }

• If k < j − 1

– hj−1 ← lc(Hj−1)

– Computation of hk :

∗ For δ from 1 to j − k − 1 : hj−δ−1 ← (−1)δ(hj−1 · hj−δ)/hj ,

∗ hk ← hk

– Computation of Hk : Hk ← (hk ·Hj−1)/hj−1

– Computation of Hk−1 : Hk−1 ← −Rem(hj−1hkHj , Hj−1)/h2
j(

if p = q = j Hk−1 ← −Rem(hq−1hkB, Hj−1)/b
)

• If Hk−1 = 0 the algorithm is over. Otherwise let j ← k, k ← deg(Hk−1) .

3 Second structure theorem

The second structure theorem presented in this section will improve the subresultant algorithm
also in the non defective case.

The main idea is to consider also the Sylvester-Habicht matrices of A and XB

Notation 3.1 Let 0 ≤ j ≤ inf(p − 1, q). We denote by H⋆
j the matrix associated to

[Xq−jA, . . . , A, XB, . . . , Xp−jB].
We denote by G⋆

j the least degree polynomial generated by H⋆
j and g⋆

j its leading coefficient.
The matrix H⋆

j has p + q − 2j + 1 rows and p + q − j columns, its polynomial determinant H⋆
j

is of degree ≤ j. We denote by h⋆
j the coefficient of degree j of H⋆

j . If H⋆
j is defective, h⋆

j = 0.

The leading coefficient of H⋆
j 6= 0, lc(H⋆

j ) is denoted by h
⋆

j . If H⋆
j is non defective, h

⋆

j = h⋆
j .

We make moreover the following convention.

Convention 3.2 If p > q then we let Hq = [B, . . . , Xp−1−qB] as in convention 2.2. Moreover
we let h⋆

q+1 = 1 (so “H⋆
q+1 is non defective”).

If p ≤ q then we let H⋆
p = [Xq−pA, . . . , A] as in convention 2.2, so G⋆

p = A, H⋆
p = aq−pA and

h⋆
p = aq−p+1. Moreover we let hp = 1 (so “Hp is non defective”)

Remark that in this convention, hp = 1 may disagree with the convention 2.2.
When Hj is defined, write Hj = [Aj,Bj] with Aj the submatrix made of the XkA’s and Bj

the submatrix made of the XkB’s. In a similar way, write H⋆
j = [A⋆

j ,B
⋆
j ]. It is clear that

Hj−1 = [A⋆
j , B,B⋆

j ] = [Xq−jA,Hj , X
p−jB]

i.e., Hj−1 is associated to the list of polynomals in H⋆
j , with B inserted at the right place, and

H⋆
j−1 = [XAj, A, XBj] = [Xq−j+1A,H⋆

j , X
p−j+1B]
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i.e., H⋆
j−1 is associated to the list of polynomals in Hj−1 multiplied by X, with A inserted at

the right place.
So we see that the sequence Hj−1 contains as extracted sequences H⋆

j and Hj. Similarly, the
sequence H⋆

j−1 contains as extracted sequences H⋆
j and XHj−1.

When p > q we get the following increasing sequence of matrices extracted from H⋆
0.

Hq ⊂ H
⋆
q ⊂ Hq−1 ⊂ H

⋆
q−1 ⊂ Hq−2 ⊂ · · · ⊂ H

⋆
1 ⊂ H0 ⊂ H

⋆
0.

E.g., if p = q + 1 this takes the following form

[B] ⊂ [A, XB] ⊂ [A, B, XB] ⊂ [XA, A, XB, X2B] ⊂ [XA, A, B, XB, X2B] ⊂ · · · ⊂ H0 ⊂ H
⋆
0

So there is a natural succession of polynomials :

Hq, H⋆
q , Hq−1, H⋆

q−1, Hq−2, . . . , H⋆
1 , H0, H⋆

0

When p ≤ q we get the following increasing sequence of matrices extracted from H⋆
0.

H⋆
p ⊂ Hp−1 ⊂ H

⋆
p−1 ⊂ Hp−2 ⊂ · · · ⊂ H

⋆
1 ⊂ H0 ⊂ H

⋆
0

E.g. if p = q this takes the following form

[A] ⊂ [A, B] ⊂ [XA, A, XB] ⊂ [XA, A, B, XB] ⊂ · · · ⊂ H⋆
1 ⊂ H0 ⊂ H

⋆
0.

Example 3.3 We consider the successive matrices and their r-reduced forms in the non de-
fective case. E.g., with q = 3.

H3 ⊂ H
⋆
3 ⊂ H2 ⊂ H

⋆
2 ⊂ H2 ⊂ H

⋆
1 ⊂ H0 ⊂ H

⋆
0

We begin with
h⋆

4 = 1, H3 = B

H⋆
3 =

[
a · · · ·
b · · · 0

]
A
XB

∼r G
⋆
3 =

[
a · · · ·
0 g⋆

3 · · ·

]
A
GRem(A, XB)

Thus G⋆
3 = GRem(A, XB).

H2 =




a · · · ·
0 b · · ·
b · · · 0




A
B
XB

∼r




a · · · ·
0 b · · ·
0 g⋆

3 · · ·




A
B
G⋆

3

∼r




a · · · ·
0 b · · ·
0 0 g2 · ·




A
B
GRem(B, G⋆

3)

So G2 = GRem(B, G⋆
3).

H⋆
2 =




a · · · · 0
0 a · · · ·
0 b · · · 0
b · · · 0 0




XA
A
XB
X2B

∼r




a · · · · 0
0 a · · · ·
0 0 g⋆

3 · · ·
0 0 g2 · · 0




XA
A
G⋆

3

XG2

∼r




a · · · · 0
0 a · · · ·
0 0 g⋆

3 · · ·
0 0 0 g⋆

2 · ·




XA
A
G⋆

3

G⋆
2

So G⋆
2 = GRem(G⋆

3, XG2).
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In the non defective case we have the following results.

Proposition 3.4 When p = q + 1 and for all j ≤ q the Hj and H⋆
j are of degree j,

Gj−1 = GRem(Gj , G
⋆
j)

G⋆
j−1 = GRem(G⋆

j , XGj−1).

Proposition 3.5 When p = q + 1 and for all j ≤ q the Hj and H⋆
j are of degree j,

h⋆
j+1Hj−1 = GRem(Hj, hjH

⋆
j ) = −Rem(h⋆

jHj, H
⋆
j )

hjH
⋆
j−1 = GRem(H⋆

j , h
⋆
jXHj−1) = −Rem(hj−1H

⋆
j , XHj−1).

They are easy to prove in the spirit the example above, and are particular cases of Propo-
sition 3.7 and Theorem 3.1 that we prove later.

The following algorithm due to C. Quitté [11] follows from the proposition and the conven-
tions. It is particularly simple and improves the subresultant algorithm in the non defective
case.

Non defective FlipFlop Algorithm
Let Hq ← B, H⋆

q ← aXB − bA, h⋆
q+1 ← 1, ,

Knowing Hj , H⋆
j and h⋆

j+1

Hj−1 ← −(h⋆
jHj − hjH

⋆
j )/h⋆

j+1

Knowing H⋆
j , Hj−1 and hj

H⋆
j−1 ← −(hj−1H

⋆
j − h⋆

jXHj−1)/hj .

We shall get a general version of this algorithm at the end of the paper.
In order to understand better what happens, in the defective case, we show first an example.

Example 3.6 Suppose that A is of degree 8 and of leading coefficient a, B of degree 7 and of
leading coefficient b. First we have by conventions.

H7 = [ b · · · · · · · ] B = G7

Then the matrix

H⋆
7 =

[
a · · · · · · · ·
b · · · · · · · 0

]
A
XB

has as r-reduced form, if GRem(A, XB) is of degree 7,

G⋆
7 =

[
a · · · · · · · ·
0 g⋆

7 · · · · · · ·

]
A
G⋆

7 = GRem(G⋆
8, XG7)

Then H6 is associated to [A, B, XB]

H6 =




a · · · · · · · ·
0 b · · · · · · ·
b · · · · · · · 0




A
B
XB

It gives by an elementary row replacement



a · · · · · · · ·
0 b · · · · · · ·
0 g⋆

7 · · · · · · ·




A
B
G⋆

7
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Assume that G6 is of degree 5, this gives the r-reduced form

G6 =




a · · · · · · · ·
0 b · · · · · · ·
0 0 0 g6 · · · · ·




A
B
G6 = GRem(B, G⋆

7)

Since H⋆
6 = [XA, A, XB, X2B] contains the matrices H⋆

7 and XH6, it has as r-reduced form

G⋆
6 =




a · · · · · · · · 0
0 a · · · · · · · ·
0 0 g⋆

7 · · · · · · ·
0 0 0 g6 · · · · · 0




XA
A
G⋆

7

XG6 = G⋆
6

Since H5 = [XA, A, B, XB, X2B] contains H6 and XH6, it gives by elementary row replace-
ments the following r-reduced form

G5 =




a · · · · · · · · 0
0 a · · · · · · · ·
0 0 b · · · · · · ·
0 0 0 0 g6 · · · · ·
0 0 0 g6 · · · · · 0




XA
A
B
G6 = G5

XG6

Suppose now that G⋆
5 = GRem(G⋆

7, XG6), of expected degree 5, is in fact of degree 4 :
G⋆

5 = g⋆
5X

4 + · · ·. Then H⋆
5 = [X2A, XA, A, XB, X2B, X3B] gives after some elementary

row replacements the matrix

G⋆
5 =




a · · · · · · · · 0 0
0 a · · · · · · · · 0
0 0 a · · · · · · · ·
0 0 0 g⋆

7 · · · · · · ·
0 0 0 0 g6 · · · · · 0
0 0 0 0 0 0 g⋆

5 · · · ·




X2A
XA
A
G⋆

7

XG6

G⋆
5 = GRem(G⋆

7, XG6)

The matrix H4 = [X3A, X2A, XA, A, B, XB, X2B, X3B] contains the matrices H5 and H⋆
5, so

it has as r-reduced form

G4 =




a · · · · · · · · 0 0
0 a · · · · · · · · 0
0 0 a · · · · · · · ·
0 0 0 b · · · · · · ·
0 0 0 0 0 g6 · · · · ·
0 0 0 0 g6 · · · · · 0
0 0 0 0 0 0 g⋆

5 · · · ·




X2A
XA
A
B
G6

XG6

G⋆
5 = G4

Proposition 3.7 (notations 2.1 and 3.1, conventions 3.2).

1) Let 0 ≤ j ≤ inf(p− 1, q). Suppose that H⋆
j+1 and Hj are non defective. In particular this

is the case if j = q < p with G⋆
q = GRem(A, XB).

a) If G⋆
j = 0, then Gj is the GCD of A and B and XGj is the GCD of A and XB.
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b) If G⋆
j 6= 0 is of degree k ≤ j, then

i) Gk−1 = GRem(Gj, G
⋆
j)

Moreover if k < j

ii) G⋆
j = Gj−1 = G⋆

j−1 = . . . = Gk = G⋆
k

Remark that (in case k = j as in case k < j) Hk and H⋆
k are non defective, and we

are thus in the situation 2) underneath.

2) Let 0 ≤ j ≤ inf(p, q). Suppose that H⋆
j and Hj are non defective. In particular this is the

case if j = p ≤ q with Gp−1 = Rem(B, A).

a) If Gj−1 = 0, then G⋆
j is the GCD of A and B, and it is also the GCD of A and XB.

b) If Gj−1 6= 0 is of degree k ≤ j − 1, then

i) G⋆
k = GRem(G⋆

j , XGj−1)

Moreover if k < j − 1

ii) Gj−1 = . . . = Gk

G⋆
j−1 = . . . = G⋆

k+1 = XGj−1

Remark that (in case k = j−1 as in case k < j−1) H⋆
k+1 and Hk are non defective,

and we are thus in the situation 1) above.

Proof:
1a) and 2a) Let G = GCD(A, B), G⋆ = GCD(A, XB). We have G⋆ = G or G⋆ = XG (up to
constants). In case (1a) we know that G⋆ = G⋆

j+1 and G divides Gj . So deg(G) < deg(G⋆). It
follows that G⋆ = XG and G = Gj (up to a constant). In case (2a) we know that G = Gj and
G⋆ divides G⋆

j . So deg(G) = deg(G⋆). It follows that G⋆
j = G⋆ = G (up to a constant).

1b) Using proposition 2.5, it is enough to prove
(1α) Gk−1 = GRem(Gj, G

⋆
j) and

(1β) if k < j then Gj−1 = G⋆
j .

The matrix Hk−1 is r-equivalent to

[Xq−kA, . . . , Xq−jA,Hj, G
⋆
j , . . . , X

j−kG⋆
j ],

thus

Gk−1 = ldPol(Hk−1) =

ldPol(Xq−kA, . . . , Xq−jA,Hj , G
⋆
j , . . . , X

j−kG⋆
j).

According to Lemma 1.3,

ldPol(Xq−kA, . . . , Xq−jA,Hj , G
⋆
j , . . . , X

j−kG⋆
j) =

ldPol(ldPol(Xq−kA, . . . , Xq−jA,Hj), G
⋆
j , . . . , X

j−kG⋆
j)

= GRem(Gj, G
⋆
j)

So
Gk−1 = GRem(Gj, G

⋆
j).

If k < j, the matrix Hj−1 associated to

[Xq−jA,Hj , G
⋆
j ]
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is r-equivalent to Hj−1. So it is clear that the G-polynomial Gj−1 is G⋆
j .

2b) Using proposition 2.5, it is enough to prove
(2α) G⋆

k = GRem(G⋆
j , XGj−1) and

(2β) if k < j then G⋆
j−1 = XGj−1.

The matrix H⋆
k is r-equivalent to

[Xq−kA, . . . , Xq−jA,H⋆
j , XGj−1, . . . , X

j−kGj−1],

thus

G⋆
k = ldPol(H⋆

k) =

ldPol(Xq−kA, . . . , Xq−jA,H⋆
j , XGj−1, . . . , X

j−kGj−1).

According to Lemma 1.3,

ldPol(Xq−kA, . . . , Xq−jA,H⋆
j , XGj−1, . . . , X

j−kGj−1) =

ldPol(ldPol(Xq−kA, . . . , Xq−jA,H⋆
j ), XGj−1, . . . , X

j−kGj−1)

= GRem(G⋆
j , XGj−1)

So
G⋆

k = GRem(G⋆
j , XGj−1).

If k < j − 1, the matrix H⋆
j−1 associated to

[Xq−jA,H⋆
j , XGj−1]

is r-equivalent to H⋆
j−1. So it is clear that the G-polynomial G⋆

j−1 is XGj−1. 2

We are now ready for the general structure theorem.

Theorem 3.1 (Second structure theorem) We use notations 2.1, 3.1 and convention
3.2.

1) Let 0 ≤ j ≤ inf(p − 1, q). Assume H⋆
j+1 and Hj non defective. In particular this is the

case if j = q < p with h⋆
q+1 = 1, Hq = εp−q−1b

p−q−1B.

Let i be the largest index such that Hi−1 is of degree j. (if j = q < p then i = j + 1)

a) If H⋆
j = 0 then Hj is the GCD of A and B and XHj is the GCD of A and XB.

b) If H⋆
j 6= 0 is of degree k then

i) h⋆
i ·Hk−1 = (−1)i−kRem(h⋆

kHi−1, H
⋆
j )

Moreover if k < j, we have

ii) H⋆
j , Hj−1, Hk, and H⋆

k are proportional. Precisely:

iii) hj−1 =
hjh

⋆

j

h⋆
j+1

, hk = εj−k−1
hj h̄⋆

j

j−k

h⋆
j+1

j−k , h⋆
k = (−1)j−k hkh̄⋆

j

hj
,

iv) H⋆
j−1 = Hj−2 = . . . = Hk+1 = H⋆

k+1 = 0

Remark that (in case k = j as in case k < j) Hk and H⋆
k are non defective, and we

are thus in the situation 2) underneath.

17



2) Let 0 ≤ j ≤ inf(p, q). Assume Hj and H⋆
j non defective. In particular this is the case if

j = p ≤ q with hp = 1, H⋆
p = aq−pA.

Let i be the largest index such that H⋆
i is of degree j (if j = p ≤ q then i = j)

a) If Hj−1 = 0 then H⋆
j is the GCD of A and B and it is also the GCD of A and XB.

b) If Hj−1 6= 0 is of degree k then

i) hiH
⋆
k = (−1)i−kRem(hkH

⋆
i , XHj−1)

Moreover if k < j − 1 we have

ii) XHj−1, H⋆
j−1, H⋆

k+1 and XHk are proportional. Precisely:

iii) h⋆
j−1 =

h⋆
j
hj−1

hj
, h⋆

k+1 = εj−k−2
h⋆

j h̄j−k−1

j−1

hj−k−1

j

, hk = (−1)j−k−1 h⋆
k+1

h̄j−1

hj
,

iv) Hj−2 = H⋆
j−2 = . . . = Hk+1 = 0,

Remark that (in case k = j−1 as in case k < j−1) H⋆
k+1 and Hk are non defective,

and we are thus in the situation 1) above.

Proof:
1a) and 2a) are deduced from analogous results in proposition 3.7.
1b ii), iii) and iv) follow from Theorem 2.1 and proposition 3.7 when remarking that

agj−1 = ag⋆
j =

h⋆
j

h⋆
j+1

=
hj−1

hj

(following proposition 2.5 a)) and that

hk = εj−k−1
hj−1

j−k

hj
j−k−1 , h⋆

k = εj−k

h⋆
j
j−k+1

h⋆
j+1

j−k

2b ii), iii) and iv) follow from Theorem 2.1 and proposition 3.7 when remarking that

ag⋆
j−1 = agj−1 =

hj−1

hj
=

h⋆
j−1

h⋆
j

(following proposition 2.5 a)) and that

h⋆
k+1 = εj−k−2

h⋆
j−1

j−k−1

h⋆
j
j−k−2 , hk = εj−k−1

hj−1
j−k

hj
j−k−1 .

1b i) Using proposition 3.7:
Gk−1 = GRem(Gj, G

⋆
j),

multiplying both sides by ahkh
⋆
j+1 and noting that

Hk−1 = ahkGk−1, H⋆
j = ah⋆

j+1G
⋆
j ,

we get h⋆
j+1 · Hk−1 = GRem(Hj, hkH

⋆
j ). Using the relationship between remainder and G-

remainder, we obtain :
h⋆

j+1Hk−1 = (−1)j−k+1Rem(h⋆
kHj, H

⋆
j )
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Finally, using 2b iii), we have the proportionality between Hi and Hj ((i, j) replacing (j, k))

h⋆
i Hj = (−1)(i−j−1)h⋆

j+1Hi−1

Using this relation, we obtain as expected :

h⋆
i Hk−1 = (−1)i−kRem(h⋆

kHi−1, H
⋆
j )

Remark that 2b iii) is also true at the initialisation and in the non defective case.
2b i) Same computation. First using proposition 3.7 we get hjH

⋆
k = GRem(H⋆

j , h
⋆
k+1XHj−1).

Then the relationship between remainder and G-remainder gives :

hjH
⋆
k = (−1)j−kRem(hkH

⋆
j , XHj−1)

Finally, using 1b iii), we have the proportionality between H⋆
i and H⋆

j :

hiH
⋆
j = (−1)i−jhjH

⋆
i

Using this relation, we obtain as expected :

hiH
⋆
k = (−1)i−kRem(hkH

⋆
i , XHj−1)

2

The corresponding gap structure can be graphically displayed as follows.

Case 1)

...

H⋆
j+1

Hj

H⋆
j

Hj−1

Hk

H⋆
k

Hk−1

...

Case 2)
...

Hj

H⋆
j

Hj−1

H⋆
j−1

H⋆
k+1

Hk

H⋆
k

...
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4 Algorithm

Contrarily to what could be hoped, in the defective case, the divisions in the right hand side
of the equalities h⋆

i ·Hk−1 = (−1)i−kRem(h⋆
kHi−1, H

⋆
j ) and hiH

⋆
k = (−1)i−kRem(hkH

⋆
i , XHj−1)

do not give always quotients a with coefficients in D.

Example 4.1 Consider the polynomials A = 3X5 + X + 1 and B = 2X4 + X − 3.
We have :

H4 = B H⋆
4 = PRem(A, XB) = −6X2 + 22X + 4

So using relations in 3.1, h⋆
2 = −6. Then we find

Quo(h⋆
2H4, H

⋆
4) = 12X2 + 44X + 508/3

The following proposition due to Lionel Ducos [4] willbe used to perform the divisions of h⋆
kHi−1

by H⋆
j (resp. of hkH

⋆
i by XHj−1) without computing the quotient.

Proposition 4.2 Let Hj be non defective. Let k be the degree of Hj−1 and assume k < j − 1.
Then we get for δ = 0, . . . , j − 1− k

Rem(hkX
k+δ, Hj−1) ∈ D[X]

Proof : Add the row Xk+δ to Hk to obtain a matrix Mk,δ. By elementary row replace-
ments we can replace the j − k last rows of Hk by Gj−1, . . . , X

j−k−1Gj−1 and, by new el-
ementary row replacements the last row Xk+δ by Rem(Xk+δ, Gj−1), since the least degree
polynomial generated by [Gj−1, . . . , X

j−k−1Gj−1, X
k+δ] is Rem(Xk+δ, Gj−1). So ldPol(Mk,δ) =

Rem(Xk+δ, Gj−1). Since Hk is non defective, we can apply lemma 1.6 d) to Mk,δ :
DetPol(Mk,δ) = hkRem(Xk+δ, Gj−1) = Rem(hkX

k+δ, Hj−1). 2

Note that the pseudoremainder of A and B can be computed as follows.

Pseudo Remainder computation

Input A and B of degrees p and q (q ≤ p)

Output PRem(A, B)

Initialization Rq ← bp−q+1Xq − bp−qB, rq ← coefq(Rq)

Loop For δ from 0 to p− q − 1 : rq+δ ← coefq(Rq+δ), Rq+δ+1 ← XRq+δ − (rq+δB/b),

Final step Denoting by aℓ the coefficient of degree ℓ of A, let

D ←
∑

ℓ<q

aℓ · b
p−q+1Xℓ +

∑

p≥ℓ≥q

aℓ ·Rℓ.

{ Thus D = PRem(A, B)}.

This technique will be used in the initialization phase of the following algorithm. A similar
technique will be used later to compute Hk−1 (resp. H⋆

k) in the defective case.
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FlipFlop Algorithm

Input A and B two polynomials of degrees p and q

Output Subresultants Hj and H⋆
j (notations 2.1, 3.1 and convention 3.2).

Initialization

• If p > q let j ← q, h⋆
q+1 ← 1, i ← q + 1,

Hq ← εp−q−1b
p−q−1B,

H⋆
q ← εp−q+1PRem(A, XB) { = DetPol(H⋆

q) },
k ← deg(H⋆

q ).
If H⋆

q = 0 the computation is over. Otherwise go to Part 1).

• If p ≤ q let j ← p, hp ← 1, i ← p
H⋆

p ← aq−pA,
Hp−1 ← PRem(B, A) { = DetPol(Hp−1) },
k ← deg(Hp−1).
If Hp−1 = 0 the computation is over. Otherwise go to Part 2).

Part 1)

• Input : i, j, k, Hi−1, H⋆
j , h⋆

i , h⋆
j+1, hj

{H⋆
j+1 and Hj are non defective, i is the largest index such that Hi−1 is of degree j, k = deg(H⋆

j )}

• Output : H⋆
j , Hk−1, hj , hk, h⋆

k. Moreover i, j, k get new values and in the defective case the missing
subresultants are computed as extra outputs (that are not needed in order to run the algorithm).

• If k = j let Hk−1 ← −(h⋆
jHi−1 − hi−1H

⋆
j )/h⋆

i

{ h⋆
k and hk are known since k = j }

• If k < j

– Computation of hk :

∗ hj ← hj

∗ For δ from 0 to j − k − 1 : hj−δ−1 ← (−1)δhj−δh̄⋆
j/h⋆

j+1

∗ hk ← hk

– Computation of h⋆
k : h⋆

k = (−1)j−khkh̄⋆
j/hj

– Computation of Hk−1 :

∗ Initialization :
Rk ← h⋆

kXk − (h⋆
kH⋆

j /h⋆
j) {= Rem(h⋆

k ·X
k, H⋆

j )}

∗ For δ from 0 to j − k − 1 :
rk+δ ← coefk(Rk+δ), Rk+δ+1 ← XRk+δ − (rk+δH

⋆
j /h⋆

j)
{Rk+δ+1 = Rem(XRk+δ, H

⋆
j ).}

∗ Denoting by hi−1,m the coefficient of degree m of Hi−1, let

D ←
∑

m<k

hi−1,m · h
⋆
kXm +

∑

j≥m≥k

hi−1,m · Rm.

{ Thus D = Rem(h⋆
kHi−1, H

⋆
j ), hence h⋆

i ·Hk−1 = (−1)i−kD } and

Hk−1 ← (−1)i−kD/h⋆
i

– Computation of extra outputs :
Hj−1 ← hjH

⋆
j /h⋆

j+1,

Hk ← hkH⋆
j /h⋆

j ,

H⋆
k ← h⋆

kH⋆
j /h⋆

j

H⋆
j−1 = Hj−2 = . . . = Hk+1 = H⋆

k+1
← 0,

• If Hk−1 = 0, let all the subresultants Hℓ and H⋆
ℓ with 0 ≤ ℓ < k be = 0 and stop the algorithm.

Otherwise let (i, j, k) ← (j, k, deg(Hk−1)) and enter Part 2)
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Part 2)

• Input : i, j, k, H⋆
i , Hj−1, hi, hj , h⋆

j ,
{ Hj and H⋆

j are non defective, i is the largest index such that H⋆
i is of degree j, k = deg(Hj−1) }

• Output : Hj−1, H⋆
k , h⋆

j , h⋆
k+1

, hk. Moreover i, j, k get new values and in the defective case the
missing subresultants are computed as extra outputs (that are not needed in order to run the
algorithm).

• If k = j − 1 let H⋆
k ← −(hj−1H

⋆
i − h⋆

jXHj−1)/hi

{ hk and h⋆
k+1

are known since k = j − 1 }

• If k < j − 1

– Computation of h⋆
k+1

:

∗ h
⋆

j ← h⋆
j

∗ For δ from 0 to j − k − 2 : h
⋆

j−1−δ ← (−1)δh
⋆

j−δh̄j−1/hj

∗ h⋆
k+1
← h

⋆

k+1

– Computation of hk : hk = (−1)j−k−1h⋆
k+1

h̄j−1/h⋆
j

– Computation of H⋆
k :

∗ Initialization :
R⋆

k+1
← hkXk+1 − (hkXHj−1/hj−1) {= Rem(hkXk+1, XHj−1)}

∗ For δ from 1 to j − k − 1 :
r⋆
k+δ ← coefk(R⋆

k+δ), R⋆
k+δ+1

← XR⋆
k+δ − (r⋆

k+δHj−1/hj−1)
{R⋆

k+δ+1
= Rem(XR⋆

k+δ, Hj−1)}

∗ Denoting by h⋆
i,m the coefficient of degree m of H⋆

i , let

D⋆ ←
∑

m<k

h⋆
i,m · hkXm +

∑

j≥m≥k

h⋆
i,m ·R

⋆
m

{ Thus D⋆ = Rem(hkH⋆
i , XHj−1), hence hi ·H

⋆
k = (−1)i−kD⋆ } and

H⋆
k ← (−1)i−kD⋆/hi

– Computation of extra outputs :
H⋆

j−1 ← h⋆
jXHj−1/hj,

H⋆
k+1
← h⋆

k+1
XHj−1/hj−1,

Hk ← hkHj−1/hj−1

Hj−2 = H⋆
j−2 = . . . = Hk+1 = 0,

• If H⋆
k = 0, let all the subresultants Hℓ−1 and H⋆

ℓ with 0 ≤ ℓ ≤ k be = 0 and stop the algorithm.
Otherwise let (i, j, k) ← (j, k, deg(H⋆

k )) and enter Part 1)

The fact that the algorithm is correct follows from theorem 3.1 and propositions 2.10 and
4.2.

Complexity of the algorithms

We are going to compare the Improved subresultant algorithm, the FlipFlop algorithm and
Ducos’s algorithm from [4].

In order to give a hint of the computations made by the Ducos’s algorithm, we describe it
in the non defective case (see [4] for the defective case).

We denote by hj+1,j the coefficient of Xj in Hj+1 and by kj the coefficient of degree j of Kj .
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Non defective Ducos’s Algorithm

Kq ← aXB − bA,

Hq−1 ← −(kqB − hqKq).

Knowing Hj+1, Hj and hj+1

Kj ← −XHj − (hj+1,jHj − hjHj+1)/hj+1,

Hj−1 ← (kjHj − hjKj)/hj+1.

It is not complicated to check that in the three algorithms we compare the non defective
case involves more arithmetic operations and bit operations.

In order to go from Hj to Hj−1

• in the Improved subresultant algorithm we perform 3j multiplications between coefficients
of bit size 2τ + 1 and τ , 2j − 1 additions between coefficients of bit size 3τ + 1, j exact
divisions between coefficients of bit size 3τ + 2 and 2τ ,

• in the FlipFlop algorithm we perform 4j + 1 multiplications between coefficients of bit
size τ , and 2j − 1 additions of bit size 2τ , 2j + 1 exact divisions between coefficients of
bit size 2τ + 1 and τ .

• in the Ducos’s algorithm we perform 4j multiplications between coefficients of bit size τ ,
and 3j additions of bit size 2τ , 2j +1 exact divisions between coefficients of bit size 2τ +1
and τ .

In the case of polynomials of degree d with integer coefficients of bit size t, the maximum
bit size τ of a minor extracted from Sylvester matrix is O(d(t + log(d)).

Neglecting linear factors, the three algorithms perform 2d2 arithmetic operations, in the
Improved subresultant algorithm the size of intermediate computations is at most 3τ +2, while
in the FlipFlop algorithm and Ducos’s algorithm the size of intermediate computations is at
most 2τ + 1.

Using naive arithmetic operations, the bit complexity of the Improved subresultant algo-
rithm is dominated by 6τ 2d2, the the bit complexity of the FlipFlop and Ducos’s algorithm is
dominated by 4τ 2d2.

Using fast arithmetic operations, and neglecting log factors, the bit complexity of the Im-
proved subresultant algorithm is dominated by (15/2)τd2, the bit complexity of the FlipFlop
algorithm is dominated by 6τd2, and the complexity of Ducos’s algorithm is dominated by 7τd2.

Experimental results
The FlipFlop algorithm has been implemented in Aldor. We have tested it and compared

with implementations in the same language of the improved subresultant algorithm, and Ducos’s
algorithm for univariate polynomials and multivariate polynomials. In the experimentation, we
have distinguished the non defective case, i.e. the case where there are no gaps of degrees in the
remainder sequence, and the defective case where there are gaps of degrees in the remainder
sequence. Note that the non defective case is generic and that in this case the improved and
classical subresultant algorithm coincide.

1) For univariate polynomials, the algorithms have been performed on a PC Pentium II,
300 Mhz with 64 Meg of RAM. The computing times are given in seconds.
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• a) In the non defective case, we have taken random polynomials. Here are the computation
times in seconds :

degree FlipFlop Ducos Improved
100 10,2 10,1 12,5
150 46,8 46,7 57,4
200 139,0 139,0 170,0
250 329,0 327,7 397,8
300 662 663 798
350 1200 1201 1435

• b) The test suite we used to compare the algorithms in the defective case is the following:

x30 + ax20 + 2ax10 + 3a
x25 + 4bx15 + 5bx5

P30-25/a a = 10240 b = 2 · 10240

P30-25/b a = 10726 b = 2 · 10726

P30-25/c a = 101726 b = 2 · 101726

(a + x)90 (a− x)60

P90-60/a a = 2
P90-60/b a = 10

x120 + ax100 + 2ax80 + 3ax70 + 2ax50 + 3ax20 + ax5 + 2a
x115 + 4bx85 + 5bx65 − x35 + 4bx25 + 5bx15

P120-115/a a = 10126 b = 2.10126

P120-115/b a = 10226 b = 2.10226

Here are the computation times :

degree FlipFlop Ducos Improved
P30-25/a 0,69 0,49 1,1
P30-25/b 5,6 4,1 8,4
P30-25/c 32,2 24,1 44,1
P90-60/a 5,9 5,6 7,0
P90-60/b 21,2 20,1 25,2

P120-115/a 75,0 68,0 161,4
P120-115/b 249,0 224,0 489,0

The couples P30-25 are such that there are gaps of degrees in all the successive remainders.
We notice that Ducos’s algorithm is the best, the FlipFlop Algorithm is good and they
are both better than the Improved subreultant Algorithm.

The couples P90-60 are such that there is only one big gap of degree at the beginning of
the computation. We notice that there is little difference in computation times between
the different algorithms.

The couples P120-115 are intermediate examples.

From these experiments, it appears that the FlipFlop Algorithm and Ducos’s algorithm are
better in terms of computation times than the Improved Subresultant Algorithm. In the generic
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(non defective) case, the computation times are equivalent for FlipFlop Algorithm and Ducos’s
algorithm. In the defective case, Ducos’s algorithm is the best, but FlipFlop Algorithm is not
so far.

2) For multivariate polynomials, we used a PC Bi-Pentium II 400 Mhz with 512 Meg of
RAM of the UMS Medicis.

• a) For testing the non defective case, we have taken random polynomials whose coefficients
are univariate polynomials. Here are the computing times in seconds :

degree FlipFlop Ducos Improved
10 3,8 3,5 7,4
15 32,4 32,7 64,1
20 160 171 329
25 616 731 1303

Here the FlipFlop Algorithm gives slightly better computation times than the Ducos’s
algorithm. During the computations with multivariate polynomials, we have observed
bigger coefficients for Ducos’s algorithm than for FlipFlop Algorithm.

On the other hand, the FlipFlop Algorithm and Ducos’s algorithm are significantly better
than the Improved Subresultant Algorithm for multivariate polynomials.

• b) For the defective cases, in order to observe what happens when there are gaps in
degrees, we have constructed artificially the following examples.

x30 + ax20 + 2ax10 + 3a
x25 + 4bx15 + 5bx5

P30-25/a a = (y2 + 1)3 b = (y3 + y2 + 1)2

P30-25/b a = (y2 + 1)9 b = (y3 + y2 + 1)6

P30-25/c a = (y2 + 1)12 b = (y3 + y2 + 1)8

(a + x)15 (a− x)10

P90-60/a a = (y2 + 1)3

P90-60/b a = (y2 + 1)6

ax100 + 2ax80 + 3ax70 + 2ax50 + 3ax20 + ax5 + 2a
4bx85 + 5bx65 − x35 + 4bx25 + 5bx15

P100-85/a a = y2 + 1 b = y3 + y2 + 1

Here we give the computation times :

degree FlipFlop Ducos Improved
P30-25/a 5,9 4,4 19,7
P30-25/b 87,6 66,2 922,6
P30-25/c 211,6 160,5 2704
P90-60/a 67,2 48,2 100,7
P90-60/b 633 449 894
P100-85/a 739 671 > 6000

25



The couples P30-25 are such that during the computation there are always gaps of degrees
in the remainder sequence. The couples P90-60 are such that there is only one big gap
of degree at the beginning of the computation. The couples P100-85 are intermediate
examples. Ducos’s algorithm is slightly better for the defective case.

The little difference between the algorithms observed for the first test-suite is due to
the fact that the gap in degree comes early in the computation. Thus, the size of the
subresultant coefficients is no tbig enough to observe the better growth of the coefficients
in FlipFlop and Ducos’s algorithms.

One can conclude that for the multivariate case, the FlipFlop and Ducos’s algorithms bring
significant improvements to the Improved Subresultant Algorithm even in the non defective
cases.
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[6] L. González-Vega, F. Rouillier, M.-F. Roy, G. Trujillo Symbolic Recipes for
Real Solutions, In: Some tapas of computer algebra, A. Cohen et al. ed. Algorithms and
Computation in Mathematics, vol. 4, 121-167, Springer.

[7] W. Habicht, Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens, Comm.
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