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Abstract. Let f be a polynomial in Q[X1, . . . , Xn] of degree D. We focus on
testing the emptiness of the semi-algebraic set defined by f > 0 (or f < 0
or f 6= 0). To this end, the problem is reduced to computing at least one
point in each connected component of a hypersurface defined by f − e = 0
for e ∈ Q positive and small enough. We provide an algorithm allowing us to
determine a positive rational number e which is small enough in this sense.
This is based on the efficient computation of the set of generalized critical

values of the mapping f : y ∈ Cn → f(y) ∈ C which is the union of the
classical set K0(f) of critical values of the mapping f and K∞(f) of asymptotic

critical values of the mapping f . Our algorithm computes separately K0(f)
(with a complexity within O

`

n7D4n
´

arithmetic operations in Q) and K∞(f)

(with a complexity within O(n7D4n)) arithmetic operations in Q). This is
asymptotically optimal since ]K∞(f) ≤ Dn−1 −1 and ]K0(f) ≤ Dn−1. Then,
we show how to use the computation of generalized critical values in order to
obtain an efficient algorithm deciding the emptiness of a semi-algebraic set
defined by a single inequality or a single inequation. At last, we show how to
apply our contribution to determining if a hypersurface contains real regular
points. We provide complexity estimates for probabilistic versions of the latter
algorithms which are within O(n7D4n) arithmetic operations in Q.
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1. Introduction

Let f be a polynomial in Q[X1, . . . , Xn] of degree D and S+ ⊂ Rn (resp. S− and
S) be the semi-algebraic set defined by f > 0 (resp. f < 0 and f 6= 0). The aim of
this paper is to provide an efficient algorithm in practice which computes at least
one point in each connected component of S (resp. S− and S).
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This question is of first importance since solving parametric polynomial systems
of equations and inequalities is reduced to compute at least one point in each
connected component of the complementary of a real hypersurface (see [25]). This
question also appears as a black box used in algorithms solving quantifier elimi-
nation problems (see [7]).

Algorithms computing a Cylindrical Algebraic Decomposition (see [9]) allow us to
produce one point in each connected component of S+, S− or S. Nevertheless the
complexity of such algorithms is doubly exponential in the number of variables
and their implementations are limited to problems having 3 or 4 variables.

Algorithms based on the critical point method are provided in [18, 19, 20, 29, 5,
6]. The classical strategy is to exhibit a hypersurface such that each connected
component of S+ (resp. S− or S) contains a connected component of the real
counterpart of the exhibited hypersurface. Indeed, given an infinitesimal ε, denote
by Hε ⊂ C〈ε〉n the hypersurface defined by f − ε. By the mean value theorem,
each connected component of the embedding of S+ in R〈ε〉n contains a connected
component of Hε ∩ R〈ε〉n. Hence, the problem is reduced to compute at least one
point in each connected component of the real counterpart of the hypersurface Hε.

Computing at least one point in each connected component of a real hypersurface.
Consider a hypersurface H ⊂ Cn. We focus now on algorithms computing at least
one point in each connected component of H∩Rn. This problem is tackled by the
critical point method. Its principle is the following: choose a polynomial mapping
φ : H ∩ Rn → R reaching its extrema in each connected component of H ∩ Rn

and such that its critical locus is zero-dimensional. When H is smooth, φ can be
the square of the euclidean distance to a generically chosen point of Qn. When,
additionally, H ∩ Rn is known to be compact, φ can be the projection on a line.

In [5], computing sampling points in H ∩ Rn is reduced to computing sampling
points of a smooth hypersurface whose real counterpart is compact by introduc-
ing several infinitesimals. Thus, projection functions are used. The algorithms are
deterministic and their complexity is (2D)O(n) arithmetic operations in Q. Alge-
braic manipulations are performed to avoid a computation of Gröbner bases and
lead to encode critical points as solutions of a zero-dimensional polynomial sys-
tem generating an ideal having always a degree 2D(2D − 1)n. Moreover, all the
computations are performed over a Puiseux series field. Thus, there is no hope to
obtain an efficient practical behaviour of these algorithms.

In [32, 1, 4, 3], the authors use the square of the euclidean distance to a generically
chosen point A in Qn. Algorithms dealing with the case where H is not smooth
are provided in [32, 1]. The one of [32] uses infinitesimal deformations. The one
of [1] processes by performing a recursive study of the singular locus until it has
dimension 0 or is empty. Because of the choice of A, the deterministic complex-

ity of the algorithm of [32] is DO(n2). Nevertheless, in practice, the first choice
is suitable to obtain zero-dimensional critical loci, so that under this assumption,
which is satisfied in practice, the complexity of [32] is DO(n). The complexity of
[1] is not well-controlled even if in singular situations it behaves better than the



Generalized Critical Values and Testing Sign Conditions on a Polynomial 3

ones based on infinitesimal deformations. The algorithms of [4, 3] use the geomet-
ric resolution algorithm which is probabilistic. Their complexity is polynomial in
n, the evaluation complexity of the input polynomial and an intrinsic geometric
degree δ which is dominated by Dn.
In the smooth case, these contributions are improved in [35]: generic projection
functions are used even in non-compact situations instead of distance functions to
a generic point. The genericity of the choice of projection functions is necessary to
ensure properness properties. As in the case of algorithms using distance functions,
in practice, the first choices are suitable. Using elimination algorithms based on
the geometric resolution, this leads to a probabilistic algorithm whose arithmetic
complexity is polynomial in n, the evaluation complexity of the input polynomial,
and an intrinsic geometric degree δ which is dominated by D(D− 1)n−1. One can
also use Gröbner bases. Making the assumptions that the first choice of projections
is suitable, the complexity becomes DO(n). This work is generalized to the case of
singular hypersurfaces in [37]. The algorithms relying on [35] are the most efficient
in practice and are implemented in [37].
The output of all these algorithms are critical points encoded by a rational pa-
rameterization: 




Xn = qn(T )
q0(T )

...

X1 = q1(T )
q0(T )

q(T ) = 0

where T is a new variable, and q, q0, q1, . . . , qn are univariate polynomials in Q[t].
Such a rational parametrization can be obtained either by linear algebra com-
putations in a quotient-algebra (see [31]) or directly by the geometric resolution
algorithm (see [16, 14, 15, 17, 27]).

As recalled above, the classical strategy to compute at least one point in each con-
nected component implies to apply the aforementioned algorithms in the case of a
hypersurface defined by a polynomial with coefficients in Q〈ε〉. Thus, the output is
a rational parameterization with coefficients in Q(ε). Once it is obtained, a small
enough specialization for ε is obtained by computing the discriminant of q with
respect to T and choosing a specialization less than the smallest absolute value
of the real roots of this discriminant. Thus, the final output is smaller than the
rational parameterization with coefficients in Q(ε). Moreover, computing rational
parameterizations with coefficients in Q(ε) is hard in practice: infinitesimal arith-
metics spoil the practical behaviour of elimination algorithms due to problems
appearing in memory management and the overcost of arithmetic operations.

Substituting infinitesimal deformations by a pre-computation of generalized criti-
cal values. Remark that in order to obtain one point in each connected component
in S+ (resp. S− or S), it is sufficient to substitute a priori the infinitesimal ε ap-
pearing in f−ε by a small enough positive rational number e ∈ Q. The problem is
to ensure that the chosen rational number is small enough which means here that
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for each connected component S of S+, there exists a connected component of the
real counter part of the hypersurface defined by f − e = 0 which is contained in
S. This can be done by determining e0 ∈ R such that for all e ∈]0, e0[, there exists
a diffeomorphism ϕ such that the following diagram commutes:

f−1(e)×]0, e0[
ϕ

π

f−1(]0, e0[)

f

]0, e0[

where π is the canonical projection on the second member of the cartesian product
f−1(e)×]0, e0[.
Such a topological property is obtained by ensuring that the interval I =]0, e0[ has
an empty intersection with the set of generalized critical values of the polynomial

mapping f̃ : x ∈ Rn → f(x) ∈ R which is denoted by K(f) in the sequel. This set
is defined and studied in [28]. A real number c ∈ R is a generalized critical value of

a mapping f̃ if and only if it is either a critical value of f̃ or there exists a sequence
of points (z`)`∈N such that f(z`) tends to c when ` tends to ∞, ||z`|| tends to ∞
when ` tends to ∞ and ||z`||.||dz`

f || tends to 0 when ` tends to ∞. In the latter
case, c is said to be an asymptotic critical value. Degree bounds are provided in
[23]. An algorithm computing them is described in [28]. This algorithm works as
follows: denoting by I the ideal

I = 〈f − T,

(
∂f

∂Xi

− ai

)

i∈{1,...,n}

,

(
Xi

∂f

∂Xj

− ai,j

)

(i,j)∈{1,...,n}2

〉

where a1, . . . , a1,1, . . . , an,n and T are new variables, compute

J = I ∩Q[T, a1, . . . , an, a1,1, . . . , an,n]

. Generalized critical values are solutions of

J + 〈a1, . . . , an, a11, an,n〉.

Thus, the complexity of this algorithm is at least DO(n2) since it requires to deal
with n2 + 2n+ 1 variables. Obviously, its practical behaviour is unefficient.
We provide here an algorithm computing efficiently the set of generalized critical
values of a polynomial mapping from Rn to R. A probabilistic version of this
algorithm has a complexity within DO(n) arithmetic operations in Q which is
polynomial in the size of the output in worst-cases.
This allows us to substitute the use of infinitesimal deformations by a pre-compu-
tation of generalized critical values in order to compute at least one point in each
connected component of a semi-algebraic set defined by a single inequality. The
algorithm we obtain is efficient in practice and its probabilistic versions have a
complexity within O(n7D4n) arithmetic operations in Q. We also show how to
apply our contribution to the problem of deciding if a hypersurface contains real
regular points.
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Plan of the paper. The paper is organized as follows. In Section 2, we recall the
definition and basic properties of generalized critical values which can be found in
[28]. In Section 3, we provide geometric results which, up to a generic linear change
of the variables X1, . . . , Xn, characterize generalized critical values as the set of
non-properness of a projection on a line restricted to a 1-dimensional polar variety.
In Section 4, we show how to obtain a first algorithm computing generalized critical
values which is directly based on the geometric results of Section 3. Then, we prove
that these computations reduce to computing classical critical values on the one
hand, and critical values at infinity on the other hand. In Section 5, we describe
an algorithm computing at least one point in each connected component of a semi-
algebraic set defined by a single inequality, which is based on the computation of
generalized critical values. In Section 6, we show how to apply our contributions
to determining if a hypersurface contains real regular points. Finally, Section 7
contains some benchmarks illustrating the efficiency of our algorithms.

Acknowledgments. The author thanks É. Schost and P. Trébuchet for fruitful
discussions and comments about this work.

2. Definition and first properties of generalized critical values

In this section, we recall the definitions and basic properties of generalized critical
values which can be found in [28].

Definition 2.1. A complex number c ∈ C is a critical value of the mapping f : y ∈
Cn → f(y) if and only if there exists z ∈ Cn such that f(z) = c and ∂f

∂X1

(z) =

· · · = ∂f
∂Xn

(z) = 0.
A complex number c ∈ C is an asymptotic critical value of the mapping f : y ∈
Cn → f(y) if and only if there exists a sequence of points (z`)`∈N ⊂ Cn such that:

• f(z`) tends to c when ` tends to ∞.
• ||z`|| tends to +∞ when ` tends to ∞.

• for all (i, j) ∈ {1, . . . , n} ||Xi(z`)||.||
∂f
∂Xj

(z`)|| tends to 0 when ` tends to ∞.

Example. Consider the following polynomial in Q[X1, X2]

f = X1(X1X2 − 1)

and the mapping f̃ : (x1, x2)→ f(x1, x2). This mapping has obviously no critical

value since 〈f − T, ∂f
∂X1

, ∂f
∂X2

〉 = Q[X1, X2, T ]. Suppose now that there exists a
sequence of points z` such that:

• ||z`|| tends to +∞ when ` tends to ∞.

• for all (i, j) ∈ {1, 2} ||Xi(z`)||.||
∂f
∂Xj

(z`)|| tends to 0 when ` tends to ∞.

This implies that X2
1 (z`) tends to 0 when ` tends to ∞, which implies that X1(z`)

tends to 0 when ` tends to∞, and X2X
2
1 (z`) tends to 0 when ` tends to∞. Finally,

f(z`) tends to 0 when ` tends to ∞. Thus, 0 is an asymptotic critical value of the

mapping f̃ . We will see further that it is the only one.
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Consider now the following example in 3 variables:

f = X1 +X2
1X2 +X4

1X2X3

In [28], the authors prove that the set of generalized critical values of the mapping
sending x ∈ Cn to f(x) is {0} by using a similar reasoning as the above.

In [28], the authors prove the following result.

Theorem 2.2. Let f be a polynomial in Q[X1, . . . , Xn] of degree D. The set of

generalized critical values K(f) of the mapping f̃ : x ∈ Cn → f(x) ∈ C is Zariski-
closed in C and D]K∞(f) + ]K0(f) ≤ Dn − 1

Consider a mapping fC : Cn → C and an open subset FC of C. We say that fC

realizes a locally trivial fibration on Cn \f−1
C

(FC) if for all connected open set (for
the euclidean topology) UC ⊂ C \FC, for all e ∈ UC denoting by πC the projection
on the second member of the cartesian product f−1

C
(e)×UC, the following diagram

f−1
C

(e)× UC

ϕ

π

f−1
C

(UC)

f

UC

The above definition is also used for polynomial mappings from Rn to R. Consider
a mapping fR : Cn → C and an open subset FR of C. We say that fR realizes
a locally trivial fibration on Cn \ f−1

R
(FC) if for all connected open set (for the

euclidean topology) UR ⊂ C \ FR, for all e ∈ UR denoting by πR the projection on
the second member of the cartesian product f−1

R
(e)× UR, the following diagram

f−1
R

(e)× UR

ϕ

π

f−1
R

(UR)

f

UR

is commutative.

The main interest of the set generalized critical values relies on its topological
properties which are summarized below and proved in [28].

Theorem 2.3. The mapping fC realizes a locally trivial fibration in Cn\f−1
C

(K(fC)).

The mapping fR realizes a locally trivial fibration in Rn \ f−1
R

(K(fR)).

Example. Consider the examples given above. We have proved that for both ex-
amples 0 is an asymptotic critical value. Remark that the fiber of both considered
mappings above 0 is reducible while a generic fiber is irreducible. This is charac-
teristic to a change of topology.
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Figure 1. Existence of generalized critical values and no change
in topology

Nevertheless, note that a mapping can realize a locally trivial fibration even if
there exists a generalized critical value in I . To illustrate this fact, consider the
following example:

f = −X2(2X
2
1X

2
2 − 9X1X2 + 12)

which realizes a locally trivial fibration around 0 as shown in Figure 1 but is such
that K(f) = {0}.

Thus,K(f) is Zariski-closed, degree bounds onK(f) are Bézout-like degree bounds
and its topological properties ensure that there is no topological change in the
fibers of f taken above any interval of R which has an empty intersection with
K(f).

Denote by GLn(C) the set of invertible matrices with coefficients in C. Consider
now A ∈ GLn(C) and denote by fA the polynomial f(AX) where X denotes
(X1, . . . , Xn). Moreover, given {f1, . . . , fs} in Q[X1, . . . , Xn] and an algebraic va-
riety V ⊂ Cn defined by f1 = · · · = fs = 0, we denote by VA the algebraic variety
defined by fA

1 = · · · = fA
s = 0.

The following lemma is an immediate consequence of Definition 2.1 and will be
used in the sequel.

Lemma 2.4. For all A ∈ GLn(Q), K(f) equals K(fA), K0(f) equals K0(f
A) and

K∞(f) equals K∞(fA).
If c is a critical value (resp. an asymptotic critical value) of f , then for all e ∈ Q,
c− e is a critical value (resp. an asymptotic critical value) of f + e.

The following lemma is also immediate and is used further.

Lemma 2.5. Let f be a polynomial in Q[X1, . . . , Xn]. Consider c ∈ C and (z`)`∈N ⊂
Cn be a sequence of points such that:

• f(z`) tends to c when ` tends to ∞;
• ||z`|| tends to ∞ when ` tends to ∞;
• ||z`||.||dz`

f || tends to 0 when ` tends to ∞.
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Denote by X the vector X1, . . . , Xn. There exists a Zariski-closed subset A (

GLn(C) such that for all A ∈ GLn(Q) \ A, ||AX(z`)|| tends to ∞ when ` tends
to ∞.

In the sequel, for simplicity, we identify a polynomial f ∈ Q[X1, . . . , Xn] with the
mapping fC : x ∈ Cn → f(x) ∈ C.

3. Geometric results

Let f be a polynomial in Q[X1, . . . , Xn], H ⊂ Cn+1 be the hypersurface defined
by f − T = 0 (where T is a new variable). For simplicity we denote by f the
mapping sending a point x ∈ Cn to f(x). Given x = (x1, . . . , xn) ∈ Cn, we denote
by Fi : Cn → Cn+1 the polynomial mapping sending x to:

((∂f/∂Xi) (x), (X1∂f/∂Xi) (x), . . . , (Xn∂f/∂Xi) (x))

and by F̃i : Cn → Cin+i+1 the polynomial mapping sending x to:

(F1(x), F2(x), . . . , Fi(x), f(x)) .

We consider in the sequel the polynomial mapping φ : Cn → Cn
2+n+1 sending

x = (x1, . . . , xn) to

(F1(x), . . . , Fn(x), f(x))

which coincides with F̃n. For any polynomial mapping ψ, we denote by Γψ the

image of ψ and by Γψ its Zariski-closure. For (i, j) ∈ {1, . . . , n}2, we introduce

new variables ai, and ai,j such that Γφ is defined by a set of generators of the
ideal:

〈f − T, (∂f/∂Xi − ai)i∈{1,...,n} , (Xi.∂f/∂Xj − ai,j)(i,j)∈{1,...,n}2〉

intersected with the polynomial ring Q[T, a1, . . . , an, a1,1, . . . , an,n].

Let Li ⊂ Cin+i+1 be the coordinate axis of T , i.e. the line defined by:

a1 = · · · = ai = a1,1 = · · · = an,1 = · · · = a1,i = · · · = an,i = 0.

The line Ln is denoted by L in the sequel.

Jelonek and Kurdyka prove that Γφ∩L equals the set of generalized critical values
of f . The set of asymptotic critical values of f , denoted by K∞(f), is characterized
as the intersection of the set of non-properness of φ with L.

3.1. Geometric characterization of generalized critical values under properness
assumptions

In the sequel, for i = n, . . . , 2, we consider projections:

Πi : Cn+1 → Ci

(x1, . . . , xn, t) 7→ (xn−i+2, . . . , xn, t)
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For i = 1, . . . , n − 1, let Wn−i ⊂ Cn+1 denotes the Zariski-closure of the con-
structible set defined by:

f − T =
∂f

∂X1
= · · · =

∂f

∂Xi

= 0,
∂f

∂Xi+1
6= 0.

For simplicity, Wn denotes H.

In the sequel, we consider maps between complex or real algebraic varieties. The
notion of properness of such maps will be relative to the topologies induced by
the metric topologies of C or R. A map φ : V → W of topological spaces is said
to be proper at w ∈W if there exists a neighborhood B of w such that f−1(B) is
compact (where B denotes the closure of B). The map φ is said to be proper if it
is proper at all w ∈W .

In the sequel, we suppose that there exists a Zariski-closed subset A ( GLn(Q)
such that for all A ∈ GLn(Q) \ A given j ∈ {2, . . . , n}, the property Pj(A) is
satisfied if and only if for all i ∈ {j, . . . , n}, the mapping Πi restricted to WA

i is
proper and the restriction of the map Πi+1 to Wi is birational onto its image.

Remark 3.1. Remark that from the algebraic Bertini-Sard theorem [39], if P(A)
is true, Πi restricted to Wi is a finite map and then WA

i has dimension i.

We prove below that if P2(A) is satisfied, given c ∈ K∞(f), there exists a sequence
of points (z`)`∈N in WA

1 such that:

• f(z`) tends to c when ` tends to ∞
• ||z`|| tends to ∞ when ` tends to ∞
• ||z`||.||dz`

f || tends to 0 when ` tends to ∞

so that the existence of asymptotic critical values can be read off in W1 which has
dimension 1.

Proposition 3.2. Consider c ∈ K∞(f). There exists a Zariski-closed subset A (

GLn(C) such that for all A ∈ GLn(Q)\A, there exists a sequence of points (z`)`∈N

such that:

• for all ` ∈ N, z` ∈ W
A
n−1;

• fA(z`)→ c while `→∞;
• ||z`|| tends to ∞ when ` tends to ∞;
• ||z`||.||dz`

fA|| → 0 while `→∞.

Proof. For the sake of simplicity, suppose that Pn(In) is satisfied.
Consider the mapping φ : H ⊂ Cn+1 → C2n+2 which associates to a point x =
(x1, . . . , xn, t) ∈ H the point:

(
x2, . . . , xn, t,

∂f

∂X1
(x), x1

∂f

∂X1
(x), . . . , xn

∂f

∂X1
(x), t

∂f

∂X1
(x)

)
∈ C2n+2

Denote by (a2, . . . , an, an+1, a0,1, a1,1, . . . , an+1,1) the coordinates of the target
space of φ. Since for i = 2, . . . , n, Xi = ai, T = an+1 and X1 =

a1,1

a0,1
, X1, . . . , Xn

and T can be expressed as rational functions of coordinates in the target space
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of φ and then, the map φ is birational onto its image. Moreover, the graph of φ,
denoted by Γφ is an irreducible algebraic variety of C3n+3 of dimension n. Then,
specializing n coordinates outside a Zariski closed subset, of maximal dimension
n− 1, in the target space of φ determines a unique point in the pre-image of φ.

In the sequel, given a point α = (α2, . . . , αn) ∈ Cn−1 (resp. a complex number θ ∈
C), chosen outside a Zariski-closed subset of Cn−1 (resp. C), we denote by y(α, β)
the point in the image of φ obtained by specializing the first (n − 1) coordinates
(corresponding to x2, . . . , xn) to α and the n+ 2-th coordinate (corresponding to

x1
∂f
∂X1

). Since φ is birational and since α and β are chosen generically, one can

define x(α, β) as the unique pre-image of y(α, β).

Consider c ∈ K∞(f), then there exists a sequence of points (z`)`∈N ⊂ Cn such
that:

• f(z`) tends to c when ` tends to ∞
• ||z`|| tends to ∞ when ` tends to ∞.
• ||z`||.||dz`

f || tends to 0 when ` tends to ∞.

Consider the images by φ of the points (z`, f(z`)) and their first n− 1 coordinates
α` and their n + 2-th coordinates θ`. Since f(z`), 1/||z`|| and ||z`||.||dz`

f || are
Cauchy sequences, the doubly-indexed sequence αi, θ` is such that:

• (a) f(x(αi, θ`)) tends to c when i and ` tend to ∞;
• (b) ||dx(αi,θ`)f || tends to 0 when i and ` tend to ∞.

• (c) ||x(αi, θ`)|| tends to ∞ when i and ` tend to ∞.
• (d) ||x(αi, θ`)||.||dx(αi

,θ`)f || tends to 0 when i and ` tend to ∞.

Note that such a choice implies that θ` tends to 0 when ` tends to ∞. Moreover,
without loss of generality, by disturbing infinitesimally αi and θ`, one can suppose
that:

• (e) for all i ∈ N, αi is chosen outside the Zariski-closed subset defined as the
Zariski-closure of the projection of Wn−2 onto X2, . . . , Xn.

• (f) from Lemma 2.5, one can suppose that up to a generic linear change of
coordinates, X1(αi, θ`) tends to ∞ when i and ` tend to ∞.

Since the map φ is birational, there exists an n-variate rational fraction Q such
that X1(x(α, θ)) is obtained by evaluating this rational fraction at α, θ. Then, for
a fixed integer i0, X1(x(αi0 , θ`)) has either a finite limit or tends to ∞ when `
tends to ∞. In the sequel, we prove that in both cases, y(αi0 , θ`) tends to a point
whose last n+ 2 coordinates are null.
Suppose first that X1(x(αi0 , θ`)) has a finite limit when ` tends to ∞. Up to
a generic linear change of variables, due to property (f), one can suppose that
||X1(x(αi, θ`))|| tends to∞ when i and ` tend to∞. Thus, one can choose i0 large
enough to ensure that if X1(x(αi0 , θ`)) has a finite limit when ` tends to ∞, this
limit is not 0. This implies that the n+ 1-th coordinate of y(αi0 , θ`) tends to zero
when `→∞.
This also implies that for j = n + 3, . . . , 2n+ 1, the j-th coordinate of y(αi0 , θ`)
tend to 0 when ` → ∞ since these coordinates can be rewritten as the product
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of one coordinate of αi0 and the (n + 1)-th of y(αi0 , θ`) which tends to 0 when `
tends to ∞.
Moreover, f(x(αi0 , θ`)) remains bounded (since X1(x(αi0 , θ`)) has a finite limit),
and has consequently a finite limit. Finally, this allows us to conclude that the last
coordinate of y(αi0 , θ`) tends to 0 when ` tends to ∞. Thus, in this case, one has
proved that y(αi0 , θ`) tends to a point whose last n+ 2 coordinates are null.

Suppose now that X1(x(αi0 , θ`)) tends to∞ when ` tends to∞. This immediately
implies that the n + 1-th coordinate and, for j = n + 3, . . . , 2n + 1, the j-th
coordinates of y(αi0 , θ`) tend to 0 when ` tend to ∞. It remains to prove that the
last coordinate of y(αi0 , θ`) tends to 0 when ` tends to ∞.
Since X1(x(αi0 , θ`)) tends to ∞ when ` tends to ∞, from the curve selection
Lemma at infinity (see [28, Lemma 3.3, page 9], this implies there exists a semi-
algebraic arc γi0 : [0, 1[→ R such that

||γi0(ρ)|| → ∞ and ||γi0(ρ)||.||
∂f

∂X1
(γi0(ρ))|| → 0

when ρ tends to 1. From Lojasiewicz’s inequality at infinity [8, 2.3.11, p. 63], this
implies that there exists an integer N ≥ 1 such that:

∀ρ ∈ [0, 1[, ||
∂f

∂X1
(γi0 (ρ)))|| ≤ ||γi0(ρ)||

−1− 1

N

Following the same reasoning as in [28, Lemma 3.4, page 9], one can reparam-
eterize γi0 such that γi0 becomes a semi-algebraic function from [0,+∞[ and
limρ→1 ||γ̇i0(ρ)|| = 1. Thus, the following yields:

∀p ∈ [0,+∞[, ||
∂f

∂X1
(γi0 (ρ))||.||γ̇i0 (ρ)|| ≤ ||γi0(ρ)||

−1− 1

N .||γ̇i0(ρ)||

and ∫ ∞

0

||γi0 (ρ)||
−1− 1

N ||.||γ̇i0 (ρ)||dρ

is bounded. Since∫ ∞

0

||
∂f

∂X1
(γi0(ρ))||.||γ̇i0 (ρ)||dρ ≥ ||

∫ ∞

0

∂f

∂X1
(γi0(ρ)).γ̇i0 (ρ)dρ||

This obviously implies that f(X1, αi0) is bounded along γi0 . Hence we have proved
that y(αi0 , θ`) tends to a point whose last n+ 2 coordinates are null.

Let yi0 = (αi0 , ci0 , 0, . . . , 0) be the limit of y(αi0 , θ`) and let pi0 ∈ Cn be (αi0 , ci0)
and p` ∈ Cn be the point whose coordinates are the n-first coordinates of y(αi0 , θ`).
We prove now that yi0 belongs to the image of φ.
Since the restriction to H of Πn is supposed to be proper, for all ` ∈ N, Π−1

n (p`)∩
H 6= ∅ and there exists a ball centered at pi0 such that Π−1

n (B) is compact. More-
over, remark that x(αi0 , θ`) belongs to Π−1

n (p`).
Thus, one can extract a converging subsequence from (x(αi0 , θ`))`∈N and let xi0 be
the limit of the chosen converging subsequence. Note that we have proved above
that the evaluation of ∂f

∂X1

at x(αi0 , θ`) tends to 0 when ` tends to∞ which implies
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that ∂f
∂X1

vanishes at xi0 . Moreover, from property (e), ∂f
∂X2

does not vanish at xi0 .

Hence xi0 belongs to Wn−1 and φ(xi0 ) = yi0 which implies that yi0 belongs to
the image of φ. To end the proof, note that, from properties (a), (c) and (d),
(f(xi0 ))i0∈N

(resp. (||xi0 ||)i0∈N
and

(
||dxi0

f ||
)
i0∈N

and
(
||xi0 ||.||dxi0

f ||
)
i0∈N

) has

the same limit when i0 tends to ∞ as (f(x(αi, θ`)))(i,`)∈N×N
(resp. ||dx(αi,θ`)f ||

and ||x(αi, θ`)|| and ||x(αi, θ`)||.||dx(αi,θ`)f ||) when i and ` tend to ∞. �

Finally, the above result tells that under some assumptions on the properness of
some projections and the dimension of a polar variety, generalized critical values
can be read off in the polar variety W1.

Proposition 3.3. Consider c ∈ K∞(f). There exists a a Zariski-closed subset A (

GLn(C) such that for all A ∈ GLn(Q)\A, there exists a sequence of points (z`)`∈N

such that:

• for all ` ∈ N, z` ∈ WA
1 ;

• fA(z`)→ c when `→∞;
• ||z`|| tends to ∞ when ` tends to ∞;
• ||z`||.||dz`

fA|| → 0 when `→∞.

The proof of the above result uses the same techniques than the ones used in the
proof of Proposition 3.2.

3.2. Ensuring properness properties

We prove now that up to a generic linear change of variables, the assumption
P1(A) which is summarized in the following proposition.

Proposition 3.4. There exists a Zariski-closed subset A ( GLn(C) such that for
all A ∈ GLn(Q) \ A and for all j ∈ {1, . . . , n− 1}:

• Πj restricted to Wj is proper.
• the restriction of Πj+1 to Wj is bi-rational onto its image.

In [35], the authors prove that given a hypersurface H ⊂ Cn+1, there exists a
Zariski-closed subset A ( GLn+1(C) such that for j ∈ {1, . . . , n − 1} and for
all A ∈ GLn+1(Q) \ A, Πj restricted to WA

j is proper and satisfies a Nœther
normalization property.
This result can not be used as stated in [35], since we consider here the hypersurface
defined by f − T = 0 and allow only change of variables on X1, . . . , Xn. Never-
theless, the incremental intersection process, originate from [16, 15, 14], which is
used in the proof of [35] allows us to state:

Proposition 3.5. For i = 1, . . . , n, denote by ∆A

i the ideals associated to the Zariski-
closure of the constructible set defined by:

∂fA

∂X1
= · · · =

∂fA

∂Xi

= 0,
∂fA

∂Xi+1
6= 0

There exists a Zariski-closed subset A ( GLn(C) such that:
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• for all i ∈ {1, . . . , n} and for all prime PA

i associated to ∆A

i , the extension
C[X≥i+1]→ C[X]/PA

i is integral, where X≥i+1 denotes Xi+1, . . . , Xn and X

denotes X1, . . . , Xn.
• for all i ∈ {2, . . . , n− 1}, the restriction of the projection πi : (x1, . . . , xn)→

(xi, . . . , xn) ∈ Cn−i+1 to the algebraic variety defined by ∆A

i is birational
onto its image.

Using mutatis mutandis the proof of [35, Proposition 3, Section 2.5], which is
based on [21, Lemma 3.10] relating the properness of πi to the fact that the above
extensions are integral yields the following result:

Lemma 3.6. Denote by πi+1 the projection (x1, . . . , xn) ∈ Cn → (xi+1, . . . , xn) ∈
Cn−i. There exists a Zariski-closed subset A ( GLn(C) such that for all A ∈
GLn(Q) \ A and for all i ∈ {1, . . . , n}, πi+1 restricted to the algebraic variety
defined by ∆A

i is proper.

Now, we prove that if πi restricted to the algebraic variety associated to ∆A

i is
proper, then Πi restricted to WA

i is proper. Indeed, suppose there exists (x, t) ∈
Ci−1 × C such that Πi restricted to WA

i is not proper at (x, t). This means that
there exists a ball B×U ⊂ Ci−1×C containing (x, t) such that Π−1

i (B)∩WA

i is not
compact. Remark that in that case, the only variables which can tend to infinity
are X1, . . . , Xn−i or Xn−i+1. This implies that the projection of Π−1

i (B) ∩WA
i

onto X1, . . . , Xn is not compact. Moreover, the projection of Π−1
i (B) ∩WA

i onto
X1, . . . , Xn is contained in the pre-image by πi of B which contains x. Thus, the
non-properness of Πi restricted to WA

i at (x, t) implies the non-properness of πi
restricted to ∆A

i at x.
The fact that the restriction of Πi to WA

i is birational comes immediately from
the fact that the restriction of πi to ∆A

i is birational.
This ends the proof of Proposition 3.4.

We are now ready to state our main geometric result which characterizes the set
of generalized critical values of f .

3.3. Main geometric result

The combination of Proposition 3.4 and Lemma 2.5 leads to the following result.

Theorem 3.7 (Geometric characterization of generalized critical values). There
exists a Zariski-closed subset A ( GLn(C) such that for all A ∈ GLn(Q) \ A
the set K∞(f) of asymptotic critical values of f is contained in the set of non-
properness of the projection πT restricted to the Zariski-closure of the constructible
set defined by:

fA − T =
∂fA

∂X2
= · · · =

∂fA

∂Xn

= 0,
∂fA

∂X1
6= 0.

Remark 3.8. Remark that the above result only states that K∞(f) is contained in
the set of non-properness Z of the projection Π : (x1, . . . , xn, t) ∈ Cn+1 → t ∈ C
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restricted to W1. The latter set is zero-dimensional (see [21]). Nevertheless, this
inclusion can be strict since some points in Z can depend on A.

Example. In [36], the authors use [21, Lemma 3.10] to compute the set of non-
properness of a projection restricted to an algebraic variety. Denoting by IA the
ideal associated to WA

1 , this algorithm specializes in our case to computing the
characteristic polynomial of the multiplication by X1 in Q(T )[X1, . . . , Xn]/I

A.
The set of non-properness of the projection on T is the reunion of the zero-sets of
the denominators of this characteristic polynomial seen as univariate in X1.
Consider the polynomial which is already studied in Section 2

f = X1 +X2
1X2 +X4

1X2X3

Performing the linear change of variables below

X1 ← X1 +X2 +X3

X2 ← X1 + 2X2 + 3X3

X3 ← X1 + 4X2 + 9X3

one finds as a set of non-properness for the projection on T the zero-set of the
univariate polynomial below

256T 2 (20T + 1)

Performing the linear change of variables below

X1 ← 10213X1 + 41543X2 + 51532X3

X2 ← X1 + 44904X2 + 10334X3

X3 ← X1 + 58200X2 + 1597X3

one finds as a set of non-properness for the projection on T the zero-set of the
univariate polynomial below

T 2 (898540T + 117941) .

Thus K∞(f) is the gcd of these univariate polynomials and is {0}.

4. The algorithm and its complexity

Given f ∈ Q[X1, . . . , Xn], we show now how to compute the set of generalized
critical values K(f) of the mapping x ∈ Cn → f(x) ∈ C. Since K(f) = K0(f) ∪
K∞(f), we focus first on the computation of K0(f) and then we deal with the
computation of K∞(f).
Our algorithms rely on tools coming from polynomial system solving. We use
Gröbner bases and the Geometric resolution algorithm. Gröbner bases are a stan-
dard tool in polynomial system solving since it allows to test the membership of a
polynomial to an ideal, to compute elimination ideals, and to reduce the resolution
of zero-dimensional polynomial systems to linear algebra computations. Gröbner
bases have a complexity within DO(n) arithmetic operations in Q when the input
polynomial family generates a zero-dimensional ideal (see []).
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The geometric resolution algorithm [17, 27] is more recent and goes back to
[16, 14, 15]. The input is a polynomial system of equation and inequations encoded
by a straight-line program and defining a constructible set. It returns generic points
in each equi-dimensional component of the Zariski-closure of the constructible set
defined by the input. These generic points are encoded by rational parameteriza-
tions 





Xn = qn(T )
q0(T )

...

X1 = q1(T )
q0(T )

q(T ) = 0

where T is a new variable. Thus the output of the geometric resolution algorithm
is a list of n+2-tuples of univariate polynomials (q, q0, q1, . . . , qn). This algorithm
is probabilistic, but its complexity is well-controlled. We denote by M(x) the cost
of multipyling univariate polynomials of degree x and the notation p ∈ Olog (x)
means that p ∈ O(x log xa) for some constant a.

Theorem 4.1 (Complexity result for geometric resolution). [27] Let g1, . . . , gS
and g be polynomials of degree bounded by D in Q[X1, . . . , Xn], represented by
a Straight-Line Program of length L. There exists an algorithm computing a geo-
metric resolution of the Zariski-closure V (g1, . . . , gS)\V (g) whose arithmetic com-
plexity is:

Olog (Sn4(nL+ n4)M(Dd))3

where d is the maximum of the sums of the algebraic degrees of the irreducible
components of the intermediate varieties defined as the Zariski-closures of the con-
structible sets g1 = · · · = gi = 0, g 6= 0 for i in 1, . . . , S.

In practice, Gröbner bases remains, in general, the fastest tool to solve polyno-
mial systems, in particular when the algorithms [12, 13] are used. The geometric
resolution algorithm is implemented as a Magma package by G. Lecerf (see [26]).
Hereafter, we describe how to compute K0(f) and K∞(f) using Gröbner bases
and the geometric resolution algorithm. When using Gröbner bases, one obtains
a deterministic algorithm and an efficient behaviour in practice (see Section 7).
When using the geometric resolution algorithm, we obtain a probabilistic algorithm
whose complexity is well-controlled.

Computation ofK0(f). The first step of an algorithm computingK(f) is obviously
the computation of the set of critical values K0(f) of f . This is encoded as the set
of roots of a univariate polynomial. Denote by I the ideal

〈f − T,
∂f

∂X1
, . . . ,

∂f

∂Xn

〉.

Sard’s Theorem ensures that there exists P ∈ Q[T ] such that: 〈P 〉 = I ∩Q[T ] and,
by definition, the set of roots of P is K0(f).
Gröbner bases allow such computations of elimination ideals.
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Algorithm computing K0(f) using Gröbner bases

• Input: a polynomial f in Q[X1, . . . , Xn].
• Output: a univariate polynomial P ∈ Q[T ] such that its zero-

set is K0(f).

• Compute a Gröbner basis G for an elimination ordering
[X1, . . . , Xn] > [T ] of the ideal generated by:

〈f − T,
∂f

∂X1
, . . . ,

∂f

∂Xn

〉.

• Return the element of G belonging to Q[T ].

Remark that ]K0(f) ≤ (D−1)n since it is defined as the values taken by a polyno-
mial on each isolated primary component of an ideal defined by n polynomials of
degree D−1. So, one could expect to obain an algorithm computing K0(f) having
a complexity within (D− 1)O(n). This aim can be reached by using the geometric
resolution Algorithm. The first step is the computation of rational parametriza-
tions of generic points in each equi-dimensional component of the algebraic variety
defined by:

∂f

∂X1
= · · · =

∂f

∂Xn

= 0.

Once they are obtained, one can obtain the values taken by f at these points which
are encoded by a univariate polynomial.

Probabilistic Algorithm computing K0(f) using the Geometic
Resolution Algorithm

• Input: a polynomial f in Q[X1, . . . , Xn].
• Output: a univariate polynomial P ∈ Q[T ] such that its zero-

set is K0(f).

• Let G be the rational parametrizations returned by the geo-
metric resolution algorithm taking as input ∂f

∂X1

, . . . , ∂f
∂Xn

.

• For each element g = (q, q0, q1, . . . , qn) of G, substitute for
i = 1, . . . , n in f − T the variables Xi by qi

q0
. Put the result

to the same denominator and compute the resultant of the
obtained polynomial with respect to the variable T .

• Return the product of the computed polynomials.

The complexity of the above algorithm is dominated by the cost of computing a
geometric resolution of the algebraic variety defined by:

∂f

∂X1
= · · · =

∂f

∂Xn
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Computation of K∞(f). It remains to show how to compute K∞(f). Following
Remark 3.8 and Example 3.3, this task can be achieved by linear algebra compu-
tations in the quotient ring Q(T )[X1, . . . , Xn]/I

A where IA is the ideal associated
to WA

1 .

Deterministic Algorithm. In order to obtain a deterministic algorithm, we must
check that the chosen linear change of variables A is generic enough. This can be
done by first testing that the projection on X1 restricted the Zariski-closure of the
constructible set defined

∂fA

∂X1
= · · · =

∂fA

∂Xn−1
= 0,

∂fA

∂Xn

6= 0

is proper and that the projection on (X1, X2) is birational. The property of proper-
ness can be tested by using algorithms to compute sets of non-properness in
[36, 25]. Once this is ensured, one can specialize X1 to any rational value and
test the property of birationality by computing a rational univariate representa-
tion. Once this check is done, it is sufficient to instantiate X1 in fA and repeat
the above.

In the sequel we denote by SetOfNonProperness a subroutine taking as input a
polynomial system of equations and inequations and a set of variables and com-
putes the set of non-properness of the projection on the variables given as input
restricted to the Zariski-closure of the constructible set defined by the input poly-
nomial system.

Algorithm computing K∞(f) using Gröbner bases

• Input: a polynomial f in Q[X1, . . . , Xn].
• Output: a univariate polynomial P ∈ Q[T ] such that its zero-

set is K0(f).

• Choose randomly A ∈ GLn(C) and check it is generic enough
until this test returns true.

• Return SetOfNonProperness([fA − T = ∂fA

∂X1

= · · · =
∂fA

∂Xn−1
= 0, ∂f

A

∂Xn
6= 0], {T})

Probabilistic Algorithm. As in the case of the computation of K0(f), Gröbner
bases do not allow to obtain complexity results even if the first choice of A to
be correct. To reach this aim, one also uses extensions of the geometric resolution
algorithms allowing to lift the parameter. Here, in the input polynomial system

fA − T =
∂fA

∂X1
= · · · =

∂fA

∂Xn−1
= 0,

∂fA

∂Xn

6= 0

T is considered as the parameter. From [2], if A is generic enough, this defines
a zero-dimensional system generating a radical ideal. The output is a geometric
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resolution 



Xn = qn(X1,T )
q0(X1,T )

...

X2 = q2(X1,T )
q0(X1,T )

q(X1, T ) = 0

The set of non properness of the projection on T restricted to the Zariski-closure
of the constructible set defined by the input polynomial system is contained the
least commun multiple of the denominators of the coefficients of q.

Probabilistic Algorithm computing K0(f) using the Geometic
Resolution Algorithm

• Input: a polynomial f in Q[X1, . . . , Xn].
• Output: a univariate polynomial P ∈ Q[T ] such that its zero-

set is K0(f).

• Consider T as a parameter in the polynomial system fA −

T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂f

A

∂Xn
6= 0 and compute a

geometric resolution.
• Lift the parameter.
• Return the least common multiple of the denominators in

the coefficients of the polynomial q.

The probabilistic versions of the algorithms computing K0(f) and K∞(f) lead to
the following complexity result.

Theorem 4.2 (Complexity result). The above probabilistic algorithm computing
K0(f) performs at most O(n7D4n) arithmetic operations in Q.
The above probabilistic algorithm computing K∞(f) performs at most O(n7D4n)
arithmetic operations in Q.

5. Application I: testing the emptiness of a semi-algebraic set
defined by a single inequality

In this section, we show how to use the above algorithm to compute at least one
point in each connected component of a semi-algebraic set defined by a single
inequality.
This result can be proved using classical techniques of real algebraic geometry.

Theorem 5.1 (Semi-algebraic sets). Let f be a polynomial in Q[X1, . . . , Xn] and
S be the semi-algebraic set defined by f > 0. Let e ∈ Q be such that 0 < e <
min(|r|, r ∈ K(f) ∩ R).
Consider the hypersurface He defined by f − e = 0. Then, for each connected
component S of S, there exists a connected component C of He ∩ Rn such that
C ⊂ S.
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Remark 5.2. From Theorem 5.1, deciding the emptiness of the semi-algebraic set
defined by f > 0 is reduced to decide if a hypersurface defined by a polynomial
with coefficients in Q contains real points.
Substituting f by −f one can deal with semi-algebraic sets defined by f < 0.
At last, computing at least one point in each connected component of the semi-
algebraic set defined by f 6= 0 is done by computing at least one point in each
connected component of the semi-algebraic sets defined by f > 0 and f < 0.

The Algorithm. The algorithm relies on Theorem 5.1. Given a polynomial f in
Q[X1, . . . , Xn] of degree D, the algorithm computes at least one point in each
connected component of the semi-algebraic set defined by f > 0. The first step
is the computation of the set of generalized critical values of the mapping f :
x ∈ Cn → f(x) ∈ C. Using the probabilistic version of the algorithm provided in
Section 4, this can be done within O(n7D4n) arithmetic operations in Q.
Isolating the real solutions of the polynomial encoding the set of generalized critical
values of f is done within O(D3n) arithmetic operations in Q using the variant
of Uspensky’s algorithm designed in [33]. Choosing a positive rational number e
between 0 and the smallest positive real generalized critical value is immediate.
It remains to compute at least one point in each connected component of the real
counterpart of the hypersurface defined by f − e = 0. This can be done using the
algorithm designed in [35] within O(n7D3n) arithmetic operations in Q. This leads
to the following theorem.

Theorem 5.3 (Complexity result). Let f be a polynomial in Q[X1, . . . , Xn] of degree
D and S be the semi-algebraic set defined by f > 0. The probabilistic version of
the above algorithm computes at least one point in each connected component of S
with a complexity within O(n7D4n) arithmetic operations in Q.

6. Application II: determining the existence of real regular points
in a hypersurface

In this section, we focus on the following problem: given a polynomial f ∈ Q[X1,
. . . , Xn], decide if the hypersurface H defined by f = 0 contains real regular
points. Hence, the problem consists in deciding if the real dimension of H ∩ Rn

equals the complex dimension of H. This problem appears in many applications (in
particular in automated geometric reasoning or in algorithmic geometry) studying
generic geometric situations.

This can be solved using the Cylindrical Algebraic Decomposition but the com-
plexity of this method is doubly exponential in the number of variables and, in
practice, this method is limited to problems having 3 or 4 variables.
Such a problem can also be tackled by computing the real radical of the ideal
〈f〉 ⊂ Q[X1, . . . , Xn] (which is the radical ideal of Q[X1, . . . , Xn] whose associated
algebraic variety is the smallest one – for the inclusion ordering – containing H ∩
Rn). This can be done by using the algorithms designed in []. Nevertheless, the
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complexity of such methods seems to be doubly exponential in the number of
variables and no efficient implementations have been obtained from these works.
The real dimension of H can be computed using [7, Chapter 14]. The complexity of

this algorithm is DO(n2). Nevertheless, this algorithm does not provide satisfactory
results in practice due to the use of several infinitesimals and some growth of degree
which lead to a high complexity constant (which is here as an exponent) and are
difficult to manage in practical implementations.
All the methods above compute exactly the real dimension of H ∩ Rn which is
stronger than the expected output. In the case where f is square-free, the problem
in which we are interested can be tackled by deciding if all the semi-algebraic sets
Si ⊂ Rn defined by f = 0, ∂f

∂Xi
6= 0 (for i = 1, . . . , n) are empty or not. Each

semi-algebraic set Si is studied by studying the real algebraic sets of R〈ε〉n defined

by f = ∂f
∂Xi
− ε = 0 and f = ∂f

∂Xi
+ ε = 0. The complexity of this method is DO(n)

but we are lead here to study n distinct semi-algebraic sets defined by an equation
and an inequation.

In the sequel, we show how to determine the existence of real regular points in a
hypersurface to the problem of deciding the emptiness of a single semi-algebraic
set defined by a single inequality. The probabilistic version of our algorithm has a
complexity within O(n7D4n) arithmetic operations in Q.

Theorem 6.1 (Existence of regular real points). Let f be a square-free polynomial
in Q[X1, . . . , Xn] and H ⊂ Cn be the hypersurface defined by f = 0. There exist
regular real points in H if and only if there exist (x, x′) ∈ Rn × Rn such that
f(x) > 0 and f(x′) < 0.

Proof. Suppose first that H contains real regular points and let y be such a point.
Since f is square-free, one has grady(f) 6= 0. Now, considering the line passing
through y and supported by the vector grady(f) and a Taylor development of f
along this line near y, it is clear that f is positive and negative along this line.
Suppose now that H does not contain a real regular zero. Then, the real locus
of H (which may be empty) is contained in the singular locus of H. Since the
co-dimension of the singular locus of H is greater than 1, the complementary of
H∩Rn in Rn is connected. This implies that either the semi-algebraic set defined
by f > 0 is empty or the semi-algebraic set defined by f < 0 is empty. �

The Algorithm. The algorithm based on Theorem 6.1 works as follows. The input
of the algorithm is a polynomial f in Q[X1, . . . , Xn] of degree D. Compute the
square-free part of f .
Determine the sign of f on a randomly chosen point at which f does not vanish.
In practice, this step is immediate while in theory, on has to test each point in

a grid of size Dn2

to be sure to find a point at which f does not vanish. Since
our complexity estimates are based on probabilistic algorithms, we suppose that
the cost of this step is the one of the evaluation of f , i.e. Olog (Dn) arithmetic
operations in Q.
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If f is found to be positive on the test-point, test the emptiness of the semi-
algebraic defined by f < 0, else test the emptiness of the semi-algebraic set defined
by f > 0. Using the algorithm designed in Section 5 using the computation of
generalized critical values, this is done within O(n7D4n) arithmetic operations in
Q.

7. Practical results

We have implemented the algorithms presented in Sections 4, 5 and 6 using
Gröbner bases.

The Gröbner engine which is used is FGb [11] which is implemented in C by J.-C.
Faugère. Computing rational parametrizations of the complex roots of a zero-
dimensional ideal from a Gröbner basis is done by RS which is implemented in
C by F. Rouillier. Isolation of real roots of univariate polynomials with rational
coefficients is done by RS using the algorithm provided in [30].

The resulting implementation is a part of the development version of the RAGLib

Maple library [34]. We do not describe implementation details allowing us to avoid
an explicit linear change of variables by using a choice of generic projections. We
also don’t describe modular tests which allow us to test if the chosen projections
are good. However, observe that the first choices have always been correct.

All the computations have been performed on a PC Intel Pentium Centrino Pro-
cessor 1.86 GHz with 2048 Kbytes of Cache and 512 MB of RAM.

7.1. Description of the test-suite.

The following polynomial has been submitted by D. Lazard and S. Lazard. It
appears in a problem of algorithmic geometry studying the Voronoi Diagram of
three lines. The question was first to determine if the zero-set of discriminant of
the following polynomial with respect of the variable u contains real regular points.
This discriminant has degree 30. This discriminant is the product of a polynomial
of degree 18 and several polynomials up to an odd power whom zero-set could
not contain a real regular point since they are sums of squares. The polynomial
of degree 18 is Lazard II. D. Lazard and S. Lazard have also asked to determine
if the following polynomial which is denoted by Lazard I in the sequel is always
positive.

16 a2
`

α2 + 1 + β2
´

u4 + 16 a
`

−α β a2 + axα + 2 aα2 + 2 a + 2 aβ2 + ayβ − α β
´

u3 +
``

24 a2 + 4 a4
´

α2 +
`

−24 β a3
− 24 aβ − 8 ya3 + 24 xa2

− 8 ay
´

α + 24 a2β2 + 4 β2
−

8 β xa3 + 4 y2a2 + 24 yβ a2
− 8 axβ + 16 a2 + 4 x2a2

´

u2 +
`

−4 α a3 + 4 ya2
−

4 ax− 8 aα + 8 β a2 + 4 β
´

(β − aα + y − ax) u +
`

a2 + 1
´

(β − aα + y − ax)2

In the sequel, we denote by Lazard I the above polynomial and by Lazard II the
discriminant of Lazard I with respect to the variable u.



22 M. Safey El Din

The following polynomial appears in [24]. The problem consists in determining the
conditions on a, b, c and d such that the ellipse defined by:

(x− c)2

a2
+

(y − d)2

b2
= 1

is inside the circle defined by x2 + y2 − 1 = 0.

4 a
6
c
2
d
2

+ 2 a
2
b
2
d
6
− 6 a

2
b
2
d
4

+ a
4
c
4

+ 2 a
4
c
2
d
6
− 6 a

2
b
2
c
4
− 6 a

4
b
2
c
4

+ 4 a
6
b
2
d
2

+

a
8
b
4

+ 6 b
4
c
2
d
2
− 2 b

6
c
4
d
2

+ a
8
d
4

+ 6 a
2
b
6
d
2
− 8 a

4
b
4
d
2
− 4 a

4
b
2
d
6
− 6 b

4
c
4
d
2
− 8 a

4
b
4
c
2

+

6 a
6
b
2
c
2
− 8 a

2
b
4
c
2

+ 6 a
4
b
4
d
4
− 2 b

4
c
2
d
4
− 4 a

2
b
4
c
6
− 4 a

6
b
4
c
2
− 6 a

2
b
4
d
4
− 2 a

4
c
4
d
2

+

10 a
4
b
2
d
4
− 2 a

2
b
8
c
2
− 6 a

2
b
6
c
4

+ a
4
b
8

+ 6 a
2
b
2
d
2

+ 6 a
6
b
4
d
2
− 4 a

4
b
6
d
2

+ b
4
d
4

+ b
4
c
8

+

10 a
2
b
4
c
4

+ 6 a
2
b
2
c
2

+ 4 a
2
b
6
c
2

+ a
4
d
8

+ 4 b
6
c
2
d
2

+ 6 a
4
b
6
c
2
− 8 a

4
b
2
d
2

+

4 a
4
b
2
c
2
− 2 a

8
b
2
d
2

+ 6 a
4
c
2
d
2

+ 4 a
2
b
4
d
2
− 6 a

6
b
2
d
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+ 6 a
4
b
4
c
4
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6
c
2
d
4

+

2 b
4
c
6
d
2

+ 2 a
2
b
2
c
6
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4
c
2
d
4

+ b
8
c
4

+ 2 a
4
b
2
− 4 a

4
d
2

+ a
4
− 2 b

6
− 2 a

6
+ a

8
+

b
8

+ b
4

+ 2 a
2
b
4

+ 2 b
6
c
6
− 2 b

8
c
2
− 6 b

6
c
4

+ 2 a
6
b
4
− 2 a

2
b
2
− 2 a

6
b
6

+ 2 a
4
b
6
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2 a
2
b
8
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4
b
2
c
4
d
2
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2
b
4
c
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d
2
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4
b
2
c
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d
4
− 6 a

2
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d
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4
b
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2
b
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c
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+
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2
b
2
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d
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2
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d
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2
b
2
c
4
d
2
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2
b
2
c
2
d
4
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2
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d
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2
b
6
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d
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4
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d
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4
c
2

+ 6 a
4
d
4
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4
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2

Below, in the column JK we give the timings for computing generalized critical
values by using the algorithm of [28]. We obviously use the same Gröbner en-
gine FGb than ours for this algorithm. The column AlgoHyp corresponds to the
maximum of the timings obtained by

• our algorithm computing at least one point in each connected component of
the semi-algebraic set defined by the positivity of our input;

• our algorithm computing at least one point in each connected component of
the semi-algebraic set defined by the negativity of our input.

The column CAD contains the timings of an implementation of the open CAD
algorithm in Maple which is due to G. Moroz and F. Rouillier.
The algorithms provided in [7] never end on these examples.

Pbm ]vars Degree JK AlgoHyp CAD
Lazard I 6 8 ∞ 60 sec. ∞
Lazard II 5 18 ∞ 10 hours. ∞

Ellips-Circle 4 12 ∞ 90 sec. 5 min.
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