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ABSTRACT

Computing loci of rank defects of linear matrices (alsoeazithe
MinRank problem) is a fundamental NP-hard problem of liredar
gebra which has applications in Cryptology, in Error Cotireg
Codes and in Geometry. Given a square linear matrix (i.e.tebxma
whose entries arevariate linear forms) of size and an integer,
the problem is to find points such that the evaluation of th&ima
has rank less thard- 1. The aim of the paper is to obtain the most
efficient algorithm to solve this problem. To this end, weegitie
theoretical and practical complexity of computing Grébhases
of two algebraic formulations of the MinRank problem. Botbdn
elings lead testructured algebraic systems

The first modeling, proposed by Kipnis and Shamir generdtes b
homogeneous equations of bi-deg(&gl). The second one is clas-
sically obtained by the vanishing of tlie+ 1)-minors of the given
matrix, giving rise to a determinantal ideal. In both casegjer
genericity assumptions on the entries of the considered>mate
give new bounds on the degree of regularity of the considielesl
which allows us to estimate the complexity of the whole Geibn
bases computations. For instance, #xactdegree of regularity
of the determinantal ideal formulation of a generic welfided
MinRank problem isr(n—r)+ 1. We also give optimal degree
bounds of the loci of rank defect which are reached underrigene
ity assumptions; the new bounds are much lower than the atdnd
multi-homogeneous Bézout bounds (or mixed volume of Newton
polytopes).

As a by-product, we prove that the generic MinRank problem
could be solved in polynomial time im(whenn—r is fixed) as an-
nounced in a previous paper of Faugere, Levy-dit-Vehel arceR
Moreover, using the determinantal ideal formulation, éhessults
are used to break a cryptographic challenge (which wascatatrke
so far) and allow us to evaluate precisely the security ofctlyp-
tosystem w.r.tn, r andk. Our practical results suggest that, up to
the software state of the art, this latter formulation is exadapted
in the context of Grobner bases computations.
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1. INTRODUCTION

Computing the locus of rank defect of a linear matrix (aldteca
the MinRank problem) is of first importance for a wide range of
applications. For instance, the security of many multat&ricryp-
tosystems is closely related to the difficulty of solving Remnk
problems [19, 7]. In geometry, the degeneracy locus of aptign
of an algebraic surface defined by quadratic equations ikthes
of rank defect of its jacobian matrix (which is a linear megiisee
for instance [1]). Also, decoding metric rank codes can loeiced
to a MinRank problem [21].

For(n,k,r) € N3, we define the square MinRank problem as fol-
lows: given a square linear matrix of sipewith k variables (i.e.

a matrix whose entries atevariate polynomials of degree 1 over
a field K), the goal is to find the locus of the points such that the
matrix has a rank less thari- 1. This problem is difficult since
deciding whether this locus is empty or not is NP-hard wKee a
finite field [5]. Whenk = 1 the MinRank problem can be reduced
to the well known EigenValue problem. Therefore, the MinRan
problem can be seen as a generalized nonlinear eigenvalbe pr
lem.

The ultimate objective of this paper is to find the most efficie
method to solve this problem when the linear matrix is generi
particular, we focus on two algebraic representations Kiipais-
Shamir modeling [19] and the minors formulation.

Both representations are rather intuitive. For the Kipiigmir
modeling, the algebraic system is constructed by remartkiaga
matrix has a rankl r if and only if there exist at least— r inde-
pendent vectors in its kernel. Considering the coefficieftbese
vectors as variables gives rise to a quadratic system. Oathies
hand, the minors modeling is obtained by considering allntiie
nors of size + 1 of the linear matrix (which simultaneously vanish
on the solutions of the MinRank problem).

Previous work. Since the MinRank problem has many applica-
tions, it has been extensively studied during the past des;aohd a
lot of different approaches have been tried (see [7] foridgteSo
far, the most successful method seemed to be the Kipnisi8ham
formulation [19], which has been analyzed in [14]. Indeetiew
combined with the AlgorithmEs [12] and FGLM [13], it can solve
the challenges A and B proposed in [7]. However, the chadlebg
was remaining unbroken until now.



If k= (n—r)2, then the number of solutions of a gendrick, r)-
MinRank instance is finite and equal to the degree of the iteal
generated by the Kipnis-Shamir equations [14]. Since tte so
ing strategy involves the FGLM Algorithm (whose complexisy
O(deg(1)2)), it is crucial to have good estimates of deg The al-
gebraic system obtained by the Kipnis-Shamir formulatsomuilti-

“at random”. Ifk = (n—r)? (resp. k < (n—r)?), the problem
admits a finite number of solutions (see [14]) and is calledl-
defined(resp. over-definell Note that if the problem is under-
defined k> (n—r)?), it can be reduced to the well-defined case by
specializingk — (n—r)?2 variables to random values [14].

An interesting subclass of problems is the homogeneous Min-

homogeneous, thus upper bounds can be obtained by the multi-rank problem, obtained Wh@ﬁo.)j) =0forall (i, j).

homogeneous Bézout number [14] or by computing the mixed vol
ume of the associated Newton polytope [10]. However, thosedis
are not sharp.

Main results. The contributions of the paper are two-fold: theo-
retical and practical. Applying a Theorem from [15] to thepKis-
Shamir modeling yields a bound on the degree of regularithisf
system. From the viewpoint of the minors approach, we shai th
properties of the associated ideal are closely relatedijogpties of
determinantal ideals generated by minors of matrices whos&s
are variables. More precisely, Lemma 1 brings out the ieidbie-
tween the ideal generated by the minors of a generic line#tibxma
and the ideal obtained by adding to a determinantal ifRgeneric
linear forms. Thus properties known about determinantalgican
be transferred to ideals corresponding to the minors mglelin
particular, this permits to establish explicit formulae fbe exact
degree of the ideal (Corollary 1) and for its Hilbert seriek€orem
3 and Theorem 4).

With this new information, the asymptotic complexity ofwol

the generic MinRank problem by both methods can be estimated gebraic system# - % = 0. Indeed, if(xy, ..., %, Y;

and it is shown (Section 4) that this complexity is polynonan
whenk = (n—r)? is constant. Surprisingly, using these new com-
plexity estimates we found than the complexity bound of tireons
approach is better than the complexity bound of the Kipriar&ir
modeling.

Experiments were carried out with a view to checking the accu
racy of the previous theoretical estimates. We apply thesalts
to solve a cryptographic challenge based on MinRank whick wa
untractable so far: experiments show that it is now possiblef-
fectively break the challenge C from [7] by using the min@es f
mulation and thés Algorithm in only 2*° arithmetic operations in
GF(65521).

Organization of the paper. After this short introduction, nota-
tions are introduced and the two modelings are formally éeffin
Some useful results are also recalled. Section 3 contagns#tin
theoretical results and their proofs. Then, we derive cemipl
estimates of the cost of solving MinRank by using Grébneebas
Algorithms. Finally, we present in Section 5 experimenésiuits.

Acknowledgements. We wish to thank loannis Z. Emiris and
Tomohiko Mizutani who provided bounds obtained by computin
the mixed volume of the Newton polytope of the Kipnis-Shamir
formulation. We are also grateful to Ludovic Perret for hidgfiul
comments and suggestions.

2. PRELIMINARIES

General notations.Let K be a field. Lek, nandr be three inte-
gers, withr < nand leta= (agg_)n e ,aggm) e K™+ Consider
M € Mp(K]xg,...,X]) thenx nlinear matrix

k
M (X, X)) = ai<2) +/Z ai(ﬁ)X[.
=

We called(n,k, r)-MinRank the problem of finding a poifi, . .., )

in K¢ (whereK denotes the algebraic closurel§j such that the
rank of # (xq,...,%) is less tham + 1.
In this paper, we focus on the generic case, i.e. whisrchosen

The Kipnis-Shamir formulation. (xg,...,Xx) is solution of the
(n,k,r)-MinRank problem if and only if there are at least r inde-
pendent vectors in the kernel o (x1, ...,%). Since we assumed
thata is chosen at generic, we can suppose that a basis of the ker-
nel can be written in systematic form [14]. Consider thedeihg
nx (n—r) matrix:

1 0 0
0o 1 0
W= 0 0 1
yg-l) yg-Z) y(lnfr)
oy

The Kipnis-Shamir modeling is constructed by considerhmyal-
(1) (n—r) )

IEERED /¢
is a solution of the algebraic system, tHem, ..., X) is solution of
the corresponding MinRank problem.

On the one hand, this system can be seen as a multi-homogeneou
system with the following partition of variables:

o x U oy U o
On the other hand, it can also be considered as a bilineagrayst
with the partition of variableX UY.

The minors formulation. (x1,...,Xk) is solution of a(n,k,r)-
MinRank problem if and only if all minors of size+ 1 of .#
simultaneously vanish on this point. Thus the minors modeis
obtained by considering the algebraic system of all minéisize
r+1.

Solving strategy. For the well-defined problem, we use the fol-
lowing strategy (for both modelings): first compute a grevddb-
ner basis of the ideal generated by the equations witlrghgo-
rithm [12], then compute a Grébner basis for the lex ordelipg
using FGLM [13]. For applications in Cryptolog¥K is a finite
field and it is often known that a solution of the problem lias i
KX. Then it is possible to combine this approach with an exhaus-
tive search ovesvariables. For every possible valuesofriables,
we solve the resulting over-determin@d(n—r)2 —s,r)-MinRank
problem.

Previous works. The strategy for solving well-defined MinRank
problems involves the FGLM Algorithm. Its complexity is wel
known: O(deg(1)®) arithmetic operations, where dégis the de-
gree of the ideal generated by the equations (this degrhe &ime
for both modelings). Therefore, sharp bounds on(Hegre re-
quired to estimate the complexity of this step. So far, bawrdthis
degree are obtained by considering the multi-homogenedous-s
ture of the Kipnis-Shamir formulation. A bound can be obtgin
with the multi-homogeneous Bézout number: dgg: (M) (see
[14] for details). Newton polytope techniques [10] permitschieve
slightly sharper bounds, but requires heavier computatidgtow-
ever, the gap between known bounds and the real degree Bdiig.
instance, for thg6,9,3) problem, the degree of the ideal gener-
ated by either of the two modelings is 980, whereas the aat®aki



Bézout number is 8000 [14], and the mixed volume bound of the
associated Newton polytope is 7340

To estimate the complexity of the computation of the grevlex
Grobner basis, upper bounds on the so-callegree of regularity
of the ideal generated by the equations are required. Thig va
is the highest degree encountered during a Grébner basislaal
tion with respect to a graded monomial ordering. The complex
ity of the whole Grébner basis computation can be estimayed b
O(M(dreg)®) [3, 2], whereM(d ez ) denotes the number of mono-
mials of degree less than or equatitg;, andwis the linear algebra
constant (X w < 3). Recently, we showed in [15] a sharp bound
on the degree of regularity of generic affine bilinear system

THEOREM 1. [15, Theorem 6.1] For the grevlex ordering, the
degree of regularity of a generic affine biline@dimensional sys-
tem overK[X,Y] is upper bounded bsin(card(X),card(Y)) + 1.

The Kipnis-Shamir algebraic modeling is a bilinear systémus
this bound can be applied;eg < min(k, (n—r)r)+ 1. In the case
of well-defined instance = (n—r)? and thusdreg < min((n—
r)2,(n—r)r)+1. In comparison, the classical Macaulay bound
would yield an upper bound @f(n—r)+1 [20].

In [15, Section 6.1], we also proposed a variant of FgeAlgo-
rithm dedicated to multi-homogeneous systems, which cepded-
up the computation of the Grobner basis of the Kipnis-Shagsr
tem. However, there is so far no efficient implementationhis t
algorithm.

Determinantal ideals. Properties of the minors modeling are
strongly related to properties determinantal idealgenerated by
minors of matrices whose entries are variables. In this pape
denotes the ideal d&[vy 1,...,vnn] generated by all minors of size
r + 1 of the followingn x n matrix:

V11 Vin

Vn,1 Vn,n

Many results are known about the structure of the ideal

THEOREM 2. [6, page 679] The dimension @ is (2n—r)r,
and its Hilbert series is
detA(t)

HS(O) = t() (1 —t)@-nr

The following Proposition is a consequence of the Thom dours
formula. This question has been discussed by Giambellrisidu
and Baker. A short proof of this formula can be found in [1&@a
261].

PrRoPOSITION 1. [18, page 261] The degree of the determinan-
tal ideal 2 is

n—r-1 il(n4i)!

(n—1—)(n—r+i)!

3. THEORETICAL ANALYSIS OF THE MI-
NORS FORMULATION

Applications require efficient methods to solve the affinenMi

Rank problem. However, we start by studying the homogeneous

case. Indeed, the structure of the homogeneous problersslgl
related to that of the affine case, and is easier to descrive &
theoretical viewpoint.

1This value was provided to us by loannis Z. Emiris and Tomohik
Mizutani.

Notations Throughout this paper denotes the set &ré vari-
(1) (k) &P vari o) (k)
ables{a;7,...,ann}, b denotes the set variables{byy,...,bnn}
andc is the set of* variables{c\;}", ..., c" }. We consider the
generic matrix# € Mn(K(a)[Xq,...,X]) defined by

k
///I] = /zlui(ﬁ)X/.

In the following, .# denotes the ideal generated by all minors
of sizer+1 of .#. X (resp. V) denotes the set of variables

{Xl7 cee 7xk} (resp'{vl,lv e 7Vn.n})-
We would like to point out that the results of this section ban
extended to the case whew# is a non-square matrix.

3.1 The under-defined homogeneous case

In this part of the paper, we suppose tkat (n—r)2. When
k < (n—r)?, the system is 0-dimensional and this case is discussed
in Section 3.2.

DEFINITION 1.

e We denote by the ideal ofLL[X,V] defined by

_ k
I =9+ <Vi7j —/z ai<?X4> .
=1 1<i,j<n

e Fora= (a,f{? . 7a,(1'f,>1) e K"K, the specialization morphism
is denoted byp,:

K(a) — K
faggonp) = (@]

e 7 denotes the ideal a€(b,¢)[X,V] defined by:
9=9+ <gi7j>1§i,j§n7

¢ 0,0 .
where g = z'/f:l bi(7j)xk+ S 1<ty 6<n Ci(,jl Z)WMZ are generic

linear forms.

e For(b,c) e KMk KM, nc denotes the specialization mor-
phism:

— K
— f(b,c)

The following Lemma is one of the main tools of this Sectidn: i

shows how to transfer properties @fto the idealy generated by
the minors.

LEMMA 1. Let & be a property which holds on some ideals
of K[X,V]. Suppose that there exists a nonempty Zariski open set

Op C K™K x K™ such thatv(b, c) € Op, 27 is verified oni, ¢(2).
Then there exist nonempty Zariski open setse ™k x K" and
0" c K™k such that

{¢a(#) :a€ 0"} = {Yhe(2): (b,0) € O}
and the property?? holds for every ideal in this set.

PROOF Let.# denote the complementary ©f in KK 5 KN,
and letl c K[X,V] denote the ideal of polynomials vanishing on



Z. Consider the following? x (n? + k) matrix:

1,1) (n,n (1) k

c<1,1 e O ) b1 [’(1;

11) ) (1) K

B
. nn

21 1 by by

Cg]ilnn . C|('1nnn) b|('11n . bg]l,(%

ForM e GL2(K), let Iy C K[X,V] denote the ideal obtained by
performing the linear change of variable$ = M - ¢ and let.%y
denote the variety dfy. SinceK[X,V] is Noetherian,

AR
MeGL 2<K)
is a Zariski closed subset. Létbe its complementary Thed is
a nonempty Zariski open subset avi,c) € o} Yp.c(2) verifies
the propertyZ.
Leth € K[b, ] be the determinant of th& x n? matrix of then?
first columns of¢”. The inequatiorh(b, c) # 0 defines a nonempty

Zariski open subséde of K"k x K", LetO' be equal t®©N Oger.
Then consider the vectdd = (idfﬁl’m) defined by

i 0 otherwise.

Then let0” ¢ K™ denote the sefa: (a,id) € O'}. ThenO is a

nonempty Zariski open subset Bf°K.
Let (b,c) be inO’. Consequently, the? x n? matrix of then?
first columns ofyy, ¢(€) is invertible, and thus, by performing a

linear combination of the generators, there exests K™K such
that

2) po

<21<1/1 k2<nc|<1 Ve, + Z/’ b RS
= <Vé1.ﬁz —SK, ai,j Xk>

Then remark that

~ ko, ~
(=1 1<i,j<n

>1§i,j§n

i<ij<n’

This shows the inclusion
{Whe(2): (b,c) €0} C {¢a(.F) :ac 0"}

Conversely, letbe inO”. By construction(a,id) is in O’ and

ge;}{ /) = Yaia (7). Thus{ga(#) :a€ 0"} C {Yhe(2) : (b,0) €
In order to prove results ofiz(.¥
following strategy:
o deduce properties af, c(2 ) by adding toZ generic linear
forms; _
o with Lemma 1, transfer those propertiesfig(.¥);
o finally, prove properties ofa(.#) by eliminating the va-
riablesV.
From now on, we suppose that> 1 and< denotes the strict
lexicographical ordering oN2: (i1, j1) < (i2, j2) if and only if

i1 <ipor
i1= i2 andjl < jg.

) (for generica), we use the

We recall thaig; ; denotes a generic linear form (see Definition
1).

PROPOSITION 2.
LetZ_ j) denote the ideaV’ +(9r, r,) (1,.,) (i, j) C K[X,V]. There

exists a nonempty Zariski open subset &k x K™ such that,
if (b,c) € O, then for all(i,j) € {1,...,n}2, Ypc(gij) does not
divideOin K[XV]/%C(E@<(|J))

PROOF Itis proved in [4, Theorem 2.10 and Remark 2.12], that
2 is a prime ideal. Moreover difw) > 2 (Theorem 2), thus there
exists a nonempty Zariski open sub€®t; such that if(b,c) €
O1,1, thenyy, ¢(g1,1) does not divide 0K [X,V]/ 2. Furthermore,
since 7 is prime, Spec(K[X,V]/2) is a reduced and irreducible
scheme. According to [16, Corollary 3.4.14], cutting a restl
and irreducible scheme of dimensign2 by a generic hyperplane
yields an irreducible and reduced scheme (it is a consegquehc
Bertini First Theorem). Therefore, there exists a nonerdjgiiski
open subseD) ; such that if(b,c) € Oy ;, thenyi c(Z +911) is
also radical and irreducible, thus prime. By recurrencerefexists
nonempty Zariski open se® j andO/ ; such that, if(b,c) € Gj j,
thenL/,qO ¢(9;,j) does not divide 0 mK[X V}/J ), andif(b,c) €

ol i thenyp c(Z_i j) +Gij) is prime. FlnaIIy,

o= 1 Gy
(i,j)e{1,...n}2

is the wanted nonempty Zariski open subséil

REMARK. We would like to point out that the conditidkn>
(n—r)? is crucial for the proof of Proposition 2: this proof relies
on a Bertini Theorem [16, Theorem 3.4.10], which is only aadi
the projective dimension is 2 (i.e. the Krull dimension i& 3). A
consequence of this Theorem is that if a prime homogeneeas id
has dimensionl > 3, then addingl — 2 generic linear forms yields
a prime ideal of dimension 2 [16, Corollary 3.4.14]. Congsayly,
the maximum number of generic linear forms we can add such
that each form does not divide zero in the previous quotieqtis
dim(2)+k—1=(2n—r)r+k—1. We need to add” linear forms
to define the generic MinRank problem affh —r)r + k— 1> n?
if and only ifk > (n—r)2.

COROLLARY 1. There exists a nonempty Zariski open subset
O, of K™ such that ifa € Oy, then the dimension dia(l) is k—
(n—r)? and its degree is

n—r—1

i(n+i)!
iEL n—1-)l(n—r+i)"

PrRoOF. ConsiderZ as an ideal oK[X,V]. From Proposition 1,
its degree is

n—r—1

il(n+i)!
il:L (n—1—i)(n—r+i)"

From Theorem 2, the dimension of this idea(2n—r)r + k. Ac-
cording to Proposition 2, there exists a nonempty Zariskinogub-
setO of K™ x K™ such thattpb (2) has the same degree @is
and its dimension i& — (n—r)? if (b,c) € O (since adding to an
ideal a linear form which is not a divisor or zero in the quotieng
does not change the degree and make the dimension decreBse by

Next, Lemma 1 shows that there exists a nonempty Zariski open
subseO; ¢ K", such that ifa € Oy, then

nr-l il(n+i)!

iEL (n—=1-i)n—r+i)"

degga(.#)) =



Finally remark that inpa(.# ), the variables/ are linear combina-
tions of the variableX. Thus

deg¢a(-#)) deg(¢a(-#) N

¢a(7).

The Hilbert series is a useful tool to describe homogenedess i
als of K[X]. If I C K[X], it is defined as follows:

/Z dim(K[X]a/1g)t,

whereK[X]q is the vector space of homogeneous polynomials of
degreed andly denotes the vector spat@K[X]q.

Many information can be read on this series. For instanee, th
dimension, the degree and the degree of regularity can bputesh
once this series is known. More preciselyH$(t) € Z[[t]] is the
Hilbert series of an idedl C K[X], then

K[X])

d

o the smallestl such that(1—t)9HS(t) is a polynomial is the
dimension ofl;

o if the dimension of is 0, then the evaluation of the polyno-
mial HS(t) in t = 1 gives the degree of the ideal (whate
is the dimension of) and de@HS(t)) + 1 is the degree of
regularity ofl.

Next Theorem provides an explicit formula for the Hilbentiss
of the ideal generated by the minors of a generic linear mairi
the homogeneous under-defined case:

THEOREM 3. There exists a nonempty Zariski open subsgt O

of K™k such that ifa € Oy, then the Hilbert series afa(l) is
Hs(t) = — 98RO
t(z)(lft)k%n*r)z

where At) is the rx r matrix defined by
n—max(i, )

i E )

PROOF In [6, Corollary 1], it is shown that the Hilbert series of
2 CcK[V]is

detA(t)
() (1—t)@n-n)r '
Thus the Hilbert Series @ as an ideal oK[X,V] is
detA(t) B detA(t)
t() (1 —ty@-nrecard(x) () (1 t)@-nrk’

HS(t) =

Let O be the Zariski open set defined in Proposition 2. Adding to
an ideal a linear form which is not a divisor of zero in the gt
ring multiplies the Hilbert series byl —t). Thus, if (b,c) € O,
then the Hilbert series afiy o(Z) is

detA(t)
t(E)(l_t)k%n*r)z'

Then, applying Lemma 1, the result can be transferrednil(ci)
(for ain a nonempty Zariski open séb). LetG be a Grébner basis
of pa(-#). Then

0
GU{Vvij —/z o | X ba<ij<n
=

is a Grobner basis ofa(.# ) for a grevlex ordering with/ > X
(i.e. an grevlex ordering such th@f ) > xp for all i, j,¢,01,02).
ConsequentIxK[X]/ ¢a(.¥) is isomorphic (a$§ -vector spaces) to

K[X,V]/¢pa(-#), thus the Hilbert series @f(.¥) is the same as the
Hilbert series ofpa(.#). O

3.2 The well-defined and over-determined cases

In this partk < (n—r)?, and we still consider the homogeneous
MinRank problem. First, we propose a variant of the Frobesg-C
jecture [17], which describes the structure of the ideahivigid by
adding to2 more than dini%) — 1 generic linear formgj ; (as
defined in Definition 1).

CONJECTURE 1. We use the same notations as Proposition 2.
LetZ_i.j),a denote the vector space of homogeneous polynomials
of degree d in@%i’j). Then there exists a nonempty Zariski open

subset @ of K™k x K" such that, if(b,c) € Os, thenV(i, j) €

{1,...,n}2,vd € N, the linear application
Woc(Z<iiyd) — Woe(Pijd+1)
f — f-pe(ij)

is of maximal rank.

From now on, we use the following notation: for a sergs
Z[[t]], [§ denotes the series obtained by truncatigt the first
null or negative coefficient.

COROLLARY 2. Under the same conditions as the Conjecture
1,if (b,c) € Og, then the Hilbert series afiy c(Z_ (i j) +Gij) IS

(1_t)Hwa‘c<-@<(i‘j))(t):| ’

PROOF In order to simplify the notationd, denotes the ideal
Wbc(Z~,j)) andlg denotes the set of polynomials bbf degree
d. Let xpc(gi,j) denote the multiplication byl ¢(gi.j) and let
ann(pc(gi,j)) be the ideal f € K[X,V]: fypc(gij) €1}. Con-
sider the following exact sequence:

0 ann(Whc(6i))a — KIX.V]a/lg 2 KIX V]g,1/1gsq —
= KX, V]g1/(I + Wb c(9i,j))a+1 — 0.
According to Conjecture 1, the dimension afn(yyc(9ij))d is
equal to max0, dim(K[X,V]g/lg) — dim(K[X,V]g:+1/lg41)). Itis
well known that the alternate sum of the dimensions of antexac
sequence of vector spaces is 0. Therefore,

dim(K[X,V]gr1/(I + Ybc(9ij))a+1)
= max(dim(K[X,V]g;1/lg41) — dim(K[X,V]4/lq),0).

Multiplying this equation byt%+1 and summing oved € N yields
the claimed relation between the Hilbert seriekl

THEOREM 4. Ifk < (n—r)?, then there exists a nonempty Zariski
open subset Qof K"K such that ifa € Qg4, then the Hilbert series

of ga(l) is

HS (1) = {(l—t)m*f)z—kdem(t)} |

o)

where At) is the rx r matrix defined by

()

n-max(, )

2

Aj(t)



PROOF. ConsiderZ the determinantal ideal on which we add
only (2n—r)r +k—1 generic linear forms:

k A ).
9=+ </Z by + ‘ffjl’zz>"/1,zz>
=1 I=f,fz<n (i.j)es

whereSc {1,...,n}? andcard(S) = (2n—r)r + k— 1. Now take
(b,c) in the nonempty Zariski open s€, N Oz, (O is defined in
Theorem 3, andD;3 is defined in Conjecture 1). Thus the Hilbert

Series ofh ¢(7) is HS(t) = tg‘;ﬁfz) . Thus, adding the? — (2n—

r)r —k+ 1 remaining linear forms, and applying Corollary 2 for
each linear form, it is proved that the Hilbert seriesgfc(2) is

detA(t)
{(14) {(14) {...(14) isTEe
if Se Z[[t]] is a series such th&0) > 1 (which is the case when
Sis an Hilbert series of an homogeneous ideal), tigr-t) [S]] =
[(1—t)S. Thus the Hilbert series apb_,c(é) can be rewritten as
[(—t)n-r-kdRO],

12
Finally, by the same argument as in the proof of Theorem 3 (i.e

by using Lemma 1 and then eliminating the variablgsthere ex-
ists a nonempty Zariski open s8f C K"K such that, ifa € Oy,
then the Hilbert Series aia(.#) is the same. [J

. Itis easy to prove that

The degree of regularityis a sharp indicator of the complexity
of Grdbner basis algorithms. It is the highest degree of thig-p
nomials occurring during the Grébner basis computation.idfa
0-dimensional homogeneous idedy, is precisely the lowest in-
teger such that all monomials of degrég; are inl and can be
read on the Hilbert series (which is a polynomial):

dreg = 1-+degHS(t)).

Most bounds of the complexity of Grébner basis algorithros (f
instancel, [11] or F5 [12]) are exponential in the degree of regu-
larity. Therefore it is crucial to obtain sharp estimatesigj.

COROLLARY 3. Under the same conditions as Theorem 4, the
degree of regularity opa(.#) is

deg({(l—t)(”f”zf"d?&(t) D +1

PROOF. The degree of regularity of a 0-dimensional homoge-
neous system is equal to the degree of the Hilbert seriesr(diy
Theorem 4) of the associated ideal plus L1

COROLLARY 4. The degree of regularity of the ideal generated
by the minor formulation of a generic well-defined MinRanédpr
lem (i.e. k= (n—r)?) is bounded byeg <r(n—r)+1.

PrRoOOF According to Corollary 3,
dreg = deg( {de_t,?\(t)D +1= deg(deb?(t)> +1
t(Z) t(z)

On each row of the matriA(t), a polynomial with the highest de-
gree is on the diagonal. Moreover, dgg(t) = n—i. Thus

degdetA(t)) < _i(n—i) —nr— r(r;”.

Finally HS(t) = dif@@, and
dreg = degHS(t))+1
1 -1
S nr— "("%) — WT) +1
= r(n—r)+1 O

This bound is sharp in practice: if the MinRank instance isayie,
then the degree of regularity of the ideal generated by tim@raiis
exactlyr(n—r)+1.

The affine well-defined and over-determined MinRank prob-
lem. In most applications, the MinRank problems occurring are
affine. The analysis performed for the homogeneous MinRank
problem permits to estimate the complexity of solving MinRa
by the minors approach in the 0-dimensional affine case.elhde
the maximal degree reached during the Grébner basis cotigruta
is upper bounded by the degree of regularity of the ideal gtee
by the homogeneous parts of highest degree of the minors.

Therefore, the degree of regularity of the minors formolaibf
a generic affinén, r,k)-MinRank problem is less or equal than the
degree of regularity of the minors formulation of a geneenio-
geneougn, r,k)-MinRank (given by Corollary 3). In practice, this
bound is sharp: when the MinRank instance is generic, it is an
equality.

4. ASYMPTOTIC COMPLEXITY ANALYSIS

In this Section, we estimate the costs of the Grébner basis co
putations and of the Algorithm FGLM for generic well-defined
(k= (n—r)?) affine MinRank problems.

4.1 The Kipnis-Shamir formulation

The arithmetic complexity of th&s Algorithm [12] for com-
puting a grevlex Grobner basis can be estimate®yl(dreg)®)
[2, 3], whereM(d,eg) denotes the number of monomials of degree
less than or equal téee andw is the linear algebra constant. Ac-
cording to Theorem 1, in the case of the Kipnis-Shamir modeli
dreg < min(k, (n—r)r)+1. Consequently the complexity is upper

bounded byO ((k+r<ngr>+dreg)“’>_

reg

In applicationsy’ = (n—r) is often constants = (n—r)2, and
we want to estimate the asymptotic complexity winegrows. Ac-
cording to Theorem ez = r’2 +1 whenn is big enough.

A straightforward computation gives

Kk ) 1241 w w b
( +(n—r")r' 12+ ) ~ ((r’ 11)!) (k+nr/)w(r2+l)

r2+1
_ O(nw(r’2+1)).

This estimate of the complexity is for standard Grébner $asi
Algorithms F4 and F5 for homogeneous systems. In [15, Section
6.1], a variant ofFs dedicated to multi-homogeneous is proposed.
The key observation is that the multi-homogeneous straaifithe
system induces a structure in the matrices occurring irFjhend
Fs Algorithms. Consequently, those matrices can be decondpose
into smaller matrices, whose row echelon forms can be cosdput
independently. A consequence of this decomposition woel@d b
speed-up and a reduction of the required memory. Since fhad<i
Shamir modeling has a multi-homogeneous structure, thiana
of F5 could lead to practical improvements. However, so far there
is no efficient implementation of this multi-homogeneousava,
and no precise complexity analysis.

4.2 The minors formulation

In this part, we estimate the asymptotic complexity of cotimmu
a grevlex Grébner basis in the well-defined calse=((n —r)?).
In particular, we fixr’ = (n—r), and we estimate the arithmetic
complexity whem grows. As in Section 4.1, the complexity of the
Fs Algorithm can be estimated B9(M(dreg)®).

According to Corollary 4, the complexity is then upper boeed

K+ (n—r’ 10.)
by o ("4 15H").



An equivalent whem grows is

(kf/{;(f?;/iil)w (%>w(k+r’n>°’k:0<”“’"z>-

One remarks that — in the well-defined case — the complexity
bound of the minors approach is slightly better than the dexrily
bound of the Kipnis-Shamir modeling.

4.3 Complexity of FGLM in the well-defined
case

With both modelings, when a grevlex basis is computed in the
well-defined casek(= (n—r)?), a change of ordering is required
to obtain the lexicographical basis which gives the sohgiof
the problem. Corollary 1 yields the degree of the ideal (vt
Kipnis-Shamir modeling or with the minors modeling). Therco
plexity of FGLM is O(deq1)3), thus we need the asymptotic be-
haviour of the degree to perform a complexity analysis.

Whenr’ = n—r is constant, applying Corollary 1, we get

~
n—oo

rlo(niy T2 r-1oi

degl) = il:L oo iu) GEE e .ELW

Therefore, the asymptotic complexity of FGLMGI{nSf/Z).

5. EXPERIMENTAL RESULTS AND APPLI-
CATIONS

In this SectionK is the finite fieldGF (65521).
Workstation. Experimental results have been obtained with 24
Xeon quadricore processors 3.2 GHz, with 64 GB of RAM.

5.1 Computing the minors

The minors modeling raises questions about how to gendrate t
equations. It is not clear how to compute efficiently all mmof

sizer + 1 of a big matrix. For a x n matrix, there are{rﬂl)z such
minors, and each is a polynomial of degreel ink variables. For
instance, for an affine problem with = GF (65521, n=11,k=9
andr = 8, it took 14 days on one CPU (with Maple). Fortunately,
this computation can be parallelized: with 120 processering
simultaneously on 24 CPU, the computation lasted 12 houne. T
size of the resulting algebraic system is 3466 MB.

For this computation, we used naive algorithms (each déterm
nant was computed independently) but we believe that tego®m
for improvement by using more sophisticated algorithms.

5.2 The well-defined case

Here,k= (n—r)? and we consider the ground figkt= GF (65527).
This set of parameters is used in a MinRank-based authextitific
scheme [7].

Generation of the instances.For (n,k,r) € N3, we generate a
nx n matrix M = (M; j) where theM; j are affine linear forms in

k variables: M; j = a,»(? +35, af?xh where theaj(fj) are chosen
uniformly at random inGF(65521).

Interpretation of the results. Table 1 describes experimental
results, for different values of the triplen, r,k). In particular, we
consider sets of parameters used in Cryptology for a MinRank
based authentification scheme [7]. The complexity of sghtime
MinRank problem is then directly related to the security it
cryptosystem. The values in italic font were not computed doe
estimates of the complexity based on the theoretical eétdin
the previous section.

The row “degree” provides the degree of the ideal (i.e. thanu
ber of solutions in the algebraic closure) and can be condpaith

[ Chall A B [}
(6,9,3)| (7,9,4) | (8,9,5) |(9,9,6) [(10,9,7)](11,9,8)
degree | 980 4116 | 14112 | 41580 | 108900| 259545
MH Bézouf 8000 | 42875 | 175616 | 592704 1728000 4492124
Minors
Fs time 1.1s 37s 935s | 18122s| 22909492570396k
Fs mem [488 MB| 587 MB|1213 MB[5048 ME25719M
F4 Magma 4.6s | 142.8s| 3343.5s oo
dreg 10 13 16 19 22 25
Nb op. 215 25.9 29.2 32.7 35.2 40.2
FGLMtimg 1.7s | 97.2s DNF
Kipnis-Shamir
Fs time 30s [ 3795s[ 328233s] |
Fs mem [407 MB[3113 MB58587 MH
F4 Magma 300s | 48745s| )
dreg 5 6 7
Nb op. 30.5 37.1 43.4 50.4 57.4 64.4
FGLMtimg 35s | 2580s 0

Table 1: Authentification scheme parameters

the multi-homogeneous Bézout bound (“MH Bézout”). The row
“Fg5 time” (resp. ‘Fs mem”) gives the time (resp. the memory)
needed to compute the grevlex Grobner basis of the idealrunde
consideration. The computation is done with e Algorithm
from the FGb package. We also give the time obtained for the
same Grobner basis computations with the implantatioRydah
Magma?2.16, so that experiments can be reproduceds™gives
the degree of regularity of the ideal. Finally “Nb op.” indtes the
logarithm (in base 2) of the exact number of arithmetic opena
performed during the execution of tire Algorithm, and “FGLM
time” provides the running time of FGLM (from the FGb packpge

Note that the degree of regularity of the ideal generatechby t
minors matches the value given in Corollary 4. Moreover,agm
that the degree of the ideal is equal to the value provideddiplc
lary 1.

Looking at the logarithm of the number of arithmetic opevasi
which is growing linearly, it seems clear that, for both falations,
the Grébner basis computation is polynomialniwhenn —r is
fixed, as announced in [14] and proved in this paper (Secbion 4

We would like to emphasize that the FGLM step costs sometimes
more than the DRL Grébner basis computation. In order todavoi
this cost, a possible strategy is to combine the minors a&gpraith
an exhaustive search over some variables.

5.3 Solving the challenge C of the Courtois au-
thentification scheme

Solving the challenge C requires to find one solution of a gene
affine (11,9, 8)-MinRank problem which has a particularity: it is
known that there is a solutiofxy,...,xg) € GF(65521° in the
ground field. Therefore we can combine the minor formulation
with a partial exhaustive search. To this end, we specializi-
ables and solve the corresponding over-determiiidd9 — s, 8)-
MinRank problem for all specializations of te@ariables. The de-
gree of regularity of the over-determined systems can hmatgd
with Corollary 3, so the complexity of the complete compigiat
can be approximated. For these systems, the degree of #ldsde
0 or 1. Consequently, a grevlex Grébner basis is also a leki&ro
basis and the FGLM Algorithm is no longer required.

Table 2 shows the experimental results for different vabfes
The row “dreg” gives the degree of regularity obtained for each spe-
cialization of thes variables. The row “Nb op.” gives an estimate
of the logarithm in base 2 of total number of operations ndede



(n=11k=9-sr=28)

[ s 3 [ 2 [ 1T T 0
[ Minors [Fs time] 1594s | 80255s [25703964
Fs menp 2400 MB| 29929 MB
dreg 10 13 25
Nb op. 60 49.1 40.2

[ KS [RFGH 57000s |
F5 men) 10539 MB
dreg 7

Nbop| 88.6

Table 2: Challenge C of the Courtois authentification scheme

to solve the challenge C. It is equal to j§§552F0pF5) where
OpF5 is the number of arithmetic operations used byRg&lgo-
rithm to solve ong11,9 — s,8)-MinRank problem. The values in
italic font were not effectively computed but are given asnestes
based on practical and theoretical results.

First of all, we want to emphasize the fact that the degree of
regularity of the ideal generated by the minors matches tie o
deduced from the generic Hilbert series (Corollary 3) indker-
determined case.

According to Table 2, the best practical choice seems g-bé.

In practice, the 65521 computations of the over-determiyed
tems can be parallelized, and the total number of requirid-ar
metic operations (®1) is quite practical. We estimate to 238 days
the time needed to effectively solve this challenge on 64dgqua
core processors. Therefore, the authentification schem@tae
considered secure anymore with the set of paramétersll k =
9,r=8).

Note that it may be possible to compute directly a Grébneisbas
of the ideal generated by the minoss= 0). By interpolating the
practical results, we give a rough estimate of the compjefithis
computation: it would take approximately 29 days (on one LPU
However, it is not clear how much memory would be required, an
the FGLM step could be untractable since the degree of tla isle
259545 (Corollary 1).

6. CONCLUSION

In this paper, we studied two formulations of the MinRankipro
lem from the viewpoint of efficency and practical applicaso In
particular, the analysis of the ideals generated by the reigave
new information about the intrinsic structure of this peabl

Results from algebraic geometry about determinantal sdeel-
mits to obtain the number of solutions for a generic MinRardbp
lem whenk = (n—r)2. This value is important for the study of the
complexity of the solving process since it has a direct imhpache
complexity of FGLM.

We provided the Hilbert series and an explicit formula foe th
degree of regularity of the ideal generated by the minorses€h
information lead to a complexity analysis of the whole Grébn

basis computation. We also proposed a method to break tte cha

lengeC of the MinRank authentification scheme faster than any
other known approaches. This method is feasible in prastizze
it requires only 2° arithmetic operations.

Many interesting questions have arisen from this studystFio
be able to apply the minor approach on huge over-determirind M
Rank instances, algorithms for computing efficiently adl thinors
of sizer + 1 of a linear matrix are required. Another question is
to find how the multi-homogeneous structure of the KipnisuSin
formulation can be used to speed-up the computations, asto

uate precisely its cost. We derived a formula from [15] to rimbu
the degree of regularity of the Kipnis-Shamir modeling.haltigh
this bound is much sharper than any other known bounds, there
still a small gap between it and the real degree of regularity
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