
msolve: A Library for Solving Polynomial Systems
Jérémy Berthomieu

Sorbonne Université, CNRS, LIP6
F-75005 Paris, France

jeremy.berthomieu@lip6.fr

Christian Eder
Technische Universität Kaiserslautern

Kaiserslautern, Germany
ederc@mathematik.uni-kl.de

Mohab Safey El Din
Sorbonne Université, CNRS, LIP6

F-75005 Paris, France
mohab.safey@lip6.fr

ABSTRACT
We present a new open source C library msolve dedicated to solving
multivariate polynomial systems of dimension zero through com-
puter algebra methods. The core algorithmic framework of msolve
relies on Gröbner bases and linear algebra based algorithms for
polynomial system solving. It relies on Gröbner basis computation
w.r.t. the degree reverse lexicographical order, Gröbner conversion
to a lexicographical Gröbner basis and real solving of univariate
polynomials. We explain in detail how these three main steps of
the solving process are implemented, how we exploit AVX2 instruc-
tion processors and the more general implementation ideas we put
into practice to better exploit the computational capabilities of this
algorithmic framework. We compare the practical performances
of msolve with leading computer algebra systems such as Magma,
Maple, Singular on a wide range of systems with finitely many
complex solutions, showing that msolve can tackle systems which
were out of reach by the computer algebra software state-of-the-art.

ACM Reference Format:
Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. 2021. msolve:
A Library for Solving Polynomial Systems. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’21), July 18–22, 2021, Saint

Petersburg, Russia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/xxx

1 INTRODUCTION
Problem statements and motivation. Polynomial systems arise

in a wide range of areas of scientific engineering such as robotics,
chemistry, biology, quantum mechanics and computing sciences
such as cryptography, coding theory, computer vision to cite a few.

The-end user may ask various questions on the solution set: is it
finite over an algebraic closure of the gound field, or if the ground
field is finite, is it finite over this field. Moreover, when the solution
set is not finite over complex numbers, all complex solutions or
only the real ones might be of interest.

Polynomial system solving is NP-hard, even when the ground
field is finite [23, Appendix A7.2]. Moreover, the non-linearity of
such systems make reliability issues topical, in particular when

The first and third authors are supported by the joint ANR-FWF ANR-19-CE48-0015
ECARP project, the ANR grants ANR-18-CE33-0011 Sesame and ANR-19-CE40-0018
De Rerum Natura and the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement N. 813211 (POEMA). .

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN yyy. . . $15.00
https://doi.org/10.1145/xxx

complete and exhaustive outputs are required, in the context of
numerical algorithms.

We tackle the problem of designing a software library, for solving
multivariate polynomial systems, with a focus on those which
have finitely many solutions in an algebraic closure of the ground
field. We rely on computer algebra methods yielding algebraic
parametrizations of the solution sets. This allows us to bypass the
commonly encountered issues met by numerical methods.

Prior works and state-of-the-art. In this context, one can mention
regular chains whose base operation is computing gcd of polynomi-
als with coefficients encoded by an algebraic tower of extensions
combined with splitting polynomial ideal techniques [5], geometric

resolutions which is based on an incremental procedure intersecting
a lifted curve (obtained by Hensel lifting generic solutions to the
first i polynomials) with the hypersurface defined by the (i+ 1)st
polynomial [26] and Gröbner bases which consist in computing a
set of polynomials in the ideal generated by the input such that for
a given monomial order one can use them to define an intrinsic
multivariate division (hence with a unique remainder) and thus
decide the ideal membership problem.

In msolve, we focus on Gröbner bases because of their impor-
tance in computer algebra systems and their use in many higher-
level algorithms. Note that when the input system generates a
radical ideal, of dimension at most 0, and in generic coordinates, a
Gröbner basis for a lexicographical order on the monomials is in a
so-called shape position, i.e. it has the following shape:

w(xn), xn−1 + un−1(xn), . . . , x1 + u1(xn). (1)

One can then recover the coordinates of all solutions by evaluating
univariate polynomials at the roots of a univariate polynomial. Up
to normalization, this is very close to a rational parametrization

w(xn), w
′(xn)xn−1 + vn−1(xn), . . . , w

′(xn)x1 + v1(xn)

where w ′ is the derivative of w. Such representations go back to
Kronecker and appear in many works in computer algebra (see
e.g. [3, 32]) and, under the above assumptions, are computed by
regular chains and geometric resolution algorithms.

Several libraries for computing Gröbner bases can be found, most
of them being either tailored for crypto applications (see e.g. [2]) or
are not designed for practical efficiency but more for algorithmic
experimentation (see e.g. [37]). Recently, maple and magma have
greatly improved, from the practical efficiency viewpoint, their
Gröbner bases engines, the one in maple being based several years
ago on FGb [20], which is developed by J.-Ch. Faugère.

Main results. This is a software paper and hence does not contain
any new algorithm or theorem. The main outcome of this work
is a software library, written in plain C, open source, distributed
under the license GPLv2 which includes modern implementations

https://doi.org/10.1145/xxx
https://doi.org/10.1145/xxx
https://doi.org/10.1145/xxx

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din

of algorithms for solving multivariate polynomial systems based
on Gröbner bases. It supports polynomial systems with coefficients
in a prime field of characteristic < 231 or with rational coefficients.
It allows one to solve zero-dimensional systems which are out of
reach for leading computer algebra systems like magma and maple.

For instance, msolve is able to solve polynomial systems with
thousands of complex solutions such as Katsura-14, which has
8, 192 complex solutions, whose solution set is encoded by a ratio-
nal parametrization of bit size ≃ 232.37, sequentially, within 15

days on an Intel® Xeon® CPU E7-4820 v4 @ 2.00GHz while maple
and magma could not solve it after 6 months.

The msolve library is available at:
https://msolve.lip6.fr

It includes efficient implementations of the F4 algorithm [19] (re-
ducing Gröbner bases computations to Gaussian elimination), of a
change of orders algorithm due to Faugère and Mou [22] (based on
computing minimal polynomials of linear endomorphisms) and a
dedicated univariate real root solver. Solving systems with rational
coefficients is handled through multi-modular computations.

We design and use dedicated data structures to take into account
current hardware architectures. Our F4 implementation enjoys
several implementations of linear algebra with dedicated storage
to handle sparsity structures arising naturally in this algorithm as
well as hashing tables and masks for encoding exponent vectors
and divisibility checks between monomials.

Our implementation of change of orders is dedicated to the cases
where the radical of the ideal generated by the input equations
admits a Gröbner basis for a lexicographical order which is in shape
position and under an extra assumption which is recovered by
replacing the last variable by a generic enough linear combination
of the input variables. Hence, msolve loses information on the
multiplicities of the solutions but focuses on solving. It includes an
efficient routine verifying the correctness of the result when the
input ideal is not radical which was missing in the literature.

This implementation uses a dedicated storage of the matrix en-
coding the linear endomorphism for which one needs to compute
the minimal polynomial. It exploits the structure of this matrix to
reduce this computation to scalar products of dense vectors.

This allows us to use extensively vectorization instructions such
as AVX2 to speed up our computations. A more intricate use of AVX2
instructions is also set for the F4 implementation of msolve.

A special care has been brought to memory consumption which
is low compared to the one of maple or magma. This is suitable for
a trivial multi-threaded scheme for multi-modular computations,
almost dividing the runtime by the number of threads.

Structure of the paper. In Section 2, we fix some notation and re-
call some background. Section 3 gives an overview of the algorithms.
Section 4 describes the design of the library and the implementation
ideas. Section 5 reports on the practical performances of msolve.

2 NOTATIONS AND BACKGROUND
We recall below some basic notions on polynomial rings and Gröb-
ner bases. More details can be found in [16]. Let K be a field; we
denote by P = K[x1, . . . , xn] the polynomial ring with base field
K and variables x1, . . . , xn.

Let < denote a monomial order on P. We consider only global

monomial orders, i.e. orders for which xi > 1 for all 1 ≤ i ≤ n.
We mainly consider the global monomial orders <DRL, the degree
reverse lexicographical order, and <LEX, the lexicographical order
(see e.g. [16, Chap. 2, Sec. 2, Def. 3]). Given a monomial order < we
can highlight the maximal terms of elements in P with respect to<:
For f ∈ P \ {0}, lt< (f) is the lead term, lm< (f) the lead monomial,
and lc< (f) the lead coefficient of f. For any set F ⊂ P we define
the lead ideal L<(F) = ⟨lt< (f) | f ∈ F⟩; for an ideal I ⊂ P, L<(I)
is defined as the ideal generated by lead terms of all elements of I.
Further, we skip the index < when it is clear from the context.

Definition 1. A finite setG ⊂ P is called a Gröbner basis for an
ideal I ⊂ P w.r.t. a monomial order< ifG ⊂ I and L<(G) = L<(I).
This is equivalent to the condition that for any f ∈ I\{0} there exists

a g ∈ G such that lm< (g) | lm< (f).

Buchberger gave in 1965 [12] an algorithmic criterion for com-
puting Gröbner bases based on the definition of S-pairs:

Definition 2. Let f, g ∈ P be nonzero, let G ⊂ P be finite.

(1) Denote by λ B lcm (lm< (f) , lm< (g)). The S-pair between
f and g is given by

sp (f, g) B λ

lt< (f)
f−

λ

lt< (g)
g.

(2) We say that g is a reducer of f if for a term t in f there exists

a term σ ∈ P such that lt< (σg) = t. The reduction of f by

g is then given by f− σg. We say that f reduces to h w.r.t. G
and < if there exist finitely many reducers g1, . . . , gk in G

such that h = f −
∑k
i=1

σigi and there exists no term in h

for which an element of G is a reducer.

Theorem 3 (Buchberger’s criterion). A finite set G ⊂ P is

called a Gröbner basis for an ideal I ⊂ P w.r.t. a monomial order <

if for all f, g ∈ G sp (f, g) reduces to zero w.r.t. G.

Gröbner bases for an ideal I w.r.t. a monomial order < are not
unique, but reduced Gröbner bases are (these are Gröbner bases
where the lead coefficient of each element is 1 and where no mono-
mial of an element g ∈ G lies in L<(G \ {g})).

Recall that Gröbner bases allow one to define a normal form,
i.e. given f ∈ P, F ⊂ P and a Gröbner basis G of ⟨F⟩ for a mono-
mial order <, one can compute a unique representative of f in
the quotient ring P

⟨F⟩ which is a K-vector space. This property of
a Gröbner basis allows one to discover relations, i.e. polynomials
which lie in ⟨F⟩ and the Hilbert series/polynomial associated to
⟨F⟩ (see [16, Chap. 10, Sec. 2]) when using the <DRL order, from
which we deduce the Krull dimension and the degree of ⟨F⟩. Recall
that the Krull dimension of ⟨F⟩ coincides with the dimension of its
associated algebraic set V(F) in Kn, i.e. the largest integer d such
that the intersection of V(F) with d hyperplanes in Kn is finite
and of maximal cardinality. This cardinality is the degree of ⟨F⟩
when it is radical (i.e. fk ∈ ⟨F⟩ for some k implies that f ∈ ⟨F⟩).
We refer to [18, Chapter 12] for more details on the equivalence of
the various definitions of dimension and [18, Section 1.9] for the
relations between Hilbert series and degree of ideals and varieties.

Elimination orders such as <LEX allow one to compute a basis
for ⟨F⟩ ∩ K[xi, . . . , xn] for 1 ≤ i ≤ n and then put into practice

https://msolve.lip6.fr

msolve: A Library for Solving Polynomial Systems ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

the Elimination theorem [16, Chapter 3] by yielding an algebraic
description of the Zariski closure of the projection of V(F) on
the (xi, . . . , xn)-subspace. It turns out that Gröbner bases w.r.t.
<LEX order enjoy a triangular structure from which one can extract
information on the solution set.

Other geometric operations are encoded with ideal theoretic
operations such as set difference whose algebraic counterpart is
saturation (given an ideal I ⊂ P and g ∈ P, the saturation of I
by ⟨g⟩, denoted by I : g∞, is the set of polynomials h such that
hgk ∈ I for some k ∈ N).

When the set of solutions of F in Kn is finite, the quotient ring
P
⟨F⟩ is a finite dimensional vector space [16, Chap. 5, Sec. 2, Prop. 7].
The dimension of this vector space coincides with the degree of the
ideal ⟨F⟩: this is the number of solutions counted with multiplicities.

This property is at the foundations of algorithms based on Gröb-
ner bases for solving polynomial systems. It implies that ⟨F⟩ has
a non-zero intersection with K[xi] for 1 ≤ i ≤ n. It is heavily ex-
ploited in change of orders algorithms computing a Gröbner basis
for a given ideal ⟨F⟩, in particular to compute rational parametriza-
tions as they are defined in Section 1. Such algorithms are important
since computing Gröbner bases w.r.t. <LEX order is usually way
more expensive than pre-computing a Gröbner basis w.r.t. <DRL
and then applying such a change of orders algorithm [7].

In the following, we assume we are given a finite set of polyno-
mials F ⊂ P such that ⟨F⟩ is zero-dimensional, that is F = 0 has
a finite number of solutions in Kn. Hence, when F satisfies the
Shape position assumption described in Section 1, we apply the
following classical solving strategy:
(1) Compute the reduced Gröbner basis G of ⟨F⟩ w.r.t. <DRL.
Note that once we have computed G we can decide whether ⟨F⟩ is
zero-dimensional.
(2) Convert G to the reduced Gröbner basis H of

√
⟨F⟩ w.r.t. <LEX

and deduce a rational parametrization R encoding its solutions, as
in Equation (1).
(3) Apply a univariate solver to the uniquely defined univariate
polynomial w in R. Go on by substituting variables already solved.

3 IMPLEMENTED ALGORITHMS
3.1 Faugère’s F4 Algorithm
In 1965, Buchberger initiated the theory of Gröbner bases for global
monomial orders. Specifically, he introduced some key structural
theory, and based on this theory, proposed the first algorithm for
computing Gröbner bases [12, 14]. Buchberger’s algorithm intro-
duced the concept of critical pairs resp. S-pairs and repeatedly
carries out a certain polynomial operation (called reduction).

msolve includes an implementation of Faugère’s F4 algorithm [19]
which is variant of Buchberger’s. In Algorithm 1 we state F4’s pseu-
docode, highlighting (in red) the main differences to Buchberger’s
algorithm:
• In contrast to Buchberger’s algorithm one can choose in Line 4
several S-pairs at a time, for example, all of the sameminimal degree.
These S-pairs are stored in a subset L ⊂ P.
• In Line 5 for all terms of all the generators of the S-pairs we
search in the current intermediate Gröbner basis G for possible
reducers. We add those to L and again search for all of their terms

Algorithm 1 Faugère’s F4 algorithm
Input: I = ⟨f1, . . . , fm⟩ ⊂ P
Output: G, a Gröbner basis for I w.r.t. a global monomial order <
1: G← {f1, . . . , fm}

2: P← {sp (
fi, fj

)
| 1 ≤ i < j ≤ m

}
3: while (P ≠ ∅) do
4: Choose subset L ⊂ P, P← P \ L

5: L← symbolic preprocessing(L,G)
6: L← linear algebra(L)
7: for h ∈ L with lm< (h) ∉ L(G) do
8: P← P ∪ {(h, g) | g ∈ G}

9: G← G ∪ {h}

10: end for
11: end while
12: return G

for reducers in G.
• Once all available reduction data is collected from the last step,
we generate a matrix with columns corresponding to the terms
appearing in L and rows corresponding to the coefficients of each
polynomial in L. In order to reduce now all chosen S-pairs at once
we apply Gaussian Elimination on the matrix (Line 6) and recheck
afterwards which rows of the updated matrix give a new leading
monomial not already in L(G) (Line 7).

In order to optimize the algorithm one can now apply Buch-
berger’s product and chain criteria, see [13, 31]. With these, useless
S-pairs are removed before even added to P thus less zero rows
are computed during the linear algebra part of F4. Still, for bigger
examples there are many zero reductions.

It is known that Buchberger-like algorithms for computing Gröb-
ner bases, as F4, have a worst-case time complexity doubly-expo-
nential in the number of solutions of the system for <DRL. Still, in
practice these algorithms behave in general way better.

3.2 Gröbner conversion Algorithm
In this subsection, we present the variant of the fglm algorithm [21]
due to Faugère and Mou [22] which is used in msolve. We assume
that the input Gröbner basis G is reduced and that it spans a zero-
dimensional ideal I of degree D. We also assume that I satisfies
two generic assumptions, namely assumptions (P1) and (P2) defined
below.

Assumption (P1) means that for every monomialm in the mono-
mial basis B of P

I for <DRL, either mxn is another monomial in B

or it is the leading monomial of a polynomial in G.
Since P

I is a finite dimensional K-algebra, the multiplication
by xn is a linear map whose associated matrix M is called the
multiplication matrix of xn. Under assumption (P1), each column
of M is either a column of the identity matrix or can be read from
a polynomial in G whose leading term is divisible by xn.

Assumption (P2) means that I is in shape position, i.e. the re-
duced Gröbner basis for I for <LEX is given by {gn(xn), xn−1 +
fn−1(xn), . . . , x1 + f1(xn)} where gn has degree D and poly-
nomials f1, . . . , fn−1, the parametrizations of x1, . . . , xn−1 have
degrees at most D − 1. Furthermore, the radical of I,

√
I = {h ∈

P|∃k ∈ N, hk ∈ I}, also satisfies (P2) and its reduced Gröbner basis

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din

for<LEX is {wn(xn), xn−1+un−1(xn), . . . , x1+u1(xn)}, with
wn the squarefree part of gn and degui < degwn for 1 ≤ i ≤ n.

By construction, the minimal polynomial of xn in P
I is the same

as the minimal polynomial ofM and is of degree at most D. This
polynomial is also called the eliminating polynomial of xn and is
gn. Using Wiedemann algorithm, gn is computed by guessing the
minimal recurrence relations of the table (Vk,1)0≤k<2D defined
by V0 ∈ KD a column-vector chosen at random, Vt

k
= Vt

0
Mk for

all 1 ≤ k < 2D andVk,1 is the first coordinate ofVk. This guessing
step is usually done with the Berlekamp–Massey algorithm and its
fast variants [11].

Assuming xi is the jth monomial in B, its parametrization fi is
computed by solving aHankel systemwithmatrix (Vk+ℓ,1)0≤k,ℓ<D

and vector (Vk,j)0≤k<D. Then, ui = fi mod wn.
Whenever I does not satisfy assumption (P2), a parametrization

of the solutions might still be possible. This is the case if
√
I satisfies

(P2). In that case, for 1 ≤ i ≤ n, assuming xi is the jth monomial in
B, ui can be computed in a similar fashion using [29, Algorithm 2].
Let d = deggn < D and h = gn

∑d−1
k=0

Vk,1x
d−1−k
n quo xdn.

Then,

ui = −

(
gn

d−1∑
k=0

Vk,jx
d−1−k
n quo xdn

)
h−1 mod wn. (2)

This yields the following algorithm in pseudo-code.

Algorithm 2 Sparse fglm
Input: G ∈ K[x1, . . . , xn] the reduced Gröbner basis for a zero-

dimensional ideal of degreeD, satisfying assumption (P1), w.r.t.
<LEX with x1, . . . , xn ∉ lt (G)

Output: A parametrization of the roots of ⟨G⟩.
1: BuildM the multiplication matrix of xn
2: Pick V0 ∈ KD at random
3: for k from 0 to 2D− 2 do
4: Vk+1 ←MtVk

5: end for
6: gn ← Berlekamp–Massey(V0,1, . . . , V2D−1,1)
7: wn ← squarefree(gn)
8: if deggn = D then
9: for i from 1 to n− 1 do
10: Solve the Hankel system to determine fi(xn)
11: ui ← fi mod wn

12: end for
13: else
14: for i from 1 to n− 1 do
15: Compute ui as in Equation (2).
16: end for
17: end if
18: return {gn, wn, xn−1 + un−1(xn), . . . , x1 + u1(x1)}.

3.3 Univariate Polynomial Solving
In this subsection, we describe the algorithm used for real root
isolation in msolve. It takes as input f ∈ Q[x] which we assume to
be squarefree since the algebraic representation output by msolve
stands for the radical of the ideal generated by the input equations.

Hence, let f ∈ Q[x] be squarefree; further, we denote by σ(f)
the number of sign variations in the sequence of coefficients of
f when it is encoded in the standard monomial basis. Note that
when σ(f) = 0, f has no positive real root. By Descartes’ rule of
signs, the difference between σ(f) and the number of positive real
roots of f is an even non-negative integer which we denote by δ(f).
Consequently, when σ(f) = 1, f has a single positive real root.

This can be used efficiently in a subdivision scheme, introduced
by Akritas and Collins in [15], as follows. We start by computing
an integer B such that all positive real roots of f lie in the interval
]0, B[using the bounds given in e.g. [6, Chapter 10]. Note that,
up to scaling, one can assume this interval to be]0, 1[. Hence, the
idea is to apply some transformation f̃ = (x + 1)deg(f)f

(
1

x+1

)
,

and compute σ(f̃). If it is 0 or 1, we are done. Else, one performs
recursive calls to the algorithm by splitting the interval]0, 1[to]
0, 12

[
and

]
1
2 , 1

[
. This is done by mapping them to]0, 1[, applying

the transformations x → x
2 and x → x+1

2 to f̃ and taking the
numerator. Termination of this subdivision scheme is ensured by
Vincent’s theorem [40].

To get all the real roots of f it suffices to apply the transformation
x → −x and call the subdivision scheme on this newly obtained
polynomial. Many improvements have been brought during the past
years, in particular by integrating Newton’s method to accelerate
the convergence of the subdivision scheme (see e.g. [36]).

4 IMPLEMENTATIONAL DETAILS
In this section, we are given F ⊂ P and we denote by I the ideal
generated by F. We assume that the base field K is either Q or a
prime field of characteristic < 231.

To tackle systems with coefficients in Q, we use multi-modular
approaches. Here, we do not discuss details on technical necessities
like good or bad primes in detail, but refer to [4, 38]. Our implemen-
tations of F4, the linear algebra routine on which it relies and fglm
run over prime fields with characteristic < 231. In the end, we
obtain rational parametrizations with polynomials with coefficients
in Z. The real root isolator implemented in msolve is based on the
big num mpz arithmetic of GMP [27].

4.1 Efficiency in F4
For an efficient implementation of F4 we use different approaches.

(1) We use hashing tables with linear probing in order to store
the exponent vectors corresponding to monomials.

(2) For testing monomial divisibility in the symbolic preprocess-
ing step we use a divisor mask of 32-bits, if there are more than 32

variables we just recognize the first 32.
(3) In general, rows are stored in a sparse format since for most

systems F4 matrices are very sparse. For denser matrices a sparse-
dense hybrid format is implemented.

(4) We use the sparsest possible rows as pivot rows when apply-
ing Gaussian Elimination.

(5) For computations modulo prime numbers 230 < p < 231 we
can use CPU intrinsics to make the basic operations, additions and
multiplications of uint32_t elements more efficient. Using AVX2
we can store eight 32-bit (unsigned) coefficients in one 256-bit
__m256i type. We apply four multiplications and subtractions at a

msolve: A Library for Solving Polynomial Systems ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

time storing intermediate results in 64-bit (signed) integers. Testing
if the intermediate values are negative we can add, in that instance,
a square of the field characteristic to adjust to correct, positive
coefficients of the usual storage type. Depending on the sparsity of
the matrix this approach can lower the time spent for linear algebra
in F4 by more than the half.

4.2 Probabilistic Linear Algebra
For F4we use the Gebauer–Möller installation from [25] in order to
discard useless critical pairs. Since there still might be zero reduc-
tions during the run of the algorithm we apply over finite fields an
idea that was first publicly stated by Monagan and Pearce in [34]
(where it is attributed to A. Steel from the magma team).

After having moved the sparsest row for each pivot into the
upper pivot matrix part, we take the remaining k rows into account.
These are the rows to be reduced by the upper pivot matrix (i.e.
the known leading terms for G). We partition these k rows into
blocks of a given size, say ℓ rows form one block. Now we take a
random linear combination of these ℓ rows and reduce it w.r.t. the
upper pivot matrix. If the outcome is non-zero we have found a new
pivot row and add it to the upper pivot row. Then we take another
random linear combination of the ℓ rows. We stop with the current
block once we have either reduced ℓ linear combinations or once
the first reduction to zero happens. The probability of getting zero
by chance is roughly 1/p, for p being the field characteristic. So, if
p is big enough we get the correct result with a high probability.
Moreover, one can increase the probability of correctness by doing
more than one reduction to zero before the block is finished. Once
all blocks are handled, we are done with the linear algebra part of
F4. Further we call this strategy probabilistic linear algebra.

4.3 F4 Tracer
In order to have more efficient modular runs of F4 we can exploit
already known meta data from previous runs. We learn from the
first finite field computation modulo some given prime number p
applying F4 with exact linear algebra: Trace the main steps of the
algorithm, i.e. for the first round of F4

(1) store all polynomials and multiples that generate the matrix,
(2) remove from this list all polynomials that are reduced to

zero; also remove all reducers that are only needed for these
specific polynomials.

In the following calls of F4 for different prime numbers we apply
the trace from the computation modulo p. For each round we just
run the following two steps:
(1) Generate the matrix with the already computed polynomials
using the information from the trace.
(2) Use exact linear algebra, add the new polynomials to the basis.

Remark 4. If we use the tracer to F4we cannot use the probabilistic
linear algebra in the first round since then we could not detect which

specific rows reduce to zero. In the application phase of the tracer

it is then useless to apply the probabilistic linear algebra since the

matrices are already optimal in the sense that we do not compute any

zero reduction at all. If the first prime number for which we generate

the tracer is a good prime number we can be sure that only a finite

number of other prime numbers exist such that the Gröbner basis

computed modulo these primes via applying the tracer is not correct.

4.4 Change of orders
Recall that we apply fglm to the generic situation where I satisfies
assumption (P2) and that the monomial basis B = (m1, . . . ,mD)

of P
I (D is the degree of I) satisfies assumption (P1). This is deduced

from the reduced <DRL Gröbner basis G of I. We denote by M the
matrix encoding the endomorphism φ : f ∈ P

I → fxn ∈ P
I .

The algorithm in [22] relies on computing the Krylov sequence:

Vt
i = Vt

0 Mi for 1 ≤ i < 2D

where V0 is a randomly chosen vector with coefficients in our base
field K (which is prime of characteristic < 231 in our context).

In [22], Faugère and Mou note that, under assumption (P1), the
matrixM can be read on the <DRL Gröbner basis of I as follows.

(1) if φ(mi) = mj ∈ B then the ith column of M is the vector
whose entries are all 0 except the jth which is 1;

(2) if φ(mi) is the lead monomial of the jth element gj of G
then the ith column of M is the vector of coefficients of the
tail of −gj which is lt

(
gj

)
− gj.

In the end, observe that the transpose ofM enjoys a structure of
generalized companion matrix with "trivial" blocks (corresponding
to case (1)) and "dense" lines (corresponding to case (2)) which leads
to see this matrix as a "sparse" one.

In [22], the authors analyze the sparsity ofM under some gener-
icity assumptions. In [29], the authors develop block Krylov tech-
niques to accelerate these algorithms in particular through paral-
lelism and make clearer how to apply them in the situation where I
is not radical. The implementation developed there is based on the
eigen library for sparse matrix multiplication. In our implementa-
tion, we treatM, not as a general sparse matrix but as a generalized
companion matrix. We encode the transpose ofM as follows:

• we store the position of "trivial" lines and, for these lines,
the position of the ’1’ in these "trivial" lines;

• we store the position of "dense" lines and an array for the
list of coefficients.

With such an encoding, computing the Vi’s simply boils down to
multiplying the "dense" rows ofM with a subvector of Vi−1 and
copying entries of Vi−1 to the appropriate coordinates of Vi.

This reduction to dense matrix vector multiplication is efficient
if most of the "dense" lines are indeed dense which is the case in
most of the examples. It also allows us to use in a straightforward
way AVX2 intrinsics for computing scalar products of vectors with
coefficients in finite fields. As explained in Subsection 4.1, we can
then perform four multiplications of the entries of our vectors by
storing them in a __m256i register. To delay as much as possible
reductions by the prime number defining our base field, we accu-
mulate the highest and lowest 32 bits in separate accumulators.
Since we are dealing with dense vectors, this approach allows us to
obtain a speed-up close to 3.

Verifying the Parametrizations. If deggn = D, then the returned
Gröbner basis is the reduced one of I for <LEX. Otherwise, if

√
I

satisfies assumption (P2), the goal is to return a Gröbner basis of
this ideal. We describe now how we implemented a new procedure
deciding if

√
I satisfies (P2). We start by explaining the issue.

Assume, for instance, that the leading terms of the Gröbner basis
of

√
I for <LEX are xd

3
, x2, x1x3, x

2
1
. Using [29, Algorithm 2], a

http://eigen.tuxfamily.org/index.php?title=Main_Page

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din

rational parametrization {wn(x3), x2 + u2(x3), x1 + u1(x3)} is
returned but only the first two polynomials are correct. Assuming
now that the leading terms are xd

3
, x2x3, x

2
2
, x1, then x2+u2(x3)

cannot be correct. Likewise, x1+u1(x3)may be false as the correct
polynomial could be x1 + αx2 + u1(x3) with α ≠ 0. As there is
no way to distinguish these two cases based on the vectors that
we consider, we need a way to verify if the parametrizations are
correct or not.

To do so, we compute a second parametrization for each variable
and compare it with the previous one. Since computing the sequence
terms is actually the bottleneck of this variant of the fglm algorithm,
the goal is to use the sequence terms at hand.

Let us notice that since (Vk)k≥0 satisfies the relation given by
gn, it is hopeless to just shift the sequence terms by increasing k.
Using this recurrence relation, we can rewrite the computations
w.r.t. the first sequence terms making them yield the same result, be
it correct or not. Therefore, the idea is to shift the sequence terms
in another direction. Assuming xi (resp. x2i) is the jth (resp. j ′th)
monomial in B, we replace all instances of Vk,1 by Vk,j and all
those of Vk,j by Vk,j′ . This makes us compute the parametrization
xi+ f̃i(xn) of the radical of the colon ideal I : (xi), see [8, Th. 3.1].

Obviously, if I = I : (xi), then the parametrizations should be
the same. Otherwise, their parametrizations can now be different
leaving us unable to compare them to ensure the correctness. This
issue is solved by picking at random λ ∈ K so that I : (xi + λ) = I.
Then, we compute a parametrization of xi in the radical of I : (xi+
λ) by considering instead the sequence terms Ṽk,j = Vk,j+λVk,1

on the one hand and Ṽk,j′ = Vk,j′ + λVk,j on the other hand.

4.5 Multi-modular Approach
When P = Q[x1, . . . , xn], we have implemented efficient multi-
modular algorithms.

One starts by picking randomly a prime number p0 in the in-
terval]230, 231[and next (i) run the F4 tracer on the modular
image of our input system in Z

p0Z
[x1, . . . , xn], (ii) run fglm on

the computed Gröbner basis and normalize the obtained Gröbner
basis for <LEX (which is in Shape position by assumption) to ob-
tain a rational parametrization. This process is repeated for several
primes, applying the tracer we learnt from p0 until one can per-
form rational reconstruction (through Chinese remainder lifting)
to obtain a solution over P whose modular image by reduction to
some prime p coincides with the output of step (ii) when running
the computation over ZpZ [x1, . . . , xn]. For Chinese remainder lift-
ing and rational reconstruction, we use functions from FLINT [28]
(which we have slightly adapted to our context).

Note that in step (i), one can replace the F4 tracer with F4 based
on probabilistic linear algebra. Note also that all computations
modulo prime numbers are independent of each other.

This multi-modular approach is probabilistic: only for homoge-
neous systems we can apply a final check (over Q) if the computed
Gröbner basis is correct. Other than that we get the correct result
if the Gröbner basis computed modulo the first chosen prime p0
coincides with the image modulo p0 of the Gröbner basis (over the
rationals) of the input system. This happens with high probability
and the number of such bad primes is finite (see e.g. [9, 38]).

One choice in the current design of msolve, which is inspired
by the last release of FGb, is that the multi-modular process is
implemented globally, i.e. we do not lift the intermediate reduced
<DRL Gröbner basis over Q.

4.6 Univariate real root isolation
Our implementation uses tricks which were previously introduced
byHanrot et al. in https://members.loria.fr/PZimmermann/software/
to implement [35] and also used in the SLV library [39]. These con-
sist in observing that we only need the two basic operations: (i)
shifting x → x + 1 in the considered polynomial and (ii) scaling
the coefficients by the transformation x → 2kx for k ∈ Z which
can be handled by specific GMP mpz_ shift operators [27]. The sin-
gle innovations in msolve are motivated by the large bit sizes of
the coefficients (several tens of thousands) and the large degrees
(several thousands) of the polynomials output by msolve.

Firstly, observe that one needs to count the number of sign
variations of the polynomial obtained after a combination of (i) and
(ii). In our context the bit size of the coefficients is way larger than
the degree of the considered polynomial. Hence, taking appropriate
dyadic approximations of these coefficients is sufficient to decide
the sign (unless some unexpected cancellations occur). Note that
computing such dyadic approximations is free using GMP.

Secondly, to tackle large degrees, we revisit asymptotically fast
algorithms for Taylor shift (see [24]) (which we combine with the
above dyadic approximation technique) and implement them care-
fully using the FFT-based multiplication of FLINT for univariate
polynomials with integer coefficients. This is a major difference
with other implementations because of the (wrong) belief that
asymptotically fast algorithms are useless in this context (see [30,
Section 3.1]). This allows us to obtain a univariate solver which
outperforms the state of the art on examples coming from our com-
putations (usually extracted from applications of polynomial system
solving). The cross-over point of our asymptotically fast implemen-
tation of the Taylor shift against the classical implementations used
in current real root solvers is around degree 512.

Similarly, we implement the quadratic interval real root refine-
ment described in [1] for better practical efficiency which improves
upon the naive one implemented in SLV.

5 EXPERIMENTAL RESULTS
We compare msolve with two other computer algebra systems:

• magma -v2.23-6 [10]: using the command Variety().
• maple -v2019 [33]: using the command PolynomialSystem()
from themodule SolveToolswith option engine=groebner.

All compared implementations use Faugère’s F4 algorithm and the
fglm algorithm and then solve univariate polynomials.

The Singular system version 4-1-3 [17] is too slow. E.g., it solves
Eco-10 in 16, 566 seconds and Katsura-10 in 533, 876 seconds.

All chosen systems are zero-dimensional with rational coeffi-
cients. All computations are done sequentially. Table 1 states vari-
ous, partly well-known benchmarks, which differ in their specific
hardness, like reduction process, pair handling, sparsity of multipli-
cation matrices, etc. Table 2 is dedicated to critical points compu-
tations, CP(d,nv,np) describes critical points for a system of np
polynomials in nv variables of degree d.

https://members.loria.fr/PZimmermann/software/

msolve: A Library for Solving Polynomial Systems ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

Examples System data msolve single modular computation msolve overall Others
degree radical F4 (prob.) F4 (learn) F4 (apply) fglm # primes trace independent maple magma

Katsura-9 256 yes 0.06 0.17 0.03 0.07 83 4.89 7.49 104 2, 522

Katsura-10 512 yes 0.24 0.81 0.09 0.11 188 43.7 70.5 1, 278 82, 540

Katsura-11 1, 024 yes 1.34 6.26 0.45 0.49 388 424 814 7, 812 −

Katsura-12 2, 048 yes 8.61 56.1 3.10 3.96 835 6, 262 11, 215 120, 804 −

Katsura-13 4, 096 yes 52.8 425 18.9 30.6 1, 772 89, 390 148, 372 − −

Katsura-14 8, 192 yes 318 3, 336 128 210 3, 847 1, 308, 602 2, 007, 170 − −

Eco-10 256 yes 0.10 0.28 0.05 0.02 161 12.5 21.2 26.3 6, 520

Eco-11 512 yes 0.39 1.21 0.17 0.07 327 90.3 161 312 214, 770

Eco-12 1, 024 yes 2.25 11, 619 1.07 0.34 530 877 1, 619 4, 287 −

Eco-13 2, 048 yes 11.7 67.3 6.61 2.12 1, 225 12, 137 19, 553 66, 115 −

Eco-14 4, 096 yes 67.1 516 34.8 25.9 2, 670 167, 798 254, 389 − −

Henrion-5 100 yes 0.01 0.01 0.004 0.01 83 0.71 0.83 2.7 93

Henrion-6 720 yes 0.11 0.22 0.07 0.11 612 138 157 1, 470 −

Henrion-7 5, 040 yes 9.55 27.5 6.51 20.46 4, 243 117, 803 127, 456 − −

Noon-7 2, 173 yes 1.66 5.3 0.93 1.95 1, 305 4, 039 5, 045 432 −

Noon-8 6, 545 yes 26.6 153 17.5 72.3 6, 462 598, 647 640, 177 5, 997 −

Phuoc-1 1, 102 no 4.01 4.65 3.42 2.59 753 4, 467 5, 056 − −

Table 1: Benchmark timings given in seconds (if not otherwise stated)

For each system we give its degree and if it is radical. For msolve
we give specific timing information, also on the single modular
computations: We apply msolve with the tracer option, giving
also the timings for the first modular computation learning and
generating the tracer (F4 (learn)) and the timings for the further
modular computations applying only the tracer (F4 (apply)). We
also use msolve with independent modular computations, apply-
ing the probabilistic linear algebra in each modular F4 (F4 (prob.))
In any case, we apply the same fglm implementation. Furthermore,
we state the number of primes needed by msolve to solve over Q.
For maple and magma we just give the overall timings. Symbol ’−’
means that the computation was stopped after waiting more than
10 times the runtime of msolve.

First thing to note is that magma is in all instances slower than
msolve or maple. Although, for some examples, magma’s modular
F4 computation is even a bit faster than the other two, magma’s
bottleneck is a not optimized fglm.

For nearly all systems, msolve is faster, sometimes by an order
of magnitude, than maple. Especially optimizing fglm on the dense
parts of the multiplication matrices gives a speedup over maple,
which seems to apply sparse probabilistic linear algebra (like de-
scribed in Section 4.2). maple’s approach is beneficial for very few
examples like Cyclic-n where even the “dense” parts of the multi-
plication matrix are still sparse. Moreover, the other main difference
of msolve to maple and magma is the fact that msolve does a modu-
lar F4 computation, follows by a modular fglm, then does a rational
reconstruction on the parametrization. maple and magma, on the
other hand, first apply a multi-modular F4 algorithm, computing
the reduced Gröbner basis w.r.t. <DRL over Q, then convert, then
solve. This allows msolve to use way less memory.

There are, of course, few examples, where such a strategy is not
the best, one of which is also given in Table 1: Noon-n is solved
way faster by maple than msolve.

As for the univariate solver in msolve, we compare with maple1

and tdescartes (non-open source) and SLV (open source). We use
the standard benchmarks provided in Table 1, the solving process
leads to polynomials which do not have clusters of real roots. The
benefit of implementing asymptotically fast algorithms for real
root solvers is now obvious: msolve’s runtimes outperforms its
competitors’ on this class of problems.

Overall, msolve performs very efficiently on a wide range of in-
put systems, using way less memory than its competitors, allowing
its users to solve polynomial systems which are not tractable by
maple and magma.

Acknowledgments. We thank J.-Ch. Faugère for his advices and
support and for providing us the rational parametrizations of Katsura-
n for 15 ≤ n ≤ 17, and A. Bostan for his comments on this paper.

REFERENCES
[1] J. Abbott. Quadratic interval refinement for real roots. ACM Communications in

Computer Algebra, 48(1/2):3–12, 2014.
[2] M. Albrecht and G. Bard. The M4RI Library – V. 20200125. The M4RI Team, 2021.
[3] M.-E. Alonso, E. Becker, M. F. Roy, and T. Wörmann. Zeros, multiplicities, and

idempotents for zero-dimensional systems. In Algorithms in Algebraic Geometry

and Applications, pages 1–15. Birkhäuser, 1996.
[4] E. A. Arnold. Modular algorithms for computing Gröbner bases. J. Symbolic

Comput., 35(4):403–419, 2003.
[5] P. Aubry, D. Lazard, and M. M. Maza. On the theories of triangular sets. Journal

of Symbolic Computation, 28(1-2):105–124, 1999.
[6] S. Basu, R. Pollack, andM.-F. Roy. Algorithms in real algebraic geometry, volume 10

of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2nd
edition, 2006.

[7] D. Bayer and M. Stillman. A criterion for detecting m-regularity. Inventiones
mathematicae, 87(1):1–11, 1987.

[8] J. Berthomieu, C. Eder, and M. Safey El Din. Computing colon ideals through
sequences, 2021. https://www-polsys.lip6.fr/~berthomieu/colon/colon.pdf.

[9] J. Böhm, W. Decker, C. Fieker, S. Laplagne, and G. Pfister. Bad primes in compu-
tational algebraic geometry. In G.-M. Greuel, T. Koch, P. Paule, and A. Sommese,
editors, Mathematical Software – ICMS 2016, pages 93–101, Cham, 2016. Springer
International Publishing.

1We use maple-v16 as it is faster than the -v2019 for real root isolation on our
benchmarks

https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat9-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat10-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat11-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat12-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat13-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat14-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco10-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco11-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco12-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco13-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco14-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion5.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion6.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion7.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/noon7-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/noon8-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/phuoc1.ms
https://www-polsys.lip6.fr/~berthomieu/colon/colon.pdf

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din

Examples System data msolve single modular computation msolve overall Others
degree radical F4 (prob.) F4 (learn) F4 (apply) fglm # primes trace independent maple magma

CP(3, 5, 2) 288 yes 0.03 0.04 0.01 0.03 326 18.1 19.2 249 −

CP(3, 6, 2) 720 yes 0.22 0.59 0.12 0.16 1, 042 390 450 23, 440 −

CP(3, 7, 2) 1, 728 yes 1.97 8.18 1.23 1.20 3, 037 9, 643 11, 511 − −

CP(3, 8, 2) 4, 032 yes 18.5 111.5 12.2 19.6 8, 211 269, 766 323, 838 − −

CP(4, 4, 3) 576 yes 0.04 0.86 0.03 0.07 339 40.9 41.8 916 −

CP(4, 5, 3) 3, 456 yes 3.24 8.60 2.23 4.83 2, 747 21, 528 23, 559 − −

CP(3, 6, 6) 729 yes 0.18 0.42 0.11 0.15 779 255 294 − −

CP(4, 6, 6) 4, 096 yes 7.70 25.6 5.44 14.09 3, 476 71, 472 77, 941 − −

CP(3, 7, 7) 2, 187 yes 2.49 8.97 1.58 1.86 2, 795 12, 412 14, 375 − −

Table 2: Critical points timings given in seconds (if not otherwise stated)

Examples ♯ sols msolve maple SLV tdescartes
time time ratio time ratio time ratio

Katsura-10 120 3.1 4.8 1.5 3.8 1.2 20 6.5

Katsura-11 216 27 60 2.2 50.5 1.9 156 5.8

Katsura-12 326 207 656 3.2 555 2.7 2, 206 10.6

Katsura-13 582 2, 220 16, 852 7.6 13, 651 6.1 22, 945 10.3

Katsura-14 900 20, 149 250, 094 12.4 252, 183 12.5 384, 566 19.1

Katsura-15 1, 606 197, 048 3, 588, 835 18.2 3, 540, 480 18.0 5, 178, 180 26.3

Katsura-16 2, 543 1, 849, 986 − − − − − −

Katsura-17 4, 428 16, 128, 000 − − − − − −

Table 3: Real root isolation timings given in seconds

[10] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[11] R. P. Brent, F. G. Gustavson, and D. Y. Yun. Fast solution of Toeplitz systems
of equations and computation of Padé approximants. Journal of Algorithms,
1(3):259–295, 1980.

[12] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-

ringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of
Innsbruck, 1965.

[13] B. Buchberger. A Criterion for Detecting Unnecessary Reductions in the Con-
struction of Gröbner Bases. In EUROSAM ’79, An International Symposium on

Symbolic and Algebraic Manipulation, volume 72 of Lecture Notes in Computer

Science, pages 3–21. Springer, 1979.
[14] B. Buchberger. An Algorithm for Finding the Basis Elements of the Residue Class

Ring of Zero Dimensional Polynomial Ideal (English translation of [12]) . Journal
of Symbolic Computation, 41(3-4):475–511, 2006.

[15] G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descarte’s
rule of signs. In Proceedings of the Third Symp. on Symb. and Alg. Comp., SYMSAC
’76, pages 272–275, New York, NY, USA, 1976. ACM.

[16] D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Springer,
fourth edition, 2015.

[17] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-3 — A

computer algebra system for polynomial computations, 2020.
[18] D. Eisenbud. Commutative Algebra, volume 150 of Graduate Texts in Mathematics.

Springer-Verlag, 1995.
[19] J.-Ch. Faugère. A new efficient algorithm for computing Gröbner bases (F4).

Journal of Pure and Applied Algebra, 139(1–3):61–88, 1999.
[20] J.-Ch. Faugère. FGb: A Library for Computing Gröbner Bases. In K. Fukuda,

J. v. d. Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software –

ICMS 2010, pages 84–87, Berlin, Heidelberg, 2010. Springer.
[21] J.-Ch. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of

Zero-dimensional Gröbner Bases by Change of Ordering. J. Symb. Comput.,
16(4):329–344, 1993.

[22] J.-Ch. Faugère and C. Mou. Sparse FGLM algorithms. Journal of Symbolic

Computation, 80:538–569, 2017.
[23] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.
[24] J. v. z. Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain

difference equations. In Proceedings of the 1997 Int. Symp. on Symb. and Alg.

Comp., ISSAC ’97, pages 40–47, New York, NY, USA, 1997. ACM.

[25] R. Gebauer and H. M. Möller. On an installation of Buchberger’s algorithm.
Journal of Symbolic Computation, 6(2-3):275–286, 1988.

[26] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner Free Alternative for Polynomial
System Solving. Journal of Complexity, 17(1):154–211, 2001.

[27] The. GMP group. GMP: The GNU Multiple Precision Arithmetic Library, 2021.
[28] W. B. Hart. Fast library for number theory: An introduction. In Proc. of the

3rd Int. Cong. on Math. Soft., ICMS’10, pages 88–91. Springer-Verlag, 2010. http:
//flintlib.org.

[29] S. G. Hyun, V. Neiger, H. Rahkooy, and É. Schost. Block-Krylov techniques
in the context of sparse-FGLM algorithms. Journal of Symbolic Computation,
98:163–191, 2020. Special Issue on Symb. and Alg. Comp.: ISSAC 2017.

[30] A. Kobel, F. Rouillier, and M. Sagraloff. Computing real roots of real polynomials
... and now for real! In Proceedings of the Int. Symp. on Symb. and Alg. Comp.,
ISSAC ’16, pages 303–310, New York, NY, USA, 2016. ACM.

[31] C. Kollreider and B. Buchberger. An improved algorithmic construction of
Gröbner-bases for polynomial ideals. SIGSAM Bull., 12:27–36, 1978.

[32] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraische Grössen.
Journal für die reine und angewandte Mathematik, 1882(92):1–122, 1882.

[33] Maplesoft. Maple 2019 – a division of Waterloo Maple Inc., Waterloo, Ontario, 2019.
[34] M. B. Monagan and R. Pearce. An algorithm for spliting polynomial systems

based on F4. In J. Faugère, M. B. Monagan, and H. Loidl, editors, Proceedings of
the Int. Workshop PASCO@ISSAC 2017, Germany, pages 12:1–12:5. ACM, 2017.

[35] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots.
Journal of Computational and Applied Mathematics, 162(1):33–50, 2004.

[36] M. Sagraloff and K. Mehlhorn. Computing real roots of real polynomials. Journal
of Symbolic Computation, 73:46–86, 2016.

[37] P.-J. Spaenlehauer. tinygb, 2021. https://gitlab.inria.fr/pspaenle/tinygb.
[38] C. Traverso. Gröbner trace algorithms. In P. M. Gianni, editor, ISSAC’88, Rome,

Italy, July 4-8, 1988, Proceedings, volume 358 of Lecture Notes in Computer Science,
pages 125–138. Springer, 1988.

[39] E. Tsigaridas. SLV: a software for real root isolation. ACM Communications in

Computer Algebra, 50(3):117–120, 2016.
[40] A. Vincent. Mémoire sur la résolution des équations numériques. Mémoires de la

Société Royale des Sciences, de L’Agriculture et des Arts, de Lille, pages 1–34, 1834.

https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_5_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_6_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_7_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_8_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_4_p_3.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_5_p_3.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_6_p_6.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_6_p_6.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_7_p_7.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat10-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat11-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat12-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat13-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat14-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat15-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat16-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat17-qq.ms
http://flintlib.org
http://flintlib.org
https://gitlab.inria.fr/pspaenle/tinygb

	Abstract
	1 Introduction
	2 Notations and Background
	3 Implemented Algorithms
	3.1 Faugère's F4 Algorithm
	3.2 Gröbner conversion Algorithm
	3.3 Univariate Polynomial Solving

	4 Implementational Details
	4.1 Efficiency in F4
	4.2 Probabilistic Linear Algebra
	4.3 F4 Tracer
	4.4 Change of orders
	4.5 Multi-modular Approach
	4.6 Univariate real root isolation

	5 Experimental Results
	References

